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ABSTRACT
We show that a purely kinetic approach to the excitation of waves by cosmic rays in the vicinity
of a shock front leads to predict the appearance of a non-Alfvénic fast-growing mode which
has the same dispersion relation as that previously found by Bell in 2004 by treating the plasma
in the magnetohydrodynamic approximation. The kinetic approach allows us to investigate the
dependence of the dispersion relation of these waves on the microphysics of the current which
compensates the cosmic ray flow. We also show that a resonant and a non-resonant mode may
appear at the same time and one of the two may become dominant on the other depending
on the conditions in the acceleration region. We discuss the role of the unstable modes for
magnetic field amplification and particle acceleration in supernova remnants at different stages
of the remnant evolution.

Key words: acceleration of particles – shock waves.

1 IN T RO D U C T I O N

The problem of magnetic field amplification at shocks is central to
the investigation of cosmic ray acceleration in supernova remnants
(SNRs). The level of scattering provided by the interstellar medium
turbulent magnetic field is insufficient to account for cosmic rays
with energy above a few GeV, so that magnetic field amplification
and large scattering rates are required if energies around the knee
are to be reached. The chief mechanism which may be responsible
for such fields is the excitation of streaming instabilities (SI) by
the same particles which are being accelerated (Skilling 1975; Bell
1978; Lagage & Cesarsky 1983a,b). The effect of magnetic field am-
plification on the maximum energy reachable at SNR shocks was
investigated by Lagage & Cesarsky (1983a,b), who reached the con-
clusion that cosmic rays could be accelerated up to energies of the
order of ∼104–105 GeV at the beginning of the Sedov phase. This
conclusion was primarily based on the assumption of the Bohm dif-
fusion and a saturation level for the induced turbulent field δB/B ∼
1. On the other hand, recent observations of the X-ray surface
brightness of the rims of SNRs have shown that δB/B ∼ 100–1000
(see Völk, Berezhko & Ksenofontov 2005 for a review of results),
thereby renewing the interest in the mechanism of the magnetic field
amplification and in establishing its saturation level. It is, however,
worth recalling that the interpretation of the X-ray observations is
not yet unique: the narrow rims observed in the X-ray synchrotron
emission could be due to the damping of the downstream magnetic
field (Pohl, Yan & Lazarian 2005) rather than to severe synchrotron
losses of very high energy electrons, although this interpretation
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has some serious shortcomings (see Morlino, Amato & Blasi 2008
for a discussion).

In this context of excitement, due to the implications of these
discoveries for the origin of cosmic rays, Bell (2004) discussed the
excitation of modes in a plasma treated in the magnetohydrody-
namic (MHD) approximation and found that a new, purely grow-
ing, non-Alfvénic mode appears for high acceleration efficiencies.
The author predicted a saturation of this SI at the level δB/B ∼
MA(ηvs/c)1/2, where η is the cosmic ray pressure in units of the
kinetic pressure ρ v2

s , vs is the shock speed and MA = vs/vA is the
Alfvénic Mach number. For comparison, standard SI for resonant
wave–particle interactions leads to expect δB/B ∼ M1/2

A η1/2. For
efficient acceleration η ∼ 1, and typically for shocks in the inter-
stellar medium, MA ∼ 104. Therefore, Bell’s mode leads to δB/B ∼
300–1000, while the standard SI gives δB/B ∼ 30. It is also useful
to note that the saturation level predicted by Bell (2004) is basically
independent of the value of the background field, since δB2/8π ∼
(1/2)(vs/c)PCR, where PCR is the cosmic ray pressure at the shock
surface.

The resonant and non-resonant modes have different properties
in other respects as well. A key feature consists in the different
wavelengths that are excited. The resonant mode with the maxi-
mum growth rate has wavenumber k such that krL,0 = 1, where
rL,0 is the Larmor radius of the particles that dominate the cosmic
ray number density at the shock, namely for typical spectra of as-
trophysical interest, the lowest energy cosmic rays at the shock.
At the shock location, the minimum momentum is the injection
momentum, while at larger distances from the shock, the minimum
momentum is determined by the diffusion properties upstream and
is higher than the injection momentum, since higher energy parti-
cles diffuse farther upstream. When the non-resonant mode exists,
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its maximum growth is found at krL,0 � 1. There may potentially be
many implications of this difference: the particle–wave interactions,
which are responsible for magnetic field amplification, also result
in particle scattering (diffusion). The diffusion properties for res-
onant and non-resonant interactions are, in general, different. The
case of resonant interactions has been studied in the literature (e.g.
Lagage & Cesarsky 1983a), at least for the situation δB/B � 1, but
the diffusion coefficient for non-resonant interactions (in either the
linear or the non-linear case) has not been calculated (see however
Zirakashvili & Ptuskin 2008). The difference in wavelengths be-
tween the two modes, in addition to different scattering proper-
ties, also suggests that the damping will occur through different
mechanisms.

The calculation of Bell (2004) has, however, raised some con-
cerns due to the following three aspects: (i) the background plasma
was treated in the MHD approximation, (ii) a specific choice was
made for the current established in the upstream plasma to com-
pensate for the cosmic ray (positive) current and (iii) the calcula-
tion was carried out in a reference frame at rest with the upstream
plasma, where stationarity is, in general, not realized (although for
small-scale perturbations, the approximation of stationarity may be
sometimes justified.).

In this paper, we derive the dispersion relation of the waves in a
purely kinetic approach and investigate different scenarios for the
microphysics that determine the compensating current. We show
that the fast-growing non-resonant mode appears when particle ac-
celeration is very efficient, but whether it dominates over the well-
known resonant interaction between particles and Alfvén modes
depends on the parameters that characterize the shock front, its
Mach number primarily.

Bell (2004) also investigated the development of the non-resonant
modes by using numerical MHD simulations. His results have been
recently confirmed by Zirakashvili, Ptuskin & Voelk (2008) with
a similar approach. Niemiec et al. (2008) made the first attempt to
investigate the development of the non-resonant modes by using
Particle in Cell (PIC) simulations. In this latter case, the authors
find that the non-resonant mode saturates at a much lower level than
found by Bell (2004). However, as briefly discussed in Section 5,
these simulations use a setup that makes them difficult to compare
directly with Bell’s results.

The paper is organized as follows. In Section 2, we derive the
dispersion relation of the unstable modes within a kinetic approach
and adopt two different scenarios for the compensation of the cos-
mic ray current, namely compensation due to the motion of the cold
electrons alone (Section 2.1), and to the relative drift of protons
and electrons (Section 2.2). In Section 3, we discuss the relative
importance of the resonant and non-resonant modes depending on
the physical parameters of the system; we also derive analytic ap-
proximations for the large (Section 3.1) and small (Section 3.2)
wavenumber limits. Finally in Section 4, we study the different
modes during the Sedov evolution of a ‘typical’ SNR and for dif-
ferent assumptions on the background magnetic field strength. We
conclude in Section 5.

Throughout the paper, we use the expressions accelerated parti-
cles and cosmic rays as referring to the same concept.

2 TH E K I N E T I C C A L C U L AT I O N

In this section, we describe our kinetic calculation of the linear
growth of waves excited by streaming cosmic rays upstream of a
shock. This type of analysis is not suited for the computation of the

saturation level of the instability, but it can be used to investigate
the type of modes that may possibly grow to non-linear levels.

In the following, all calculations refer to the shock location and
not to an arbitrary location in the plasma upstream of the shock. This
is to say that the minimum momentum of the particles considered
in our calculations is the injection momentum.

In the reference frame of the upstream plasma, the gas of cosmic
rays moving with the shock appears as an ensemble of the particles
streaming at super-Alfvénic speed. This situation is expected to
lead to streaming instability, as was indeed demonstrated in several
previous papers [see Krall & Trivelpiece (1973) for a technical
discussion].

In the reference frame of the shock, cosmic rays are approxi-
mately stationary and roughly isotropic. The upstream background
plasma moves with a velocity vs towards the shock and is made of
protons and electrons. The charge of cosmic rays, assumed to be
all protons (positive charges), is compensated by processes which
depend on the microphysics and need to be investigated accurately.

The x-axis, perpendicular to the shock surface, has been chosen
to go from upstream infinity (x = −∞) to downstream infinity (x =
+∞). Therefore, a cosine of the pitch angle μ = +1 corresponds
to the particles moving from upstream towards the shock.

The dispersion relation of waves in this composite plasma, in the
test-particle regime that we wish to investigate here, can be written
as (Krall & Trivelpiece 1973)

c2k2

ω2
= 1 +

∑
α

4π2q2
α

ω

∫ ∞

0
dp

∫ +1

−1
dμ

p2v(p)(1 − μ2)

ω + kv(p)μ ± �α

×
[

∂fα

∂p
+

(
kv

ω
+ μ

)
1

p

∂fα

∂μ

]
, (1)

where the index α runs over the particle species in the plasma, ω

is the wave frequency corresponding to the wavenumber k and �α

is the relativistic gyrofrequency of the particles of type α, which in
terms of the particle cyclotron frequency �∗

α and Lorentz factor γ

is �α = �∗
α/γ . For the background plasma and for any population

of cold electrons, one has �α ≈ �∗
α .

The positive electric charge of the accelerated cosmic rays, as-
sumed here to be all protons, with total number density NCR, must
be compensated by a suitable number of electrons in the upstream
plasma. In the following sections, we discuss two different ways of
compensating the cosmic ray current and charge. In the first calcu-
lation, we assume that there is a population of cold electrons which
is at rest in the shock frame and drifts together with the cosmic
rays. These electrons exactly cancel the positive charge of cosmic
rays. This approach is similar to that of Zweibel (1979, 2003) and
resembles more closely the assumptions of the MHD approach of
Bell (2004). In the second calculation, we assume that the current
of cosmic ray protons is compensated by the background electrons
and protons flowing at different speeds. This approach is similar to
that of Achterberg (1983).

2.1 Model A: cold electrons

Let ni and ne be the number density of ions (protons) and electrons
in the background plasma upstream of the shock. In this section, we
consider the case in which a population of cold electrons with den-
sity ncold streams together with cosmic rays and compensates their
charge. Therefore, ne = ni and ncold = NCR. In terms of distribution
functions, the four components can be described as follows:

fi(p,μ) = ni

2πp2
δ(p − mivs)δ(μ − 1), (2)
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fe(p,μ) = ne

2πp2
δ(p − mevs)δ(μ − 1), (3)

f cold
e (p) = NCR

4πp2
δ(p), (4)

fCR(p) = NCR

4π
g(p). (5)

In the latter equation, which describes cosmic rays, g(p) is a function
normalized so that

∫ pmax

p0
dpp2g(p) = 1. In the above expressions,

the background ions and electrons have been assumed to be cold
(zero temperature). Introducing the thermal distribution of these
particles does not add, as a first approximation, any important in-
formation to the analysis of the stability of the modes. One should
check, however, that damping does not play an appreciable role,
especially for the modes with high k [see Everett et al. (in prepara-
tion)].

The contribution of the background plasma of electrons and pro-
tons to the right-hand side of equation (1) is easily calculated to
be

−4πe2ni

ω2mi

ω + kvs

ω + kvs ± �∗
i

− 4πe2ne

ω2me

ω + kvs

ω + kvs ± �∗
e

. (6)

Similarly, the cold electrons with density NCR contribute a term

−4πe2

ω

NCR

me(ω ± �∗
e )

. (7)

The calculation of the cosmic ray contribution is slightly more
complex. In its most general form, it can be written as

χCR = πe2NCR

ω

∫ ∞

0
dpv(p)p2 dg

dp

∫ +1

−1
dμ

1 − μ2

ω + kv(p)μ ± �i
.

(8)

The integral in the variable μ is now∫ +1

−1
dμ

1 − μ2

ω + kv(p)μ ± �i
= P

∫ +1

−1
dμ

1 − μ2

kv(p)μ ± �i

− iπ
∫ +1

−1
dμ(1 − μ2)δ(kvμ ± �i),

(9)

where P denotes the principal part of the integral and we have
neglected ω with respect to �i (low-frequency modes). Using
Plemelj’s formula for the first term, one obtains for the cosmic
ray response

χCR = πe2NCR

ωk

×
∫ ∞

0
dp

dg

dp

{[
p2 − pmin(k)2

]
ln

∣∣∣∣1 ± p/pmin

1 ∓ p/pmin

∣∣∣∣ ± 2pminp

}

− i
π2e2NCR

ωk

∫ ∞

pmin(k)
dp

dg

dp

[
p2 − pmin(k)2

]
,

where we have introduced the minimum momentum pmin(k) =
mi�

∗
i /k, which comes from the condition that the second integral

in equation (8) is non-vanishing only when |μ| ≤ 1, namely when

v(p) ≥ �i

k
= �∗

i

kγ
=⇒ p = γmiv(p) ≥ mi

�∗
i

k
= pmin(k). (10)

The physical meaning of pmin is that of minimum momentum of the
protons that can have a resonant interaction with waves of given
wavelength.

In the limit of low frequencies that we are interested in, ω +
kvs � �∗

i � |�∗
e |, the contribution of the background plasma can

be Taylor-expanded and the unity in the dispersion relation (dis-
placement current) neglected. So, the dispersion relation reads as

v2
Ak2 = ω̃2 ± NCR

ni
(ω̃ − kvs)�

∗
i

[
1 ± I±

1 (k) ∓ iI2(k)
]
, (11)

where vA = B0/
√

4πmini is the Alfvén speed, ω̃ = ω + kvs is the
wave frequency in the reference frame of the upstream plasma, and
we have introduced

I±
1 (k) = pmin(k)

4

×
∫ ∞

0
dp

dg

dp

{[
p2 − pmin(k)2

]
ln

∣∣∣∣1 ± p/pmin

1 ∓ p/pmin

∣∣∣∣ ± 2pminp

}
,

(12)

I2(k) = π

4
pmin(k)

∫ ∞

pmin(k)
dp

dg

dp

[
p2 − pmin(k)2

]
. (13)

One should note that the phase velocity of the waves in the plasma
frame is vφ = ω̃/k, and we want to concentrate on waves which
have a velocity much smaller than the fluid velocity vs (which is
supersonic), therefore ω̃ � kvs. In this limit, and using the fact that
I±

1 = ± I+
1 , one can write the dispersion relation as

v2
Ak2 = ω̃2 ∓ NCR

ni
kvs�

∗
i

[
1 + I+

1 (k) ∓ iI2(k)
]
. (14)

This dispersion equation is the same as that found by Bell (2004) by
treating the background plasma in a MHD approximation. Here, we
have obtained equation (14) by assuming that the cosmic ray cur-
rent and charge are compensated by a population of cold electrons
moving with the cosmic rays, a setup which is equivalent to that of
having the cosmic ray current of Bell (2004). At least within the
context of this specific choice of the compensating current, treating
the background plasma within the MHD approximation as done
by Bell (2004) does not change the results. However, the question
arises whether the resulting dispersion relation may be different
for a different and equally reasonable choice of the compensating
current. In order to investigate this issue, in the following section
we study the case in which the cosmic ray current is compensated
by assuming a slow drift between thermal ions and electrons. This
approach more closely resembles the kinetic approach first put for-
ward by Achterberg (1983). It is also important to stress that this
recipe is the same used recently in the PIC simulations of Niemiec
et al. (2008).

2.2 Model B: compensation by electron–proton relative
drift motion

The approach described in this section is the one originally put
forward by Achterberg (1983). We show that the dispersion relation
is identical to that found in the previous section, provided that the
density of cosmic rays is low enough as compared to the density of
the gas in the background plasma.

Within this approach, the electric charge of cosmic rays (assumed
to be all protons) is compensated by the charges of electrons and
protons in the background plasma

NCR + ni = ne, (15)

and the total current induced in the background plasma by the
presence of cosmic rays vanishes, namely

0 = nivs − neve. (16)

This condition can be realized by requiring that electrons and pro-
tons move with slightly different velocities, vs and ve, respectively.
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The small drift between the two species leads to a current, which
compensates the cosmic ray current.

For a given cosmic ray number density NCR, the contribution of
accelerated particles to the dispersion relation does not change as
compared to the previous model of current compensation. The main
differences with respect to the case presented in the previous section
are that there are no cold electrons, and that electrons and protons in
the background plasma have different velocities and densities. The
contribution of the background plasma to the dispersion relation is
then

−4πe2ni

ω2mi

ω + kvs

ω + kvs ± �∗
i

− 4πe2ne

ω2me

ω + kve

ω + kve ± �∗
e

. (17)

Now, introducing the frequencies ω̃i = ω + kvs and ω̃e = ω +
kve, and using equations (15) and (16), and again taking the low-
frequency limit, we obtain

−4πe2

ω2

[
±ω̃i

nic

eB0
−

(
ω̃i

�∗
i

)2
ni

mi
∓ ω̃e

nic

eB0
∓ ω̃e

NCRc

eB0

}
. (18)

Now we note that

±ω̃i ∓ ω̃e = ±kvs
NCR

NCR + ni
≈ ±kvs

NCR

ni

so that, after neglecting terms O[(NCR/ni)2], the contribution of the
background plasma to the dispersion relation becomes

±
(

c

vA

)2
NCR

ni

�∗
i

ω
+

(
c

vA

)2 (
ω̃

ω

)2

. (19)

It is easy to recognize that the first term is the same as the contribu-
tion of the background plasma in Model A, while the second term is
equal to the contribution of the cold electrons in Model A. It follows
that the two dispersion relations are identical up to linear terms in
series of (NCR/ni) and start to differ at the order of O[(NCR/ni)2].

At this point, it is worth pointing out that in the numerical PIC
simulations of Niemiec et al. (2008), the compensating current is
realized by assuming a drift between protons and electrons, exactly
as discussed in this section. However, in order to be able to carry
out the calculations, the authors are forced to adopt unrealistically
large values of the ratio NCR/ni (for the most realistic cases, they
use NCR/ni = 0.3), which, as discussed above, do not necessarily
result in a dispersion relation with the same characteristics as that
found above and derived by Bell (2004).

3 R E S O NA N T A N D N O N - R E S O NA N T M O D E S

In this section, we investigate the modes that result from the disper-
sion relation in equation (14). For the sake of simplicity, we carry
out our calculations for a power-law spectrum of accelerated parti-
cles with the canonical shape g(p) ∝ p−4, which is expected from
diffusive acceleration at strong shocks in the test-particle regime.
This regime may potentially be different from the one relevant for
particle acceleration in SNRs, in which acceleration takes place ef-
ficiently and the shock becomes cosmic ray modified by non-linear
effects. The most evident effect of this non-linear reaction is the
formation of a shock precursor which reflects in concave spectra of
accelerated particles. The energy content of these accelerated par-
ticles is typically dominated by the highest energy particles, while
numerically the low-energy particles are still dominant. On the other
hand, efficient acceleration must proceed parallel to effective mag-
netic field amplification, and as showed by Caprioli et al. (2008a,b),
the dynamical reaction of the strong field leads to a smoothening
of the shock precursor, which in turn leads to the spectra of ac-
celerated particles that, though still concave, are closer to power

laws. It is straightforward to grasp the deeply non-linear nature of
the problem at hand, where one is trying to describe the growth
of waves associated with the cosmic ray streaming, but the latter
only occurs after the waves have grown to interesting levels, so as
to guarantee efficient particle acceleration. At the present time, a
full analysis of the whole problem is simply not achievable. In the
following, we still adopt the assumption of power-law spectra of
accelerated particles, and we point out, where necessary, if a result
may be substantially modified by non-linear effects.

The suitably normalized distribution function g(p) is

g(p) = 1

p3
0

(
p

p0

)−4

�(p − p0)�(pmax − p), (20)

where � is the step function and takes into account the limited range
of momenta spanned by the cosmic ray particles in the acceleration
region.

The momentum p0 is the minimum momentum of accelerated
particles at the shock location, namely the injection momentum.
Below, we discuss in detail the dependence of our results on the
choice of the value of p0.

Let us now consider the integrals I1 and I2 in equations (12) and
(13). We integrate by parts after performing the substitution

s = p

pmin(k)
= p

p0
krL,0, (21)

obtaining

I+
1 (k) = 1

4

p3
0

(krL,0)3

{[
g(s)

(
(s2 − 1) ln

∣∣∣∣1 + s

1 − s

∣∣∣∣ + 2s

)]∞

0

− 2
∫ ∞

0
ds s g(s) ln

∣∣∣∣1 + s

1 − s

∣∣∣∣
}

, (22)

I2(k) = π

4

p3
0

(krL,0)3

{[
g(s)(s2 − 1)

]∞
1

− 2
∫ ∞

1
ds s g(s)

}
. (23)

After defining s0 = krL,0 and s2 = krL,0 pmax/p0 and using the
expression for g(s) obtained from equation (20) one finds

I+
1 (k) = − s0

2

∫ s2

s0

dss−3 ln

∣∣∣∣1 + s

1 − s

∣∣∣∣
= − s0

4

{
1

s2

[
(s2 − 1) ln

∣∣∣∣1 + s

1 − s

∣∣∣∣ − 2s

]}s2

s0
(24)

I2(k) = π

2
s0

[
s−2

2

]s2

s1

(25)

with s1 = Max [1, s0]. Finally,

I+
1 (k) = 1

4krL,0

{[
(krL,0)2 − 1

]
ln

∣∣∣∣1 + krL,0

1 − krL,0

∣∣∣∣ − 2krL,0

}
(26)

I2(k) = −π

4

{
krL,0 krL,0 ≤ 1

(krL,0)−1 krL,0 ≥ 1.
(27)

In terms of the latter, the imaginary and real parts of the frequency
can be written as

ω̃2
I (k) = 1

2

{− [
k2v2

A ± α(1 + I1(k))
]

+
√{

k2v2
A ± α[1 + I1(k)]

}2 + α2I 2
2

}
(28)

ω̃R(k) = −αI2

2ω̃I
, (29)

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 392, 1591–1600

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/392/4/1591/965448 by guest on 21 August 2022



Streaming instability at supernova shocks 1595

where α = NCR
ni

kvs�
∗
i . It is useful to express α as a function of the

acceleration efficiency of the shock. The total pressure in the form
of accelerated particles is

Pc = 1

3
NCR

∫ pmax

p0

dpp3v(p)g(p) ≈ 1

3
NCRcp0 ln

(
pmax

mic

)
. (30)

The second part of this expression is a consequence of the fact that
for spectra harder than p−5 and not harder than p−4, which are of
interest here, the pressure is mainly contributed by relativistic par-
ticles with p ∼ mic. In case of cosmic-ray-modified shocks, spectra
can become mildly harder than p−4, but this is not expected to af-
fect our conclusion in a dramatic way, since it only introduces a
weak dependence on pmax. Moreover, in case of strongly modified
shocks, the major complication does not come from the spectrum
of accelerated particles, but rather from the fact that the upstream
plasma develops a precursor, namely a gradient in the fluid velocity
that makes the standard treatment illustrated here formally not ap-
plicable. On the other hand, as pointed out several times throughout
the paper, the magnetic reaction of the shock acts in the direction
of smoothening the precursor, so that although formally the math-
ematical treatment illustrated here is not applicable, in practice it
should provide a good description of the physical processes at work.

If we define η = Pc/(ni mi v2
s ) as the acceleration efficiency, we

can write

α = 3η
1

R

v3
s

c

k

rL,0
= σ

k

rL,0
, (31)

where R = ln( pmax
mic

) and rL,0 = p0c/eB0 is the Larmor radius of
the particles with momentum p0 in the background magnetic field

B0. We have also introduced σ = 3η 1
R

v3
s
c

. A resonant mode can be
obtained from equation (28) with both signs of the polarization. On
the other hand, the non-resonant mode appears only when the lower
sign is chosen.

We note that the following relation holds

σ

v2
A

= NCR

ni

p0

mic

vSc

v2
A

= 4π

c
J

rL,0

B0
, (32)

Figure 1. We plot the real and imaginary parts of the frequency as a function of wavenumber for the resonant and non-resonant modes. Wavenumbers are
in units of 1/rL,0, while frequencies are in units of v2

S/(crL,0). Top panel refers to the non-resonant branch, while lower panel is for the resonant branch. In
each panel, the solid (dashed) curve represents the real (imaginary) part of the frequency. The values of the parameters are as follows: vS = 109 cm s−1, B0 =
1 μG, ni = 1 cm−3, η = 0.1 and pmax = 105mpc.

where J = e NCR vS. This means that the system is strongly current
driven when σ

v2
A

� 1.

Therefore, the parameter σ/v2
A controls the growth rate of the

non-resonant mode: when σ/v2
A � 1, the non-resonant mode is

almost purely growing and its growth is very fast. When σ/v2
A

� 1, the non-resonant mode is subdominant and a resonant mode
is obtained, asymptotically identical to that corresponding to the
left-hand-polarized waves (upper sign in equation 28).

In the following, we often refer to the mode arising with the
lower sign of the polarization as the non-resonant mode, although
one should keep in mind that its peak growth rate reduces to that of
the standard resonant mode in the limit σ/v2

A � 1.
In Fig. 1, we plot the solution of the dispersion relation in a

case for which σ/v2
A � 1. The values of the parameters are vS =

109 cm s−1, B0 = 1 μ G, ni = 1 cm−3, η = 0.1 and pmax = 105 mpc.
The frequency (y-axis) has been normalized to the advection time
for a fluid element upstream of the shock through the characteristic
distance crL,0/vS, namely crL,0/v

2
S . It is worth stressing, however,

that this is a good estimate of the diffusion time-scale only in the
case of Bohm diffusion, when the diffusion coefficient is D(p) ≈ rL,0

c and the diffusion time-scale is D(p)/vS ≈ crL,0/v
2
S. The plots in

the upper (lower) panel in Fig. 1 are obtained by choosing the lower
(upper) sign of the polarization in the dispersion relation (equa-
tions 28 and 29).

First, let us comment on the consistency of our derivation of the
dispersion relation. It is easy to check, from Fig. 1, that these are
indeed low-frequency modes. More specifically, they satisfy both
assumptions underlying our calculation: ω̃ � kvS and ω̃ � �i.
Moreover, the non-resonant mode (lower sign of the polarization
in the dispersion relation) is characterized by an imaginary part
that is much larger than its oscillatory part for a very large range
of wavenumbers. In this same range of k, for our choice of the
parameters, its growth is much faster than for the resonant branch.

Further insight in the behaviour of the different wave modes can
be gained by investigating the limits of the dispersion relation for
the regimes krL,0 � 1 and krL,0 � 1. Based on these asymptotic
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1596 E. Amato and P. Blasi

trends, it is easy to explain (see Section 3.3) why the normalized
frequencies as the functions of the normalized wavenumber, krL,0,
do not depend on the choice of the minimum momentum.

3.1 Large wavenumber limit: krL,0 � 1

For krL,0 � 1, one easily obtains that I1(k) � −(1/3)/(krL,0)2 and
I2(k) � −(π/4)/krL,0. In equation (28), there are three terms that
determine the actual dependence of ω̃I on wavenumber k, namely

k2v2
A ∝ k2, α(1 + I1) ≈ σ

k

rL,0
∝ k, αI2 ≈ −π

4

σ

r2
L,0

∝ k0.

In the range krL,0 � 1, the third term is always subdominant.
Moreover, we can identify two critical values of the wavenumber k,
k1 and k2, such that for k � k1 � 1/rL,0, the first term dominates
upon the third, and for k � k2, the first term also dominates upon
the second term, which is linear in k. It is easy to find that

k1rL,0 = 1

2

√
πσ

v2
A

≈ 120
( η

0.1

)1/2
[

ln

(
pmax

105mpc

)]−1/2

×
( vs

109 cm s−1

)3/2
(

B0

1 μG

)−1 ( ni

cm−3

)1/2
. (33)

Similarly,

k2rL,0 = σ

v2
A

≈ 1.8 × 104
( η

0.1

) [
ln

(
pmax

105mpc

)]−1

×
( vs

109 cm s−1

)3
(

B0

1 μG

)−2 ( ni

cm−3

)
. (34)

For k � k2, equation (28) gives

ω̃2
I = 1

2
σ

k

rL,0

[
∓1 + 1 + π2

32

1

(krL,0)2

]
. (35)

When the upper sign is chosen in the above equation, we obtain ω̃I ∝
k−1/2, while when the lower sign of the polarization is considered,
one finds ω̃I ∝ k1/2, namely the growth rate of the waves increases
with k. This is the non-resonant branch found by Bell (2004). For
this mode, ω̃I increases with k up to k ∼ k2 and in the range of
wavenumbers between k1 and k2 is larger than for the resonant
waves. The maximum growth rate is obtained for k ∼ k2. In fact,
for k � k2 one finds

ω̃2
I ≈ π2

64

σ 2

v2
ar

2
L,0

1

(krL,0)2
, (36)

which implies ω̃I ∝ k−1 for both the resonant and the non-resonant
modes.

The non-resonant mode disappears when k1 becomes larger than
k2, which happens for

σ

v2
A

<
π

4
→ η < 4.3 × 10−6

×
[

ln

(
pmax

105mpc

)] ( vs

109 cm s−1

)−3
(

B0

1 μG

)2 ( ni

cm−3

)−1
.

(37)

For the reference values of the parameters, the non-resonant mode
grows faster than the resonant mode only for unreasonably low effi-
ciencies of particle acceleration, as one may conclude by comparing
equation (37) with η ∼ 0.1–0.2 required for the association of cos-
mic rays to SNRs.

On the other hand, for shock velocity vs = 108 cm s−1 and mag-
netic field B0 = 5 μG, one easily sees that the limit in equation (37)

becomes η < 0.1. This implies that the resonant and the non-
resonant modes compete during the history of a SNR, with the
resonant mode prevailing during the stages in which the shock has
slowed down appreciably. We will comment further on this point
below.

We summarize the results of this section by giving the following
useful approximations to the solution of the dispersion relation in
the large wavenumber limit. For 1/rL,0 � k1 � k � k2, we have

ω̃res
I ≈ ω̃non−res

R ≈ π

8

√
σ

r3
L,0

k−1/2 and ω̃non−res
I ≈ ω̃res

R

≈
√

σ

rL,0
k1/2.

(38)

For k2 � k, we have

ω̃res
I ≈ ω̃non−res

I ≈ π

8

σ

vAr2
L,0

k−1 and ω̃res
rmR ≈ ω̃non−res

R ≈ kvA.

(39)

3.2 Small wavenumber limit: krL,0 � 1

In the limit of perturbations with wavelength much larger than the
gyroradius of the lowest energy particles in the cosmic ray spectrum,
the results again depend on the ratio between v2

A and σ . As we
have already mentioned, for most regions of the parameters space
v2

A � σ , to which case we limit our analysis here, while we defer a
discussion of what happens for slow shocks to the next section.

For krL,0 � 1, one has I1(k) → − 1. Hence, in the limit v2
A � σ ,

we find for both signs of polarization:

ω̃I ≈ ω̃R ≈
√

πσ

8
k. (40)

3.3 Dependence on the minimum momentum

The number density of accelerated particles at the shock depends
on the minimum momentum p0, which in practice is hard to know
or to predict, since it is determined by details of the microphysics
of the shock formation. It is therefore useful to address the issue of
the dependence of our results from the assumed value of p0.

Let us start from the non-resonant mode. For krL,0 � 1, fol-
lowing equation (35), we have that ω̃2

I ∝ k/rL,0 for k � k2 and
ω̃2

I ∝ 1/(k2r4
L,0) for k � k2. It follows that apparently the depen-

dence on p0 is severe. However, if the wavenumbers k are normalized
to 1/rL,0 and ω̃I is normalized to the diffusion time-scale rL,0c/v2

S,
the resulting imaginary and real parts of the frequency are inde-
pendent of the choice of p0. In other words, the absolute value of
the growth rate is affected by the choice of p0, but the rate itself,
which is regulated by the time available for the instability to grow,
as measured by the time-scale rL,0c/v2

S, is independent of the choice
of p0. Similar considerations can easily be repeated for the resonant
mode and for the low-frequency regime of the non-resonant mode.

4 R E S O NA N T A N D N O N - R E S O NA N T M O D E S
I N SNRs

We now study the relative importance of the resonant and non-
resonant wave modes during the evolution of a SNR. We consider
a remnant originating in a SN explosion with energy ESN. Once
the remnant has entered the Sedov phase, the shock velocity as a
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function of time t can be written as

vS ≈ 4 × 108 cm s−1

(
ESN

1051 erg

)1/5 ( ni

1 cm−3

)−1/5
(

t

103 yr

)−3/5

.

(41)

As discussed in the previous section, the existence of the non-
resonant mode depends on the ratio σ/v2

A, which can be written as
a function of the age of the remnant as

4

π

σ

v2
A

= 1.5 × 103
( η

0.1

) (
ESN

1051 erg

)3/5 ( ni

cm−3

)2/5
(

B0

1 μG

)−2

×
[

ln

(
pmax

105mpc

)]−1 (
t

103 yr

)−9/5

. (42)

This implies that during the evolution of a ‘typical’ SNR, Bell’s
instability, which requires σ/v2

A ≥ 1, is likely to operate only at early
times after the beginning of the Sedov phase. The non-resonant
mode disappears when the remnant is a few 104 yr old if it is
expanding in a 1 μG magnetic field and 10 times faster (age about a
few 103 yr) if the background magnetic field is 10 times higher. At
later times, the streaming cosmic rays will still amplify the field but
only via the classical resonant mechanism. This is also clear from
Fig. 2 where we plot the growth rate of the non-resonant mode as
a function of age for the above-mentioned values of the magnetic
field: B0 = 1 μG in the upper panel and B0 = 10 μG in the lower
panel. From the plots in Fig. 2, where again the time-scale for wave
growth is normalized to the fastest of the time-scales involved in
the system dynamics, crL,0/v

2
S, one immediately sees that at least

the resonant mode of the streaming instability still grows efficiently
after 106 yr since the supernova explosion. The non-resonant mode,
on the other hand, soon becomes subdominant. The non-resonant
mode grows the fastest at k ∼ k2/2, so that from equation (38) we
can derive the maximum growth rate as

�max ≈ max(ω̃I) =
(

σ

rL,0

)1/2 (
k2

2

)1/2

= σ

21/2vArL,0
. (43)

Figure 2. We plot the growth rate of the non-resonant mode as a function of wavenumber. Wavenumbers are in units of 1/rL,0, while growth rates are in units
of the advection time v2

S/crL,0. The different curves in each panel refer to different ages of the remnant: solid is for 103 yr, dashed is for 5 × 103, dot-dashed
is for 104, dot-dot-dashed is for 5 × 104 and finally dotted is for 106. Two different values of the background magnetic field strength are assumed in the two
panels: B0 = 1 μG in the top panel and B0 = 10 μG in the bottom one. The shock velocity is computed according to the Sedov expansion of a remnant with
ESN = 1051 erg. The remaining parameters are as follows: ni = 1 cm−3, η = 0.1 and pmax = 105mpc.

It is clear that, remarkably, �max does not depend on the background
magnetic field B0. On the other hand, the wavenumber at which the
growth is maximum does depend on B0 (see equation 34). These
trends are clearly seen from Fig. 3, where we plot the dependence
of the maximum growth rate on time, �max, and of the wavenumber
for which this occurs for both the resonant and the non-resonant
modes. The plot refers to the ‘typical’ SNR parameters considered
above and the two mentioned values of the background magnetic
field strength. In both this figure and Fig. 2, a 10 per cent particle
acceleration efficiency was assumed, and kept constant during the
evolution of the remnant. This latter assumption is definitely not
very realistic, as can be demonstrated by using the non-linear theory
of particle acceleration.

In Fig. 3, the time at which the fastest growing mode switches
from non-resonant to resonant is identified by the intersection be-
tween the dashed line and the solid (B0 = 10 μG) or the dot-dashed
(B0 = 1 μG) one depending on the magnetic field strength. The
dominant wave mode progressively moves to larger wavelengths.
The implications of this peculiar trend are expected to be profound
on the determination of the diffusion coefficient: we recall that the
standard Bohm diffusion is the limit obtained for resonant interac-
tions of particles and waves, when δB(k) = B0 for any value of k.
For non-resonant modes, the diffusion properties need to be recal-
culated from first principles. On one hand, since the most unstable
modes have k � 1/rL,0, most particles do not resonate with these
modes and the typical deflection suffered by a single particle within
a spatial scale ∼1/k is very small. On the other hand, the number
of scattering events is very large, therefore a substantial reduction
of the diffusion coefficient can still be expected (see Reville et al.
2008; Zirakashvili & Ptuskin 2008).

5 C O N C L U S I O N S

We investigated the excitation of streaming instability induced by
accelerated particles in the vicinity of a non-relativistic shock wave,
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1598 E. Amato and P. Blasi

Figure 3. In the top panel, we plot the maximum growth rate of the resonant and non-resonant branches as a function of the age of the SNR. The growth
rate �max = max(ω̃I) is in units of yr−1, while along the x-coordinate, time is expressed in yr. The notation for the different curves is as follows. The dashed
line and the symbols are for the non-resonant mode in a 10 μG and 1 μG magnetic field, respectively; the solid and dot-dashed lines are for the growth of
the resonant mode, again for B0 = 10 μG and B0 = 1 μG, respectively. In the bottom panel, we plot the wavenumber corresponding to the fastest growing
wave mode for the same situations considered above. Wavenumbers are in units of rL,0 and the notation for the different line-types is as follows. The dashed
and dotted lines are for the non-resonant mode in a 10 and 1 μG magnetic field, respectively; the solid line and symbols are for the resonant mode, again for
B0 = 10 and B0 = 1 μG, respectively. The shock velocity changes with time according to the Sedov evolution of a remnant with ESN = 1051 erg. The remaining
parameters are as follows: ni = 1 cm−3, η = 0.1, pmax = 105mpc and pinj = 10−2mic.

typical of supernova shells expanding in the interstellar medium.
The calculation is based on the kinetic theory, hence we do not re-
quire the MHD approximation to hold for the background plasma.
We find that the dispersion relation of the waves leads to the ap-
pearance of the two modes, a resonant and a non-resonant one.
The former is the well-known unstable mode, discussed by Zweibel
(1979) and Achterberg (1983), based on a resonant interaction be-
tween waves and particles. The latter is similar to that discussed by
Bell (2004), who however based his analysis on a set of assumptions
that called for further investigation: the calculation of Bell (2004) is
based on the assumption that the background plasma can be treated
in the MHD regime, and makes specific prescriptions on the return
current which compensates the cosmic ray current upstream of the
shock. Moreover, the whole calculation is carried out in the frame
of the upstream plasma, where, in principle, there is no stationary
solution of the problem.

Our kinetic calculations are carried out for two models of the
compensating current: in the first model, the return current is estab-
lished through a population of cold electrons, at rest in the shock
frame, which exactly compensate the positive charge of cosmic ray
protons. In the second model, the return current is due to a slight drift
between the ions and electrons in the background plasma upstream
of the shock. We have demonstrated that the dispersion relation of
the waves is the same in the two cases, of the order of O(NCR/ni)2.

The resonant and the non-resonant mode are found at the same
time with growth rates, which in the general case are different.
The non-resonant mode is almost purely growing and is very ap-
parent when particle acceleration is efficient. The parameter that
regulates the appearance of the non-resonant mode is σ/v2

A, where
σ = 3ηv3

S/(cR). When σ/v2
A � 1, the waves excited in a non-

resonant way grow faster than the resonant modes and may lead to
a substantial magnetic field amplification.

The strong dependence of σ on the shock velocity implies that the
non-resonant mode is likely to be the dominant channel of magnetic
field amplification in SNRs in the free expansion phase and at the
early stages of the Sedov–Taylor phase of adiabatic expansion. At
later times, the non-resonant mode collapses on the resonant mode,
which keeps providing appreciable growth for longer times, at least
if damping mechanisms are neglected. The growth of the fastest
non-resonant mode is independent of the strength of the unperturbed
initial magnetic field B0.

The non-resonant mode, when present, grows the fastest at
wavenumber k2 given by equation (34), which in the cases of interest
is much larger than 1/rL,0, where rL,0 is the gyroradius of the parti-
cles with minimum momentum in the cosmic ray spectrum. These
modes are therefore short wavelength waves, which is the main
reason why the assumption of stationarity in the upstream frame, as
required by Bell (2004), was acceptable, despite the impossibility
of reaching the actual stationarity in that frame.

The numerical results in this paper were specialized to the case of
a power-law spectrum p−4 of accelerated particles, typical of Fermi
acceleration at strong shocks. However, one should keep in mind that
the levels of efficiency required for the non-resonant mode to appear
are such that the dynamical reaction of the accelerated particles on
the shock cannot be neglected (see Malkov & O’C Drury 2001 for
a review). This back reaction leads to several important effects: on
one hand, the spectra of accelerated particles become concave and
concentrate the bulk of the energy in the form of accelerated particles
at the maximum momentum. On the other hand, the efficiently
amplified magnetic field also exerts a strong dynamical reaction on
the system, provided the magnetic pressure exceeds the gas pressure
in the shock region (Caprioli et al. 2008a,b). This second effect
results in an enhanced acceleration efficiency (due to large B-fields)
but weaker shock modification (spectra closer to power laws) due

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 392, 1591–1600

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/392/4/1591/965448 by guest on 21 August 2022



Streaming instability at supernova shocks 1599

to the reduced compressibility of the plasma in the presence of the
amplified magnetic field. These non-linear effects cannot be taken
into account in the type of calculations presented here, although
we do not expect the qualitative character of our conclusions to be
affected profoundly by them.

Nevertheless, it is useful to go through the possible consequences
of the non-linear effects in a somewhat deeper detail: one can expect
two types of complications, one of principle and the other in the nu-
merical values of the growth rates. The latter simply derives from the
approximations intrinsic in the assumptions we made: for instance,
the adoption of a power-law spectrum of accelerated particles with
slope 4, which clearly fails when a precursor is formed.

There are then complications coming from deeper unknown
pieces of Physics or from a not-totally satisfactory mathematical
approach. For instance, the standard perturbative approach adopted
here is based on the assumption of a spatially uniform background.
The presence of a precursor invalidates this assumption, although
probably not in a dramatic way.

Since the non-resonant mode appears for large values of k, the
relevant quantities can be assumed to be spatially constant in the
precursor on scales ∼1/k, so that in this respect our calculations
are still expected to hold, and probably to a better accuracy for the
non-resonant modes (k � 1/rL,0) than for the resonant ones (k ∼
1/rL,0). Moreover, as stressed above, the dynamical reaction of the
magnetic field leads to a weaker modification of the shock, and
therefore to spectra with less prominent concavity (closer to p−4).
Also in this respect, the calculations presented here should serve
as a good description of all relevant physical effects related to the
growth of the cosmic-ray-induced instabilities.

More importantly, the acceleration process is directly affected
by the physics of particles’ diffusion in the shock region, which in
turn is determined by the excited waves. This intrinsic non-linearity
cannot be taken into account in perturbative approaches like ours
or like Bell’s, and one should always be aware of this limitation.
Even more, while the diffusion coefficient for resonant modes can
at least be derived in the quasi-linear theory, at present there is no
derivation of the diffusion coefficient associated with the scattering
on non-resonant modes (see Zirakashvili & Ptuskin 2008 for a first
attempt at discussing this effect).

Another issue that deserves further investigation is that of de-
termining the level of field amplification at which the instability
saturates. This cannot be worked out within a linear theory cal-
culation and only numerical simulations can address this issue.
Recent efforts in this direction have been made by Bell (2004) and
Zirakashvili et al. (2008) through MHD simulations and by Niemiec
et al. (2008) by using PIC simulations. While the first two papers
find a saturation level δB2/(4π) ∼ (vs/c)Pc, in the third paper a much
lower level of the field amplification is found. The authors conclude
that the existence of a large magnetic field amplification through
the excitation of non-resonant modes is yet to be established.

Although we agree with this conclusion, we also think that the
setup of the PIC simulation by Niemiec et al. (2008) is hardly
applicable to investigate the excitation of the Bell instability at
shocks, or at least several aspects of it should be studied more
carefully. First, they carried out the calculations in a regime in
which the condition of strong magnetization, ω � �0, was violated.
Secondly, in order to carry out the calculations, Niemiec et al. (2008)
are forced to assume unrealistically large values for the ratio NCR/ni

(of the order of 0.3 for their most realistic runs). The return current
as assumed by Niemiec et al. (2008) corresponds to our second
model, which however leads to the same dispersion relation as Bell
(2004) only at the order of O(NCR/ni)2, which is not necessarily

the case here. Moreover, the spectrum of accelerated particles is
assumed to be a delta-function at a Lorentz factor of 2, instead of a
power-law (or more generally a broad) spectrum. It is not obvious
that for non-resonant modes this assumption is reasonable. But the
most serious limitation of this PIC simulation is in the fact that the
authors do not provide a continuous replenishment of the cosmic
ray current, which is instead depleted because of the coupling with
waves. In the authors’ view, this seems to be a positive aspect of their
calculations, missed by other approaches, but in actuality the cosmic
ray current is indeed expected to be stationary upstream, and we
think that the PIC simulation would also show this if particles were
allowed to be accelerated in the simulation box instead of being only
advected and excite waves. Clearly, if this were done, the spectrum
of accelerated particles would not keep its delta-function shape, but
should rather turn into a power-law-like spectrum. The latter issue
adds to the absence of a replenishment of the current, which seems
to us to be the main shortcoming of these simulations. Overall,
it appears that the setup adopted by Niemiec et al. (2008) would
apply more easily to the propagation of cosmic rays rather than to
the particle acceleration in the vicinity of a shock front.

The issue of efficient magnetic field amplification, possibly in-
duced by cosmic rays, has become a subject of very active debate
after the recent evidence of large magnetic fields in several shell-
type SNRs. The implications of such fields for particle acceleration
to the knee region, as well as for the explanation of the multifre-
quency observations of SNRs, are being investigated. Probably, the
main source of uncertainty in addressing these issues is the role
of damping of the excited waves. For resonant modes, ion-neutral
damping and non-linear Landau damping have been studied in some
detail: their role depends on the temperature of the upstream plasma
and on the shock velocity. For non-resonant modes, being at high
k, other damping channels could be important (Everett et al., in
preparation). Whether SNRs can be the source of Galactic cosmic
rays depends in a complex way on the interplay between magnetic
field amplification, damping, particle scattering and acceleration,
together with the evolution of the remnant itself.
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