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ABSTRACT A kind of novel method of power allocation with limited cross-tier interference for cognitive

radio network (CRN) is proposed in this paper. In this method, an interference-limited power allocation

algorithm based on filter bank multi-carrier-offset quadrature amplitude modulation (FBMC-OQAM) is

put forward. In order to improve the energy efficiency of the entire network and protect secondary users

(SUs) in the network from too much interference, cross-tier interference limit is adopted, at the same time,

virtual queue is designed to transform the extra packet delay caused by the contention for the channel

of multi-user into the queuing delay. Taking the energy efficiency as the objective function, a nonlinear

programming approach with nonlinear constraints is innovatively proposed under the constraints of time

delay and transmission power. An iterative algorithm in order to solve the problem is also put forward. In the

new algorithm, the fractional objective function is transformed into polynomial form, and the global optimal

solution is obtained by iteration after reducing the computational complexity. In addition, a sub-optimal

algorithm is proposed to reduce computational complexity. The experimental results show that the optimal

algorithm has higher performance while the sub-optimal algorithm has a lower computational complexity.

The presented method has very good practical importance for the CRN.

INDEX TERMS Cognitive radio network (CRN), power allocation, FBMC-OQAM, Lagrange dual.

I. INTRODUCTION

The cognitive radio (CR) network (or CRN) [1]–[3] is a wire-

less communication network composed of cognitive users.

Some or all of the devices in a CR network can access

authorized as well as unauthorized frequency bands. Thus,

compared with traditional wireless networks, CR networks

have high spectral efficiency, and this makes them a key

technology for next-generation mobile communication net-

works. The spectrum-sharing cognitive radio network is an

interference-controlled CR network that can interfere with

the primary user (PU) but cannot exceed its interference tem-

perature limit. An interference temperature limit is added to

The associate editor coordinating the review of this manuscript and
approving it for publication was Xianfu Lei.

the transmission power of the secondary user (SU) to ensure

that the limit of interference in each PU is not exceeded. The

interference temperature limit thus plays an important role

in resource allocation for such models. SUs can obtain the

interference temperature limit by energy detection or collab-

oration, where the SUs can directly access the PU network

without the real-time perception of the PU. In multi-carrier

modulation technology, orthogonal frequency-division

multiplexing (OFDM) has been considered as modulation

technology for CR networks [4]–[7]. However, when the

network encounters asynchronous transmission, the data rate

of OFDM can be affected by imperfect timing and fre-

quency synchronization. Asynchronous transmission results

in the inter-carrier interference, i.e., interference from one

sub-carrier affects adjacent sub-carriers. As an alternative
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method of modulation, filter bank multi-carrier (FBMC)

modulation [8]–[12] leads to a smaller loss in data trans-

mission rate in asynchronous communication than OFDM

because it does not require a cyclic prefix. Moreover,

with the offset quadrature-amplitude modulation (OQAM)

and poly-phase network, FBMC- OQAM reduces complex-

ity, and has the advantages of insensitivity to an offset

in carrier frequency, as well as high energy and spectral

efficiency [13]–[20]. In recent years, the scale of users has

expanded rapidly, a variety of ubiquitous wireless services

have grown quickly, and the energy consumption of battery-

powered mobile devices has increased with the continual

development of information and communication technolo-

gies [21]–[28]. However, owing to the slow development of

battery technology and the limitations on battery size, it is

challenging to optimize the energy consumption of mobile

devices from hardware. Therefore, improving the energy effi-

ciency of wireless networks is important for wireless access

in next-generationmobile communication [29]–[35]. Energy-

efficient resource allocation has emerged as the cutting-

edge technology for the development of network throughput,

expansion of the range of wireless network transmission, and

an improvement in link reliability [36]–[42]. With the aim

of green communication [43]–[46], designing an efficient

and accurate resource allocation algorithm is necessary but

challenging [47]–[52].

In this paper, we study an energy-efficient power allocation

problem in multi-user spectrum-sharing cognitive radio net-

works with limits on the total rate of data transmission and

power consumption [54]–[58]. The main novelty contribu-

tions of our work can be summarized as follows:

A kind of novel method of power allocation with limited

cross-tier interference for cognitive radio network (CRN)

is proposed in this paper. In this new method, we formu-

late a spectrum-sharing cognitive radio network model with

constraints on the total rate of data transmission and power

consumption. Considering the heights of the antennas of

the base station and secondary users, we present an opti-

mal energy-efficient power allocation algorithm called the

EEPA and a sub-optimal energy-efficient power allocation

algorithm called the SEEPA. In view of the non-convexity of

the original optimization problem, the EEPA converts it into a

convex optimization problem, formulates a dual Lagrangian

function, and finds the global optimal solution by iteration.

The SEEPA delivers performance slightly poorer than that of

the EEPA but has lower computational complexity.

The remainder of this paper is organized as follows.

Section II introduces research related works, and we describe

the proposed multi-user spectrum-sharing cognitive radio

network model in Section III. A transformation of the prob-

lem is illustrated in Section IV. Section V and section VI

design and develop the optimal and sub-optimal energy-

efficient power allocation algorithms. The results of exper-

iments to verify the proposed method and a discussion are

provided in Section VII, and we give the conclusions of this

study in Section VIII.

II. RELATED WORKS

In one of problems of resource allocation, power allocation

has been widely used to maximize the throughput of small-

cell networks (SCNs) while alleviating cross-tier interfer-

ence in two-layer networks. Power control was used in [8]

to guarantee the signal-to- interference-plus- noise ratio

(SINR) of small-cell users (SUs). In [9], a Lagrangian dual

decomposition-based power allocation scheme was proposed

to reduce cross-tier interference. Channel allocation has also

been used to suppress cross-tier interference. A sub-channel

allocation method in SCNs was implemented by minimizing

the interference of the primary base station (PBS) using the

correlated equilibrium game method in [10]. Reference [11]

proposed a joint power and sub-channel allocation algorithm

to maximize the total throughput of dense SCNs. In [8]–[11],

only the performance of the physical layer (in terms of

throughput, for instance) was considered while ignoring the

arrival and delay requirements of burst data in SUs. To over-

come interference, Dang et al. proposed a joint optimal

power allocation, relay selection, and sub-carrier allocation

scheme in [12]. In [13], sub-carrier pair and power alloca-

tion were optimized to maximize the weighted transmission

rate of point-to-point OFDM in decode-and-forward (DF)

relay networks. Based on perfect self-interference cancella-

tion, [14] proposed an orthogonal frequency-division mul-

tiple access (OFDMA) assisted joint resource allocation

scheme in a multi-user two-way amplify-and-forward (AF)

relay network. In [12]–[15], the optimization of the total

transmission rate, power, and sub-carrier allocation in areas

with high SINR was key to achieving higher throughput

while the balance between energy dissipation in networks

and the total rate of data transmission on different links

was ignored. In [16], the arrival of burst data and cross-tier

interference-sensitive resource management were considered

to maximize the throughput of SCNs without performance

delay. Li et al. proposed a delay-sensitive resource allocation

algorithm based on the Markov decision process to maximize

the average delay for all users in [17]. Because the authors

focused on the average delay for all users, the method of

resource allocation and providing an explicit delay guarantee

for users were ignored. In [18], a cross-tier scheduling algo-

rithm for maximizing the time-averaged throughput under

delay constraints on users in a single-cell OFDMA network

was proposed. However, owing to a lack of cross-tier inter-

ference, the algorithm can’t be directly applied to spectrum-

sharing SCNs. Reference [19] proposed a scheme to jointly

control the physical and transport layers that can satisfactorily

manage cross-tier interference through resource management

in spectrum-sharing SCNs, delay in the SU, and a constraint

on cross-tier interference.

This paper investigates the resource allocation problem

in FBMC-OQAM-based multiuser spectrum-sharing CR net-

works. Some of the research related to this problem is in

[20]–[29]. The authors of [20] noted that interference sup-

pression is a critical issue in CR networks. The limit on

the interference temperature in CR networks was proposed
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in [21] to reduce interference from secondary networks to

primary networks with the same spectral priority. Interfer-

ence suppression based on a resource allocation strategy was

also studied in wireless cognitive networks. In [22], a dual

decomposition method based on sub-channel selection and

power allocation was proposed for the limit on the interfer-

ence temperature as an independent variable in CR networks.

In [23] and [24], a joint sub-channel and power alloca-

tion method was proposed to maximize system through-

put by considering the interference temperature limit on

each sub-channel of primary users in multi-cellular cognitive

networks. However, the interference temperature can’t be

directly applied to SCNs because of a lack of cognitive capa-

bility of the SU [25]. To solve this problem, the interference

temperature limit can be sent to the SCNs via a macro base

station [25]–[27]. In all the above studies, the authors didn’t

use energy efficiency as the target of optimization, but it is

an important indicator in wireless communication networks.

Energy efficiency has attracted considerable research inter-

est in academia and the industry because it considered to

have a significant impact on CR networks [28]–[30]. Many

researches have recently focused on energy efficiency and

resource allocation [31]–[33]. A dynamic resource alloca-

tion algorithm was proposed in [31] based on utility in

relay-assisted OFDMA systems for maximizing the average

utility of multiple services for all users, but it does not

consider energy efficiency. Zarakovitis and Ni proposed a

downlink transmission energy-efficient resource allocation

scheme in [32] in a multi-user OFDMA network in case of

perfect channel state information, and studied the joint sub-

carrier and power allocation problem under a total power

constraint in multi-user downlink OFDMA networks. The

resource allocation problem in [32] optimized only energy

efficiency in the downlink scenario without considering

multi-user interference in the network, which can inhibit

performance, i.e., the performance worsens when the number

of mobile user increases. Reference [33]–[36] proposed an

energy-efficient power allocation scheme in AF networks.

However, when using energy efficiency as the objective func-

tion, the joint sub-carrier and power allocation schemes in DF

relay networks are identical to those in AF networks. Thus,

a joint power and sub-carrier resource allocation scheme was

proposed in [37]–[42] in the DF relay interference network.

By focusing on CR networks, a non-cooperative SU downlink

energy-efficient resource allocation problem was discussed

in [43]–[48] using game theory.

The analysis of the above literature shows that most

resource allocation algorithms are NP-hard problems, and

the optimal algorithms usually have higher complexity while

those with lower complexity often involve sacrificing system

performance [49]–[54]. Therefore, it is necessary to consider

the trade-off between algorithmic complexity and system

performance in the design of resource allocation algorithms

using convex optimization theory, game theory, graph theory,

and other methods [55]–[58].

FIGURE 1. System model.

III. PROBLEM FORMULATION&SYSTEM MODELLING

As the spectral access method in this paper does not require

considering the communication of the PU, it reduces the time

needed to determine its activity through perception and anal-

ysis. To improve the efficiency of communication, a scenario

featuring a multi-user CR network is considered. As figure 1,

the network has L sub-carriers with a total bandwidth of

B. A PBS and M SUs are randomly distributed in K cells.

Discarding the case involving a diversity of antennas, it is

assumed that each transceiver of the PUs and the SUs contains

an antenna. The users can realize power control by exchang-

ing information with each other without the collection and

processing of complete channel information by the secondary

base station (SBS) because of the characteristics of the struc-

ture of the network. Under the spectrum-sharing mode used

in this paper, the SUs can use the band of the authorized users,

and it is necessary to ensure that interference at the receiver

of each PU can’t exceed the interference temperature limit.

A. TRANSMISSION POWER

Let Pk,m,l denote the power distributed to the l-th sub-carrier

of the m-th SU in the k-th cell. The total transmission power

Ptot can then be expressed as

Ptot =
∑K

k=1

∑M

m=1

∑L

l=1

(
ξPk,m,l + Pc

)
(1)

where ξ denotes the reciprocal of the drain efficiency of the

power amplifier and Pc denotes the power consumed by the

circuit.

B. INTERFERENCE TEMPERATURE LIMIT

Medjahdi et al. noted that the quantitative interference gen-

erated by certain sub-carrier affects the number of adjacent

sub-carriers, in [36]. They claimed that such interference

generated by FBMC multiple-access technology affects up

to three sub-carriers. This paper uses the interference weight

vector given in [36] shown in Table 1. Unless otherwise

specified, the weight vector is denoted by V = [V0,V1].

The interference temperature limit is composed of two

parts in this paper: the interference between the sender of the

PBS and the receiver of SUs, and that between the sender of

SBSs in different cells and the receiver of SUs. The interfer-

ence between the sender of SBSs in different cells and the

VOLUME 7, 2019 82573
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TABLE 1. Interference-weighted vector (×10−3).

receiver of SUs is denoted by

ISBS =
∑M

m′=1
m′ 6=m

∑L

l′=1
l′ 6=l

Pk,m′,l′V|l−l′|Gk,m′,l′ (2)

where Gk ′,m′,l denotes the channel gain between the k-th

SBS and the m′-th SU at the l-th sub-carrier. Accordingly,

interference between the sender of the PBS and the receiver

of SUs is denoted by

IPBS =
∑L

l′=1
Pk,m,l′V|l−l′|Gk,p,l′ (3)

where Gk,p,l denotes the channel gain between the PBS and

the m-th SU in the k-th SBS at the l-th sub-carrier. Overall,

the interference temperature limit Ik,m,l between the m-th SU

and the k-th cell at the l-th sub-carrier is denoted by

Ik,m,l = ISBS + IPBS

=
∑M

m′=1
m′ 6=m

∑L

l′=1
l′ 6=l

Pk,m′,l′V|l−l′|Gk,m′,l′

+
∑L

l′=1
Pk,m,l′V|l−l′|Gk,p,l′ (4)

C. SINR AND TRANSMISSION RATE

We define the SINR ψk,m,l of the sender of the m-th SU in

the k-th cell as

ψk,m,l =
Pk,m,lGk,m,l

N0 + Ik,m,l
(5)

where N0 denotes thermal noise in the sub-carrier, Gk,m,l
denotes the channel gain between the SBS in the k-th cell and

the m-th SU at the l-th sub-carrier. According to Shannon’s

theorem, the total data transmission rate Rtot can be expressed

as

Rtot =
∑K

k=1

∑M

m=1

∑L

l=1

B

L
log2

(
1+ ψk,m,l

)

=
∑K

k=1

∑M

m=1

∑L

l=1

B

L
log2

(
1+

Pk,m,lGk,m,l

N0 + Ik,m,l

)

(6)

where B
/
L denotes the transmission bandwidth in the

sub-carrier.

D. BER

In the FBMC-OQAM system, we consider a method of mod-

ulation that uses the M-QAM signal constellation. For the

given SINR ψk,m,l of the sender of the m-th SU in the k-th

cell, the mean BER Ek,m,l can be written as follows [37]:

Ek,m,l = 0.2exp

[
−

1.5Pk,m,lGk,m,l

(M − 1)
(
N0 + Ik,m,l

)
]

(7)

where M denotes the number of points in each signal

constellation.

E. DELAY

The concept of a virtual queue is introduced to measure the

interaction between users. Assume that channel Fk in each

cell corresponds to a virtual queue Q̃k . The packets assigned

and transmitted on channel Fk in entire cells enter into virtual

queue Q̃k corresponding to channel Fk after being queued in

the physical queue. After queuing in the virtual queue Q̃k , the

packets can be sent on channel Fk .

According to the concept of the virtual queue, the extra

packet delay caused by the contention for channel Fk among

multiple users in the MAC protocol is transformed into queu-

ing delay W̃k in virtual queue Q̃k corresponding to channel

Fk . Thus, it can be calculated by queuing theory. Finally,

the packet service time of physical queue Qjk is corrected to

the sum of the packet transmission time and the queuing time

of the virtual queue. The input packet stream of the virtual

queue is the superposition of the transmission rates of all

users distributed on channel Fk , which can be considered a

Poisson process:

R̃k =
∑M

m=1
Rk,m (8)

The virtual queue Q̃k is a logical concept that does not

exist physically. Groupings in Q̃k are physically dispersed

in each SU. The service time of the virtual queue is the

packet transmission time while the packet processing rate of

the server is the packet sending time of each SU on channel

Fk . Although the packet in Q̃k is transmitted by a different

transmitter of the SU, only one transmitter can access the

channel corresponding to Q̃k , i.e., there is only one variable

rate (service capability) server in Q̃k .

In the M/G/1 queuing system, it is assumed that the service

time of the m-th SU in the k-th cell at the l-th sub-carrier is

expressed as Xk,m,l . Xk,m,l is independent and identically dis-

tributed in the arrival interval. Themean and secondmoments

of service time in the k-th cell are expressed as

Mean service time:

Xk =
(
E
[
X1,m,l

]
,E
[
X2,m,l

]
, · · · ,E

[
XK ,m,l

])T

Second moment of service time:

X2
k =

(
E
[
X2
1,m,l

]
,E
[
X2
2,m,l

]
, · · · ,E

[
X2
K ,m,l

])T

According to the P-K formula, the average waiting time in

a cell for an M /G/1 queuing system is as

Wk =
R̃kX

2
k

2
(
1− R̃kXk

) (9)

The average delay in a cell is obtained by the P-K

formula as

Tk = Xk +Wk = Xk +
R̃kX

2
k

2
(
1− R̃kXk

) (10)
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where R̃kXk denotes the ratio of arrival rate to service rate

reflecting how busy the system is. When R̃kXk increases,

the number of users increases in the steady state of the system.

When R̃kXk tends to one, the number of users tends to infinity

in the steady state of the system. When R̃kXk > 1, there is

not enough time for the system to service, and the number of

users inevitably becomes infinite.

The power allocation problem in this paper can be con-

sidered a nonlinear programming problem with nonlinear

constraints as

max EE
(
Pk,m,l

)
=
Rtot

Ptot

=

∑K
k=1

∑M
m=1

∑L
l=1

B
L
log2

(
1+

Pk,m,lGk,m,l
N0+Ik,m,l

)

∑K
k=1

∑M
m=1

∑L
l=1

(
ξPk,m,l + Pc

)

s.t. (C1)
∑K

k=1

∑M

m=1

∑L

l=1

(
ξPk,m,l + Pc

)
≤ Pmax

tot

(C2)Xk +
R̃kX

2
k

2
(
1− R̃kXk

) ≤ T th
k

(C3)Ek,m,l ≤ E
th

(C4) Ik,m,l ≤ I
th (11)

Because the Hessian matrix of the objective function is

not a positive-semidefinite matrix, the objective function is

non-convex and can’t be solved by convex optimization. The

power allocation problem (11) is transformed in the next

section.

IV. TRANSFORMATION FOR NONCONVEX PROBLEM

The objective function of the optimization problem as equa-

tion (11) is non-convex. Thus, the optimization problem as

equation (11) is also a non-convex optimization problem.

There is no standard way to solve this problem, because of

which the objective function needs to be transformed. The

molecular part of the objective function
∑K

k=1

∑M
m=1

∑L
l=1

(B/L) log2(1 + Pk,m,lGk,m,l/(N0 + Ik,m,l)) is concave while

the denominator
∑K

k=1

∑M
m=1

∑L
l=1(ξPk,m,l + Pc) has no

concavity or convexity. The target is to change the objective

function into a concave function over the convex function.

Thus, the denominator needs to be processed. Let P̂k,m,l =

lnPk,m,l , i.e., replace Pk,m,l with e
P̂k,m,l . Then, the optimiza-

tion problem (11) can be rewritten as

maxEE
(̂
Pk,m,l

)

=

∑K
k=1

∑M
m=1

∑L
l=1

B
L
log2

(
1+

e
P̂k,m,lGk,m,l

N0+̂Ik,m,l

)

∑K
k=1

∑M
m=1

∑L
l=1

(
ξeP̂k,m,l + Pc

)

s.t. (C1)
∑K

k=1

∑M

m=1

∑L

l=1

(
ξeP̂k,m,l + Pc

)
≤ Pmax

tot

(C2)
∑M

m=1

∑L

l=1

B

L
log2

(
1+

eP̂k,m,lGk,m,l

N0 + Îk,m,l

)

≤
2
(
T th
k − Xk

)

2
(
T th
k − Xk

)
Xk + X

2
k

(C3) Êk,m,l = 0.2exp

[
−

1.5eP̂k,m,lGk,m,l

(M− 1)
(
N0 + Îk,m,l

)
]

≤ E
th

(C4) Îk,m,l=
∑M

m′=1
m′6=m

∑L

l′=1
l′6=l

eP̂k,m′,l′V|l−l′|Gk,m′,l′

+
∑L

l′=1
eP̂k,m,l′V|l−l′|Gk,p,l′ ≤ I

th (12)

By means of the transformation, the objective function

of the original problem (11) is transformed into a con-

cave function over a convex function form as shown in the

equation (12). In the next section, the fractional form of the

objective function is transformed into its equivalent polyno-

mial form, and the optimal solution of the problem is obtained

by the iterative method.

V. DESIGNED OF ENERGY-EFFICIENT POWER

ALLOCATION ALGORITHM

Because of the fractional form of the optimization prob-

lem as equation (12), the solution process is very complex.

We thus use the Dinkelbach method [35] to transform it

into polynomial form. Thus, the nonlinear fractional pro-

gramming problem max
{
Rtot

/
Ptot

}
can be transformed into

max {Rtot − γPtot }. The optimization problem as equation

(12) can be expressed as equation (13):

max fEE
(
γ, P̂k,m,l

)

=
∑K

k=1

∑M

m=1

∑L

l=1

B

L
log2

(
1+

eP̂k,m,lGk,m,l

N0 + Îk,m,l

)

− γ ·

K∑

k=1

M∑

m=1

L∑

l=1

(
ξeP̂k,m,l + Pc

)

s.t. (C1) , (C2) , (C3) , (C4) (13)

Lemma 1: F (γ ) = max {Rtot (P)− γPtot (P)|P ∈ S} is

convex over E1.

Proof: Let pt maximize F
(
tγ ′ + (1− t) γ ′′

)
with

γ ′ 6= γ ′′ and 0 ≤ t ≤ 1. Then,

F
(
tγ ′ + (1+ t) γ ′′

)

= Rtot (pt)−
(
tγ ′ + (1− t) γ ′′

)
Ptot (pt)

= t
[
Rtot (pt)−γ

′Ptot(pt)
]
+(1−t)

[
Rtot(pt)−γ

′′Ptot(pt)
]

≤ t ·max
{
Rtot (p)− γ

′Ptot (p)
∣∣ p ∈ S

}

+ (1− t) ·max
{
Rtot (p)− γ

′′Ptot (p)
∣∣ p ∈ S

}

= tF
(
γ ′
)
+ (1− t)F

(
γ ′′
)

(14)

Lemma 2: F (γ ) = max {Rtot (P)− γPtot (P)|P ∈ S} is

strictly monotonically decreasing, i.e., F
(
γ ′′
)
< F

(
γ ′
)
,

if γ ′ < γ ′′, γ ′, γ ′′∈E1.

Proof: Let p′′ maximize F
(
γ ′′
)
. Then,

F
(
γ ′′
)

= max
{
Rtot (p)− γ

′′Ptot (p)
∣∣ p ∈ S

}

= Rtot
(
p′′
)
− γ ′′Ptot

(
p′′
)
< Rtot

(
p′′
)
− γ ′Ptot

(
p′′
)

≤ max
{
Rtot (p)− γ

′Ptot (p)
∣∣ p ∈ S

}
= F

(
γ ′
)

(15)

Lemma 3: F (γ ) = 0 has a unique solution, γ0.
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Proof: Lemma 3 results from Lemma 2, and we have the

following fact: F (γ ) =+∞ and F (γ ) =−∞.

Lemma 4: Let P+ ∈ S and γ+ = Rtot
(
P+
)/
Ptot

(
P+
)
.

Then, F
(
γ+
)
≥ 0.

Proof: F
(
γ+
)
= max

{
Rtot (p)− γ

+Ptot (p)
∣∣ p ∈ S

}
≥

Rtot
(
p+
)
− γ+Ptot

(
p+
)
= 0. Hence, F

(
γ+
)
≥ 0.

Proposition 1: γ0 = Rtot (P0)/Ptot (P0) = max{Rtot (P)/

Ptot (P)|P ∈ S}, if and only if F(γ0) = F(γ0,P0) =

max{Rtot (P)− γ0Ptot (P)|P ∈ S}.

Proof: a) Let p0 be a solution to the problem

max {Rtot/Ptot }. For all p ∈ S. We then have

γ0 =
Rtot (p0)

Ptot (p0)
≥
Rtot (p)

Ptot (p)
(16)

Thus,

(α)Rtot (p)− γ0Ptot (p) ≤ 0 for all p ∈ S.

(β)Rtot (p0)− γ0Ptot (p0) = 0.

From (α), F (γ0) = max{Rtot (p)− γ0Ptot (p) |p ∈ S} = 0.

From (β), we get the maximum, for example, at p0. Thus, the

first part of the proof is complete.

b) Let p0 be a solution to the problem max {Rtot − γPtot }

such that Rtot (p0) − γ0Ptot (p0) = 0. The definition of

max {Rtot − γPtot } implies that for all p ∈ S, we have

Rtot (p)− γ0Ptpt (p) ≤ Rtot (p0)− γ0Ptot (p0) = 0 (17)

Thus,

(α)Rtot (p)− γ0Ptot (p) ≤ 0 for all p ∈ S.

(β)Rtot (p0)− γ0Ptot (p0) = 0.

From (α), γ0 ≥ Rtot (p)
/
Ptot (p) for all p ∈ S, i.e., γ0 is

the maximum value of problem max
{
Rtot

/
Ptot

}
. From (β),

we have γ0 = Rtot (p0)
/
Ptot (p0), i.e., p0 is a solution vector

of problem max
{
Rtot

/
Ptot

}
.

According to the convex optimization theory, the Lagrange

multipliers λ1 and λ2 are introduced to establish the Lagrange

function of the optimization problem as equation (13):

L
(
γ, P̂k,m,l, λ1, λ2

)

= fEE
(
γ, P̂k,m,l

)

− λ1

(∑K

k=1

∑M

m=1

∑L

l=1

(
ξeP̂k,m,l + Pc

)
− Pmax

tot

)

− λ2

(∑M

m=1

∑L

l=1

B

L
log2

(
1+

eP̂k,m,lGk,m,l

N0 + Îk,m,l

)

−
2
(
T th
k − Xk

)

2
(
T th
k − Xk

)
Xk + X

2
k

) ∣∣∣∣∣∣

Îk,m,l ≤ I
th

Ek,m,l ≤ E
th

λ1, λ2 ≥ 0

(18)

If we search for the optimal solution by traversal, we can

find the theoretical solution such that the computational

complexity is too high. Thus, the dual Lagrange method is

adopted, and the Lagrange dual function can be expressed as

follows:

D (λ1, λ2) , max
γ,Pk,m,l

L
(
γ, P̂k,m,l, λ1, λ2

)

s.t. (C1) , (C2) (19)

Definition 1: The optimal solution of optimization prob-

lem as equation (13) is denoted by OP while the optimal

solution of its dual problem is denoted by DOP. The dif-

ference between the optimal solutions of the optimization

problem and its dual are defined as the duality gap DG, i.e.,

DG = OP-DOP.

The duality gap represents the difference between the opti-

mal solution of the original problem and that of the dual

problem. If the duality gap is zero, the solution to the orig-

inal problem can be obtained by solving it such that it has

relatively low computational complexity. The duality gap of

the optimization problem as equation (13) will be proved to

be zero.

Theorem 1: The duality gap DG tends to zero, i.e.,

DG = OP-DOP ≈ 0.

Proof: The constraints (C1) - (C4) of the problem as

equation (13) can be rewritten as follows:

max fEE
(
γ, P̂k,m,l

)

=
∑K

k=1

∑M

m=1

∑L

l=1

B

L
log2

(
1+

eP̂k,m,lGk,m,l

N0 + Îk,m,l

)

− γ ·
∑K

k=1

∑M

m=1

∑L

l=1

(
ξeP̂k,m,l + Pc

)

s.t. C(n)
(
γ, P̂k,m,l

)
≤ Ŵ(n), n = 1, 2, 3, 4 (20)

From [39], it is evident that the duality gap tends

to zero, i.e., DG ≈ 0, when the time-sharing condition

is satisfied. We now define the time-sharing property as

follows:

Definition 2: Let
(
γ ∗X , P̂

∗
k,m,lX

)
and

(
γ ∗Y , P̂

∗
k,m,lY

)
be

optimal solutions to the optimization problem as equation

(20) with Ŵ(n) = ŴX and Ŵ(n) = ŴY , respectively.

Optimization problem as equation (20) is said to satisfy the

time-sharing condition if, for any ŴX , ŴY and 0 ≤ θ ≤ 1,

there always exists a feasible solution
(
γZ , P̂k,m,lZ

)
, such

that

C(n)
(
γZ , P̂k,m,lZ

)
≤ θ · ŴX + (1− θ) · ŴY (21)

fEE
(
γZ , P̂k,m,lZ

)
≥ θ fEE

(
γ ∗X , P̂

∗
k,m,lX

)

+ (1− θ) fEE
(
γ ∗Y , P̂

∗
k,m,lY

)
(22)

The time-sharing condition can be understood as the max-

imum of the optimization problem as equation (20) as a

function of constraint Ŵ. A higher Ŵ implies looser con-

straints. Roughly speaking, the maximum value of the solu-

tion to optimization problem as equation (20) is a monoton-

ically increasing function of Ŵ. The time-sharing condition

means that the maximum value of the optimization problem

is a concave function of Ŵ. Thus, if the maximum value

of the optimization problem is a concave function of Ŵ,

DG≈0.

LetŴX ,ŴY , andŴZ be constraint vectors andŴZ = θ ·ŴX+

(1− θ) ·ŴY for 0 ≤ θ ≤ 1. Let
(
γ ∗X , P̂

∗
k,m,lX

)
,
(
γ ∗Y , P̂

∗
k,m,lY

)
,

and
(
γ ∗Z , P̂

∗
k,m,lZ

)
be the optimal solutions of optimization
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problem as equation (20) under constraints ŴX , ŴY , and ŴZ ,

separately. Concavity follows from the definition of the time-

sharing condition, i.e., when ŴZ = θ ·ŴX + (1− θ) ·ŴY ,

the time-sharing condition indicates that the existence of(
γ ∗Z , P̂

∗
k,m,lZ

)
makes

C(n)
(
γZ , P̂k,m,lZ

)
≤ θ · ŴX + (1− θ) · ŴY (23)

and

fEE
(
γZ , P̂k,m,lZ

)
≥ θ fEE

(
γ ∗X , P̂

∗
k,m,lX

)

+ (1− θ) fEE
(
γ ∗Y , P̂

∗
k,m,lY

)
(24)

Because
(
γ ∗Z , P̂

∗
k,m,lZ

)
is a feasible solution of the

optimization problem,

fEE
(
γ ∗Z , P̂

∗
k,m,lZ

)

≥ fEE
(
γZ , P̂k,m,lZ

)

≥ θ fEE
(
γ ∗X , P̂

∗
k,m,lX

)
+ (1− θ) fEE

(
γ ∗Y , P̂

∗
k,m,lY

)
(25)

Thus, Theorem 1 is proved.

The optimization function of the Lagrangian dual function

can be expressed as

G(λ1, λ2, ) = min
λ1,λ2≥0

D(λ1, λ2)

= min
λ1,λ2≥0

max
γ ,̂Pk,m,l

L(γ, P̂k,m,l, λ1, λ2)

s.t. (C1) , (C2) (26)

We fix λ1 and find the vector λ2 that leads to the smallest L.

For vector λ2, the dual function is a convex function such

that it can be obtained by multidimensional search. However,

the dual function is not necessarily derivable. Thus a sub-

gradient algorithm is used instead of the gradient algorithm

in this paper. We find the value of λ1 after finding the min-

imum value of L. To render the total power fully allocated,

the search for λ1 is based on the sub-gradient algorithm while

the corresponding power P̂k,m,l of each SU is the optimal

solution to the problem.

By taking the partial derivative of the Lagrange func-

tion with respect to P̂k,m,l and equating the result to zero,

we can get the update equation in the (t+1)-th iteration

of P̂k,m,l as

Pk,m,l (t+1)=

[
1

2
ln

(
(1− λ2)B

L ln 2 (γ+λ1) ξ
−
N0+ Îk,m,l

Gk,m,l

)]+

(27)

After finding the optimal value of P̂k,m,l , say P̂∗k,m,l ,

the dual function can be rewritten as

D (λ1, λ2) , max
γ,P∗k,m,l

L
(
γ, P̂∗k,m,lλ1, λ2

)

s.t. (C1) , (C2) (28)

Algorithm 1 Optimal Energy-Efficient Power Allocation

1 Initialize γ , δ and Ite1

2 Repeat

3 Initialize λmax
1 , λmin

1 and τ

4 Repeat

5 Let λ1 =
(
λmax
1 + λmin

1

) /
2

6 Initialize λ2, α2, ε and Ite2

7 Repeat

8 Update P̂k,m,l using equation (27)

9 Update λ2 using equation (29)

10 Ite2←Ite2 + 1

11 Until|λ2 · (C2)|<ε

12 If Ptot > Pmax
tot , λmin

1 = λ1; else

λmax
1 = λ1

13 Untilλmax
1 −λ

min
1 ≤ τ

14 Update γ using equation (30)

15 Ite1←Ite1 + 1

16 UntilGIte1< δorIte1 = Ite1max

The variable λ2 of the dual function in the (t+1)-th itera-

tion can be updated by following update equation using the

sub-gradient algorithm in convex optimization.

λ2 (t + 1)

=

[
λ2 (t)+ α2 (t)

(∑M

m=1

∑L

l=1

B

L
log2

×

(
1+

e
P̂∗k,m,l (t)Gk,m,l

N0 + Îk,m,l

)
−

2
(
T th
k − Xk

)

2
(
T th
k − Xk

)
Xk + X

2
k

)]+

(29)

where α2 is a positive step size.

The equation to update γ the in (t+1)-th iteration is

expressed as

γ (t + 1)=

∑K
k=1

∑M
m=1

∑L
l=1

B
L
log2

(
1+

e
P̂∗
k,m,l

(t)
Gk,m,l

N0+̂Ik,m,l

)

∑K
k=1

∑M
m=1

∑L
l=1

(
ξe

P̂∗k,m,l (t)+Pc

)

(30)

Rtot (P) is concave, Ptot (P) is convex, and the set of S is

convex for all P ∈ S. Because of the continuity of F (γ ) =

max {Rtot (P)− γPtot (P)|P ∈ S}, the following expression

is formulated:

Find Pn and γn = Rtot (Pn)
/
Ptot (Pn), such that

F (γn)− F (γ0) = F (γn) < δ for any given δ > 0.

Moreover, F (0) = max {Rtot (P)|P ∈ S}. Thus, the algo-

rithm starts at γ = 0. The energy-efficient power allocation

algorithm developed in this paper is shown in Algorithm 1.

We first initialize γ , δ, λmax
1 , λmin

1 , λ2, α2, Ite1, and Ite2.

For given values of γ , λ1, and λ2, P̂k,m,l is updated through

equation (27). Then, λ2 is updated through equation (29)

using the updated P̂k,m,l . The iteration of the inner loop has
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the following condition:
∣∣∣∣∣λ2 ·

(∑M

m=1

∑L

l=1

B

L
log2

(
1+

eP̂k,m,lGk,m,l

N0 + Îk,m,l

)

−
2
(
T th
k − Xk

)

2
(
T th
k − Xk

)
Xk + X

2
k

) | = |λ2 · (C2)| < ε (31)

When the iteration satisfies the condition above, λ1 can be

searched by binary search based on the sub-gradient algo-

rithm. After finding the optimal λ1, λ2, and P̂k,m,l , γ can

be updated by equation (30). The outer loop ends when it

satisfies the condition GIte1 < δ or reaches the maximum

number of iterations.

VI. DESIGNED OF SUB-OPTIMAL ENERGY-EFFICIENT

POWER ALLOCATION ALGORITHM

Because of the high computational complexity of the EEPA

algorithm, the performance of some applications with high

instantaneous demand is affected. Thus, based on the original

EEPA algorithm, a sub-optimal energy-efficient power allo-

cation (SEEPA) algorithm with lower computational com-

plexity is designed in this paper. Although the sub-optimal

algorithm reduces computational complexity, it also reduces

computational accuracy. The biggest difference between the

EEPA and the SEEPA is that an auxiliary variable 9k,m,l ∈(
0, ψk,m,l

]
is introduced in the latter to indicate that the SINR

of no SU in the network is lower than a certain vector 9k,m,l .

Thus, problem as equation (13) can be rewritten as

max EE
(
9k,m,l, P̂k,m,l

)

=

∑K
k=1

∑M
m=1

∑L
l=1

B
L
log2

(
1+9k,m,l

)
∑K

k=1

∑M
m=1

∑L
l=1

(
ξeP̂k,m,l + Pc

)

s.t. (C1)
∑K

k=1

∑M

m=1

∑L

l=1

(
ξeP̂k,m,l + Pc

)
≤ Pmax

tot

(C2)
∑M

m=1

∑L

l=1

B

L
log2

(
1+9k,m,l

)

≤
2
(
T th
k − Xk

)

2
(
T th
k − Xk

)
Xk + X

2
k

(C3)9k,m,le
−P̂k,m,l

N0 + Îk,m,l

Gk,m,l
≤ 1

(C4) Êk,m,l ≤ E
th

(C5) Îk,m,l ≤ I
th (32)

According to convex optimization theory, the Lagrange

multipliers λ1, λ2, and λ3 are introduced to establish the

Lagrange function and the optimization function of the dual

Lagrangian function of problem as equation (32) as follows:

L
(
9k,m,l, γ, P̂k,m,l, λ1, λ2, λ3

)

= fEEm
(
9k,m,l, γ, P̂k,m,l

)

− λ1

(∑K

k=1

∑M

m=1

∑L

l=1

(
ξeP̂k,m,l + Pc

)
− Pmax

tot

)

− λ2

(∑M

m=1

∑L

l=1

B

L
log2

(
1+9k,m,l

)

−
2
(
T th
k − Xk

)

2
(
T th
k − Xk

)
Xk + X

2
k

)

− λ3

(
9k,m,le

−P̂k,m,l
N0 + Îk,m,l

Gk,m,l
− 1

)
∣∣∣∣∣∣∣∣

Îk,m,l ≤ I
th

Êk,m,l ≤ E th

λ1, λ2, λ3,≥ 0

(33)

G(λ1, λ2, λ3)

= min
λ1,λ2,λ3≥0

D (λ1, λ2, λ3)

, min
λ1,λ2,λ3≥0

max
9k,m,l ,γ,Pk,m,l

L(9k,m,l, γ, P̂k,m,l, λ1, λ2, λ3)

s.t. (C1) , (C2) , (C3) (34)

According to the aforementioned equation (27) and the

equation (33), we can deduce (the reason is as the equation

(27) and the equation (33)) that by taking the partial derivative

of the Lagrange function with respect to P̂k,m,l and 9k,m,l ,

and equating the result to zero, we can get the update equation

in the (t+1)-th iteration of P̂k,m,l and 9k,m,l as the equation

(35) and the equation (36) which has the similar form and

meaning to the equation (27) :

Pk,m,l (t + 1) =

[
1

2
ln

(
λ3
(
N0 + Îk,m,l

)
9k,m,l (t)

(γ + λ1)Gk,m,lξ

)]+

(35)

9k,m,l (t + 1) =

[
(1− λ2)Be

P̂k,m,l (t)Gk,m,l

ln 2·λ3L
(
N0 + Îk,m,l

) − 1

]+

(36)

Variables λ1, λ2 and λ3 of the dual function in the

(t+1)-th iteration can be updated by the following update

equation, using sub-gradient algorithm in convex optimiza-

tion as

λ1(t + 1)

=

[
λ1 (t)+ α1 (t)

(∑K

k=1

∑M

m=1

∑L

l=1

(
ξe

P̂∗k,m,l + Pc

)

− Pmax
tot

) ]+
(37)

λ2 (t + 1)

=

[
λ2 (t)+ α2 (t)

(∑M

m=1

∑L

l=1

B

L

log2
(
1+9∗k,m,l

)
−

2
(
T th
k − Xk

)

2
(
T th
k − Xk

)
Xk + X

2
k

)]+
(38)

λ3 (t + 1)

=

[
λ3 (t)+ α3 (t)

(
9∗k,m,le

−P̂∗k,m,l
N0 + Îk,m,l

Gk,m,l
− 1

)]+

(39)

where α1, α2, and α3 are positive step sizes.

The pseudocode of the SEEPA algorithm given in this

paper is shown in Algorithm 2. We first initialize γ , δ, λ1, λ2,

λ3, Ite1, and Ite2. For given values of γ , λ1, λ2, and λ3, P̂k,m,l
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Algorithm 2 Sub-Optimal Energy-Efficient Power

Allocation
1 Initialize γ , δ and Ite1

2 Repeat

3 Initialize λ1, λ2, λ3 and Ite2

4 Repeat

5 Update 9k,m,l using equation (35)

6 Update P̂k,m,l using equation (36)

7 Update λ1 using equation (37)

8 Update λ2 using equation (38)

9 Update λ3 using equation (39)

10 Ite2←Ite2+1

11 Until convergence of inner loop

12 Update γ using equation (30)

13 Ite1←Ite1+1

14 UntilGIte1< δorIte1= Ite1max

and 9k,m,l are updated through (35)–(36). Then, λ1, λ2, and

λ3 are updated using (37)–(39). γ is updated using (30) when

the inner loop converges. The outer loop ends when it satisfies

the condition GIte1 < δ or reaches the maximum number of

iterations.

VII. EXPERIMENTAL TESTING &ANALYSIS

In this section, the numerical results of Monte Carlo simu-

lations [40]–[45] are presented to evaluate the performance

of the EEPA and SEEPA given in the previous section using

the equal distribution power allocation (EDPA) algorithm

and the genetic power allocation (GPA) algorithm. The sim-

ulation parameters are shown in Table 2. Two experimen-

tal scenarios were considered: a low-density scenario with

400 users and a high-density scenario with 800 users. In a

given scenario, a multi-user spectrum-sharing CR network

consisted of a PBS, four SBSs, and the corresponding num-

ber of users [43], [46]–[49]. The size of the network was

300 m× 300 m. The number of SBSs was K = 4. The

PBS was located at (150,150) while the SBSs were located

at (75,75), (75,225), (225,75), and (225,225). Because of

the small coverage of the SBSs, the height of the antenna

of the SBSs could not be ignored. Thus, the height of the

antenna of the PBS was set to 50 m and those of the SBSs

to 30 m. The average height of the SUs was set to 1.5 m.

The topological figures of the multi-user spectrum-sharing

CR network are shown in figure 2 and figure 3, where the

former shows the low-density scenario with 400 users and

the latter the high-density scenario with 800 users [50]–[58].

In figure 2 and figure 3, the red stars denote the SUs and

the blue stars the PUs. The total bandwidth B = 240 kHz,

number of sub-carriers L = 16, power consumption of the

circuit Pc = 0.5W, reciprocal of the drain efficiency of the

power amplifier ξ = 3.8, and the interference weight vector

V =
[
823× 10−3, 88.1× 10−3

]
.

The channel gain of the system was set to Cost 231Walfish

Ikegami model [35]. Gk,m,l = 10−φ(d)/ 10, where φ (d) =

φfsl (d)+φrts+φmsd (d) denotes the path loss model between

TABLE 2. Simulation parameters.

FIGURE 2. Topological model of low-density network of 400 and
800 users scenario.

SU and SBS, φfsl (d) denotes free space loss, φrts denotes

the diffraction and scattering losses between the roof and the

streets, φmsd (d) denotes Multipath loss, and d denotes the

distance between SU and SBS. The power spectral density of

thermal noise was −174dBm
/
Hz, the total power constraint

was Pmax
tot = 3×103W , the interference temperature limit was

10−10, the BER of the system should have been under 10−4,

and themaximum delay constraint in the queue was T th
k = 1s.

The relationship between the energy efficiency and number

of iterations is shown in the figure 4, where F4-A and F4-E

represent the EEPA, F4-B and F4-F represent the SEEPA,
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FIGURE 3. Topological model of low-density network of 400 and
800 users scenario.

FIGURE 4. Relationship between energy efficiency and number of
iterations.

F4-C and F4-G represent the EDPA, and F4-D and F4-H

represent the GPA. F4-A, F4-B, F4-C, and F4-D represent

the low-density scenario while F4-E, F4-F, F4-G, and F4-H

represent the high-density scenario. With an increase in the

total number of users in the network, the total energy effi-

ciencyworsened. In the same scenario, the performance of the

EEPAwas optimal followed by the SEEPA. The performance

of the EDPA and GPA was poor. For the same algorithm,

the total energy efficiency in the low-density scenario was

better than that in the high-density scenario. Both the EEPA

and the SEEPA algorithms designed in this paper converged

quickly.

FIGURE 5. Variation in total power consumption with number of
iterations.

Figure 5 shows that the total power consumption varied

as the number of iteration increased. In contrast with the GPA,

the total power consumption of the other three algorithms

in the high-density scenario was greater than that in the

low-density scenario. Focusing on power allocation in each

SU, figures 6 and figure 7 show the relationship between

FIGURE 6. Variation in energy efficiency with distances between SUs and
SBS in high-density scenario.

FIGURE 7. Variation in energy efficiency with distances between SUs and
SBS in high-density scenario.

the power distributed to each SU and the distance between

the SU and the SBS, where the distance between themwas the

independent variable. F6-A, F6-B, and F6-C show that the

power distributed to each SU varied as the distance between

SU and SBS increased in the EEPA, SEEPA, and EDPA,

separately in the low-density scenario. F7-A, F7-B, and F7-C

represent those in the high-density scenario. As shown in

the figure, the EDPA distributed equal power to all SUs at

different distances from the SBS, whereas the EEPA and

SEEPA distributed power only to SUs at 38 m and 45 m

from the SBS, respectively. The closer they were to the SBS,

the more power was distributed to the SUs. The channel states

of SUs far from the SBS were poor. Thus, no power was

distributed to them.

In contrast to the power–distance relation in figures 6 and

figure 7, figures 8 and figure 9 show the variation in energy

efficiency as the distance between SU and SBS increased.

F8-A, F8-B, and F8-C represent the variations in the EEPA,

SEEPA, and EDPA in the low-density scenario, respectively,

whereas F9-A, F9-B, and F9-C represent those in the high-

density scenario, respectively. As the distance between SU

and SBS increased, the power consumed in link transmission

increased while the allocated power to the SU decreased.

Then, the energy efficiency of the SU decreased. Under the

EDPA scheme, SUs closer to the SBS were assigned the same

power as those far from it, so that the energy efficiency of

SUs closer to the SBS was much higher than that of those

far from it. On the contrary, the power allocation in the EEPA

and SEEPAwas more reasonable. SUs closer to the SBSwere

distributed with more power while the energy consumption

of those was relatively greater. SUs far from the SBS were
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FIGURE 8. Variation in energy efficiency with distances between SUs and
SBS in low-density scenario.

FIGURE 9. Variation in power allocated to each SU with distances
between SUs and SBS in high-density scenario.

distributed less power, and even no power, to reduce energy

consumption. The energy efficiency of SUs distributed no

power was the same in any power allocation method. Thus,

it doesn’t have practical significance of the EDPA algorithm

for allocating power to those SUs.

FIGURE 10. CDF of energy efficiency of each SU in low-density scenario.

FIGURE 11. CDF of energy efficiency of each SU in high-density scenario.

Figures 10 and figure 11 show the cumulative distribution

function (CDF) of the energy efficiency of each SU, where

F10-A and F11-A represent the EEPA, F10-B and F11-B

represent the SEEPA, F10-C and F11-C represent the EDPA,

and F10-D and F11-D represent the GPA. According to the

different energy efficiency values, this function indicates the

frequency of the energy efficiency of each SU greater than or

equal to them. The lowest EDPA curve indicates that more

SUs were assigned inappropriate power, leading to lower

energy efficiency, whereas the distribution of the EEPA was

more reasonable, and it assigned more suitable power to

the SUs.

Based on our experiments, whenwe increase the number of

sub-carriers L, we find that the impact of higher number of L

on the system’s performance is similar to the aforementioned

figures, so we ignore the relative redundant figures in order

to avoid cumbersome descriptions.

We have analyzed the computation complexity of our

method according to the strategy of [55] and [56]. Our

method has embedded the computation equation (27),

equation (30), or equation (35), or equation (36), and so on,

the time complexity is mainly decided by the types of the

equations. Based on our analysis, we know that the com-

putation complexity is O(n), and the worst time complexity

is O(n2). So the computation complexity of our method is fea-

sible for the application of the power allocation with limited

cross-tier interference for cognitive radio network.

VIII. CONCLUSIONS

A kind of novel method of power allocation with limited

cross-tier interference for cognitive radio network is proposed

in this paper. To improve the energy efficiency of the entire

network, a cross-tier interference limit was presented to pro-

tect SUs in the network from too much interference, and

a virtual queue was adopted to transform the extra packet

delay caused by the contention for channels by multiple users

into queuing delay. Taking energy efficiency as the objective

function, a nonlinear programming problem with nonlinear

constraints was proposed under the constraints of delay and

transmission power. The original problem was transformed

into a convex polynomial nonlinear programming problem,

and the dual Lagrange method was used to determine the

global optimal solution. An optimal power allocation algo-

rithm called the EEPA and a sub-optimal power allocation

algorithm called the SEEPA were put forward. Experimental

comparisons of the EEPA, SEEPA, EDPA, and GPA showed

that the EEPA delivers the best performance and improves

energy efficiency, and the power allocation to each SU was

more reasonable. The SEEPA reduced computational com-

plexity while losing in terms of some aspects of performance.

It is thus suitable for many scenarios. In future work, we will

focus on the dynamic network model and consider joint

resource allocation.
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