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Abstract

We propose a new source time function to be used in kinematic modeling of

ground motion time histories, which is consistent with dynamic propagation of

earthquake ruptures and makes feasible the dynamic interpretation of kinematic

slip models. This function is derived from a source time function first proposed by

Yoffe (1951), which yields a traction evolution showing a slip-weakening behavior.

In order to remove its singularity we apply a convolution with a triangular function

and obtain a regularized source time function called “regularized Yoffe” function.

We propose a parameterization of this slip velocity time function through the final
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slip, its duration and the duration of the positive slip acceleration (Tacc). Using

this analytical function we examined the relation between kinematic parameters,

such as peak slip velocity and slip duration, and dynamic parameters, such as slip

weakening distance and breakdown stress drop. The obtained scaling relations are

consistent with those proposed by Ohnaka and Yamashita (1989) from laboratory

experiments. This shows that the proposed source time function is suitable to rep-

resent the dynamic rupture propagation with finite slip-weakening distances.

1 Introduction

Kinematic rupture models for moderate to large earthquakes are currently obtained by

inverting ground motion waveforms, which provide a detailed image of the slip history

during the rupture process (e.g. Hartzell and Heaton, 1983; Fukuyama and Irikura,

1986; Takeo, 1987; Beroza and Spudich, 1988; Yoshida and Koketsu, 1990; Wald and

Heaton, 1994; Yoshida et al., 1996; Cotton and Campillo, 1995; Yagi and Kikuchi, 2000;

Bouchon, et al., 2000; Sekiguchi and Iwata, 2002 among many others). One fundamental

purpose of these inverse modeling attempts is to improve our understanding of the physical

processes governing dynamic rupture propagation and the seismic wave generation. It is

still an important task to distinguish between different slip models characterized by a

propagating slip pulse (Heaton, 1990; Zheng and Rice, 1998) or a crack-like rupture

growth (Das and Aki, 1977; Day 1982). Kinematic source models retrieved through the

inversion of seismological and geodetic data have shown that large slip patches are usually

a small fraction of total rupture area. Slip heterogeneity and rupture complexities are

probably generated by a combination of different factors such as non-uniform initial stress
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distributions, non-planar fault geometry and heterogeneous distribution of constitutive

properties of the fault as well as of the elastic properties of the crust.

Several assumptions are needed to constrain the rupture history of an earthquake and

to infer a unique kinematic source model whose simulated waveforms have reasonable fit

to observations. We do not discuss here the issues related to the discrete representation

of the fault as well as to the resolution and the accuracy of the inversion procedure.

Instead, we will focus on the adoption of the source time function (STF) that prescribes

the slip velocity evolution during the rupture propagation on the assumed fault. This is

particularly important for single time-window inversion procedures, in which the temporal

evolution of slip or slip velocity is prescribed by assuming an analytical expression of

STF. However, multi-window approaches are often applied to invert ground motion time

histories. The STF adopted in multi-window methods are rather crude and the final source

time function is given by the superposition of several functions (a triangular function in

most of the cases) appropriately shifted in time. Cohee and Beroza (1994) compared these

two methods of waveform inversion and found that the single time window technique does

a better job in recovering the true seismic moment and the average rupture velocity.

Nakamura and Miyatake (2000) proposed an “ad hoc choice” of the slip velocity func-

tion to fit dynamic rupture models. In their time-domain parametrization they introduced

a source time function composed by the combination of a quadratic function, a kostrov

function and finally a linear function. They were interested in near-field strong ground

motion simulations rather than to better constrain the dynamic models. Several others

papers (Hisada, 2000; 2001; Guatteri et al., 2003) have pointed out the importance of the

STF in kinematic source models for strong ground motion prediction.
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Nielsen and Madariaga (2003) theoretically derived a formulation for self-similar and

self-healing pulses, which may represent an alternative to the Kostrov’s crack solution

(i.e., a square root singularity function; Kostrov, 1964) and is compatible with evidences

of pulse-like rupture propagation observed in many investigations (e.g. Heaton, 1990).

This function was originally proposed by Yoffe (1951) for steady state solution in mode I

crack and subsequently by Broberg (1978, 1999) and Freund (1979), who extended it to a

mode II crack propagation. In this paper we refer to this source time function as the Yoffe

function. Piatanesi et al. (2004) discussed the effect of different STFs on the estimation

of dynamic parameters. In particular, they compared the traction evolutions inferred

from several well-known STFs: a smoothed ramp function, an exponential function and

a regularized Yoffe function (see some examples in Figure 1). They pointed out that

the distribution of dynamic parameters strongly depends on the assumed STF and they

suggested that the obtained dynamic parameters might be biased especially when using

STFs that are not compatible with elastodynamics. In particular, these authors have

shown that the inferred values of the critical slip weakening distance, stress drop and

strength excess as well as their distribution on the fault plane are affected by the adopted

source time function.

In this paper, we extend the work by Piatanesi et al. (2004) by introducing a new

STF and providing an analytical form which is compatible with elastodynamics. We pro-

pose an analytical function which is suitable for the dynamic rupture modeling based on

the Yoffe function derived by Nielsen and Madariaga (2003). In order to eliminate its

singularity, we convolve the original Yoffe function with a triangular function and obtain

a regularized Yoffe function. We promote our solution for several reasons. First, this
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function is consistent with the self-similar solution of elastodynamic equation and with

spontaneous dynamic models governed by slip-weakening (Nielsen and Carlson, 2000;

Nielsen and Madariaga, 2003). Second, this function can describe a local healing process

with variable rise time consistent with laboratory experiments on fault friction (Ohnaka

and Yamashita, 1989). Third, this function is consistent with traction evolution of spon-

taneous crack models, describing the traction drop near the propagating rupture front

within the cohesive zone and providing realistic values of the critical slip weakening dis-

tance. Fourth, this function can be easily used in either forward or inverse waveform

modeling.

2 Kinematic source time function

2.1 Analytical form of the new source time function

The most common assumption in kinematic modeling of ground motion time histories is

the definition of a finite slip duration during the rupture propagation at variable velocity

(e.g. Heaton, 1990). Once the source time function is chosen, its shape is prescribed by

the total slip value, the rupture time and the rise time (duration of slip) at each point

on the fault. This parameterization is common to both multi-window and single window

inversion procedures. However, the former approach allows in principle a more flexible

way of modeling slip duration (e.g. Hartzell and Heaton, 1983; Wald and Heaton, 1994;

Yagi and Kikuchi, 2000; Sekiguchi and Iwata, 1996; Kaverina et al., 2002). If the temporal

resolution would be high (i.e. very short duration of unit source time functions), the multi-

window approach might yield reasonable estimations of total slip duration. Unfortunately,
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this condition is very rare and for most of the applications the total slip duration at each

point on the fault is inferred through a few (less than 6) superimposed simple functions.

The single window approach has been used by assuming different functional forms of

STF to retrieve the rupture history of large earthquakes (e.g. Fukuyama and Irikura,

1986; Fukuyama and Mikumo, 1993; Cotton and Campillo, 1995). The more unphysical

STF is the Heaviside function in slip, corresponding to a delta function in slip velocity.

The simplest STF is a ramp in slip of duration τR (its corresponding slip velocity is a

box-car) and a smoothed ramp function proposed by Bouchon (1997) (its corresponding

slip velocity is similar to a Gaussian function). More complicated functions have been

proposed: the truncated inverse square root singularity (Beroza and Spudich, 1988), the

exponential (Cotton and Campillo, 1995) and the power law (Liu and Archuleta, 2004)

functions among many others. In Figure 1 we show examples of these functions. In many

of the above studies, the selection of STF was done without careful inspections on the

physical consistency nor insights to the consequences for dynamic modeling.

Following Piatanesi et al (2004), we deal in this work with the problem of kinematic

models consistent with earthquake dynamics. To this goal we propose a regularized Yoffe

function as a candidate of a kinematic source time function. Nielsen and Madariaga

(2003) proved that the Yoffe function shown in Equation (1) is an alternative of the

Kostrov solution (Kostrov, 1964).

Y (t) =
2

πτR

H(t)H(τR − t)

√
τR − t

t
(1)

where τR is the rise time and H(t) is the Heaviside function. Thus we modified this

analytical Yoffe function as described in Equation (1) in order to remove the singularity
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at the rupture front. Piatanesi et al. (2004) showed that if the Yoffe function is convolved

with a triangular time function, the source time function can be used as a boundary

condition in a 3D dynamic rupture computation to compute the traction evolution. The

constitutive relation inferred from both assumed slip function and corresponding traction

evolution still preserves a slip-weakening behavior as the original Yoffe function. Here

we derive an explicit form of this function by analytical computation. The triangular

function can be expressed as follows:

W (t) =
1

τ 2
S

[tH(t)H(τS − t) + (2τS − t)H(t− τS)H(2τS − t)] (2)

where τS is the half duration of the triangular function. Therefore, the regularized Yoffe

function can be obtained by convolving Equation (1) with Equation (2) as follows:

S(t) = Dmax

∫ +∞

−∞
W (t− T )Y (T )dT (3)

where Dmax stands for final slip. The explicit analytical formulation of this function is

presented in the Appendix. In the following of this study we refer to S(t) as a slip velocity

time function. It should be noted that the regularized Yoffe function can now be fully

described through three parameters: τR, τS, and Dmax. In Figure 2 we show a comparison

between the original Yoffe function and the regularized Yoffe proposed in this study.

In the following sections we investigate the relations between these three parameters

and those obtained by dynamic rupture computations. This allows us to investigate

the fundamental features of the key kinematic parameters useful to describe the source

process. It should also be noted that this function is similar to that inferred by Ohnaka

and Yamashita (1989) from laboratory experiments (see Panel C in Figure 6 of Ohnaka

and Yamashita, 1989).
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2.2 Parameterization of source time function

Numerical simulations of spontaneous dynamic rupture of earthquakes clearly show that

the traction evolution within the cohesive zone controls the slip acceleration and the slip

velocity time history (Bizzarri and Cocco, 2003; Cocco et al., 2004 and reference therein).

Recent investigations have pointed out that the shape, peak value and time of peak slip

velocity vary during the dynamic propagation. These parameters are controlled by the

initial stress, frictional parameters and constitutive relations on the fault.

It seems convenient to introduce a new parameter Tacc, which is defined as the time

to peak slip velocity (i.e. the duration of positive slip acceleration) as illustrated in

Figure 2. In the original Yoffe function, Tacc is zero because of the singularity. On

the contrary, in the regularized Yoffe function, Tacc is controlled by the duration of the

triangular function used as a smoothing operator τS, which is not a physical parameter.

The temporal smoothing of original Yoffe function yields finite peak slip velocity values.

Because τS appears only in the regularized Yoffe function, we numerically investigated the

relation between Tacc and τS for different τR. As shown in Figure 3, Tacc is linearly related

to τS, confirming that τS directly controls the duration of the positive slip acceleration

(Tacc). In particular, the ratio Tacc/τS does not depend on other parameters and is equal

to 1.27±0.01. The linear relation has been inferred by varying the rise time between 0.2s

and 6.0s: Figure 3 clearly shows that τS does not affect Tacc.

However it should be noted that, after temporal convolution, the effective final dura-

tion of the STF (τ eff
R ) is slightly larger than τR:

τ eff
R = τR + 2τs (4)
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Therefore, our proposed source time function is parameterized by the three parameters

having a clear physical meaning: the total slip Dmax, the slip duration (rise time) τR

and the duration of the positive slip acceleration Tacc. We will discuss later the relation

between these parameters and the dynamic ones which govern the dynamic process of

earthquake rupture.

2.3 Kinematic relations

In this section we discuss the relations between the kinematic source parameters: τR,

Dmax, Tacc, τS, and Vpeak. We start pointing out that only a few parameters are usually

retrieved through kinematic analyses of forward or inverse modeling of seismic waves

(see Beresnev, 2003). The rupture time, final slip and, sometimes, the slip duration are

commonly estimated but slip velocity function and inferred peak slip velocity are rarely

estimated. We emphasize, however, that the relation between Dmax and Vpeak depends

on the adopted source time function. Moreover, Vpeak can change dramatically during the

dynamic rupture process.

We plot in Figure 4 a set of our new STF obtained by changing only the τR values

(upper panel) or the τS values (bottom panel). From Figure 4 we observe that Tacc does

not depend on the rise time τR but is related to τS as described above. This is physically

reasonable because it is widely believed that different mechanisms control slip acceleration

and the healing of slip (see Bizzarri and Cocco, 2003; Cocco et al., 2004, and references

therein).

To investigate analytically the relation between Tacc and the corresponding Vpeak, we

need to compute the derivative of STF (i.e. slip acceleration function). Since Tacc is
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always in the range between τS and 2τS as illustrated in Figure 3, the derivative in this

range becomes

Ṡ(t) = −2
√

(t− τS)(τS + τR − t)−2τR arcsin

√
t− τS

τR

+
√

t(τR − t)+τR arcsin

√
t

τR

(5)

Unfortunately it was quite difficult to find an explicit analytical formulation of Tacc, which

is the solution of Ṡ(t) = 0. We are therefore confined to solve this equation numerically.

We compute the Taylor series expansion of Equation (5) to obtain the expression of Tacc

as a function of other parameters. The obtained relation is

Tacc = 1.3τS + O(f(τR, τS)) (6)

which is consistent with the numerical results shown in Figure 3. This relation allows us

to express Vpeak as a function of Tacc, τR, and Dmax.

We then insert Equation (6) into the solution of Equation (3) presented in the Ap-

pendix (Eqs. A13 or A14) for the range τS < t < 2τS. Vpeak might be obtained from

this relation for t = Tacc. Unfortunately, the resulting relation was again complicated

and it seems difficult to obtain the explicit formulation of Vpeak as a function of other

kinematic parameters such as Tacc, τR, and Dmax. For this reason, we are forced to search

the simplest relation numerically, by computing many regularized Yoffe functions varying

the relevant parameters, as shown in Figure 4. The right panels of Figure 4 display the

inverse dependence of Vpeak on τS and τR. We then found the following asymptotic relation

by trial and error:

Vpeak = 1.04
Dmax

(Tacc)0.54(τR)0.47
' C

Dmax√
Tacc

√
τR

(7)
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Figure 4 shows that the regularized Yoffe functions obtained by fixing the slip duration

(τR = 2.5s, bottom panels) display different effective durations (τ eff
R ) ranging within the

interval predicted by Equation (4). Thus, since τR is fixed, τ eff
R varies because τS is

changing. Equation (7) allows the association between final slip and peak slip velocity

for a given regularized Yoffe function. It should be noted that Tacc is different from Tw

proposed by Ohnaka and Yamashita (1989). They introduced Tw as the half width of total

slip acceleration (that means half rise time) to connect this kinematic parameter with the

dynamic breakdown time (Tc). Tc is defined as the time required for the shear stress to

decrease from its peak value to a kinetic frictional stress level. In the dynamic spontaneous

rupture models Tc is usually non-uniform on the fault. This parameter defines the duration

of breakdown process within the cohesive zone. Ohnaka and Yamashita (1989) related Tc

with the cutoff frequency (f s
max) of the power spectral density of slip acceleration of the

same point on the fault as f s
max = 1/Tc.

We will do something similar with Tacc and Tc in the following sections. This new

Yoffe function allows the slip acceleration to be bounded at and near the propagating

crack tip (see panel B in Figure 5). This feature is very important and it is not ensured in

dynamic modeling simply introducing a cohesive zone with a constitutive law. The peak

slip acceleration is one of the key parameters characterizing earthquake source which is

important also for strong ground motion prediction.
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3 Deriving dynamic rupture parameters from kine-

matic models

3.1 Computation method for dynamic rupture

We use a 3-D finite difference code to calculate the stress time history on the earthquake

fault plane (Andrews, 1999). The stress is computed through the fundamental elastody-

namic equation (Ide and Takeo, 1997). The total dynamic traction in each fault position

can be explicitly calculated by the sum of two contributions: the instantaneous term de-

pending on slip velocity and the dynamic load related to the previous slip history. This

explicit dependence has been found analytically by Fukuyama and Madariaga (1998).

Their inferred equation is the following:

σ(x, t) = − µ

2β
S(x, t) +

∫

Σ

∫ t

0
K(x− ξ; t− t′)S(ξ, t)dt′dS (8)

where S(x, t) represents the slip velocity (STF), β the shear velocity, K the dynamic

load associated to those points that are still slipping. We show this formulation only to

highlight the direct effect of the local source time function on the corresponding traction

evolution. In the present study we impose the slip velocity as a boundary condition. In

other words, each node belonging to the fault plane is forced to move with a prescribed slip

velocity time history. In this way we do not need to specify any constitutive relation and

the dynamic traction evolution is the result of calculation. The space and time distribution

of slip velocity is derived from the kinematic rupture models. In this work we use the

new regularized STF obtained in the previous section. We assume a homogeneous half-

space discretized with grid size ∆x = ∆y = ∆z = 50m, time step ∆t = 0.005s, density
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ρ = 2700kg/m3 and P- and S- wave velocities are vp = 5.2km/s and vs = 3.0km/s,

respectively. A planar vertical fault is assumed whose dimensions are 12.8km along strike

and 6.4km along dip. The hypocenter is located at 6.4km along strike and 3.2 km along

dip, which is the same for all models. Upper margin of the fault is at the free surface.

3.2 Inferred dynamic parameters

We have computed a number of models to examine the relations between kinematic and

dynamic parameters as listed in Table 1. All models have a strike slip faulting with a

uniform distribution of rupture velocity (vr), τR, Tacc, Dmax and initial stress on the fault

plane. This means that at each point on the fault the slip velocity function is the same

but shifted along time. On the contrary the traction evolution depends on the position

on the fault because of the different contribution of the dynamic load (second term in

Equation (8)). In this computation, we did not use the points close to the fault edge to

avoid the artificial reflections due the lack of absorbing boundary condition. In Figure 5

we show an example of the inferred traction evolution at an interior point on the fault

plane using the proposed new STF and the kinematic parameters of model #5 in Table1:

panel A displays the adopted STF, panel B the resulting slip acceleration, panel C the

calculated temporal evolution of dynamic traction and panel D illustrates the traction

evolution as a function of slip. Since seismic waves are only sensitive to the stress change,

we can only discuss the relative values of stress. We treat the following values as relative

ones: strength excess (difference between yield stress and initial stress), dynamic stress

drop (difference between initial stress and minimum stress during slipping), breakdown

stress drop (difference between yield stress and minimum stress, ∆σb). Therefore, we
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need to assume a initial stress (σ0) distribution to interpret the slip-weakening curves and

the distribution of dynamic parameters on the faults (Tinti et al. 2005). In this paper

we assume a uniform initial stress distribution to examine more easily the dependence

of dynamic and kinematic parameters. Hereafter, we show the stress change evolution

relative to the uniform initial stress, i.e. σ(t)− σ0.

We illustrate in Figure 5(D) the strength excess and the dynamic stress drop at this

selected point on the fault. We observe a clear restrengthening of stress associated to

the healing of slip in Figure 5(C) and (D). This behavior is called ’undershoot’. We have

to note , however, that such a behavior might depend on the position on the fault. In

Figure 5(D), the slip weakening behavior is observed with a critical slip weakening distance

Dc. Tinti et al. (2005) have shown that the spatial distributions on the fault plane of

strength excess and dynamic stress drop are strongly controlled by the adopted kinematic

parameters. In particular, the strength excess is affected by rupture time distribution as

well as by the peak slip velocity distribution as we will show in the next section, while

the dynamic stress drop is controlled mainly by the slip distribution.

4 Relation between kinematic and dynamic source

parameters

A common feature of dynamic models is the traction evolution within the cohesive zone

showing a slip-weakening behavior, which in general may have variable weakening rate

(i.e., not linear). This has been observed in dynamic simulations performed with different

constitutive laws, including time weakening or rate and state dependent friction laws
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(see Bizzarri and Cocco, 2003 and references therein). The modeling results shown in

Figure 5(D) indicate that the peak stress is attained at nonzero slip and that a slip-

hardening phase precedes the slip-weakening phase. In our simulations this behavior is a

consequence of imposing a bounded slip acceleration. We discuss here that the dynamic

traction growth to the upper yield stress value is associated to the slip acceleration phase;

in our calculations, the value of Tacc controls the traction evolution and the dynamic

weakening rate (as seen both by traction versus time and versus slip). In this section

we aim to propose useful relations between kinematic and dynamic parameters. We

will compare in the following our scaling relations with those proposed by Ohnaka and

Yamashita (1989).

We have performed a series of simulations with the parameters listed in Table 1. Each

model has a constant rupture velocity and a uniform distribution of kinematic parameters

on the fault plane. Figure 6 shows the dynamic traction evolutions and the constitutive

behaviors calculated using different slip velocity functions, each of which is obtained by

different smoothing factor τS; consequently different Tacc.

According to Equation (7) we expect the variation of Vpeak as a function of Tacc, which

can be seen in the left panel of Figure 6. Looking at the traction time histories and at

the constitutive behaviors in Figure 6, we observe that strength excess (∆σb), Tc and

Dc depend on Tacc. In particular, we point out that the weakening rate (∆σb/Dc) is

associated to Tacc, characterizing the adopted source time function.

To examine the relations between kinematic and dynamic parameters we plot the

relations of Vpeak versus Dc and ∆σb and Tacc versus Tc in Figure 7. We found a negative

correlation between Vpeak and Dc. On the contrary, a positive correlation between Vpeak
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and ∆σb is inferred. Besides, the central panel of Figure 6 and the right panel of Figure 7

show a positive correlation between Tacc and Tc, i.e. Tacc = kTc, where k is a positive

constant equal to ∼ 0.75 for all models computed in Tabel 1.

We show in Figure 8 the traction evolutions and constitutive behaviors corresponding

to several slip velocity functions with different τR (and constant Tacc). The left panel of

this figure indicates that decrease of τR reduces the frictional stress level and increases

Dc. In particular, looking at the central panel of Figure 8, we observe that the minimum

traction is achieved at the same time, which means that Tc is constant. The comparison

between the slip-waekening curves (stress versus slip plots) in Figures 6 and 8 confirms

that Tacc controls the weakening rate (∆σb/Dc). The inverse relation between τR and Dc in

Figure 8 may look somehow strange, but since all the kinematic parameters other than τR

are kept constant and the inferred Tc is then constant, the shorter τR results in the larger

Dc. In Figure 9 we plot the Vpeak versus Dc for four simulations with different uniform

τR (varying from 1.0s to 3.0s) and for a simulation having variable rise time on the fault

ranging from 0.6s to 3.5s. In this case, we observe a positive correlation between these

two parameters. This is because Dmax is kept constant and then shorther τR produces

larger Vpeak.

By compiling all these simulations we have verified that Vpeak is related to Dmax and

Dc by an expression depending on both τR and Tacc. Here we propose the following scaling

relations derived for uniform τR and Tacc, respectively:

Vpeak ∝ D2
max

DcτR

(for uniform τR) (9)
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Vpeak ∝ Dc

Tacc

(for uniform Tacc) (10)

From these equations we obtain:

Dc ∝
√

Tacc

τR

Dmax (11)

Equation (10) is the same as Equation (44) in Ohnaka and Yamashita (1989): Ḋmax =

(0.56 ∼ 0.91)Dcf
s
max, where Ḋmax is peak slip velocity and f s

max is the inverse of Tc.

From this equation, it emerges that the ratio Dc/Dmax depends on the ratio Tacc/τR and

therefore it can be variable on the fault plane.

We obtain the relation between Vpeak and breakdown stress drop:

Vpeak ∝ ∆σb (12)

This equation corresponds to the Equation (47) of Ohnaka and Yamashita (1989) (Ḋmax =

vσp/C(v)µ, where σp is ∆σb in our notation and µ is the rigidity). Finally, from Equations

(10) and (12) as well as the relation Tacc ∝ Tc, we obtained Tc ∝ Dc/∆σb, that is the

same as Equation (50) of Ohnaka and Yamashita (1989).

In all the above proposed scaling relations we can consider the dependence of rupture

velocity. We examined the effect of variable rupture velocity (different uniform rupture

time distribution). By fixing Dmax, Tacc and τR (then Vpeak becomes fixed), we simulated

rupture processes changing only the rupture time distribution. The range of rupture ve-

locity (vr) is set from 1.5 km/s to 3.0 km/s. We plot the corresponding traction evolutions

and the inferred constitutive behaviors for the same point on the fault in Figure 10. Be-

cause in our simulations the rupture onset (i.e. the rupture times, tr) are different, in
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central panel we plot ∆σ as a function of relative time (t− tr). Dc and Tc are approxima-

tively constant and the variation between the traction evolutions depends only on ∆σb.

From Figure 11, we found an inverse correlation between ∆σb and vr. In these simulations

Vpeak is set constant. We confirmed that Eq. (12) becomes

Vpeak ∝ C(vr)∆σb (13)

where C(vr) is a constant depending on the rupture velocity, as stated in the Ohnaka and

Yamashita (1989) equations.

5 Discussions

In this study we propose an innovative and original parameterization of the source time

function to be used in kinematic modeling of ground motion time histories. We suggest

that a kinematic model can be adequately described by the total slip (Dmax) and the

rupture time distributions on the fault plane as well as by the source time function de-

fined by the slip duration (τR) and the duration of the positive acceleration (Tacc). We

have proposed several scaling relations between kinematic and dynamic parameters. It

is important to emphasize that our proposed scaling relations agree with those obtained

by Ohnaka and Yamashita (1989). Their work is based on a comparison between labo-

ratory experiments, theoretical considerations and numerical simulations of spontaneous

dynamic crack propagation in 2-D. They assumed a slip-dependent constitutive law (ex-

ponential law) and inferred some relations between kinematic and dynamic parameters.

Moreover, their theoretical and numerical results start from the crack model assump-

tion, not including the local healing of slip. Our assumptions are completely different
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but the inferred relations are consistent. Because our slip velocity functions have a finite

duration, the inferred traction evolution shows restrengthening and healing of slip. The

agreement between our scaling relations and those proposed by Ohnaka and Yamashita

(1989) further corroborates the validity of our numerical analyses.

We have shown in this study that the parameter Tacc, used to define the regularized

Yoffe function here proposed, is linearly related to the duration of the breakdown process

Tc (see Figures 5 and 6) and that the proportionality factor between these two parameters

depends on the assumed rupture velocity. This is evident looking at the results of our sim-

ulations listed in Table 1. Mikumo et al. (2003) proposed that the critical slip weakening

distance can be measured as the slip at the time of peak slip velocity. This implies that

the duration of the positive slip acceleration Tacc has to be close to the duration of the

breakdown process, and thus their ratio should be close to unity. Our modeling results

suggest that this is true only for constant (or weakly variable) rupture velocity models.

More recently, Tinti et al. (2004) have shown that Tacc and Tc depend on the adopted

constitutive law and on the constitutive parameters as well as the friction behavior at high

slip rates. Therefore, we emphasize that Tacc is a source parameter with a clear physical

meaning and it is directly controlled by fault constitutive properties. Simulations with

spontaneous dynamic rupture models suggest that in general Tacc can change on the fault

plane.

Another interesting result of our study is the linear relation between peak slip velocity

and breakdown stress drop, in agreement with Ohnaka and Yamashita (1989). This

scaling relation points out that peak slip velocity is related to the mechanisms controlling

the breakdown process and to the earthquake stress drop. The proportionality factor
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bewteen these two parameters depends on rupture velocity, as previously suggested by

Ohnaka and Yamashita (1989). We have also shown that the final slip (Dmax) and the

critical slip weakening distance Dc are related and that their ratio depends on both slip

duration and Tacc. This scaling relation (see Equation 11) does not imply that the ratio

between these two parameters is constant on the fault plane, because both Tacc and τR

can vary as a function of positions on the fault plane.

The scaling relations proposed in this study can be very useful to constrain the values

and to potentially reduce the number of independent parameters in the kinematic inversion

of seismograms. For example, once we construct a model with a given distribution of

Dmax and Dc, we can examine the different combinations of other parameters such as

τR and Vpeak. It should be emphasized that in many kinematic models τR is not well

constrained and Tacc is not investigated and imposed along with the assumed source time

function. Although we believe that the estimation of Tacc through the modeling of radiated

waveforms is extremely delicate, we underline that the proposed parameterization of the

STF is suitable to associate kinematic and dynamic parameters. This is very important

for the dynamic interpretation of kinematic slip models.

6 Conclusions

In this study we proposed an analytical expression of a source time function compatible

with dynamic rupture simulations (Nielsen and Madariaga, 2003; Piatanesi et al., 2004).

This slip velocity function is based on the function proposed by Yoffe (1951), and subse-

quently by Broberg (1978) and Freund (1979). We regularized the function by applying
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a smoothing operator (i.e., a triangular function with a duration of 2τS). By varying τS,

we generated a family of source time functions having different peak slip velocities and

slip durations (τ eff
R ). We showed that this new slip velocity function, which is described

by three parameters: the final slip Dmax, the slip duration (i.e. rise time) τR and the

duration of the positive slip acceleration (i.e. time to peak slip velocity) Tacc. This slip

velocity function is very useful in kinematic modeling of ground motion and allows an easy

implementation in numerical codes. We have finally derived a scaling relation between

Vpeak and the three kinematic parameters Dmax, Tacc and τR as shown in Equation 8.

We used the 3-D finite difference dynamic code to retrieve the dynamic traction evo-

lution from the slip velocity history by imposing slip velocity as a boundary condition

on the fault plane. We have performed many simulations using different kinematic mod-

els with different source time functions. By analyzing the results of our simulations we

obtained scaling relations between Vpeak and relevant dynamic parameters as well as the

scaling between Dc and Dmax at each point on the fault. Our results are of relevance

to both kinematic modeling of ground motion time histories and the parameterization of

kinematic slip models. The usage of this slip function guarantees the estimation of the

temporal evolution of dynamic parameters.
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Appendix

We compute the convolution of the original Yoffe function Y (t, τR) defined in Equation

(1) with the triangular function W (t, τS) defined in Equation (2). The new analytical

STF stated in Equation (3) can be expressed as

S(t) = Dmax

∫ +∞

−∞
W (t− T ; τS)Y (T ; τR)dT = Dmax(S1(t) + S2(t)) (A1)

where

S1(t) =
∫ +∞

−∞
H(t− T )H(τS − t + T )

t− T

τ 2
S

×

H(T )H(τR − T )

2

πτR

√
τR − T

T


 dT (A2)

S2(t) =
∫ +∞

−∞
H(t− T − τS)H(2τS − t + T )

2τS − t + T

τ 2
S

×

H(T )H(τR − T )

2

πτR

√
τR − T

T


 dT (A3)

There are some different intervals to define the solution. The Yoffe function Y (t) is defined

in 0 < t < τR. The triangular function (W (t)) has the following two ranges:

1. t− 2τS < T < t− τS

2. t− τS < T < t

These ranges are represented by the Heaviside functions. Then we compute the integration

taking into account the above ranges. When we substitute the integration intervals we

have also to consider the Yoffe function ranges ( 0 < t < τR). We use the known integral

solution:

∫
x

√
x

a− x
dx = −2x + 3a

4

√
ax− x2 + arctan

√
x

a− x
(A4)
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∫ √
−x + b

x + a
dx =

√
−(x + a)(x + b) + (a− b) arcsin

√
x + a

a− b
(a > b) (A5)

For the first range (t− 2τS < T < t− τS),

S1 =
∫ m

n

1

τ 2
S

(2τS − t + T )
2

πτR

√
τR − T

T
dT

=
∫ m

n

1

τ 2
S

(2τS − t)
2

πτR

√
τR − T

T
dT +

∫ m

n

1

τ 2
S

T
2

πτR

√
τR − T

T
dT

= K(2τS − t)

[√
(τR − T )T + τR arcsin

√
T

τR

]m

n

+K

[
(2T + 3τR)

4

√
(τR − T )T − 3τ 2

R

4
arctan

√
T

τR − T

]τR−n

τR−m

(A6)

where

K =
2

πτRτ 2
S

(A7)

and

m =





t− τS for τS < t < τR + τS

τR for τR + τS < t < 2τS

(A8)

n =





0 for t < 2τS

t− 2τS for 2τS < t < τR + 2τS

(A9)

For the second range (t− τS < T < t),

S2 =
∫ m′

n′

1

τ 2
S

(t− T )
2

πτR

√
τR − T

T
dT

= Kt

[√
(τR − T )T + τR arcsin

√
T

τR

]m′

n′

−K

[
(2T + 3τR)

4

√
(τR − T )T − 3τ 2

R

4
arctan

√
T

τR − T

]τR−n′

τR−m′
(A10)
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where

m′ =





t for 0. < t < τR

τR for τR < t < τR + τS

(A11)

n′ =





0. for t < τS

t− τS for τS < t < τR + τS

(A12)

Therefore, the final integrations are as follows: If τR > 2τS,

S(t) = K





0 for t < 0

(C1 + C2) for 0 < t < τS

(C1− C2 + C3) for τS < t < 2τS

(C1 + C3 + C4) for 2τS < t < τR

(C5 + C3 + C4) for τR < t < τR + τS

(C4 + C6) for τR + τS < t < τR + 2τS

0 for τR + 2τS < t

(A13)

And if τS < τR < 2τS,

S(t) = K





0 for t < 0

(C1 + C2) for 0 < t < τS

(C1− C2 + C3) for τS < t < τR

(C5 + C3− C2) for τR < t < 2τS

(C5 + C3 + C4) for 2τS < t < τR + τS

(C4 + C6) for τR + τS < t < τR + 2τS

0 for τR + 2τS < t

(A14)
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where

C1 = (
1

2
t +

1

4
τR)

√
t(τR − t) + (tτR − τ 2

R) arcsin

√
t

τR

− 3

4
τ 2
R arctan

√
τR − t

t
(A15)

C2 =
3

8
πτ 2

R (A16)

C3 =
(
τS − t− 1

2
τR

) √
(t− τS)(τR − t + τS)

+τR(2τR − 2t + 2τS) arcsin

√
t− τS

τR

+
3

2
τ 2
R arctan

√
τR − t + τS

t− τS

(A17)

C4 =
(
−τS +

1

2
t +

1

4
τR

) √
(t− 2τS)(τR − t + 2τS)

+τR(−τR + t− 2τS) arcsin

√
t− 2τS

τR

− 3

4
τ 2
R arctan

√
τR − t + 2τS

t− 2τS

(A18)

C5 =
π

2
τR(t− τR) (A19)

C6 =
π

2
τR(2τS − t + τR) (A20)

According to these equations the proposed source time functions S(t) is parameterized

through the following parameters: Dmax, τS and τR. Using Equation (6) we can easily

substitute τS with Tacc in the proposed analytical relations. Moreover, Equation (4) relates

the duration of the original Yoffe function (τR) to the effective duration of the smoothed

Yoffe (τ eff
R ). These relations define the dependence of the STF on the parameters Dmax,

Tacc and τ eff
R , even if the resulting expressions are analytically complicated.
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Table 1: List of dynamic rupture computation models

# τS Tacc Dmax vr τR τ eff
R Vpeak Dc ∆σb Tc

(s) (s) (m) (km/s) (s) (s) (m/s) (m) (MPa) (s)

1 0.090 0.115 1.0 2.0 1.0 1.18 3.21 0.376 21.56 0.115

2 0.125 0.160 1.0 2.0 1.0 1.25 2.71 0.437 17.58 0.170

3 0.125 0.160 1.0 2.0 2.0 1.25 1.94 0.313 12.43 0.165

4 0.150 0.195 1.0 2.0 1.0 1.30 2.47 0.475 15.96 0.205

5 0.175 0.225 1.0 2.0 1.0 1.35 2.27 0.509 14.80 0.250

6 0.175 0.225 1.0 2.0 1.5 1.85 1.87 0.421 12.10 0.245

7 0.175 0.225 1.0 2.0 2.0 2.35 1.63 0.366 10.48 0.245

8 0.175 0.225 1.0 2.0 2.5 1.85 1.46 0.330 9.38 0.245

9 0.175 0.225 1.0 2.0 3.0 3.35 1.34 0.301 8.56 0.245

10 0.175 0.225 1.0 1.5 1.0 1.35 2.27 0.501 23.56 0.240

11 0.175 0.225 1.0 1.8 1.0 1.35 2.28 0.506 18.22 0.238

12 0.175 0.225 1.0 1.9 1.0 1.35 2.27 0.508 16.10 0.240

13 0.175 0.225 1.0 2.2 1.0 1.35 2.27 0.505 14.31 0.280

14 0.175 0.225 1.0 2.3 1.0 1.35 2.27 0.512 12.36 0.275

15 0.175 0.225 1.0 2.5 1.0 1.35 2.27 0.505 12.07 0.285

16 0.175 0.225 1.0 2.7 1.0 1.35 2.27 0.498 10.84 0.270

17 0.175 0.225 1.0 3.0 1.0 1.35 2.27 0.470 10.44 0.290

18 0.250 0.320 1.0 2.0 1.0 1.50 1.88 0.597 12.77 0.375

19 0.250 0.320 2.0 2.0 1.0 1.50 3.75 1.193 25.53 0.375

20 0.250 0.320 3.0 2.0 1.0 1.50 5.63 1.790 38.30 0.375

21 0.250 0.320 1.0 2.5 1.0 1.50 1.88 0.587 10.61 0.400

22 0.300 0.385 1.0 2.0 1.0 1.60 1.70 0.640 11.91 0.455

23 0.350 0.445 1.0 2.0 1.0 1.70 1.56 0.684 11.25 0.545
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Figure 1: Slip velocity functions of delta, box-car, Gaussian, truncated Kostrov, and Yoffe

are shown in left panels. The corresponding slip functions of Heaviside, ramp, smoothed

ramp, square root, Yoffe in slip are shown in right panels.
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function (right) calculated for τS = 0.15s. The peak velocity (Vpeak) becomes finite in the

smoothed case although it is infinite in the original definition.
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Figure 8: (left) Slip velocity evolutions, (center) traction evolution, (right) constitutive

behaviors for various τR, using Tacc = 0.225s. [models #5; #7 and #9 in Table 1]
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Figure 9: Relation between Vpeak and Dc for different τR, assuming Tacc = 0.225s. Each

black dot corresponds to different point on the fault for variable τR. [models #5; #6; #7;

#8 and #9 in Table 1]
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Figure 10: (left) slip velocity evolutions, (center) traction evolutions, and (right) consti-

tutive behaviors are shown with different rupture velocities. [models #5; #10; #11; #13;

#15 and #17 in Table 1]
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Figure 11: Relation between ∆σb and vr, assuming Tacc = 0.225s and τR = 1s. [models

#5; #10-17 in Table 1]
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