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A KINETIC EQUATION FOR GRANULAR MEDIA
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Abstract. In this short note we correct a conceptual error in the heuristic derivation of a kinetic
equation used for the description of a one-dimensional granular medium in the so called quasi-elastic
limit, presented by the same authors in reference [1]. The equation we derived is however correct so
that, the rigorous analysis on this equation, which constituted the main purpose of that paper, remains
unchanged.
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1. The kinetic equation

We refer to [1] and use the same notation.
Let us start from the basic master (Liouville) equation describing the evolution of a probability density µN

associated to the dynamics of N inelastic point particles in the line. In equation (1.4) of [1] appears the factor
δ(xi − xj) because of the strictly local interaction. In order to avoid mistakes in the correct interpretation of
this δ, we mollify the interaction replacing equation (1.3) by its regularized version:

ẋi = vi, v̇i = α

N∑
j=1

δη(xi − xj)(vj − vi)|vj − vi|, (1)

where δη is an approximation of δ as the parameter η → 0. A simple calculation on the two particle scattering
problem shows that α = α(ε) = − 1

2 log(1 − ε) so that α ≈ ε only in the limit ε → 0. As a consequence of Eq.
(1) we have the following master equation for the regularized problem:

(∂t +
N∑
i=1

vi∂xi)µ
N (x1, v1, . . . , xN , vN ) = −α

∑
i=/j

δη(xi − xj)∂vi [φ(vj − vi)µ(x1, v1, . . . , xN , vN )] (2)

Keywords and phrases. Granular media, inelastic collisions, kinetic equations.

1 Università degli Studi di Roma “La Sapienza”, Dipartimento di Matematica, Instituo “Guido Castelnuovo”, Piazzale Aldo
Moro 2, 00185 Roma, Italy. e-mail: pulvirenti@axcasp.caspur.it

c© EDP Sciences, SMAI 1999



440 D. BENEDETTO ET AL.

and the following hierarchy for the the j-particle distribution functions:

(∂t +

j∑
i=1

vi∂xi)f
N
j (x1, v1, . . . , xj , vj) = −α

j∑
i,k=1;i=/k

δη(xi − xk)φ(vk − vi)∂vif
N
j (x1, v1, . . . , xj , vj)

− α(N − j)
j∑
i=1

∂vi

∫
dvj+1

∫
dxj+1δη(xi − xj+1)φ(vj+1 − vi)f

N
j+1(x1, v1, . . . , xj+1, vj+1). (3)

Since the regularized dynamics converges to the true dynamics pathwise, we should perform the limit η → 0
for fixed N and ε. Here arises our error in [1] which is twofold. From one side α =/ ε. From the other the
limit η → 0 is not innocent and it does not give equation (1.6) as asserted in [1]: we did confusion between the
notion of δ as a distribution in time and as a limit of regularized versions δη.

We note also that, interchanging the limit η → 0 with the quasi-elastic limit N → ∞, ε → 0, Nε → λ, we
would obtain equation (1.7) of [1] which is actually correct.

In order to derive the evolution equation for the j−particle distribution, instead of studying the limit η → 0
(which is possible but involved) it is more natural to look directly at the true dynamics, considering the
interaction as a boundary term, in the same spirit of the derivation of the BBKGY hierarchy for hard spheres
(see e.g. Ref. [2]). We shortly outline the argument.

Let µN0 = µN0 (x1, v1, . . . , xN , vN ) be a probability density for the system at time 0. We assume µN0 continuous
and symmetric in the exchange of particles. The time evolved probability density is defined as:

µN (x1, v1, . . . , xN , vN , t) = µN0 (T−t(x1, v1, . . . , xN , vN ))J−nε , (4)

where T t is the flow in the phase space generated by the dynamics, n is the number of collisions delivered by
the phase point (x1, v1, . . . , xN , vN ) during the backward dynamics up to the time t and Jε = (1− 2ε)2 denotes
the Jacobian of the transformation induced in the phase space by a single collision.

Note that T t is ambiguously defined on the manifold {xi = xj | for some i 6= j}. Indeed in this case we do
not know whether the velocities vi and vj have to be understood as incoming or outgoing. However such a
manifold has zero measure so that this ambiguity is irrelevant in the definition of µN (·, t).

Note also that if t is a collision instant involving the i and j particle, for the phase point (X̄, V̄ ) =
(x̄1, v̄1, . . . , x̄N , v̄N ) in the forward dynamics, then

lim
τ→t+

µN (T τ (X̄, V̄ ), τ) = J−1
ε lim

τ→t−
µN (T τ(X̄, V̄ ), τ),

provided that µN0 is continuous. This expression can be rewritten in terms of

(x1, v1, . . . , xi, vi, . . . , xi, vj , . . . , xN , vN ) = lim
τ→t−

T τ(X̄, V̄ )

and

(x1, v1, . . . , xi, v
′
i, . . . , xi, v

′
j , . . . , xN , vN ) = lim

τ→t+
T τ (X̄, V̄ ),

(where v′i, v
′
j are the outgoing velocities and vi,vj are the incoming ones) as

lim
τ→t+

µN (x1, v1, . . . , xi, v
′
i, . . . , xi, v

′
j , . . . , xN , vN , τ) = J−1

ε lim
τ→t−

µN (x1, v1, . . . , xi, vi, . . . , xi, vj , . . . , xN , vN , τ).

Now we want to derive an equation for the j–particle distribution functions.
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We first note that if (x1, v1, . . . , xN , vN ) is not in the collision manifold, then:

∂tµ
N (x1, v1, . . . , xN , vN , t) +

N∑
k=1

vk∂xkµ
N (x1, v1, . . . , xN , vN , t) = 0. (5)

Our next step is to integrate over the last N − j variables and this generates boundary terms which give rise
to the collision operator. To compute these terms explicitly we consider the simple case in which N = 2 and
j = 1. An easy calculation shows that:

∂tf1(x1, v1, t) + v1∂x1f1(x1, v1, t) =

∫
dv2(v2 − v1)

{
µ2(x1, v1, x

−
1 , v2, t)− µ

2(x1, v1, x
+
1 , v2, t)

}
, (6)

where µ2(x1, v1, x
±
1 , v2, t) denotes the right and left limit for x → x1 respectively. We note that for the con-

figuration point (x1 − δ, x1) for a positive small δ, the velocities v2, v1 are incoming or outgoing if v1 > v2 or
v1 < v2 respectively. Taking into account this fact we readily arrive to the following equation:

∂tf1(x1, v1, t) + v1∂x1f1(x1, v1, t) =

∫
dv2|v2 − v1|

{
J−1
ε µ2(x1, v

∗
1 , x1, v

∗
2 , t)− µ

2(x1, v1, x1, v2, t)
}
, (7)

where v∗1 and v∗2 denote the precollisional pair

v∗1 = v1 +
ε

1− 2ε
(v1 − v2) v∗2 = v2 −

ε

1− 2ε
(v1 − v2).

Note that, as in the case of the Boltzmann equation, we represent µ2 in terms of the precollisional variables, so
that the time t appearing in the right hand side of equation (7) is the left limit.

For the general case we easily deduce the following hierarchy of equations:

(∂t + Lj)f
N
j (x1, v1, . . . , xj , vj) = (N − j)

j∑
k=1

∫
dvj+1|vk − vj+1| · (8)

{
J−1
ε fNj+1(x1, v1, . . . xk, v

∗
k, . . . , xk, v

∗
j+1)− fNj+1(x1, v1, . . . xk, vk, . . . , xk, vj+1)

}
,

for i = 1, n. Here Lj denotes the generator of the j-particle dynamics. equations (8) are the analogue of the
BBGKY hierarchy for Hamiltonian systems.

The integral in the right end side of (8) is O(ε), so that we are lead to consider the scaling limit ε → 0,
N →∞ in such a way that Nε→ λ, where λ is a positive parameter. Using the Taylor formula and neglecting
terms of o(ε), integrating by parts and performing the limit we arrive to the hierarchy of equations (1.7) of
reference [1].

Finally, propagation of chaos implies, as usual, the kinetic equation (1.8) which is the object of investigation
in [1].
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