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Abstract

We study the stability of the equilibrium states and the rate of convergence of solutions
towards them for the continuous kinetic version of the Cucker-Smale flocking in presence of
diffusion whose strength depends on the density. This kinetic equation describes the collective
behavior of an ensemble of organisms, animals or devices which are forced to adapt their
velocities according to a certain rule implying a final configuration in which the ensemble flies
at the mean velocity of the initial configuration. Our analysis takes advantage both from the
fact that the global equilibrium is a Maxwellian distribution function, and, on the contrary
to what happens in the Cucker-Smale model [4], the interaction potential is an integrable
function. Precise conditions which guarantee polynomial rates of convergence towards the
global equilibrium are found.
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1 Introduction

1.1 Main results

Description of the collective and interactive motion of multi-agents such as school of fish, flocking of birds
or swarm of bacteria became recently a major research topic in population and behavioral biology and
ecology [23, 4, 19, 20, 5, 6]. Among them, the phenomenon of flocking can be regarded as a universal
behavior of multi-agents systems, where consensus is reached at large times [4]. Both the numerical and
theoretical studies of some related mathematical models which describe various self-organized patterns
in the collective motion [3, 26, 16], have shown recently an increasing interest.

In this paper we are concerned with a kinetic flocking model in presence of diffusion. Denoting by f =
f(t, x, ξ) ≥ 0 the number density of particles (e.g. flying birds) which have position x = (x1, x2, · · · , xn) ∈
Rn and velocity ξ = (ξ1, ξ2, · · · , ξn) ∈ Rn at time t ≥ 0, n ≥ 1, the evolution of the density is described
by the Fokker-Planck type equation

∂tf + ξ · ∇xf + U ∗ ρξf · ∇ξf = U ∗ ρf∇ξ · (∇ξf + ξf), (1.1)

f(0, x, ξ) = f0(x, ξ), (1.2)

where

ρf (t, x) =

∫

Rn

f(t, x, ξ)dξ, ρξf (t, x) =

∫

Rn

ξf(t, x, ξ)dξ.

Both the interactive potential U = U(x) and the initial data f0 = f0(x, ξ) are given. The operator “ ∗ ”
denotes the convolution with respect to spatial variable. Throughout this paper, it is supposed that U is
continuous in x with

U(x) = U(|x|) ≥ 0,

∫

Rn

U(x)dx = 1. (1.3)

Let us briefly present the origin of the model equation (1.1). When there is no diffusion term in (1.1),
the equation

∂tf + ξ · ∇xf + U ∗ ρξf · ∇ξf = U ∗ ρf∇ξ · (ξf) (1.4)

has been derived and analyzed by Ha-Tadmor [16] as the mean-field limit of the discrete and finite
dimensional flocking model considered by Cucker-Smale [4]. Recently, (1.4) was also obtained as the
grazing collision limit of a Boltzmann equation of Povzner type in [2]. Within this kinetic picture, the
velocities of birds are modified through binary interactions, which dissipate energy according to their
mutual distance. Consequently, both equations (1.4) and (1.1) describe a system of particles (e.g. birds)
which influence each other according to the potential function of their mutual spatial distance, in such a
way that the difference between the respective velocities is diminishing. This can be seen also looking at
the characteristic equations, which in the Ha-Tadmor model (1.4) read






dX

dt
= Ξ,

dΞ

dt
=

∫∫

Rn×Rn

U(|x − y|)(ξ − Ξ)f(t, y, ξ)dydξ.

Equation (1.1) differs from the Ha-Tadmor model (1.4) in two essential features. In (1.1) particles are
subject to random fluctuations whose strength depends on the density, which implies that randomness
increases as soon as particles are closer to each other. Resorting again to the collisional kinetic picture,
in this new model the velocities of birds are modified through binary interactions, in which, in addition
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to dissipation of energy according to their mutual distance, also random fluctuations of bird velocities are
introduced to mimic a more realistic behavior. The additional presence of random terms, which is reason-
able from a physical point of view, is responsible of the existence of a global equilibrium configuration of
Maxwellian type. This type of interactions induces a substantial difference in the asymptotic behavior of
the solution to (1.1), with respect to model (1.4), where all particles tend exponentially fast to move with
their global mean velocity whenever the mutual interaction was strong enough at far distance, indepen-
dently of the initial conditions. This situation is called unconditional flocking, and the global equilibrium
(due to the intrinsic dissipation) is represented by a Dirac delta function concentrated at the mean ve-
locity. A second main difference between model (1.4) and the present one is that, on the contrary to
what happens in the former, here the interaction potential U(·) is integrable. This corresponds to a weak
interaction between birds, or, in other words, to a rapid decay of the interaction in terms of the mutual
distance. In consequence of this choice, the relaxation towards equilibrium is not universal, but depends
on the size of the perturbation. We remark that also this condition can be reasonably justified from a
physical point of view, since it reflects the fact that birds mainly adapt their velocity to birds which are
close enough to them. We remark however that the unconditional flocking phenomenon observed in the
original Cucker and Smale discrete model [4] heavily depends on the fact that the interaction potential is
not integrable. Otherwise, results can be recovered only for well-prepared initial configurations of birds.

By direct inspection, one can easily check that the global Maxwellian function

M = M(ξ) =
1

(2π)n/2
exp

(
−|ξ|2/2

)
, (1.5)

is a steady state of (1.1). Notice that M has zero bulk velocity and unit density and temperature. The
main goal of this paper is to study the stability of solutions near M and the rate of convergence of these
solutions towards it for the Cauchy problem (1.1)-(1.2). For this purpose, introduce the perturbation
u = u(t, x, ξ) by setting

f = M +
√

Mu.

Then, u satisfies

∂tu + ξ · ∇xu + U ∗ ρξ
√

Mu · ∇ξu − 1

2
U ∗ ρξ

√
Mu · ξu − U ∗ ρξ

√
Mu · ξ

√
M

=
1√
M

∫
Udx∇ξ ·

(√
M∇ξu +

1

2
ξ
√

Mu

)

+
1√
M

U ∗ ρ√
Mu∇ξ ·

(√
M∇ξu +

1

2
ξ
√

Mu

)
.

It is straightforward to verify that

1√
M

∇ξ · (
√

M∇ξu +
1

2
ξ
√

Mu) = ∆ξu +
1

4
(2n − |ξ|2)u.

Thus, the Cauchy problem (1.1)-(1.2) is reformulated as

∂tu + ξ · ∇xu + U ∗ ρξ
√

Mu · ∇ξu = Lu + Γ(u, u), (1.6)

u(0, x, ξ) = u0(x, ξ), (1.7)

where u0 takes the form of
u0 = M−1/2(f0 − M),

and the linear part Lu and the nonlinear part Γ(u, u) are respectively given by

Lu = ∆ξu +
1

4
(2n − |ξ|2)u + U ∗ ρξ

√
Mu · ξ

√
M, (1.8)

Γ(u, u) = U ∗ ρ√
Mu[∆ξu +

1

4
(2n − |ξ|2)u] +

1

2
U ∗ ρξ

√
Mu · ξu. (1.9)

We introduce some notations. For any integer m ≥ 0, we use Hm
x,ξ, Hm

x , Hm
ξ to denote the usual

Hilbert spaces Hm(Rn
x ×Rn

ξ ), Hm(Rn
x), Hm(Rn

ξ ), respectively, where L2
x,ξ, L2

x, L2
ξ are also used for m = 0.
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For a Banach space X , ‖·‖X denotes the corresponding norm, while ‖·‖ always denotes the norm ‖·‖L2
x,ξ

for simplicity when X = L2
x,ξ. We use 〈·, ·〉 to denote the inner product over the Hilbert space L2

ξ, i.e.

〈g, h〉 =

∫

Rn

g(ξ)h(ξ)dξ, g, h ∈ L2
ξ.

For q ≥ 1, we also define

Zq = L2
ξ(L

q
x) = L2(Rn

ξ ; Lq(Rn
x)), ‖g‖Zq =

(∫

Rn

(∫

Rn

|g(x, ξ)|qdx

)2/q

dξ

)1/2

.

Let ν(ξ) = 1 + |ξ|2. Denote | · |ν and ‖ · ‖ν by

|g|2ν =

∫

Rn

|∇ξg(ξ)|2 + ν(ξ)|g|2dξ, g = g(ξ), (1.10)

‖g‖2
ν =

∫∫

Rn×Rn

|∇ξg(x, ξ)|2 + ν(ξ)|g(x, ξ)|2dξdxdξ, g = g(x, ξ). (1.11)

and ‖ · ‖U by

‖φ‖2
U =

∫∫

Rn×Rn

U(|x − y|)|φ(x, y)|2dxdy, φ = φ(x, y). (1.12)

Define the linear operator T∆ by T∆b(x, y) = b(x) − b(y) for b = b(x). For the multiple indices α =
(α1, α2, · · · , αn) and β = (β1, β2, · · · , βn), we denote

∂α
x ∂β

ξ = ∂α1
x1

∂α2
x2

· · · ∂αn
xn

∂β1

ξ1
∂β2

ξ2
· · · ∂βn

ξn
.

As usual, the length of α is |α| = α1 +α2 + · · ·+αn, and α′ ≤ α means that α′
i ≤ αi for 1 ≤ i ≤ n, while

α′ < α means α′ ≤ α and |α′| < |α|. For simplicity, we also use ∂i to denote ∂xi for each i = 1, 2, · · · , n.
In addition, C denotes a generic positive (generally large) constant and λ a generic positive (generally
small) constant, where both of them may take different values at different places. When necessary, we
write C0, C1, · · · , λ0, λ1, · · · , to distinguish them.

Now, the main results of this paper are stated as follows.

Theorem 1.1. Let n ≥ 3 and N ≥ 2[n/2] + 2, and let (1.3) hold. Suppose that f0 ≡ M +
√

Mu0 ≥ 0,
and ‖u0‖HN

x,ξ
is small enough. Then, the Cauchy problem (1.6)-(1.7) admits a unique global solution

u(t, x, ξ), satisfying

u ∈ C([0,∞); HN (Rn × R
n)), f ≡ M +

√
Mu ≥ 0, (1.13)

and

‖u(t)‖2
HN

x,ξ
+ λ

∑

|α|+|β|≤N

∫ t

0

‖∂α
x ∂β

ξ {I− P}u(s)‖2
νds + λ

∑

|α|≤N

∫ t

0

‖T∆∂α
x bu(s)‖2

Uds

+λ

∫ t

0

‖∇x(au, bu)(s)‖2
HN−1

x
ds ≤ C‖u0‖2

HN
x,ξ

, (1.14)

for any t ≥ 0, where P, I − P, au, bu are defined in (2.10). Moreover, if ‖u0‖Z1 is bounded and
‖u0‖HN

x,ξ
+ ‖ξ∇xu0‖ is small enough, then the time-decay estimate

‖u(t)‖HN
x,ξ

≤ C
(
‖u0‖HN

x,ξ
+ ‖u0‖Z1

)
(1 + t)−

n
4 , (1.15)

is valid for any t ≥ 0.

It has to be outlined that (1.1) is a nonlinear Fokker-Planck equation where both the nonlocal drift
term and the diffusion coefficient depend on the macroscopic momentum and density, respectively. This
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kind of nonlinear character leads to the fact that (1.1) does not have the same properties of the classical
linear Fokker-Planck equation

∂tf + ξ · ∇xf + ∇xV · ∇ξf = ∇ξ · (∇ξf + ξf), (1.16)

where V = V (x) is a confining force potential. In fact, whether or not V is present, (1.16) possesses only
one total conservation law (the conservation of mass), while (1.1) conserves not only the total mass but
also the total momentum. This difference would imply that the kinetic dissipation of (1.1) should be
much weaker than that of (1.16). In addition, (1.16) has a natural Lyapunov functional

EFP (f) =

∫∫

Rn×Rn

[
V (x) +

|ξ|2
2

+ log f

]
fdxdξ,

nonincreasing in time

d

dt
EFP (f) = −DFP (f) ≡ −

∫∫

Rn×Rn

1

f
|∇ξf + ξf |2dxdξ ≤ 0.

In the current case, denoting

E(f) =

∫∫

Rn×Rn

[ |ξ|2
2

+ log f

]
fdxdξ, (1.17)

D(f) =

∫∫

Rn×Rn

U ∗ ρf

f
|∇ξf + ξf |2dxdξ −

∫

Rn

U ∗ ρξf · ρξfdx, (1.18)

solutions to (1.1) satisfy a similar equation

d

dt
E(f) = −D(f), (1.19)

but it is presently unknown if D(f) is non-negative and consequently E(f) is decreasing in time. The
eventual existence of a Lyapunov functional for (1.1) is an interesting problem to study. In the case
without diffusion Ha-Liu [15] explicitly constructed such Lyapunov functional for (1.4), and used its
decay to give a simple proof of the exponential convergence of solutions to the flocking state. Since
the nonlinear equation (1.1) lacks such natural a priori bound (only total conservations of mass and
momentum hold), we need to turn to the perturbation theory of equilibrium (cf. Theorem 1.1 of this
paper) to recover convergence to equilibrium.

We remark that it is straightforward to check that the functional D(·) denoted by (1.18) satisfies

D(M) = 0,
d

dǫ
D(M + ǫφ)|ǫ=0 = 0,

d2

dǫ2
D(M + ǫφ)|ǫ=0 = 2L(

φ√
M

).

Consequently M is a critical point of the nonlinear functional D(·). This makes it possible to apply the
perturbation method to obtain the stability of equilibrium state M if the linearized operator L satisfies
certain coercivity inequalities. As stated in Theorem 2.1, it turns out that L is degenerately dissipative
over the full phase space Rn

x ×Rn
ξ in the sense of (2.9) below. Then, the classical energy method together

with suitable smallness assumptions produce some uniform a priori estimates in high-order Sobolev spaces,
which together with the local existence and the continuum argument yield the global existence.

The rate of convergence of solutions to the steady state M is the other issue under consideration in
this paper. For the classical linear Fokker-Planck equation (1.16), thank to the existence of Lyapunov
functionals, the hypocoercivity with almost exponential rate or exponential rate in time has been ex-
tensively studied by Desvillettes-Villani [7], Mouhot-Neumann [18], Dolbeault-Mouhot-Schmeiser [8] and
Villani [25] in a general framework. In the case without diffusion, Ha-Tadmor [16] showed that the energy
of solution to (1.4) tends exponentially fast in time to zero for certain strong potential function U . This
result has been recently improved in [2], where it has been shown that both the discrete model by Cucker
and Smale [4] and its kinetic version (1.4) produce a flocking behavior under the same conditions on the
interaction potential.
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In the case considered in this paper, as shown in Theorem 1.1, solutions to the Cauchy problem
(1.1)-(1.2) which are near equilibrium M, converge to it with an explicit algebraic rate

∥∥∥∥
f(t) − M√

M

∥∥∥∥ ≤ Cf0(1 + t)−
n
4 ,

for any t ≥ 0, where Cf0 is a constant depending on the size of initial data. As pointed out in [25], the
hypocoercivity, which produces the trend towards the equilibrium, essentially stems from the interplay
between the conservative free transport operator and the kinetic relaxation. Here, only the algebraic rate
is found because the particles move in the whole space Rn and also the number of the total conservation
laws exceed two.

Another issue of this paper is concerned with the direct velocity regularized equation

∂tf + ξ · ∇xf + U ∗ ρξf · ∇ξf = U ∗ ρf∇ξ · (ξf) + κ∆ξf, (1.20)

for κ > 0. Notice that in the above equation, the strength of noise is spatially homogeneous, and the
steady state is

Mκ =
1

(2πκ)n/2
e−

|ξ|2

2κ .

However, for fixed κ > 0, it is unclear whether or not Mκ is uniformly stable in time under a certain
topology, again due to the lack of a Lyapunov functional. Moreover, the stability of Mκ with κ > 0
is unknown even for small smooth perturbation of the type considered in Theorem 1.1, because the
linearized operator of (1.20) has no coercivity properties similar to that of L defined in (1.8).

Therefore, as far as equation (1.1) is concerned, it is fundamental for the stability of equilibrium that
the strength of noise would depend non-locally on the density. As mentioned before, this dependence
implies that randomness is weaker at position x around which the density is lower. A similar phenomenon
has been observed in a recent paper [26], where it is argued that coherence in collective swarm motion
is facilitated in presence of randomness, which has to be weaker at some position around which mean
velocity of particles is larger.

Last, we discuss a variant of the model (1.1). When the potential function U reduces to Dirac delta
function concentrated on the origin, the nonlocal nonlinear Fokker-Planck equation (1.1) takes the form

∂tf + ξ · ∇xf = ρf∇ξ · [∇ξf + (ξ − ρξf

ρf
)f ]. (1.21)

We refer to [24] for an exhaustive presentation and discussion on the above local nonlinear Fokker-Planck
equation. We emphasize that various results including Theorem 1.1 and Theorem 3.1 respectively in
the nonlinear and linear cases also hold for equation (1.21). Moreover, when U reduces to Dirac delta
function concentrated on the origin, (1.19) remains true for (1.21) with E(f) in (1.17) unchanged and
D(f) in (1.18) reducing to D0(f) given by

D0(f) =

∫∫

Rn×Rn

ρf

f
|∇ξf + ξf |2dxdξ −

∫

Rn

|ρξf |2dx

=

∫∫

Rn×Rn

ρf

f
|∇ξf + (ξ − ρξf

ρf
)f |2dxdξ ≥ 0.

Therefore, (1.21) possesses a natural Lyapunov functional, and the non-perturbation theory would be
also possible for the study of well-posedness and large-time behavior of (1.21). This will be object of a
separate forthcoming paper.

Finally, we should point out that the present study presents analogies with a recent paper by Guo
[14], where the global well-posedness on the torus for the classical Landau equation in absence of external
forcing

∂tf + ξ · ∇xf = ∇ξ ·
{∫

Rn

Λ(ξ − ξ′)[f(ξ′)∇ξf(ξ) − f(ξ)∇ξf(ξ′)]dξ′
}

, (1.22)

was studied. In Landau equation (1.22) Λ is the non-negative matrix given by

Λ(ξ) = Λ0

(
δij −

ξiξj

|ξ|2
)
|ξ|γ+2, γ ≥ −3, Λ0 > 0.
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We remark that the main difficulties in this paper rely both in reckoning the kinetic dissipation of the
nonlocal linearized operator L defined in (1.8) and in the control of the nonlinear term in the process of
energy estimates. The method used to prove Theorem 3.1, which gives the time-decay estimates on the
linearized solution operator is general enough to deal with the time-decay estimates of some other kinetic
equations with both the free transport operator and the kinetic relaxation in the full space Rn, whenever
the classical spectral analysis is difficult to apply [21]. Actually, we can resort to a similar strategy to
obtain results analogous to those of Theorem 3.1 for the Landau equation (1.22), linearized in the case
of hard potentials γ ≥ 0, where the space domain is the whole Rn.

The rest of this paper is organized as follows. We shall end this introduction with the next subsection
by presenting how equation (1.2) can be derived as a kinetic version of a particle system. In particular,
we formally show that this equation arises naturally either as mean-field limit or as grazing collision
limit of a Boltzmann type equation from the Cucker-Smale particle model of flocking in presence of
an additional stochastic term. In Section 2, for the later study of both the linearized and the original
nonlinear equation (1.6), we make two preparations, one of which is to obtain the coercivity of the
linearized operator L as in Theorem 2.1, and the other one to make a macro-micro decomposition of the
perturbation u and equation (1.6) where a system of equations for the evolution of moments of u up to
second order is derived (cf. (2.21)-(2.24)). In Section 3 we employ Fourier analysis methods to establish
the hypocoercivity property for the linearized Cauchy problem with a non-homogeneous microscopic
source, and we obtain the precise algebraic time-decay rates. The main idea here is to construct a
temporal-frequency free energy functional defined in (3.11) able to capture the macroscopic dissipation
in the Fourier space.

In Section 4 we devote ourselves to the proof of the main result for the fully nonlinear Cauchy problem
(1.6)-(1.7) (Theorem 1.1 introduced before). To this extent, in Subsection 4.1 we list a series of uniform
a priori estimates on the solution, whose proofs are postponed to appendices A.1 and A.2 for the sake
of a simpler presentation. The dissipative property of L proven in Theorem 2.1 and the construction
of the other temporal free energy in the phase space contained in (4.6) play a key role in the proof of
those a priori estimates. We continue in Subsection 4.2 the proof of the local existence and uniqueness
stated in Theorem 4.1 by using an iterative scheme and the standard stability method, concluding with
the global existence, which follows by combining the established uniform a priori estimates with the
continuum argument. In the last Subsection 4.3 we apply the time-decay properties of the linearized
solution operator of Theorem 3.1 to obtain the optimal time-decay rates for the perturbation solution u
in some smooth Sobolev space. The main idea of proof is here based on the recently developed energy-
spectrum method [12, 11].

1.2 Formal derivation of diffusive model

In this subsection, we shall give a formal derivation of the kinetic equation (1.1). There are at least two
ways to do it which we will introduce in what follows. The first way to derive (1.1) is based on the discrete
Cucker-Smale model with noise whose strength depends on the distance between particles. Consider
the evolutions of m (m ≥ 1) particles (e.g. birds) with positions and velocities (xi, ξi) = (xi(t), ξi(t))
(1 ≤ i ≤ m) at time t in the phase space Rn × Rn:






dxi = ξidt,

dξi =

m∑

j=1

U(|xj − xi|)(ξj − ξi)dt +

√√√√2µ

m∑

j=1

U(|xj − xi|)dWi.
(1.23)

Here, U denotes the distance potential (communication rate) function defined as in (1.3). A typical
example goes back to the original Cucker-Smale model [4], where

U(x) =
Cn,γ

(1 + |x|2)γ
, x ∈ R

n.

In the random noise term, Wi = Wi(t) (1 ≤ i ≤ m) are m independent Wiener processes with values in
Rn, and µ ≥ 0 is a constant denoting the coefficient of noise strength. Notice that the strength of noise
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for i-th particle is

µ

m∑

j=1

U(|xj − xi|)

which is proportional to the summation of distance potentials of i-th particle with all particles. We
remark that if there is only one particle, i.e. m = 1, then the system reduces to





dx = ξdt,

dξ =
√

2µU(0)dW,

which means that the motion of a single particle is just a random walk, and further that if µ = 0, then
the system is the same as the Cucker-Smale model. We are interested in the so-called mean field limit of
particle systems (1.23). Thus, set

U =
κ

m
U0

for some function U0 and some constant κ > 0 which are independent of m, and let

f (m)(t, x, ξ) =
1

m

m∑

i=1

δ(x − xi(t))δ(ξ − ξi(t)),

where δ(·) is the Dirac delta function. Since f (m) for each m ≥ 1 belongs to M(R2n) which is the space
of Radon measure on R2n and

∫∫

Rn×Rn

f (m)(t, x, v)dxdv ≡ 1, t ≥ 0,

then, up to a subsequence, there is a temporal measure f(t) ∈ M(R2n) such that

f (m) → f(t) in w∗-M(R2n) as m → ∞.

Moreover, formally it is a usual way to show (see for instance [15]) that f(t) is the measure-valued weak
solution in M(R2n) to the kinetic equation

∂tf + ξ · ∇xf + κU0 ∗ ρξf · ∇ξf = κU0 ∗ ρf∇ξ · (µ∇ξf + ξf). (1.24)

In equation (1.24) the nonlinear diffusion term follows from the so-called Ito’s formula.
On the other hand, the nonlinear kinetic model equation (1.24) of Fokker-Planck type can be also

obtained as the grazing limit of a certain kinetic equation of Boltzmann type. Let us assume that the
post-interaction velocities (ξ∗, η∗) of two birds which have positions and velocities (x, ξ) and (y, η) before
interaction are determined by the law

ξ∗ = (1 − κU(|x − y|))ξ + κU(|x − y|)η +
√

2µκU(|x − y|) θξ,

η∗ = κU(|x − y|)ξ + (1 − κU(|x − y|))η +
√

2µκU(|x − y|) θη,

where U is defined as before, while κ > 0 and µ ≥ 0 are constants which will enter into the equation
exactly in the same way as in (1.24), and

θξ = (θξ,1, θξ,2, · · · , θξ,n) ∈ R
n,

θη = (θη,1, θη,2, · · · , θη,n) ∈ R
n.

θξ,i and θη,i, (1 ≤ i ≤ n) are identically distributed independent random variables of zero mean and unit
variance. For this time, it is also supposed that supx U(|x|) is finite and

κ sup
x

U(|x|) <
1

2
. (1.25)
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Notice that this assumption can be removed in the later grazing limit since U will be scaled up to a small
parameter ǫ > 0. As in [2], the evolution of the bird density can be described at a kinetic level by the
following integro-differential equation of Boltzmann type:

∂tf + ξ · ∇xf = Q(f, f), (1.26)

with

Q(f, f) = σ

∫∫

Rn×Rn

(
1

J(|x − y|)f(x, ξ∗)f(y, η∗) − f(x, ξ)f(y, η)

)
dydη,

where (ξ∗, η∗) mean the pre-collisional velocities of particles that generate the pair velocities (ξ, η) after
interaction, and

J(|x − y|) = (1 − 2κU(|x − y|))n

is the Jacobian of the transformation of (ξ, η) into (ξ∗, η∗). Notice that J is a well-defined nonnegative
function due to the assumption (1.25).

Definition 1.1. The function f(t, x, ξ) is said to be a weak solution to the Cauchy problem of equation
(1.26) with initial data f0(x, ξ) provided that for any smooth function φ(x, ξ) with compact support, it
holds that

d

dt

∫

R2n

φ(x, ξ)f(t, x, ξ)dxdξ =

∫

R2n

ξ · ∇xφ(x, ξ)f(t, x, ξ)dxdξ

+σE

[∫

R4n

(φ(x, ξ∗) − φ(x, ξ))f(t, x, ξ)f(t, y, η)dxdydξdη

]
(1.27)

for any t > 0 and

lim
t→0+

∫

R2n

φ(x, ξ)f(t, x, ξ)dxdξ =

∫

R2n

φ(x, ξ)f0(x, ξ)dxdξ.

To carry out the grazing limit, we scale U as

U = ǫU0,

where ǫ > 0 is a small parameter. Suppose that f = f(t, x, ξ) satisfies the equation (1.26), where f
actually takes the form of fσ,ǫ which depends on parameters σ and ǫ but the superscripts are omitted
for brevity. Let us begin with the weak form (1.27) and we consider the Taylor’s expansion

φ(x, ξ∗) − φ(x, ξ) = ∇ξφ(x, ξ) · (ξ∗ − ξ) +
1

2

∑

|β|=2

∂β
ξ φ(x, ξ)(ξ∗ − ξ)β

+
1

6

∑

|β|=3

∂β
ξ φ(x, Λ(ξ∗, ξ))(ξ∗ − ξ)β ,

where Λ(ξ∗, ξ) is a vector between ξ∗ and ξ. Recall also that

ξ∗ − ξ = ǫκU0(|x − y|)(η − ξ) +
√

2µǫκU0(|x − y|) θξ.

Then, formally one has

E[φ(x, ξ∗) − φ(x, ξ)] = ǫ∇ξφ(x, ξ) · κU0(|x − y|)(η − ξ)

+ǫ∆ξφ(x, ξ) · µκU0(|x − y|) + O(ǫ2).

Thus, it holds

d

dt

∫

R2n

φ(x, ξ)f(t, x, ξ)dxdξ =

∫

R2n

ξ · ∇xφ(x, ξ)f(t, x, ξ)dxdξ

+σǫ

∫

R4n

∇ξφ(x, ξ) · (η − ξ)κU0(|x − y|)f(t, x, ξ)f(t, y, η)dxdydξdη

+σǫ

∫

R4n

µ∆ξφ(x, ξ)κU0(|x − y|)f(t, x, ξ)f(t, y, η)dxdydξdη

+σǫO(ǫ).
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Taking the so-called grazing limit, so that

ǫ → 0, σǫ → 1,

then the limit function, still denoted by f(t, x, ξ), satisfies

d

dt

∫

R2n

φ(x, ξ)f(t, x, ξ)dxdξ =

∫

R2n

ξ · ∇xφ(x, ξ)f(t, x, ξ)dxdξ

+

∫

R4n

∇ξφ(x, ξ) · (η − ξ)κU0(|x − y|)f(t, x, ξ)f(t, y, η)dxdydξdη

+

∫

R4n

µ∆ξφ(x, ξ)κU0(|x − y|)f(t, x, ξ)f(t, y, η)dxdydξdη.

This implies that f satisfies

∂tf + ξ · ∇xf = κ∇ξ · (fU0 ∗ (ρξf − ξρf )) + κµ∆ξ(fU0 ∗ ρf ),

which is in the same form as (1.24).

2 Preparations

2.1 Coercivity of the linearized operator

In this subsection, we are concerned with some properties of the linearized operator L defined by (1.8),
especially the coercivity estimate of L over the Hilbert space L2

x,ξ. Notice that L is the summation of
the classical linearized Fokker-Planck operator LFP and the convolution-type operator A, i.e.

L = LFP + A, (2.1)

where LFP and A are defined by

LFP u = ∆ξu +
1

4
(2n − |ξ|2)u, (2.2)

Au = U ∗ ρξ
√

Mu · ξ
√

M, (2.3)

In (2.2) and (2.3) n ≥ 1 denotes the spatial dimension, U satisfies the condition (1.3) and M is the
normalized global Maxwellian given by (1.5).

Firstly, it is well-known from [1] that LFP enjoys some dissipative properties, stated in the following

Proposition 2.1. LFP is a linear self-adjoint operator with respect to the duality induced by the L2
ξ-scalar

product, and it is local in x. Furthermore, the following properties hold.

(i) One has

〈LFP u, u〉 = −
∫

Rn

∣∣∣∣∇ξ

(
u√
M

)∣∣∣∣
2

Mdξ,

Ker LFP = Span{
√

M}, Range LFP = Span{
√

M}⊥.

(ii) Define the projector P0 by

P0u = au
√

M, au ≡ 〈
√

M, u〉.
Then, one has the identity

〈LFP u, u〉 = −
∫

Rn

|∇ξ{I− P0}u|2dξ − 1

4

∫

Rn

|ξ|2|{I − P0}u|2dξ

+
n

2

∫

Rn

|{I− P0}u|2dξ.
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(iii) There exists a constant λFP > 0 such that the Poincaré inequality holds:

−〈LFP u, u〉 ≥ λFP

∫

Rn

|{I− P0}u|2dξ.

(iv) More strongly, there is a constant λ0 > 0 such that the coercivity estimate holds:

− 〈LFP u, u〉 ≥ λ0|{I− P0}u|2ν , (2.4)

where the norm | · |ν is defined in (1.10).

Next, we shall obtain some coercivity estimate similar to (2.4) on the non-local linear operator L in
the phase space Rn

x × Rn
ξ . Notice that it is straightforward to make estimates on A as

∣∣∣∣
∫

Rn

〈Au, u〉dx

∣∣∣∣ ≤ Cn

∫∫

Rn×Rn

|{I− P0}u|2dxdξ,

where Cn = 〈|ξ|2,M〉 depends only on n. On the other hand, from (2.4) it holds

−
∫

Rn

〈LFP u, u〉dx ≥ λ0‖{I− P0}u‖2
ν.

Since it is not clear presently whether λ0 is strictly larger than Cn, it is nontrivial to get a coercivity
estimate on L directly from (2.4). It turns out that one has to extract part of dissipation of LFP

corresponding to the momentum component of u in order to control the non-local operator A. To do
that, let us decompose the Hilbert space L2

ξ as

L2
ξ = N ⊕N⊥, N = Span{

√
M, ξ

√
M},

and define the projector P by

P : L2
ξ → N , u 7→ Pu ≡ {au + bu · ξ}

√
M.

Notice that since
√

M, ξ1

√
M, · · · , ξn

√
M forms an orthonormal basis of N , then one has

au = 〈
√

M, u〉, bu = 〈ξ
√

M, u〉.
We also introduce the projector P1 by

P1u = bu · ξ
√

M = 〈ξ
√

M, u〉 · ξ
√

M.

Then P can be written as
P = P0 ⊕ P1,

in L2
ξ. The main result of this subsection concerning the coercivity estimate of L is stated as follows.

Theorem 2.1. Let n ≥ 1 and (1.3) hold. The operators L,LFP ,A are defined by (2.1), (2.2) and (2.3),
respectively. Then, the following holds.

(i) A and hence L are linear nonlocal operators which are self-adjoint with respect to the duality induced
by the L2

x,ξ-scalar product;

(ii) One has identities:

Au = APu = PAu = AP1u = P1Au = U ∗ bu · ξ
√

M, (2.5)

A{I− P}u = {I− P}Au = 0, (2.6)

LFPPu = LFPP1u = −P1u, PLFP u = −P1u, (2.7)

LPu = −[P1,A]u = −(bu − U ∗ bu) · ξ
√

M, (2.8)

where [P1,A] denotes the commutator P1A − AP1;

(iii) Let λ0 be defined in (2.4). Then, the coercivity inequality

−
∫

Rn

〈Lu, u〉dx ≥ λ0‖{I− P}u‖2
ν +

1

2
‖T∆bu‖2

U , (2.9)

holds for any u = u(x, ξ), where the norms ‖ · ‖ν and ‖ · ‖U are defined in (1.11) and (1.12), respectively.
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Proof. To prove (i), for any u = u(x, ξ), v = v(x, ξ), it holds

∫

Rn

〈Au, v〉dx =

∫∫

Rn×Rn

U ∗ bu · ξ
√

Mvdxdξ =

∫

Rn

U ∗ bubvdx

=

∫∫

Rn×Rn

U(|x − y|)bu(y) · bv(x)dxdy

=

∫

Rn

buU ∗ bvdx =

∫

Rn

〈u,Av〉dx,

where the symmetry of U = U(|x|) was used. Then, A is self-adjoint on L2
x,ξ. Since LFP is also self-adjoint

with respect to the duality induced by the L2
x,ξ-scalar product, so is L = LFP + A.

To prove (ii), (2.5) and (2.6) directly follow from definitions of A, P1 and P. Notice

LFPPu = LFPP0u + LFPP1u = LFP P1u

holds from Proposition 2.1 (i). Then, one can compute

LFP Pu = ∆ξ(b
u · ξ

√
M) +

1

4
(2n − |ξ|2)(bu · ξ

√
M) = −bu · ξ

√
M = −P1u,

where we used

∆ξ(b
u · ξ

√
M) = ∆ξ(b

u · ξ) + 2∇ξ(b
u · ξ) · ∇ξ

√
M + bu · ξ∆ξ

√
M,

and

∇ξ

√
M = −1

2
ξ
√

M, ∆ξ

√
M = −n

2

√
M +

1

4
|ξ|2

√
M.

Moreover, it holds

PLFP u = 〈
√

M,LFP u〉
√

M + 〈ξ
√

M,LFP u〉 · ξ
√

M

= 〈LFP P0

√
M, u〉

√
M + 〈LFP P1(ξ

√
M), u〉 · ξ

√
M

= −〈ξ
√

M, u〉 · ξ
√

M = −P1u.

Then, equation (2.7) is proved. Equation (2.8) follows from L = LFP + A and (2.6)-(2.7).

To prove (iii), for any u, one has

〈LFP u, u〉 = 〈LFP Pu,Pu〉 + 〈LFP Pu, {I− P}u〉
+〈LFP {I− P}u,Pu〉 + 〈LFP {I− P}u, {I− P}u〉

= 〈LFP Pu,Pu〉 + 2〈LFPPu, {I− P}u〉
+〈LFP {I− P}u, {I− P}u〉,

where for the first two terms on the r.h.s., further from (2.7), it holds

〈LFPPu,Pu〉 = −〈P1u,Pu〉 = −〈P1u,P1u〉 = −|bu|2,
〈LFP Pu, {I− P}u〉 = −〈P1u, {I− P}u〉 = 0.

Then, one has

〈LFP u, u〉 = 〈LFP {I − P}u, {I− P}u〉 − |bu|2.

On the other hand, for A, similarly one has

∫

Rn

〈Au, u〉dx =

∫

Rn

〈AP1u, u〉dx =

∫

Rn

〈P1u,AP1u〉dx =

∫

Rn

U ∗ bu · budx.
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Thus, combining the above estimates on LFP and A, it follows that
∫

Rn

〈Lu, u〉dx =

∫

Rn

〈LFP {I− P}u, {I− P}u〉dx

−
∫

Rn

|bu|2dx +

∫

Rn

U ∗ bu · budx.

One can further compute
∫

Rn

|bu|2dx −
∫

Rn

U ∗ bu · budx

=

∫∫

Rn×Rn

U(|x − y|)bu(x)(bu(x) − bu(y))dxdy

=

∫∫

Rn×Rn

U(|y − x|)bu(y)(bu(y) − bu(x))dxdy

=
1

2

∫∫

Rn×Rn

U(|x − y|)|bu(x) − bu(y)|2dxdy =
1

2
‖T∆bu‖2

U .

Therefore, (2.9) follows from the coercivity inequality (2.4) for LFP and

{I− P0}{I− P} = {I− P}.

Hence, also (iii) is proved. This completes the proof of Theorem 2.1.

2.2 Macro-micro decomposition

As usual, for fixed (t, x), u(t, x, ξ) can be uniquely decomposed as






u(t, x, ξ) = Pu + {I− P}u,

Pu ≡ {au + bu · ξ}
√

M,

au = 〈
√

M, u〉, bu = 〈ξ
√

M, u〉,

(2.10)

where Pu is called the macroscopic component of u while {I−P}u is called the corresponding microscopic
component. Notice that by the definitions of au and bu, it holds

Pu ⊥ {I− P}u (2.11)

in L2
ξ for any (t, x).
In what follows, let us suppose that u satisfies the perturbation equation (1.6) and the spatial dimen-

sion n ≥ 1 holds. For later use, let us now derive some macroscopic balance laws satisfied by the macro
components au and bu. To do that, rewrite (1.6) as

∂tu + ξ · ∇xu + U ∗ bu · ∇ξu = Lu + Γ(u, u), (2.12)

where by (1.9), Γ(·, ·) is regarded as a bilinear operator defined by

Γ(u, v) = U ∗ auLFP v +
1

2
U ∗ bu · ξv. (2.13)

After taking velocity integration from the unperturbed equation (1.1), one has the local conservation law
of mass:

∂t

∫

Rn

fdξ + ∇x ·
∫

Rn

ξfdξ = 0, (2.14)

and the local balance law of momentum:

∂t

∫

Rn

ξifdξ + ∇x ·
∫

Rn

ξξifdξ − U ∗ ρξif

∫

Rn

fdξ = −U ∗ ρf

∫

Rn

ξifdξ. (2.15)
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for 1 ≤ i ≤ n. By using the macro-micro decomposition (2.10) and the property (2.11), one can compute
the moments of f up to second order as follows:

∫

Rn

fdξ =

∫

Rn

(M +
√

Mu)dξ = 1 + au,

∫

Rn

ξifdξ =

∫

Rn

ξi(M +
√

Mu)dξ = bu
i ,

and ∫

Rn

ξiξjfdξ =

∫

Rn

ξiξj(M +
√

Mu)dξ

= δij +

∫

Rn

ξiξj

√
MPudξ +

∫

Rn

ξiξj

√
M{I− P}udξ

= (1 + au)δij + 〈ξiξj

√
M, {I− P}u〉,

for 1 ≤ i, j ≤ n, where δij is the Kronecker delta. Thus, it follows from (2.14) and (2.15) that

∂ta
u + ∇x · bu = 0,

and

∂tb
u
i + ∂ia

u +
∑

j

∂j〈ξiξj

√
M, {I− P}u〉 − U ∗ bu

i (1 + au)

= −U ∗ (1 + au)bu
i , 1 ≤ i ≤ n.

Next, we need to derive the evolution of second-order moments of {I− P}u:

〈ξ ⊗ ξ
√

M, {I− P}u〉.
By using

L = LFP + A, LFPP = −P1,

and the macro-micro decomposition (2.10), one can further rewrite (2.12) as

∂tu + ξ · ∇xu + U ∗ bu · ∇ξu = LFP {I− P}u + (U ∗ bu − bu) · ξ
√

M

+U ∗ auLFP {I− P}u − U ∗ aubu · ξ
√

M

+
1

2
U ∗ bu · ξPu +

1

2
U ∗ bu · ξ{I − P}u,

that is

∂tPu + ξ · ∇xPu + U ∗ bu · ∇ξPu

−(U ∗ bu − bu) · ξ
√

M + U ∗ aubu · ξ
√

M − 1

2
U ∗ bu · ξPu

= −∂t{I− P}u + l + r, (2.16)

In (2.16), the linear term l and the nonlinear term r, are given respectively by

l = −ξ · ∇x{I− P}u + LFP {I− P}u, (2.17)

r = U ∗ auLFP {I− P}u +
1

2
U ∗ bu · ξ{I − P}u − U ∗ bu · ∇ξ{I− P}u. (2.18)

By using the representation of Pu as in (2.10), one can expand the l.h.s. of (2.16) as

{∂ta
u + U ∗ bu · bu}

√
M

+

n∑

i=1

{∂tb
u
i + ∂ia

u − (U ∗ bu
i − bu

i ) + U ∗ aubu
i − U ∗ bu

i au} ξi

√
M

+

n∑

ij=1

{
∂ib

u
j − U ∗ bu

i bu
j

}
ξiξj

√
M

= −∂t{I− P}u + l + r. (2.19)
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Let us define the moment function A = (Aij(·))n×n by

Aij(u) =

∫

Rn

(ξiξj − 1)
√

Mudξ. (2.20)

Then, applying Aij(·) to both sides of (2.19) yields

∂ib
u
i − U ∗ bu

i bu
i = −∂tAii({I− P}u) + Aii(l + r),

and

∂ib
u
j + ∂jb

u
i − U ∗ bu

i bu
j − U ∗ bu

j bu
i = −∂tAij({I − P}u) + Aij(l + r), i 6= j,

where 1 ≤ i, j ≤ n.
In summary, the macro components au and bu satisfy the equations

∂ta
u + ∇x · bu = 0, (2.21)

∂tb
u
i + ∂ia

u − (U ∗ bu
i − bu

i ) + U ∗ aubu
i − U ∗ bu

i au

+
n∑

j=1

∂jAij({I− P}u) = 0, (2.22)

∂tAii({I − P}u) + ∂ib
u
i − U ∗ bu

i bu
i = Aii(l + r), (2.23)

∂tAij({I− P}u) + ∂ib
u
j + ∂jb

u
i − U ∗ bu

i bu
j − U ∗ bu

j bu
i

= Aij(l + r), i 6= j, (2.24)

for 1 ≤ i, j ≤ n, where l, r are defined by (2.17) and (2.18), respectively. Notice that (2.24) is symmetric
in (i, j). The similar derivation of the system of equations (2.21)-(2.24) is inspired by [13] and used
recently in [10] for the study of the Boltzmann equation.

The following important observation, which plays a key role in the estimates on the macroscopic
dissipation firstly pointed out by [13], is that from (2.23) and (2.24), bu satisfies the following

Proposition 2.2. For fixed 1 ≤ j ≤ n, it holds

∂t




∑

i6=j

∂jAii({I− P}u) −
∑

i

∂iAij({I − P}u)



− ∆xbu
j

=
∑

i

∂j(U ∗ bu
i bu

i ) −
∑

i

∂i(U ∗ bu
i bu

j + U ∗ bu
j bu

i )

+
∑

i6=j

∂jAii(l + r) −
∑

i

∂iAij(l + r), (2.25)

for t ≥ 0 and x ∈ Rn.

Proof. For simplicity, set
R = −∂t{I − P}u + l + r.

From (2.24), one can compute

−∆xbu
j = −

∑

i6=j

∂i(∂ib
u
j ) − ∂j∂jb

u
j

= −
∑

i6=j

∂i[−∂jb
u
i + U ∗ bu

i bu
j + U ∗ bu

j bu
i + Aij(R)] − ∂j∂jb

u
j

= ∂j




∑

i6=j

∂ib
u
i − ∂jb

u
j



−
∑

i6=j

∂i[U ∗ bu
i bu

j + U ∗ bu
j bu

i + Aij(R)].
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Thanks to (2.23), one has

−∆xbu
j =

∑

i6=j

∂j [U ∗ bu
i bu

i + Aii(R)] − ∂j [U ∗ bu
j bu

j + Ajj(R)]

−
∑

i6=j

∂i[U ∗ bu
i bu

j + U ∗ bu
j bu

i + Aij(R)].

A further simplification gives

−∆xbu
j =

∑

i

∂j(U ∗ bu
i bu

i ) −
∑

i

∂i(U ∗ bu
i bu

j + U ∗ bu
j bu

i )

+
∑

i6=j

∂jAii(R) −
∑

i

∂iAij(R).

Then, (2.25) follows from the definition of R and the linearity of Aij . This completes the proof of
Proposition 2.2.

3 Linearized Cauchy problem

3.1 Hypocoercivity

Let us now consider the Cauchy problem of the linearized equation with a nonhomogeneous source,
namely {

∂tu = Bu + h, t > 0, x ∈ Rn,

u|t=0 = u0, x ∈ Rn,
(3.1)

where n ≥ 1 is the spatial dimension, h = h(t, x, ξ) and u0 = u0(x, ξ) are given, and the linear operator
B is defined by

B = −ξ · ∇x + L, L = LFP + A,

LFP u = ∆ξu +
1

4
(2n − |ξ|2)u,

Au = U ∗ bu · ξ
√

M, bu = 〈ξ
√

M, u〉.

Formally, the solution to the Cauchy problem (3.1) can be written as the Duhamel formula

u(t) = eBtu0 +

∫ t

0

eB(t−s)h(s)ds,

where eBt denotes the solution operator to the Cauchy problem of the linearized equation without source
corresponding to (3.1) with h ≡ 0. In this section, we shall show that eBt has the algebraic decay as time
tends to infinity as in the case of the Boltzmann equation [21, 22, 12, 11].

To this end, for 1 ≤ q ≤ 2 and m ≥ 0, set the rate index σq,m by

σq,m =
n

2

(
1

q
− 1

2

)
+

m

2
.

The main result of this section, whose proof is left to the next subsection, is stated as follows.

Theorem 3.1. Let 1 ≤ q ≤ 2 and n ≥ 1, and let (1.3) hold.

(i) For any α, α′ with α′ ≤ α, and for any u0 satisfying ∂α
x u0 ∈ L2

x,ξ and ∂α′

x u0 ∈ Zq, one has

‖∂α
x eBtu0‖ ≤ C(1 + t)−σq,m (‖∂α′

x u0‖Zq + ‖∂α
x u0‖), (3.2)

for t ≥ 0 with m = |α − α′|, where C is a positive constant depending only on n, m, q.
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(ii) Similarly, for any α, α′ with α′ ≤ α, and for any h such that, for all t ≥ 0 it holds ν(ξ)−1/2∂α
x h(t) ∈

L2
x,ξ, ν(ξ)−1/2∂α′

x h(t) ∈ Zq and further

∫

Rn

√
Mh(t, x, ξ)dξ =

∫

Rn

ξi

√
Mh(t, x, ξ)dξ = 0, i = 1, 2, . . . , n (3.3)

x ∈ Rn, one has

∥∥∥∥∂
α
x

∫ t

0

eB(t−s)h(s)ds

∥∥∥∥
2

≤ C

∫ t

0

(1 + t − s)−2σq,m (‖ν−1/2∂α′

x h(s)‖2
Zq

+ ‖ν−1/2∂α
x h(s)‖2)ds, (3.4)

for t ≥ 0 with m = |α − α′|, where C is a positive constant depending only on n, m, q.

3.2 Proof of hypocoercivity: Fourier analysis

In what follows we devote ourselves to the proof of Theorem 3.1. Let u = u(t, x, ξ) be the solution to the
Cauchy problem (3.1) with the nonhomogeneous source h(t, x, ξ) and initial data u0(x, ξ). Similarly as
before, we decompose u as 





u(t, x, ξ) = Pu + {I− P}u,

Pu ≡ {au + bu · ξ}
√

M,

au = 〈
√

M, u〉, bu = 〈ξ
√

M, u〉.
Then, from the same procedure as in Section 2.2, a suitable skipping of the nonlinear term Γ(u, u) leads
to the macroscopic balance laws satisfied by au, bu:

∂ta
u + ∇x · bu = 0, (3.5)

∂tb
u
i + ∂ia

u − (U ∗ bu
i − bu

i ) +
n∑

j=1

∂jAij({I− P}u) = 0, (3.6)

∂tAii({I− P}u) + ∂ib
u
i = Aii(l + h), (3.7)

∂tAij({I − P}u) + ∂ib
u
j + ∂jb

u
i = Aij(l + h), i 6= j, (3.8)

where 1 ≤ i, j ≤ n, the velocity moment function Aij(·) is defined by (2.20), and l has the same form as
before, given by

l = −ξ · ∇x{I− P}u + LFP {I − P}u. (3.9)

Here we notice that h does not appear in the first n + 1 equations (3.5)-(3.6) because the assumption
(3.3) implies that

Ph(t, x) ≡ 0, t ≥ 0, x ∈ R
n.

Furthermore, following a procedure similar to that used to derive (2.25) from (2.23) and (2.24), for fixed
1 ≤ j ≤ n, it follows from (3.7) and (3.8) that

∂t




∑

i6=j

∂jAii({I− P}u) −
∑

i

∂iAij({I− P}u)



− ∆xbu
j

=
∑

i6=j

∂jAii(l + h) −
∑

i

∂iAij(l + h). (3.10)

Up to the end of this subsection, let us introduce some notations. For an integrable function g : Rn →
R, its Fourier transform ĝ = Fg is defined by

ĝ(k) = Fg(k) =

∫

Rn

e−2πix·kg(x)dx, x · k =:
n∑

j=1

xjkj .
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Here, k ∈ R
n, and i =

√
−1 ∈ C is the imaginary unit. For two complex vectors a, b ∈ C

n, (a | b) denotes
the dot product a · b over the complex field, where b is the complex conjugate of b.

Lemma 3.1. There is a temporal-frequency free energy functional E l
free(û(t, k)) in the form of

E l
free(û(t, k)) = 3

∑

j

∑

i6=j

ikj

1 + |k|2 (Aii({I− P}û) | b̂u
j )

−3
∑

ij

iki

1 + |k|2 (Aij({I − P}û) | b̂u
j )

− ik

1 + |k|2 · (b̂u | âu) (3.11)

such that

∂

∂t
Re E l

free(û(t, k)) +
|k|2

4(1 + |k|2) (|âu|2 + |b̂u|2)

≤ 1 − Re Û

1 + |k|2 |b̂u|2 +
C

1 + |k|2 ‖ν
−1/2ĥ‖2

L2
ξ
+ C‖{I− P}û‖2

L2
ξ

(3.12)

holds for t ≥ 0 and k ∈ Rn. Moreover, one has the estimate

|E l
free(û(t, k))| ≤ C‖û(t, k)‖2

L2
ξ
, (3.13)

for t ≥ 0 and k ∈ Rn.

Proof. Let us first notice that

F({I− P}u) = {I − P}Fu, F(Pu) = PFu.

After taking the Fourier transform, (3.10) reads

∂t




∑

i6=j

ikjAii({I− P}û) −
∑

i

ikiAij({I− P}û)



+ |k|2b̂u
j

=
∑

i6=j

ikjAii(l̂ + ĥ) −
∑

i

ikiAij(l̂ + ĥ),

which by further taking the inner product with b̂u
j gives

∂t




∑

i6=j

ikjAii({I− P}û) −
∑

i

ikiAij({I− P}û) | b̂u
j



+ |k|2|b̂u
j |2

=




∑

i6=j

ikjAii(l̂ + ĥ) −
∑

i

ikiAij(l̂ + ĥ) | b̂u
j





+




∑

i6=j

ikjAii({I − P}û) −
∑

i

ikiAij({I− P}û) | ∂tb̂u
j



 . (3.14)

The first term on the r.h.s of (3.14) is estimated by
∣∣∣∣∣∣




∑

i6=j

ikjAii(l̂ + ĥ) −
∑

i

ikiAij(l̂ + ĥ) | b̂u
j





∣∣∣∣∣∣

≤ 1

4
|k|2|b̂u

j |2 + C
∑

ij

(
|Aij(l̂)|2 + |Aij(ĥ)|2

)
. (3.15)
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By (3.9), the Fourier transform l̂ of l is given by

l̂ = −iξ · k{I− P}û + LFP {I − P}û,

and thus one has

|Aij(l̂)| =

∣∣∣∣
∫

Rn

(ξiξj − 1)
√

M(−iξ · k{I− P}û + LFP {I− P}û)dξ

∣∣∣∣

=

∣∣∣∣
∫

Rn

[−iξ · k(ξiξj − 1)
√

M + LFP ((ξiξj − 1)
√

M)]{I − P}ûdξ

∣∣∣∣

≤ ‖ − iξ · k(ξiξj − 1)
√

M + LFP ((ξiξj − 1)
√

M)‖L2
ξ
‖{I− P}û‖L2

ξ

≤ C(1 + |k|)‖{I− P}û‖L2
ξ
. (3.16)

Similarly one has for ĥ

|Aij(ĥ)| =

∣∣∣∣
∫

Rn

(ξiξj − 1)
√

Mĥdξ

∣∣∣∣

≤ ‖ν1/2(ξiξj − 1)
√

M‖L2
ξ
‖ν−1/2ĥ‖L2

ξ

≤ C‖ν−1/2ĥ‖L2
ξ
. (3.17)

Therefore, (3.15) together with (3.16) and (3.17) imply
∣∣∣∣∣∣




∑

i6=j

ikjAii(l̂ + ĥ) −
∑

i

ikiAij(l̂ + ĥ) | b̂u
j





∣∣∣∣∣∣

≤ 1

4
|k|2|b̂u

j |2 + C(1 + |k|2)‖{I− P}û‖2
L2

ξ
+ C‖ν−1/2ĥ‖2

L2
ξ
, (3.18)

which gives the estimate on the first term on the r.h.s. of (3.14). For the second term, one can use the
Fourier transform of (3.6)

∂tb̂u
i + ikiâu − (Û b̂u

i − b̂u
i ) +

∑

j

ikjAij({I − P}û) = 0 (3.19)

to estimate



∑

i6=j

ikjAii({I− P}û) −
∑

i

ikiAij({I− P}û) | ∂tb̂u
j





=




∑

i6=j

ikjAii({I− P}û) −
∑

i

ikiAij({I− P}û) |

−ikj âu + (Û b̂u
j − b̂u

j ) −
∑

ℓ

ikℓAjℓ({I− P}û)

)

≤ δ|k|2|âu|2 +
1

4
|k|2|b̂u|2 + Cδ(1 + |k|2)‖{I− P}û‖2

L2
ξ
, (3.20)

where the constant 0 < δ ≤ 1 is arbitrary. In (3.20), the property supk |Û | ≤ ‖U‖L1
x

= 1 and

|Aij({I− P}û)| ≤ C‖{I− P}û‖L2
ξ

have been used. From (3.14) as well as (3.18) and (3.20), one has

∂t




∑

i6=j

ikjAii({I − P}û) −
∑

i

ikiAij({I− P}û) | b̂u
j



+
1

2
|k|2|b̂u

j |2

≤ δ|k|2|âu|2 + Cδ(1 + |k|2)‖{I− P}û‖2
L2

ξ
+ C‖ν−1/2ĥ‖2

L2
ξ
, (3.21)
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for 0 < δ ≤ 1 to be determined later.

To get the dissipation |k|2|âu|2 as in (3.21), we take the inner product of (3.19) with −ikâu. it holds
(
−∂tik · b̂u | âu

)
+ |k|2|âu|2 +

(
(Û − 1)ik · b̂u | âu

)

+




∑

ij

kikjAij({I − P}û) | âu



 = 0. (3.22)

Let us write
(
−∂tik · b̂u | âu

)
= ∂t

(
−ik · b̂u | âu

)
+
(
ik · b̂u | ∂tâu

)
.

From (3.5), which implies

∂tâu + ik · b̂u = 0,

one has
(
ik · b̂u | ∂tâu

)
=
(
ik · b̂u | −ik · b̂u

)
= −|k · b̂u|2.

Then, the first term on the l.h.s. of (3.22) reduces to
(
−∂tik · b̂u | âu

)
= ∂t

(
−ik · b̂u | âu

)
− |k · b̂u|2.

Notice that

Im Û(k) =

∫

Rn

U(x) sin(k · x)dx = 0,

since U is even. Then,
Û = Re Û

holds. Thus, one has the estimate on the third term on the l.h.s. of (3.22) as

∣∣∣
(
(Û − 1)ik · b̂u | âu

)∣∣∣ ≤ 1

4
(1 − Re Û)|k|2|âu|2 + (1 − Re Û)|b̂u|2

≤ 1

4
|k|2|âu|2 + (1 − Re Û)|b̂u|2.

Again we used |Re Û | ≤ |Û | ≤ 1. For the fourth term on the l.h.s. of (3.22), one finally has
∣∣∣∣∣∣




∑

ij

kikjAij({I− P}û) | âu





∣∣∣∣∣∣
≤ 1

4
|k|2|âu|2 + C|k|2

∑

ij

|Aij({I − P}û)|2

≤ 1

4
|k|2|âu|2 + C|k|2‖{I− P}û‖2

L2
ξ
.

Thus, plugging all the above estimates into (3.22) yields

∂tRe
(
−ik · b̂u | âu

)
+

1

2
|k|2|âu|2

≤ |k|2|b̂u|2 + (1 − Re Û)|b̂u|2 + C|k|2‖{I− P}û‖2
L2

ξ
. (3.23)

Therefore, (3.12) follows by taking the proper linear combination of (3.21) and (3.23) with a fixed small
constant 0 < δ ≤ 1 and then dividing it by 1 + |k|2. This completes the proof of Lemma 3.1.

Lemma 3.2. it holds

1

2

∂

∂t
‖û(t, k)‖L2

ξ
+ λ|{I− P}û|2ν + (1 − Re Û)|b̂u|2 ≤ C‖ν−1/2ĥ(t, k)‖2

L2
ξ
, (3.24)

for any t ≥ 0 and k ∈ Rn.
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Proof. Since

LFPPu = −P1u = −bu · ξ
√

M,

we can rewrite the first equation in (3.1) as

∂tu + ξ · ∇xu = LFP {I− P}u − (bu − U ∗ bu) · ξ
√

M + h.

Taking the Fourier transform in x yields

∂tû + iξ · kû = LFP {I− P}û − (1 − Û)b̂u · ξ
√

M + ĥ.

By taking further the inner product with û, integrating it in ξ over Rn and then using the coercivity
estimate on LFP (2.4), one has

1

2

∂

∂t
‖û(t)‖2

L2
ξ
+ λ|{I− P}û|2ν + (1 − Re Û)|b̂u|2 ≤ |〈ĥ, û〉|, (3.25)

where we used Û = Re Û and {I− P0}{I− P} = {I− P}. For the r.h.s. term, since Ph = 0, it holds

〈ĥ, û〉 = 〈ĥ,Pû〉 + 〈ĥ, {I− P}û〉 = 〈ĥ, {I− P}û〉,

which implies that

|〈ĥ, û〉| ≤ δ‖ν1/2{I− P}û‖2
L2

ξ
+

1

4δ
‖ν−1/2ĥ‖2

L2
ξ

≤ Cδ|{I − P}û|2ν +
1

4δ
‖ν−1/2ĥ‖2

L2
ξ
, (3.26)

where δ > 0 is arbitrary. Therefore, (3.24) follows from (3.25) together with (3.26) by taking a properly
small constant δ > 0. This completes the proof of Lemma 3.2.

Proof of Theorem 3.1: Let u0 and h be given as in Theorem 3.1, and u be the solution to the Cauchy
problem (3.1). Then, by choosing M > 0 large enough, it follows from (3.12) and (3.24) that there is an
energy E l

M (û(t, k)) with

E l
M (û(t, k)) = M‖û(t, k)‖2

L2
ξ
+ Re E l

free(û(t, k))

such that

∂

∂t
E l

M (û(t, k)) + λ

[
|{I− P}û|2ν +

|k|2
1 + |k|2 (|âu|2 + |b̂u|2)

]

+ λ(1 − Re Û)|b̂u|2 ≤ C‖ν−1/2ĥ(t, k)‖2
L2

ξ
, (3.27)

for any t ≥ 0 and k ∈ Rn, where E l
free(û(t, k)) is defined by (3.11). From (3.13) it follows that

E l
M (û(t, k)) ∼ ‖û(t, k)‖2

L2
ξ
, (3.28)

if M > 0 is large enough. Notice that

|{I− P}û|2ν +
|k|2

1 + |k|2 (|âu|2 + |b̂u|2) ≥ |k|2
1 + |k|2

[
|{I− P}û|2ν + |âu|2 + |b̂u|2

]
. (3.29)

On the other hand, one also has

E l
M (û(t, k)) ≤ C‖û(t, k)‖2

L2
ξ
≤ C‖Pû(t, k)‖2

L2
ξ
+ C‖{I− P}û(t, k)‖2

L2
ξ

≤ C
[
|{I− P}û|2ν + |âu|2 + |b̂u|2

]
. (3.30)
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Thus, (3.27) together with (3.29) and (3.30) yield

∂

∂t
E l

M (û(t, k)) +
λ|k|2

1 + |k|2 E
l
M (û(t, k)) + λ(1 − Re Û)|b̂u|2 ≤ C‖ν−1/2ĥ(t, k)‖2

L2
ξ
,

which, by using the Gronwall inequality, gives

E l
M (û(t, k)) ≤ e

− λ|k|2

1+|k|2
tE l

M (û0(k)) + C

∫ t

0

e
− λ|k|2

1+|k|2
(t−s)‖ν−1/2ĥ(s, k)‖2

L2
ξ
ds.

Thus, from (3.28) one obtains

‖û(t, k)‖2
L2

ξ
≤ Ce

− λ|k|2

1+|k|2
t‖û0(k)‖2

L2
ξ
+ C

∫ t

0

e
− λ|k|2

1+|k|2
(t−s)‖ν−1/2ĥ(s, k)‖2

L2
ξ
ds, (3.31)

for any t ≥ 0 and k ∈ Rn.
Now, in order to get the decay estimate (3.2), let h = 0 so that u(t) = eBtu0. Write kα =

kα1
1 kα2

2 · · · kαn
n . Then, from (3.31), one has

‖∂α
x eBtu0‖2 =

∫

R
n
k

|k2α| · ‖û(t, k)‖2
L2

ξ
dk ≤ C

∫

R
n
k

|k2α|e−
λ|k|2

1+|k|2
t‖û0(k)‖2

L2
ξ
dk. (3.32)

As in [17], one can further estimate it by

∫

R
n
k

|k2α|e−
λ|k|2

1+|k|2
t‖û0(k)‖2

L2
ξ
dk

≤
∫

|k|≤1

|k2(α−α′)|e−
λ|k|2

1+|k|2
t|k2α′ | · ‖û0(k)‖2

L2
ξ
dk +

∫

|k|≥1

e−
λ
2 t|k2α| · ‖û0(k)‖2

L2
ξ
dk

≤ C(1 + t)−
n
q + n−2|α−α′|

2 ‖∂α′

x u0‖2
Zq

+ Ce−
λ
2 t‖∂α

x u0‖2, (3.33)

where the Hölder and Hausdorff-Young inequalities were used in the usual way. Hence, (3.2) follows from
(3.32) and (3.33). On the other hand, to get the decay estimate (3.4), let u0 = 0 so that

u(t) =

∫ t

0

eB(t−s)h(s)ds.

From (3.31), one obtains

‖û(t, k)‖2
L2

ξ
≤ C

∫ t

0

e
− λ|k|2

1+|k|2
(t−s)‖ν−1/2ĥ(s, k)‖2

L2
ξ
ds. (3.34)

Proceeding as in the derivation of (3.32) and (3.33), (3.4) follows from (3.34). This completes the proof
of Theorem 3.1.

4 Nonlinear Cauchy problem

4.1 Uniform a priori estimates

From now on, we devote ourselves to the proof of the main result Theorem 1.1. Through this subsection,
let u be the solution to the Cauchy problem (1.6) or equivalently (2.12) and (1.7), and let

n ≥ 3, N ≥ 2[n/2] + 2. (4.1)

Also we suppose that u is smooth enough to justify that all calculations can be carried out. By using the
classical energy method, we shall obtain in this subsection some uniform a priori estimates on u on the
basis of some energy and energy dissipation rate inequalities. By these a priori estimates one will obtain
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in the next subsection a proof of the global existence of solutions with the help of the local existence
as well as the continuum argument, under the smallness and regularity conditions on initial data u0.
For the time-decay rate of u, we shall apply in the last subsection the energy-spectrum method recently
developed in [12] and later in [11], which combine the linearized spectral analysis given in Section 3 with
the nonlinear high-order energy estimates.

For the above purpose, we begin with the proof of uniform a priori estimates on u to obtain the
microscopic dissipation rate

∑

|α|+|β|≤N

‖{I− P}∂α
x ∂β

ξ u(t)‖2
ν +

∑

|α|≤N

‖T∆∂α
x bu(t)‖2

U ,

which corresponds to the total temporal energy. Firstly, from the equation (1.6) or equivalently (2.12),
one can obtain estimates on u and its space derivatives. The proof of these estimates will be postponed
to Appendix A.1 for a simpler presentation. Here, we need to take care of the zero-order individually
since the estimate on the nonlinear term Γ(u, u) is a little subtle in the case of zero-order.

Lemma 4.1 (Zero-order). it holds

1

2

d

dt
‖u(t)‖2 + λ‖{I− P}u‖2

ν +
1

2
‖T∆bu‖2

U

≤ C‖(au, bu)‖L2
x∩L∞

x
(‖{I− P}u‖2

ν + ‖T∆bu‖2
U )

+C‖(au, bu)‖L2
x
‖bu‖2

L∞
x

, (4.2)

for t ≥ 0, where λ > 0 and C are constants depending only on n.

Lemma 4.2 (Space derivatives). it holds

1

2

d

dt

∑

1≤|α|≤N

‖∂α
x u(t)‖2 + λ

∑

1≤|α|≤N

(
‖∂α

x {I − P}u‖2
ν + ‖T∆∂α

x bu‖2
U

)

≤ C‖∇x(au, bu)‖HN−1
x




∑

|α|≤N

‖∂α
x {I− P}u‖2

ν + ‖∇x(au, bu)‖2
HN−1

x





+C‖∇xbu‖HN−1
x

∑

1≤|α|≤N−1

‖∂α
x∇ξ{I− P}u‖2, (4.3)

for t ≥ 0, where λ > 0 and C are constants depending only on n.

Next, we shall obtain estimates on the mixed space-velocity derivatives of u which appears on the
r.h.s. of (4.3). Notice that by taking the velocity derivatives we do not affect L2

x,ξ-norms for the macro-
scopic component Pu. Thus, let us apply I − P to both sides of (2.12) to get

∂t{I− P}u + {I− P}(ξ · ∇xu + U ∗ bu · ∇ξu) = {I− P}Lu + {I− P}Γ(u, u). (4.4)

One can make further simplifications on the r.h.s. terms. In fact, from Theorem 2.1 (ii) it follows that

{I− P}Lu = {I− P}LFP u + {I − P}Au = {I− P}LFP u

= LFP {I− P}u + LFP Pu − PLFP u

= LFP {I− P}u − P1u + P1u = LFP {I− P}u.

Similarly, it holds

{I− P}Γ(u, u) = {I− P}(U ∗ auLFP u +
1

2
U ∗ bu · ξu)

= U ∗ auLFP {I− P}u +
1

2
U ∗ bu · ξ{I− P}u

+
1

2
U ∗ bu · [ξ, {I− P}]u

= Γ(u, {I− P}u) +
1

2
U ∗ bu · [ξ, {I− P}]u,
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where {I− P}LFP = LFP {I− P} was used. Moreover [ξ, {I− P}] denotes the commutator

[ξi, {I− P}] = ξi{I− P} − {I− P}ξi = [ξi,P], 1 ≤ i ≤ n,

with ξ regarded as the velocity multiplier operator. Therefore, (4.4) is simplified as

∂t{I− P}u + {I− P}(ξ · ∇xu + U ∗ bu · ∇ξu)

= LFP {I − P}u + Γ(u, {I− P}u) +
1

2
U ∗ bu · [ξ,P]u,

which further can be rewritten as the evolution equation of {I− P}u:

∂t{I− P}u + ξ · ∇x{I− P}u + U ∗ bu · ∇ξ{I− P}u

= LFP {I− P}u + Γ(u, {I− P}u) +
1

2
U ∗ bu · [ξ,P]u

+P(ξ · ∇x{I− P}u + U ∗ bu · ∇ξ{I− P}u)

−{I− P}(ξ · ∇xPu + U ∗ bu · ∇ξPu). (4.5)

Then, on the basis of the above equation, one can use the energy estimates to obtain the following
technical lemma, which is proven in Appendix A.1.

Lemma 4.3 (Mixed space-velocity derivatives). Let 1 ≤ k ≤ N . it holds

1

2

d

dt

∑

|β|=k
|α|+|β|≤N

‖∂α
x ∂β

ξ {I− P}u‖2 + λ
∑

|β|=k
|α|+|β|≤N

‖∂α
x ∂β

ξ {I− P}u‖2
ν

≤ C‖(au, bu)‖HN
x




∑

|α|+|β|≤N

‖∂α
x ∂β

ξ {I− P}u‖2
ν + ‖∇x(au, bu)‖2

HN−1
x





+C




∑

|α|≤N−k+1

‖∂α
x {I− P}u‖2

ν + ‖∇x(au, bu)‖2
HN−k

x





+Cχ{2≤k≤N}
∑

1≤|β|≤k−1
|α|+|β|≤N

‖∂α
x ∂β

ξ {I− P}u‖2
ν,

for t ≥ 0, where λ > 0 and C are constants depending only on n, and χD denotes the characteristic
function of a set D.

Finally, in order to control the nonlinear term and close the a priori estimates under the smallness
condition, we need to obtain the macroscopic dissipation rate:

∑

|α|≤N−1

‖∂α
x∇xPu(t)‖2 ∼

∑

|α|≤N−1

‖∂α
x∇x(au, bu)‖2

which corresponds to certain temporal free energy. Actually, the following lemma exactly gives the above
dissipation for the macroscopic component Pu or equivalently the coefficients (au, bu). Here, the analysis
is essentially based only on the macroscopic balance laws (2.21)-(2.24) satisfied by (au, bu) which have
been derived in Subsection 2.2. The proof will be carried out in the physical phase space by using a
method close to the proof of Lemma 3.1 in the case of the linearized equation. Again, we postpone it to
Appendix A.2.
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Lemma 4.4. There exists a temporal free energy En
free(u(t)) of the form

En
free(u(t)) = 3

∑

|α|≤N−1

∑

j

∑

i6=j

∫

Rn

Aii(∂
α
x ∂j{I− P}u)∂α

x bu
j dx

−3
∑

|α|≤N−1

∑

ij

∫

Rn

Aij(∂
α
x ∂i{I− P}u)∂α

x bu
j dx

+
∑

|α|≤N−1

∫

Rn

∂α
x∇xau · ∂α

x budx, (4.6)

such that

d

dt
En

free(u(t)) + λ‖∇x(au, bu)‖2
HN−1

x

≤ C
∑

|α|≤N

(‖T∆∂α
x bu‖2

U + ‖∂α
x {I− P}u‖2)

+C‖(au, bu)‖2
HN

x
(‖∇x(au, bu)‖2

HN−1
x

+
∑

|α|≤N

‖∂α
x {I− P}u‖2) (4.7)

holds for t ≥ 0, where λ > 0 and C are constants depending only on n. Moreover, it holds

|En
free(u(t))| ≤ C‖u(t)‖2

L2
ξ(HN

x ) (4.8)

for t ≥ 0.

We remark that an estimate similar to the one stated in Lemma 4.4 was firstly considered in [9] and
recently developed in [10] in the study of the Boltzmann equation for the hard sphere model in R

n. In
addition, the proofs of Lemma 4.4 and Lemma 3.1 at the level of linearization are in the same spirit even
though the analysis of the latter is made pointwise both in time and frequency.

4.2 Proof of global existence and uniqueness

In this subsection, we are going to make a few preparations in order to prove Theorem 1.1 along the line
mentioned at the beginning of Subsection 4.1. Let us first consider the local existence of solutions to the
Cauchy problem (1.6) or equivalently (2.12) and (1.7). We define iteratively the sequence (fm(t, x, ξ))∞m=0

of solutions to the Cauchy problems





∂tf
m+1 + ξ · ∇xfm+1 + U ∗ ρξfm · ∇ξf

m+1

= U ∗ ρfm∇ξ · (∇ξf
m+1 + ξfm+1),

fm+1 ≡ M +
√

Mum+1,

fm+1|t=0 = f0 ≡ M +
√

Mu0,

(4.9)

or equivalently in terms of um(t, x, ξ):






∂tu
m+1 + ξ · ∇xum+1 + U ∗ bum · ∇ξu

m+1

= LFP um+1 + Γ(um, um+1) + Aum,
um+1|t=0 = u0,

(4.10)

where m ≥ 0, and u0 ≡ 0 is set at the beginning of iteration. Let the solution space X(0, T ; M) be
defined by

X(0, T ; M) =






v ∈ C([0, T ]; HN(Rn × R
n)) :

sup
0≤t≤T

‖v(t)‖HN
x,ξ

≤ M, M +
√

Mv ≥ 0





.

We prove the following
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Theorem 4.1. Let n, N satisfy (4.1). There are constants T∗ > 0, ǫ0, M0 such that if u0 ∈ HN (Rn×R
n)

with f0 ≡ M +
√

Mu0 ≥ 0 and ‖u0‖HN
x,ξ

≤ ǫ0, then for each m ≥ 1, um is well-defined with

um ∈ X(0, T∗; M0). (4.11)

Furthermore, (um)m≥0 is a Cauchy sequence in the Banach space C([0, T∗]; HN−1(Rn × Rn)), and the
corresponding limit function denoted by u belongs to X(0, T∗; M0), and u is a solution to the Cauchy
problem (1.6)-(1.7). Meanwhile, there exists at most one solution in X(0, T∗; M0) to the Cauchy problem
(1.6)-(1.7).

Proof. One can use induction to prove (4.11). Suppose that (4.11) holds true for m ≥ 0. Without loss
of generality, one can also suppose that um is smooth enough so that all the forthcoming calculations
can be carried out. Otherwise, one can instead consider the Cauchy problem on the regularized iterative
equation

∂tf
m+1,ǫ + ξ · ∇xfm+1,ǫ + U ∗ ρξfm,ǫ · ∇ξf

m+1,ǫ

= U ∗ ρfm,ǫ∇ξ · (∇ξf
m+1,ǫ + ξfm+1,ǫ) + ǫ∆xfm+1,ǫ,

fm+1|t=0 = uǫ
0.

for any ǫ > 0 with uǫ
0 a smooth approximation of u0, prove the same for fm,ǫ and then pass to the limit

by letting ǫ → 0.
Thanks to the nonnegativity

U ∗ ρfm = 1 + U ∗ aum

,

one has
1 − C1

√
Mm(T ) ≤ U ∗ ρfm ≤ 1 + C1

√
Mm(T ), 0 ≤ t ≤ T,

for some constant C1 > 0, where
Mm(T ) = sup

0≤t≤T
‖um(t)‖2

HN
x,ξ

for any 0 ≤ T ≤ T∗. Note that 2C1M0 ≤ 1 if M0 > 0, to be chosen later, is sufficiently small. If this is
the case, from the induction hypothesis, the estimate

2C1

√
Mm(T ) ≤ 2C1M0 ≤ 1

holds. Then 1/2 ≤ U ∗ ρfm ≤ 3/2 follows. By the maximum principle for (4.9), one has

fm+1 ≡ M +
√

Mum+1 ≥ 0.

To obtain the bound on um+1, for any α with |α| ≤ N , it follows from (4.10)

1

2

d

dt
‖∂α

x um+1(t)‖2 + λ0‖{I− P0}∂α
x um+1‖2

ν

=
∑

α′<α

Cα
α′

∫

Rn

〈U ∗ ∂α−α′

x bum · ∇ξ∂
α′

x um+1, ∂α
x um+1〉dx

+

∫

Rn

〈A∂α
x um, ∂α

x um+1〉dx +

∫

Rn

〈∂α
x Γ(um, um+1), ∂α

x um+1〉dx

≤ C‖um‖L2
ξ(H

N
x )

∑

|α′|+|β′|≤N

‖∂α′

x ∂β′

ξ um+1‖2
ν

+C‖um‖L2
ξ(H

N
x )‖um+1‖L2

ξ(H
N
x ).

Taking the summation over |α| ≤ N implies

1

2

d

dt
‖um+1(t)‖2

L2
ξ(HN

x ) +
λ0

2

∑

|α|≤N

‖∂α
x um+1‖2

ν

≤ C‖um‖L2
ξ(HN

x )

∑

|α|+|β|≤N

‖∂α
x ∂β

ξ um+1‖2
ν

+C‖um‖L2
ξ(HN

x )‖um+1‖L2
ξ(HN

x ) + C‖um+1‖2
L2

ξ(HN
x ).
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Similarly, for any 0 ≤ t ≤ T ≤ T∗, it holds

d

dt
‖um+1(t)‖2

HN
x,ξ

+ λ0

∑

|α|+|β|≤N

‖∂α
x ∂β

ξ um+1‖2
ν

≤ C‖um‖L2
ξ(HN

x )

∑

|α|+|β|≤N

‖∂α
x ∂β

ξ um+1‖2
ν

+C‖um‖HN
x,ξ

‖um+1‖HN
x,ξ

+ C‖um+1‖2
L2

ξ(HN
x )

≤ C2

√
Mm(T )

∑

|α|+|β|≤N

‖∂α
x ∂β

ξ um+1‖2
ν + C3Mm(T ) + C4Mm+1(T ), (4.12)

for some constant C2 > 0. By letting C2

√
Mm(T ) ≤ C2M0 ≤ λ0/2, from the induction hypothesis and

taking time integration, the above inequality gives

Mm+1(T ) +
λ0

2

∑

|α|+|β|≤N

∫ T

0

‖∂α
x ∂β

ξ um+1(s)‖2
νds

≤ ‖u0‖2
HN

x,ξ
+ C3Mm(T )T + C4Mm+1(T )T. (4.13)

Now, one can choose

M0 = min{ 1

2C1
,

λ0

2C2
}, T∗ = min{ 1

4C3
,

1

2C4
}, ǫ0 =

1

2
M0

so that

Mm+1(T∗) ≤ 2ǫ20 + 2C3T∗Mm(T∗) ≤
1

2
M2

0 +
1

2
M2

0 ≤ M2
0 ,

that is,

sup
0≤t≤T∗

‖um+1(t)‖2
HN

x,ξ
=
√

Mm+1(T∗) ≤ M0.

Finally, proceeding as in the proof of (4.12), for any 0 ≤ s ≤ t ≤ T∗, we obtain

∣∣∣‖um+1(t)‖2
HN

x,ξ
− ‖um+1(s)‖2

HN
x,ξ

∣∣∣ =

∣∣∣∣
∫ t

s

d

dθ
‖um+1(θ)‖2

HN
x,ξ

dθ

∣∣∣∣

≤ C(M0 + 1)
∑

|α|+|β|≤N

∫ t

s

‖∂α
x ∂β

ξ um+1(θ)‖2
νdθ + CM2

0 |t − s|. (4.14)

This implies that ‖um+1(t)‖2
HN

x,ξ
is continuous over 0 ≤ t ≤ T∗ since from (4.13), ‖∂α

x ∂β
ξ um+1‖2

ν is

integrable over [0, T∗]. Hence equation (4.11) holds true for m + 1 and so it does for any m ≥ 0.

Next, the difference between two subsequent solutions of (4.10) satisfies






∂t(u
m+1 − um) + ξ · ∇x(um+1 − um) + U ∗ bum · ∇ξ(u

m+1 − um)

= LFP (um+1 − um) + Γ(um, um+1 − um) + Γ(um − um−1, um)

+A(um − um−1) − U ∗ bum−um−1 · ∇ξu
m,

(um+1 − um)|t=0 = 0.
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As for (4.12), it follows that

d

dt
‖um+1(t) − um(t)‖2

HN−1
x,ξ

+ λ0

∑

|α|+|β|≤N−1

‖∂α
x ∂β

ξ (um+1 − um)‖2
ν

≤ C‖um‖L2
ξ(HN−1

x )

∑

|α|+|β|≤N−1

‖∂α
x ∂β

ξ (um+1 − um)‖2
ν

+C‖um − um−1‖L2
ξ(HN−1

x )

∑

|α|+|β|≤N

‖∂α
x ∂β

ξ um‖ν

∑

|α|+|β|≤N−1

‖∂α
x ∂β

ξ (um+1 − um)‖ν

+C‖um − um−1‖L2
ξ(HN−1

x )‖um+1 − um‖L2
ξ(HN−1

x )

+C‖um+1 − um‖2
L2

ξ(HN−1
x )

,

where N ≥ 2[n/2] + 2 and the Sobolev embedding H [n/2]+1(Rn) →֒ L∞(Rn) were used. Since ‖u0‖HN
x,ξ

and hence ǫ0, T∗, M0 can be small enough, and from (4.13),

sup
m

∫ T∗

0

∑

|α|+|β|≤N

‖∂α
x ∂β

ξ um(s)‖2
νds

can be also small enough, it further follows that there is a constant µ < 1 such that

sup
0≤t≤T∗

‖um+1(t) − um(t)‖HN−1
x,ξ

≤ µ sup
0≤t≤T∗

‖um(t) − um−1(t)‖HN−1
x,ξ

. (4.15)

It can be seen from (4.15) that (um)m≥0 is a Cauchy sequence in the Banach space C([0, T∗]; HN−1(Rn ×
R

n)), and thus the limit function

u ∈ C([0, T∗]; H
N−1(Rn × R

n))

exists. By letting m → ∞ in (4.9) or (4.10), u is a solution to the Cauchy problem (1.6)-(1.7). From the
pointwise convergence of um to u by the Sobolev embedding theorem and the lower semicontinuity of the
norms, um ∈ X(0, T∗; M0) implies

f ≡ M +
√

Mu ≥ 0, sup
0≤t≤T∗

‖u(t)‖HN
x,ξ

≤ M0.

Similarly to the proof of (4.14), one can conclude that u ∈ C([0, T∗]; HN(Rn × Rn)). Thus, u ∈
X(0, T∗; M0) follows.

Finally, let v ∈ X(0, T∗; M0) be another solution to the Cauchy problem (1.6)-(1.7). Proceeding as
in the proof of (4.15) we obtain

sup
0≤t≤T∗

‖u(t) − v(t)‖ ≤ µ sup
0≤t≤T∗

‖u(t) − v(t)‖,

for µ < 1. Then, u ≡ v, and uniqueness follows. This completes the proof of Theorem 4.1.

Proof of global existence and uniqueness in Theorem 1.1: At this time it suffices to obtain the
uniform a priori estimates. For a given T > 0, let u be the solution to the Cauchy problem (1.6)-(1.7)
over [0, T ] which satisfies

sup
0≤t≤T

‖u(t)‖HN
x,ξ

≤ ǫ

for 0 < ǫ ≤ 1 small enough. Now, one can apply Lemmas 4.1, 4.2, 4.3 and 4.4 to u.
We claim that there are the equivalent energy E(u(t)) and energy dissipation rate D(u(t)), defined

by

E(u(t)) ∼ ‖u(t)‖2
HN

x,ξ
, (4.16)

D(u(t)) =
∑

|α|+|β|≤N

‖∂α
x ∂β

ξ {I− P}u(t)‖2
ν +

∑

|α|≤N

‖T∆∂α
x bu(t)‖2

U

+‖∇x(au, bu)(t)‖2
HN−1

x
, (4.17)
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such that
d

dt
E(u(t)) + λD(u(t)) ≤ 0, (4.18)

holds for any 0 ≤ t ≤ T . In fact, since 0 < ǫ ≤ 1 is small enough, the linear combination of (4.2),
(4.3) and (4.7) gives the dissipation of the macroscopic component Pu or equivalently of its coefficients
(au, bu), the microscopic component {I−P}u, and their space derivatives with remaining terms including
L2-norms of the mixed space-velocity derivatives with small-coefficients, that is,

d

dt

(
M‖u(t)‖2

L2
ξ(H

N
x ) + En

free(u(t))
)

+λ
∑

|α|≤N

‖∂α
x {I − P}u‖2

ν + λ‖T∆∂α
x bu‖2

U + λ‖∇x(au, bu)‖2
HN−1

x

≤ CǫD(u(t)) + Cǫ
∑

1≤|α|≤N−1

‖∂α
x∇ξ{I− P}u‖2, (4.19)

where En
free(u(t)) is defined by (4.6), and M ≥ 1 is large enough, so that, by (4.8),

M‖u(t)‖2
L2

ξ(H
N
x ) + En

free(u(t)) ∼ ‖u(t)‖2
L2

ξ(H
N
x )

holds. On the other hand, the linear combination of (4.6) over 1 ≤ k ≤ N gives the dissipation of all the
space-velocity derivatives in L2-norm, that is,

d

dt

∑

1≤k≤N

Ck

∑

|β|=k
|α|+|β|≤N

‖∂α
x ∂β

ξ {I− P}u‖2 + λ
∑

|β|≥1
|α|+|β|≤N

‖∂α
x ∂β

ξ {I− P}u‖2
ν

≤ CǫD(u(t)) + C
∑

|α|≤N

‖∂α
x {I− P}u‖2

ν + C‖∇x(au, bu)‖2
HN−1

x
, (4.20)

for some properly chosen constants Ck. Thus, the further linear combination of (4.19) and (4.20) leads
to (4.18) by letting ǫ > 0 small enough. Then, after taking time integration, it holds

sup
0≤t≤T

{
‖u(t)‖HN

x,ξ
+ λ

∫ t

0

D(u(s))ds

}
≤ E(u0) ≤ C‖u0‖2

HN
x,ξ

,

where C is independent of T and u0. Thus, the global existence and uniqueness of solutions to the
Cauchy problem (1.6)-(1.7) follows from the above uniform a priori estimate (4.20) together with the
local existence obtained in Theorem 4.1 as well as the continuum argument, and moreover, (1.13) and
(1.14) hold. Here, the details are omitted for simplicity. This completes the proof of global existence and
uniqueness in Theorem 1.1.

4.3 Proof of rates of convergence

In this subsection, in order to prove (1.15) in Theorem 1.1, we are concerned with the time-decay rates
of solutions. The main idea of the proof is based on the energy-spectrum method recently developed in
[12, 11]. To this end, let us suppose that all conditions in Theorem 1.1 hold, and let u be the solution to
the Cauchy problem (1.6)-(1.7) satisfying (1.13) and (1.14).

Firstly, the time-decay properties of the linearized solution operator eBt given in Section 3 will be
applied in the following lemma to obtain some formal time-decay estimates for the solution u in terms of
the total temporal energy E(u(t)).

Lemma 4.5. If ‖u0‖Z1 is bounded, then it holds

‖u(t)‖2 ≤ C(E(u0) + ‖u0‖2
Z1

)(1 + t)−
n
2

+C

∫ t

0

(1 + t − s)−
n
2 E(u(s))[E(u(s)) + ‖ξ{I− P}u(s)‖2]ds

+C

[∫ t

0

(1 + t − s)−
n
4 E(u(s))ds

]2

, (4.21)
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for any t ≥ 0.

Proof. From (2.12), u can be written in mild form as

u(t) = eBtu0 +

∫ t

0

eB(t−s)G(s)ds, (4.22)

where the source term G is denoted by

G = Γ(u, u) − U ∗ bu · ∇ξu.

By the definition of Γ, given in (2.13), G can be rewritten as

G = G1 + G2 + G3,

with

G1 = U ∗ auLFP {I− P}u,

G2 =
1

2
U ∗ bu · ξ{I − P}u − U ∗ bu · ∇ξ{I− P}u,

G3 = −U ∗ auP1u +
1

2
U ∗ bu · ξPu − U ∗ bu · ∇ξPu.

It is straightforward to check that both G1 and G2 satisfy condition (3.3). Then, one can apply both (i)
and (ii) in Theorem 3.1 to (4.22) to obtain

‖u(t)‖2 ≤ C(E(u0) + ‖u0‖2
Z1

)(1 + t)−
n
2

+C
2∑

i=1

∫ t

0

(1 + t − s)−
n
2 (‖ν−1/2Gi(s)‖2

Z1
+ ‖ν−1/2Gi(s)‖2)ds

+C

[∫ t

0

(1 + t − s)−
n
4 (‖G3(s)‖Z1 + ‖G3(s)‖)ds

]2

. (4.23)

By using the inequalities

‖U ∗ (au, bu)‖L2
x
≤ ‖U‖L1

x
‖(au, bu)‖L2

x
,

‖U ∗ (au, bu)‖L∞
x

≤ ‖U‖L1
x
‖(au, bu)‖L∞

x
≤ C‖U‖L1

x
‖∇x(au, bu)‖

H
[n/2]
x

,

it is straightforward to get

‖ν−1/2G1‖2
Z1

+ ‖ν−1/2G1‖2 ≤ CE(u)[E(u) + ‖ξ{I− P}u‖2],

‖ν−1/2G2‖2
Z1

+ ‖ν−1/2G2‖2 ≤ C[E(u)]2,

‖G3(s)‖Z1 + ‖G3(s)‖ ≤ E(u).

Plugging the above estimates into (4.23) leads to (4.21). This completes the proof of Lemma 4.5.

The next lemma is devoted to obtain a uniform bound on the velocity-weighted norm ‖ξ{I−P}u(s)‖,
under the additional condition on initial data which imply that the time integral term on the r.h.s. of
(4.21) can be controlled. This, together with (4.18) can lead to the desired time-decay rates of the total
temporal energy E(u(t)).

Lemma 4.6. If ‖u0‖HN
x,ξ

is small enough and ‖ξu0‖ is bounded, then it holds

‖{I− P}u‖ν ≤ C(‖u0‖HN
x,ξ

+ ‖ξu0‖), (4.24)

for any t ≥ 0.
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Proof. For simplicity, set wi = ξi{I− P}u. Thanks to (4.5), wi satisfies

∂twi + ξ · ∇xwi + U ∗ bu · ∇ξwi

= LFP wi + Γ(u, wi) +
1

2
U ∗ bu · ξi[ξ,P]u

+ξP(ξ · ∇x{I− P}u + U ∗ bu · ∇ξ{I− P}u)

−ξ{I− P}(ξ · ∇xPu + U ∗ bu · ∇ξPu)

+U ∗ bu
i {I− P}u − 2(1 + U ∗ au)∂ξi{I− P}u.

The last line follows from the computation of commutators

[∇ξ, ξi] = ei, [LFP , ξi] = [∆ξ, ξi] = 2∂ξi .

The zero-order energy estimate as before gives

1

2

d

dt
‖wi(t)‖2 + λ0‖{I− P0}wi‖2

ν ≤
(

λ0

8
+ CE(u)

)
‖wi‖2

ν + C(E(u) + 1)D(u),

where E(u), D(u) are defined in (4.16) and (4.17), respectively. From (4.18) and

sup
t≥0

E(u(t)) ≤ E(u0) ≤ C‖u0‖2
HN

x,ξ
,

which is small enough, it follows

d

dt
‖wi(t)‖2 + λ0‖wi‖2

ν ≤ CD(u) + C‖P0wi‖2
ν ≤ CD(u).

Then, further taking time integration and using (4.18), one has

‖wi(t)‖2 + λ0

∫ t

0

‖wi(s)‖2
νds ≤ ‖wi(0)‖2 + C

∫ t

0

D(u(s))ds

≤ C‖ξi{I− P}u0‖2 + CE(u0)

≤ C(‖u0‖2
HN

x,ξ
+ ‖ξu0‖2),

which gives (4.24). This completes the proof of Lemma 4.6.

Proof of time-decay rates in Theorem 1.1: For simplicity, let us denote

K0 = ‖u0‖HN
x,ξ

+ ‖u0‖Z1 , δ0 = ‖u0‖HN
x,ξ

+ ‖ξu0‖. (4.25)

Notice that K0 is finite and δ0 can be arbitrarily small thanks to the assumptions of Theorem 1.1. In
order to get the time decay of the total temporal energy in (1.15), we define

E∞(t) = sup
0≤s≤t

(1 + s)
n
2 E(u(s)).

Thus, to prove (1.15), it suffices to prove that E∞(t) is uniformly bounded in time. In fact, combining
(4.21) and (4.24) gives

‖u(t)‖2 ≤ CK2
0 (1 + t)−

n
2 + Cδ2

0

∫ t

0

(1 + t − s)−
n
2 E(u(s))ds

+Cδ
2
3−2ǫ
0

(∫ t

0

(1 + t − s)−
n
4 [E(u(s)]

2
3+ǫds

)2

≤ CK2
0 (1 + t)−

n
2 + Cδ2

0E∞(t)

∫ t

0

(1 + t − s)−
n
2 (1 + s)−

n
2 ds

+Cδ
2
3−2ǫ
0 [E∞(t)]

2
3 +ǫ

(∫ t

0

(1 + t − s)−
n
4 (1 + s)−

n
3 −n

2 ǫds

)2

, (4.26)
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where 0 < ǫ < 1/3 is a constant. Since n ≥ 3 holds, one has

∫ t

0

(1 + t − s)−
n
2 (1 + s)−

n
2 ds ≤ C(1 + t)−

n
2 ,

∫ t

0

(1 + t − s)−
n
4 (1 + s)−

n
3 −n

2 ǫds ≤ C(1 + t)−
n
4 ,

where n/2 > 1 and n/3 + nǫ/2 > max{1, n/4} were used. Then, it follows from (4.26) that

‖u(t)‖2 ≤ C
{

K2
0 + δ2

0E∞(t) + Cδ
2
3−2ǫ
0 [E∞(t)]

2
3+ǫ
}

(1 + t)−
n
2 . (4.27)

Notice that (4.18) implies

d

dt
E(u(t)) + λE(u(t)) ≤ C‖u(t)‖2. (4.28)

By the Gronwall inequality, it follows from (4.27) and (4.28) that

E(u(t)) ≤ e−λtE(u0) + C

∫ t

0

e−λ(t−s)‖u(s)‖2ds

≤ C
{

K2
0 + δ2

0E∞(t) + Cδ
2
3−2ǫ
0 [E∞(t)]

2
3 +ǫ
}

(1 + t)−
n
2 ,

for any t ≥ 0. In fact E∞(t) is nondecreasing in time. Then, it holds

E∞(t) ≤ CK2
0 + Cδ2

0E∞(t) + Cδ
2
3−2ǫ
0 [E∞(t)]

2
3+ǫ,

for any t ≥ 0. Since δ0 in (4.25) is small enough, one has

E∞(t) ≤ CK2
0 + Cδ

2
3−2ǫ
0 [E∞(t)]

2
3+ǫ,

for any t ≥ 0. Again using the smallness of δ0 and 2/3 − 2ǫ > 0, one further has

sup
t≥0

E∞(t) ≤ CK2
0 .

Thus, the uniform boundness of E∞(t) is obtained and hence (1.15) is proved. This completes the proof
of time decay rates in Theorem 1.1 and thus the proof of the whole Theorem 1.1.

A Proofs of uniform a priori estimates

A.1 A priori estimates: Microscopic dissipation

In the first part of this appendix, we shall prove Lemmas 4.1, 4.2 and 4.3 which are related to the
microscopic dissipation rate. As a preparation, we first obtain a lemma about some estimate on the
nonlinear term.

Lemma A.1. it holds

|〈Γ(u, v), w〉|
≤ C|U ∗ (au, bu)| (|{I− P}v|ν + |(av, bv)|) (|{I− P}w|ν + |(aw, bw)|), (A.1)

for some constant C depending only on n.

Proof. Recall the definition (2.13) of Γ(u, v). One has

〈Γ(u, v), w〉 = U ∗ au (〈LFP {I− P}v, {I− P}w〉 − 〈P1v,P1w〉)

+
1

2
U ∗ bu · 〈ξ, ({I− P}v + Pv)({I − P}w + Pw)〉. (A.2)

Then, (A.1) follows by applying integration by parts and Hölder inequality to (A.1).
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Proof of Lemma 4.1: From (2.12), the zero-order energy estimate over R
n
x × R

n
ξ gives

1

2

d

dt
‖u(t)‖2 −

∫

Rn

〈Lu, u〉dx =

∫

R3

〈Γ(u, u), u〉dx. (A.3)

To estimate the nonlinear term on the r.h.s., let us define

I(u; v, w) = 〈Γ(u, v), w〉,

where Γ(·, ·) means the bilinear operator given in (2.13). Notice that I(u; v, w) can be written as the
summation of two terms:

I(u; v, w) = I1(u; v, w) + I2(u; v, w),

where as in (A.2), from the macro-micro decomposition (2.10), I1, I2 are defined by

I1(u; v, w) = U ∗ au〈LFP {I − P}v, {I− P}w〉

+
1

2
U ∗ bu · 〈ξ, {I − P}v{I− P}w

+{I− P}vPw + Pv{I − P}w〉,

I2(u; v, w) = −U ∗ au〈P1v,P1w〉 +
1

2
U ∗ bu · 〈ξ,PvPw〉.

One can further simplify the form of I2(u; v, w) in terms of the coefficients of Pv and Pw. In fact, it
holds

〈P1v,P1w〉 =

∫

Rn

bv · ξbw · ξMdξ = bv · bw,

and

〈ξ,PvPw〉 =

∫

Rn

ξ(av + bv ·
√

M)(aw + bw ·
√

M)dξ = avbw + awbv.

Then, it follows that

I2(u; v, w) = −U ∗ aubv · bw +
1

2
U ∗ bu · (avbw + awbv).

Next, we estimate the nonlinear term

〈Γ(u, u), u〉 = I1(u; u, u) + I2(u; u, u). (A.4)

For I1(u; u, u), one has

∫

Rn

I1(u; u, u)dx =

∫

Rn

U ∗ au〈LFP {I− P}u, {I− P}u〉dx

+

∫

Rn

U ∗ bu · 〈ξ,Pu{I − P}u〉dx

+
1

2

∫

Rn

U ∗ bu · 〈ξ, |{I− P}u|2〉dx.

The terms on the r.h.s are estimated as
∫

Rn

U ∗ au〈LFP {I− P}u, {I− P}u〉dx

≤ ‖U ∗ au‖L∞
x

∫

Rn

|〈LFP {I− P}u, {I− P}u〉|dx

≤ C‖au‖L∞
x
‖{I− P}u‖2

ν,
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∫

Rn

U ∗ bu · 〈ξ,Pu{I− P}u〉dx

≤
∫

Rn

|U ∗ bu| · ‖ξPu‖L2
ξ
· ‖{I− P}u‖L2

ξ
dx

≤ C

∫

Rn

|U ∗ bu| · (|au| + |bu|) · ‖{I− P}u‖L2
ξ
dx

≤ C‖(au, bu)‖L2
x
‖bu‖L∞

x
‖{I− P}u‖ν,

and

1

2

∫

Rn

U ∗ bu · 〈ξ, |{I − P}u|2〉dx ≤ 1

2

∫

Rn

|U ∗ bu| · |{I− P}u|2ξdx

≤ 1

2
‖bu‖L∞

x
‖{I− P}u‖2

ν.

Then, it follows that

∫

Rn

I1(u; u, u)dx ≤ C‖au‖L∞‖{I− P}u‖2
ν

+C‖(au, bu)‖L2
x
‖bu‖L∞

x
‖{I− P}u‖ν

+
1

2
‖bu‖L∞

x
‖{I− P}u‖2

ν. (A.5)

For I2(u; u, u) one has

∫

Rn

I2(u; u, u)dx =

∫

Rn

−U ∗ au|bu|2 + U ∗ bu · aubudx

=

∫∫

Rn×Rn

U(|x − y|)au(x)bu(y)(bu(x) − bu(y))dxdy

= −
∫∫

Rn×Rn

U(|x − y|)au(x)(bu(x) − bu(y))2dxdy

+

∫∫

Rn×Rn

U(|x − y|)au(x)bu(x)(bu(x) − bu(y))dxdy.

Since

−
∫∫

Rn×Rn

U(|x − y|)au(x)(bu(x) − bu(y))2dxdy ≤ ‖au‖L∞
x
‖T∆bu‖2

U ,

and
∫∫

Rn×Rn

U(|x − y|)au(x)bu(x)(bu(x) − bu(y))dxdy

≤
[∫∫

Rn×Rn

U(|x − y|)2|au(x)bu(x)|2dxdy

] 1
2

‖T∆bu‖U

≤ ‖aubu‖L2
x
‖T∆bu‖U ,

it follows that ∫

Rn

I2(u; u, u)dx ≤ ‖au‖L∞
x
‖T∆bu‖2

U + ‖aubu‖L2
x
‖T∆bu‖U . (A.6)

Plugging estimates (A.5) and (A.6) into (A.3) and using the coercivity inequality (2.9) of −L, we obtain
(4.2). This completes the proof of Lemma 4.1.

Proof of Lemma 4.2: Let 1 ≤ |α| ≤ N . Notice that although A is nonlocal in x,

∂α
x Au = ∂α

x (U ∗ ρξ
√

Mu · ξ
√

M) = U ∗ ρξ
√

M∂α
x u · ξ

√
M = A∂α

x u (A.7)
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and hence

∂α
x Lu = ∂α

x LFP u + ∂α
x Au = LFP ∂α

x u + A∂α
x u = L∂α

x u

holds. Then, from (2.12), the energy estimate on ∂α
x u over Rn

x × Rn
ξ gives

1

2

d

dt
‖∂α

x u(t)‖2 −
∫

Rn

〈L∂α
x u, ∂α

x u〉 =

∫

Rn

〈∂α
x Γ(u, u), ∂α

x u〉dx

+
∑

α′<α

Cα
α′

∫

Rn

〈−U ∗ ∂α−α′

x bu · ∇ξ∂
α′

x u, ∂α
x u〉dx. (A.8)

Next we estimate each term on the r.h.s. of (A.8). Similar to (A.7), from Lemma A.1 we obtain

∫

Rn

〈∂α
x Γ(u, u), ∂α

x u〉dx =
∑

α′≤α

Cα
α′

∫

Rn

〈Γ(∂α′

x u, ∂α−α′

x u), ∂α
x u〉dx ≤ CIα,α′ ,

where

Iα,α′ =

∫

Rn

|U ∗ ∂α′

x (au, bu)| · (|{I− P}∂α−α′

x u|ν + |∂α−α′

x (au, bu)|)

· (|{I− P}∂α
x u|ν + |∂α

x (au, bu)|)dx.

When |α′| ≥ [n/2] + 1 or α′ = α, one has

Iα,α′ ≤ ‖U ∗ ∂α′

x (au, bu)‖L2
x
(‖{I− P}∂α

x u‖ν + ‖∂α
x (au, bu)‖L2

x
)

×(sup
x

|{I − P}∂α−α′

x u|ν + sup
x

|∂α−α′

x (au, bu)|).

By the Sobolev inequality ‖g‖L∞
x

≤ C‖∇xg‖
H

[n/2]
x

for n ≥ 3 and g = g(x), it further holds that

sup
x

|{I− P}∂α−α′

x u|2ν

= sup
x

∫

Rn

|∇ξ{I− P}∂α−α′

x u|2 + ν(ξ)|{I − P}∂α−α′

x u|2dξ

≤
∫

Rn

‖∇ξ{I− P}∂α−α′

x u‖2
L∞

x
+ ν(ξ)‖{I − P}∂α−α′

x u‖2
L∞

x
dξ

≤ C

∫

Rn

‖∇ξ∇x{I− P}∂α−α′

x u‖2

H
[n/2]
x

+ ν(ξ)‖{I− P}∇x∂α−α′

x u‖2

H
[n/2]
x

dξ

≤ C
∑

1≤|α′|≤N

‖{I− P}∂α′

x u‖2
ν,

and similarly

sup
x

|∂α−α′

x (au, bu)| ≤ C‖∇x∂α−α′

x (au, bu)‖
H

[n/2]
x

≤ C‖∇x(au, bu)‖HN−1
x

.

Hence it follows that

Iα,α′ ≤ C‖∇x(au, bu)‖HN−1
x




∑

1≤|α′|≤N

‖∂α′

x {I− P}u‖2
ν + ‖∇x(au, bu)‖2

HN−1
x



 . (A.9)

When |α′| ≤ [n/2] and α′ < α, one obtains similarly that

Iα,α′ ≤ sup
x

|U ∗ ∂α′

x (au, bu)| · (‖{I− P}∂α−α′

x u‖ν + ‖∂α−α′

x (au, bu)‖L2
x
)

·(‖{I− P}∂α
x u‖ν + ‖∂α

x (au, bu)‖L2
x
).
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A further bound also holds for the r.h.s. of (A.9) since

sup
x

|U ∗ ∂α′

x (au, bu)| ≤ sup
x

|∂α′

x (au, bu)| ≤ C‖∇x(au, bu)‖HN−1
x

.

For the second term on the r.h.s. of (A.8), by using the same proof as for Iα,α′ , one has

∑

α′<α

Cα
α′

∫

Rn

〈−U ∗ ∂α−α′

x bu · ∇ξ∂
α′

x u, ∂α
x u〉dx

≤ C
∑

α′<α

∫

Rn

|U ∗ ∂α−α′

x bu| · ‖∇ξ∂
α′

x u‖L2
ξ
‖∂α

x u‖L2
ξ
dx

≤ C‖∇xbu‖HN−1
x




∑

1≤|α′|≤N−1

‖∇ξ∂
α′

x u‖2 + ‖∂α
x u‖2





≤ C‖∇xbu‖HN−1
x

∑

1≤|α′|≤N−1

‖∂α′

x ∇ξ{I − P}u‖2

+C‖∇xbu‖HN−1
x




∑

1≤|α′|≤N

‖∂α′

x {I− P}u‖2
ν + ‖∇x(au, bu)‖2

HN−1
x



 .

Putting all the above estimates into (A.8), taking summation over 1 ≤ |α| ≤ N and using the coercivity
inequality (2.9) of −L yields (4.3). This completes the proof of Lemma 4.2.

Proof of Lemma 4.3: Fix k with 1 ≤ k ≤ N , and choose α, β with |β| = k and |α| + |β| ≤ N . From

(4.5), the energy estimate on ∂α
x ∂β

ξ u over Rn
x × Rn

ξ gives

1

2

d

dt
‖∂α

x ∂β
ξ {I− P}u‖2 −

∫

Rn

〈LFP ∂α
x ∂β

ξ {I− P}u, ∂α
x ∂β

ξ {I− P}u〉dx =
7∑

i=1

Ii, (A.10)

where Ii (1 ≤ i ≤ 7) take the form of

I1 =

∫

Rn

〈−∂α
x [∂β

ξ , ξ · ∇x]{I− P}u, ∂α
x ∂β

ξ {I− P}u〉dx,

I2 =

∫

Rn

〈∂α
x [∂β

ξ ,−|ξ|2]{I − P}u, ∂α
x ∂β

ξ {I− P}u〉dx,

and

I3 =
∑

α′<α

Cα
α′

∫

Rn

〈−U ∗ ∂α−α′

x bu · ∇ξ∂
α′

x ∂β
ξ {I− P}u, ∂α

x ∂β
ξ {I− P}u〉dx,

I4 =

∫

Rn

〈∂α
x ∂β

ξ Γ(u, {I− P}u), ∂α
x ∂β

ξ {I− P}u〉dx,

I5 =

∫

Rn

〈1
2
∂α

x ∂β
ξ (U ∗ bu · [ξ,P]u), ∂α

x ∂β
ξ {I− P}u〉dx,

and

I6 =

∫

Rn

〈∂α
x ∂β

ξ P(ξ · ∇x{I− P}u + U ∗ bu · ∇ξ{I− P}u), ∂α
x ∂β

ξ {I− P}u〉dx,

I7 =

∫

Rn

〈−∂α
x ∂β

ξ {I− P}(ξ · ∇xPu + U ∗ bu · ∇ξPu), ∂α
x ∂β

ξ {I− P}u〉dx.

Here, the commutator in I2 follows from

[∂β
ξ ,LFP ] = [∂β

ξ , ∆ξ] + [∂β
ξ ,

1

4
(2n − |ξ|2)] = [∂β

ξ ,−|ξ|2]. (A.11)
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Next, we estimate each term Ii (1 ≤ i ≤ 7). For I1 and I2, one has

I1 ≤ δ‖∂α
x ∂β

ξ {I − P}u‖2 + Cδ‖[∂β
ξ , ξ · ∇x]∂α

x {I− P}u‖2

≤ δ‖∂α
x ∂β

ξ {I − P}u‖2 + Cδ

∑

|α|≤N−k

‖∂α
x∇x{I− P}u‖2

+χ{2≤k≤N}Cδ

∑

1≤|β|≤k−1
|α|+|β|≤N

‖∂α
x ∂β

ξ {I− P}u‖2,

and

I2 ≤ δ‖∂α
x ∂β

ξ {I − P}u‖2 + Cδ‖[∂β
ξ ,−|ξ|2]∂α

x {I− P}u‖2

≤ δ‖∂α
x ∂β

ξ {I − P}u‖2 + Cδ

∑

|α|≤N−k

‖∂α
x {I− P}u‖2

ν

+χ{2≤k≤N}Cδ

∑

1≤|β|≤k−1
|α|+|β|≤N

‖∂α
x ∂β

ξ {I− P}u‖2
ν,

where δ > 0 is arbitrary, to be chosen later. For I3 and I5, similar to the proof of (A.9), it holds

I3 ≤ C
∑

α′<α

∫

Rn

|U ∗ ∂α−α′

x bu| · ‖∇ξ∂
α′

x ∂β
ξ {I− P}u‖L2

ξ
‖∂α

x ∂β
ξ {I− P}u‖L2

ξ
dx

≤ C‖∇xbu‖HN−1
x

∑

|α′|+|β′|≤N

‖∂α′

x ∂β′

ξ {I− P}u‖2,

and

I5 ≤ C
∑

α′≤α

∫

Rn

|U ∗ ∂α−α′

x bu| · ‖∂β
ξ ([ξ,P]∂α′

x u)‖L2
ξ
‖∂α

x ∂β
ξ {I− P}u‖L2

ξ
dx

≤ C
∑

α′≤α

∫

Rn

|U ∗ ∂α−α′

x bu| · |∂α′

x (au, bu)| · ‖∂α
x ∂β

ξ {I − P}u‖L2
ξ
dx

≤ C‖(au, bu)‖HN
x

(‖∇x(au, bu)‖2
HN−1

x
+ ‖∂α

x ∂β
ξ {I − P}u‖2).

For I6 and I7, it follows in the same way that

I6 ≤ δ‖∂α
x ∂β

ξ {I− P}u‖2 + Cδ

∑

|α′|≤N−k

‖∇x∂α′

x {I − P}u‖2

+C‖bu‖HN
x

∑

|α′|+|β′|≤N

‖∂α′

x ∂β′

ξ {I− P}u‖2,

and

I7 ≤ δ‖∂α
x ∂β

ξ {I− P}u‖2 + Cδ‖∇x(au, bu)‖2
HN−k

x

+C‖(au, bu)‖HN
x

(‖∇x(au, bu)‖2
HN−1

x
+ ‖∂α

x ∂β
ξ {I− P}u‖2).

Now, it remains to estimate I4. To this extent, one can use the identity

∂β
ξ Γ(u, v) = Γ(u, ∂β

ξ v) + U ∗ au[∂β
ξ ,LFP ]v +

1

2
U ∗ bu · [∂β

ξ , ξ]v

= Γ(u, ∂β
ξ v) + U ∗ au[∂β

ξ ,−|ξ|2]v +
1

2
U ∗ bu · [∂β

ξ , ξ]v,

where (A.11) was used again. Then, I4 can be rewritten as

I4 = I4,1 + I4,2,
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with

I4,1 =

∫

Rn

〈∂α
x Γ(u, ∂β

ξ {I− P}u), ∂α
x ∂β

ξ {I− P}u〉dx,

I4,2 =

∫

Rn

〈∂α
x (U ∗ au[∂β

ξ ,−|ξ|2]{I − P}u), ∂α
x ∂β

ξ {I− P}u〉dx

+

∫

Rn

〈∂α
x (

1

2
U ∗ bu · [∂β

ξ , ξ]{I− P}u), ∂α
x ∂β

ξ {I− P}u〉dx.

Similarly to the bound on I3, I4,2 can be controlled by

I4,2 ≤ C‖(au, bu)‖HN
x

∑

|α′|+|β′|≤N

‖∂α′

x ∂β′

ξ {I− P}u‖2
ν.

For I4,1, it follows from Lemma A.1 that

I4,1 =
∑

α′≤α

Cα
α′

∫

Rn

〈Γ(∂α−α′

x u, ∂α′

x ∂β
ξ {I− P}u), ∂α

x ∂β
ξ {I− P}u〉dx

≤ C
∑

α′≤α

∫

Rn

|U ∗ (a(∂α−α′

x u), b(∂α−α′

x u))|

×[|{I− P}∂α′

x ∂β
ξ {I− P}u|ν + |(a(∂α′

x ∂β
ξ {I − P}u), b(∂α′

x ∂β
ξ {I− P}u))|]

×[|{I− P}∂α
x ∂β

ξ {I− P}u|ν + |(a(∂α
x ∂β

ξ {I − P}u), b(∂α
x ∂β

ξ {I− P}u))|]dx,

where a(w) = aw, b(w) = bw for any w. For any α′, β′, one can use the properties

a(∂α′

x u) = ∂α′

x au, |a(∂α′

x ∂β′

ξ {I− P}u)| ≤ C‖∂α′

x {I − P}u‖L2
ξ
,

and similarly for b. Then, it further holds that

I4,2 ≤ C
∑

α′≤α

∫

Rn

|U ∗ ∂α−α′

x (au, bu)|

×(|{I− P}∂α′

x ∂β
ξ {I− P}u|ν + ‖∂α′

x {I − P}u‖L2
ξ
)

×(|{I− P}∂α
x ∂β

ξ {I− P}u|ν + ‖∂α
x {I − P}u‖L2

ξ
)dx

≤ C‖(au, bu)‖HN
x

∑

|α′|+|β′|≤N

‖∂α′

x ∂β′

ξ {I− P}u‖2
ν.

Finally, using the coercivity inequality (2.4) of −LFP , the second term on the l.h.s. of (A.10)satisfies the
low bound

−
∫

Rn

〈LFP ∂α
x ∂β

ξ {I− P}u, ∂α
x ∂β

ξ {I − P}u〉dx

≥ λ0‖{I− P0}∂α
x ∂β

ξ {I − P}u‖2
ν

≥ λ0

2
‖∂α

x ∂β
ξ {I− P}u‖2

ν − λ0‖P0∂
α
x ∂β

ξ {I− P}u‖2
ν

≥ λ0

2
‖∂α

x ∂β
ξ {I− P}u‖2

ν − C‖∂α
x {I− P}u‖2.

Finally, plugging all the above estimates into (A.10), taking summation over {|β| = k, |α|+ |β| ≤ N} and
then choosing a properly small δ > 0 yields (4.6). This completes the proof of Lemma 4.3.

A.2 A priori estimates: Macroscopic dissipation

In this second part of the appendix, we shall prove Lemma 4.4 for the macroscopic dissipation which
plays a key role in the proof of global existence. We first prove estimates on the space derivatives of
Aij(l) and Aij(r) in the following
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Lemma A.2. Let l, r be given by (2.17) and (2.18) respectively. it holds

∑

|α|≤N−1

‖∂α
x Aij(l)‖L2

x
≤ C

∑

|α|≤N

‖∂α
x {I− P}u‖2, (A.12)

∑

|α|≤N−1

‖∂α
x Aij(r)‖L2

x
≤ C‖∇x(au, bu)‖HN−1

x

∑

|α|≤N

‖∂α
x {I− P}u‖, (A.13)

for some constant C depending only on n, where the moment function Aij(·), 1 ≤ i, j ≤ n, are defined
by (2.20).

Proof. For any α, integration by parts yields straightforwardly

|∂α
x Aij(l)| = |Aij(∂

α
x l)|

= |〈(ξiξj − 1)
√

M,−ξ · ∇x∂α
x {I − P}u + LFP ∂α

x {I− P}u〉|
≤ |〈−ξ(ξiξj − 1)

√
M,∇x∂α

x {I − P}u〉| + |〈LFP ([ξiξj − 1]
√

M), ∂α
x {I− P}u〉|

≤ ‖ξ(ξiξj − 1)
√

M‖L2
ξ
‖∇x∂α

x {I − P}u‖L2
ξ

+‖LFP ([ξiξj − 1]
√

M)‖L2
ξ
‖∂α

x {I− P}u‖L2
ξ

≤ C(‖∇x∂α
x {I− P}u‖L2

ξ
+ ‖∂α

x {I− P}u‖L2
ξ
).

The exponential decay in ξ for M was used above. Thus, (A.12) follows by further taking L2
x-norm and

then summation over |α| ≤ N − 1. For Aij(n), one has

∂α
x Aij(r) = Aij(∂

α
x r)

= 〈(ξiξj − 1)
√

M, ∂α
x [U ∗ auLFP {I− P}u]

+
1

2
U ∗ bu · ξ{I− P}u − U ∗ bu · ∇ξ{I− P}u]〉

=
∑

α′≤α

Cα
α′〈(ξiξj − 1)

√
M, U ∗ ∂α−α′

x auLFP ∂α′

x {I− P}u

+
1

2
U ∗ ∂α−α′

x bu · ξ∂α′

x {I− P}u − U ∗ ∂α−α′

x bu · ∇ξ∂
α′

x {I − P}u〉,

which from integration by parts gives

∂α
x Aij(r) =

∑

α′≤α

Cα
α′

{
〈LFP ([ξiξj − 1]

√
M), U ∗ ∂α−α′

x au∂α′

x {I− P}u〉

+〈1
2
ξ(ξiξj − 1)

√
M, U ∗ ∂α−α′

x bu∂α′

x {I − P}u〉

+ 〈∇ξ((ξiξj − 1)
√

M)〉, U ∗ ∂α−α′

x bu∂α′

x {I− P}u〉
}

.

Thus, it follows from the Hölder inequality that

|∂α
x Aij(r)| ≤ C

∑

α′≤α

|U ∗ ∂α′−α
x (au, bu)| · ‖∂α′

x {I − P}u‖L2
ξ

for any α. Hence, similarly as before, (A.13) follows by taking further L2
x-norm, applying the Young and

Sobolev inequalities and then taking summation over |α| ≤ N − 1. This completes the proof of Lemma
A.2.

Proof of Lemma 4.4: Recall the equations (2.21)-(2.24) satisfied by (au, bu) and the parabolic-type
equation (2.25) derived from (2.23)-(2.24). We begin with the estimate on bu from (2.22) and (2.25). Let
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|α| ≤ N − 1. It follows from (2.25) that

d

dt

∫

Rn

∂α
x [
∑

i6=j

∂jAii({I− P}u) −
∑

i

∂iAij({I − P}u)]∂α
x bu

j dx +

∫

Rn

|∇x∂α
x bu

j |2dx

=

∫

Rn

∂α
x [
∑

i6=j

∂jAii({I − P}u) −
∑

i

∂iAij({I − P}u)]∂α
x ∂tb

u
j dx

+

∫

Rn

∂α
x [
∑

i

∂j(U ∗ bu
i bu

i ) −
∑

i

∂i(U ∗ bu
i bu

j + U ∗ bu
j bu

i )]∂α
x bu

j dx

+

∫

Rn

∂α
x [
∑

i6=j

∂jAii(l + n) −
∑

i

∂iAij(l + n)]∂α
x bu

j dx

=: I1 + I2 + I3, (A.14)

where Ii, i = 1, 2, 3, denote the corresponding terms on the r.h.s., respectively. For I3, it holds

I3 ≤ λ‖∇x∂α
x bu

j ‖2
L2

x
+

C

λ

∑

ij

(‖∂α
x Aij(l)‖2

L2
x

+ ‖∂α
x Aij(n)‖2

L2
x
),

where 0 < λ ≤ 1 is a constant to be chosen later. For I2, similarly one has

I2 ≤ λ‖∇x∂α
x bu

j ‖2
L2

x
+

C

λ

∑

ij

‖∂α
x (U ∗ bu

i bu
j )‖2

L2
x

≤ λ‖∇x∂α
x bu

j ‖2
L2

x
+

C

λ

∑

ij

∑

α′≤α

‖U ∗ ∂α−α′

x bu
i ∂α′

x bu
j ‖2

L2
x

≤ λ‖∇x∂α
x bu

j ‖2
L2

x
+

C

λ
‖bu‖2

HN
x
‖∇xbu‖2

HN−1
x

,

where the Young and Sobolev inequalities were used. For I1, one can use (2.22) to rewrite it as

I1 =

∫

Rn

∂α
x [
∑

i6=j

∂jAii({I− P}u) −
∑

i

∂iAij({I− P}u)]

·∂α
x [−∂ia

u + (U ∗ bu
i − bu

i ) − (U ∗ aubu
i − U ∗ bu

i au)

+
∑

j

∂jAij({I− P}u)]dx.

Then, it holds

I1 ≤ δ‖∇x∂α
x au

j ‖2
L2

x
+

C

δ

∑

ij

‖Aij(∇x∂α
x {I− P}u)‖2

L2
x

+λ‖∇x∂α
x bu

j ‖2
L2

x
+

C

λ

∑

ij

‖Aij(∂
α
x {I− P}u)‖2

L2
x

+‖∂α
x (U ∗ aubu

i − U ∗ bu
i au)‖2

L2
x

+ C
∑

ij

‖Aij(∇x∂α
x {I− P}u)‖2

L2
x
,

where 0 < δ ≤ 1 is a constant to be also determined later, and again from the Young and Sobolev
inequalities, one has

‖∂α
x (U ∗ aubu

i − U ∗ bu
i au)‖L2

x
≤ C‖(au, bu)‖HN

x
‖∇x(au, bu)‖HN−1

x
.

Thus, it follows that

I1 ≤ λ‖∇x∂α
x bu

j ‖2
L2

x
+ δ‖∇x∂α

x au
j ‖2

L2
x

+C‖(au, bu)‖2
HN

x
‖∇x(au, bu)‖2

HN−1
x

+ Cλ,δ

∑

|α|≤N

‖∂α
x {I− P}u‖2.
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By plugging the above estimates on I1, I2 and I3 into (A.14), taking summation over |α| ≤ N − 1,
1 ≤ j ≤ n and then choosing 0 < λ ≤ 1 properly small, one has

d

dt
En,b

free(u(t)) +
1

2
‖∇xbu‖2

HN−1
x

≤ δ‖∇xau‖2
HN−1

x
+ Cδ

∑

|α|≤N

‖∂α
x {I− P}u‖2

+C‖(au, bu)‖2
HN

x
‖∇x(au, bu)‖2

HN−1
x

+C
∑

ij

(‖∂α
x Aij(l)‖2

L2
x

+ ‖∂α
x Aij(n)‖2

L2
x
), (A.15)

where the free energy En,b
free(u(t)) corresponding to the dissipation of bu is given by

En,b
free(u(t)) =

∑

|α|≤N−1

∑

j

∑

i6=j

∫

Rn

Aii(∂
α
x ∂j{I − P}u)∂α

x bu
j dx

−
∑

|α|≤N−1

∑

ij

∫

Rn

Aij(∂
α
x ∂i{I− P}u)∂α

x bu
j dx.

Next, we shall obtain the dissipation of au from (2.21) and (2.22). Let |α| ≤ N − 1. It follows from
(2.22) that

d

dt

∫

Rn

∂α
x∇xau · ∂α

x budx + ‖∇x∂α
x au‖2

L2
x

=

∫

Rn

∂α
x∇x∂ta

u · ∂α
x budx +

∫

Rn

∂α
x∇xau · ∂α

x (U ∗ bu − bu)dx

+

∫

Rn

∂α
x au · ∂α

x (U ∗ buau − U ∗ aubu)dx

−
∑

ij

∫

Rn

∂α
x ∂ia

u∂α
x ∂jAij({I− P}u)dx

= I4 + I5 + I6 + I7, (A.16)

where Ii, 4 ≤ i ≤ 7, denote the corresponding terms on the r.h.s., respectively. From the conservation
law of mass (2.21), I4 is rewritten as

I4 = −
∫

Rn

∂α
x ∂ta

u∂α
x∇x · budx = ‖∂α

x∇x · bu‖2
L2

x
.

For I5, one can use the general inequality
∣∣∣∣
∫

Rn

a(U ∗ b − b)dx

∣∣∣∣ =

∣∣∣∣
∫∫

Rn×Rn

a(x)U(|x − y|)(b(y) − b(x))dxdy

∣∣∣∣

≤
[∫∫

Rn×Rn

|a(x)|2U(|x − y|)dxdy

]1/2

‖T∆b‖U

≤ ‖a‖L2
x
‖T∆b‖U

for a = a(x) and b = b(x) so that it holds

I5 ≤ 1

6
‖∇x∂α

x au‖2
L2

x
+ C‖T∆∂α

x bu‖2
U .

For I6 and I7, similarly as before, one has

I6 ≤ 1

6
‖∇x∂α

x au‖2
L2

x
+ C‖∂α

x (U ∗ buau − U ∗ aubu)‖2
L2

x

≤ 1

6
‖∇x∂α

x au‖2
L2

x
+ C‖(au, bu)‖2

HN
x
‖∇x(au, bu)‖2

HN−1
x

,
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and

I7 ≤ 1

6
‖∇x∂α

x au‖2
L2

x
+ C

∑

ij

‖Aij(∂
α
x ∂j{I− P}u)‖2

L2
x

≤ 1

6
‖∇x∂α

x au‖2
L2

x
+ ‖∇x∂α

x {I− P}u‖2.

Putting the above estimates on Ii (4 ≤ i ≤ 7) into (A.16) and taking summation over |α| ≤ N − 1 gives

d

dt
En,a

free(u(t)) +
1

2
‖∇xau‖2

HN−1
x

≤ ‖∇xbu‖2
HN−1

x
+ C

∑

|α|≤N−1

(‖T∆∂α
x bu‖2

U + ‖∇x∂α
x {I− P}u‖2)

+C‖(au, bu)‖2
HN

x
‖∇x(au, bu)‖2

HN−1
x

, (A.17)

where the free energy En,a
free(u(t)) corresponding to the dissipation of au is given by

En,a
free(u(t)) =

∑

|α|≤N−1

∫

Rn

∂α
x∇xau · ∂α

x budx.

Therefore, (4.7) with En
free(u(t)) defined by (4.6) follows from taking the proper linear combination

of (A.15) and (A.17) and then choosing a properly small 0 < δ ≤ 1. Finally, (4.8) holds true since one
has

|En
free(u(t))| ≤ C

∑

|α|≤N

(‖∂α
x {I− P}‖2 + ‖∂α

x (au, bu)‖2
L2

x
)

≤ C
∑

|α|≤N

(‖∂α
x {I− P}‖2 + ‖∂α

x P‖2)

≤ C‖u(t)‖2
L2

ξ
(HN

x ).

This completes the proof of Lemma 4.4.
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