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1. INTRODUCTION 

We consider a multidimensional scalar conservation law 
8 N 8 
/ + L ~(Ai(P)) = 0 for t 2': 0, x E]RN 
ut uX. 

i=1 I 

(1) 

where AI' ... ,AN are C2.a functions from ]R into ]R (for some Q > 0), 
and we shall restrict our attention to the entropy solutions of (1), that is, say, 
bounded solutions of (1 )-in the sense of distributions-which satisfy entropy 
inequalities as introduced by Lax [22]. In the case of (1), the entropy inequali-
ties take the form 

(2) 
8S(p) N 8 ., 
--£:} + L ~(l1i(P))::; 0 ill ~ 

ut uX· i=1 I 

for any convex function S, where l1i is defined by 

(3) 

As shown by Kruzkov [21] (see also Smoller [31] for a presentation of this clas-
sical theory together with more details on the origin and mathematical analysis 
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170 P. L. LIONS, B. PERTHAME, AND E. TADMOR 

of (1) and further references), there exists a unique solution of (1) satisfying 
(2) and initial conditions 

(4) 

where pO, for instance, belongs to Loon L 1 (lRN) and solutions are seeked in 
Loo(lRN x (0, (0)) n C([O, (0); LI(lRN)) for example. 

In this work, we introduce a new formulation of (1), (2). We call this for-
mulation a kinetic one by its analogy with the classical kinetic models such as 
Boltzmann or Vlasov models (see, for instance, Cercignani [7] or the survey by 
DiPerna and Lions [12]). In particular, we add a real-valued variable called 
velocity, denoted by v, and the unknown becomes a "density-like" function 
I(x, v , t) . Then, we introduce the following equation (and restrictions) on I: 

81 8m, N (5) -+a(v)·V' 1=- in.9?(lR xlRx(O,oo)) 8t x 8v 
with 

(6) 1 = X p(x, t) (v) for some function p(x , t) 

and 

(7) m is a nonnegative bounded measure on lR: x lRv x (0, (0). 

Here and everywhere below, the velocity distributions (or profiles) Xo:(v) are 
parametrized by a E lR and are defined by 

'{1 ifO<v::;a, 
(8) Xo:(v) = -1 if a::; V < 0, ° otherwise, 
and we denote by a the vector-valued function given by a(v) = (a l (v), ... , 
aN(v)) and aj(v) = A;(v) (1 ::; i ::; N). Finally, X· Y denotes the scalar 
product between x and y in lRN . Again, by analogy with the classical kinetic 
theory of gases, Xo: (v) can be called a pseudo-maxwellian. Then, the equality 
(6) can be looked at as a (nonlinear) constraint on I, which creates a Lagrange 
multiplier term in the linear equation (5), namely, 8m/8v with m satisfying 
(7). 

Let us finally observe that (6), together with the definition (8) of x)v) , 
immediately yields 

(6') p(x, t) = r I(x, v, t) dv on lRN x (0, (0) . 
.fIR 

Before commenting further on this kinetic model, let us mention how this 
paper is organized. In §2, we show that (5)-(7) defines a well-posed problem 
with an initial condition 

(9) Ilt=o = Xl(x/v) in lR: x lRv' 

which is equivalent to (1), (2), (4). 
In §§3 and 4 we will present various applications of this new formulation 

of scalar conservation laws consisting of compactness, estimates, and regularity 
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results for solutions of (1), (2). These results are completely new in our multi-
dimensional setting (i.e., when N 2: 2) and even in dimension N = 1, some of 
our regularity results appear to be new too. In particular, we will introduce non-
degeneracy conditions on vector-field (Ai) which correspond to a multidimen-
sional extension of genuine nonlinearity type conditions (or a related condition 
introduced by Tartar [33]). Under such a condition, we will show that bounded 
sequences of solutions of (1), (2) are in fact compact in L11oc ' extending thus a 
celebrated result due to Tartar [32] obtained in [32] by the study of oscillations 
(via Young's measures) and the use of compensated-compactness theory (see 
Tartar [33], Murat [25]). 

Finally, in §5, we briefly explain how our analysis can be extended to re-
lated equations like scalar conservation laws with source terms or second-order 
degenerate parabolic equations in conservation form, i.e., 

ap NaN 0 2 
at + L ax (Ai(P)) - L axax (Ai}(P)) = 0 in]RN x (0, (0) 

i=l I i,}=l I } 

(10) 

where (Ai}) E Cl,l satisfies 

( 11) 

At this stage, it is worth indicating the main tool that allows us to extract 
new information on compactness and regularity from the kinetic formulation 
of (1), (2). Our analysis will rely upon the so-called velocity averaging lemmata 
that allow to obtain "more" regularity on macroscopic quantities like p(x, t) 
which are velocity averages or averages of f in v. The first results in that 
direction were discovered by Golse, Perthame, and Sentis [19] and Golse, Lions, 
Perthame, and Sentis [18], various extensions are to be found in DiPerna and 
Lions [12], Gerard [15, 16]; and a rather complete theory was developed by 
DiPerna, Meyer, and Lions [13]. However, it is, necessary for our purposes to 
adapt a bit of the results and methods of [13] to our setting, adaptation that we 
present in an Appendix. 

We would like to conclude this long introduction by a few semihistorical re-
marks and comments that might shed some light on the somewhat unusual ap-
proach to "macroscopic equations" proposed here. First of all, one can say that 
the links between Continuum Mechanics models (or macroscopic equations), 
such as heat, Navier-Stokes, or Euler equations, and kinetic models arising at a 
more detailed description of the evolution of "matter" (a gas for instance) have 
been emphasized since the very early stages of kinetic theory. This link con-
sisting in a limit (hydrodynamical limit, mean free path going to 0) has been 
investigated by the very founders (Maxwell, Boltzmann, Hilbert, etc.) of the 
kinetic theory of gases. And it was always hoped that this limit would reveal 
and illuminate some of the complex phenomena present at the macroscopic 
level. Illustrations of this constant hope can be found in various works in Nu-
merical Analysis or Scientific Computations like the study and development of 
Boltzmann schemes for Fluid Mechanics models. Our work can thus be seen 
as a small contribution to that general program. Let us also point out that 
not only can we analyse a hydrodynamical limit but we also can write down 
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172 P. L. LIONS, B. PERTHAME, AND E. TADMOR 

at the macroscopic level a kinetic equation involving a "density-like" function 
whose velocity distribution is the "equilibrium" density (here Xu (V)) obtained 
by minimization of "entropy-like" functionals. 

Let us also remark that extensions of our work to more general conservation 
laws (systems) are not clear and that, up to now, our approach seems to rely 
very much on some "scalar features". Next, we would like to point out that 
our work can be seen as a sequel of the work by Perthame and Tadmor [29] 
investigating the hydrodynamicallimit of BGK type models (5)-(7) and their 
relation with (1), (2). Also, this paper introduces a setting which, in some sense, 
is a continuous version of some time-derivations of (1), (2) studied by Brenier 
[5] or Giga and Miyakawa [17]. Finally, the usefulness of velocity averaging 
lemmata for hydrodynamical limits has already been demonstrated by various 
works that include Bardos, Golse, Perthame, and Sentis [2] for radiative transfer 
models, Bardos, Golse, and Levermore [1] for Boltzmann equation, and Golse 
and Poupaud [20] for semiconductor models. 

Let us finally mention that most of the results proven here were announced 
in the Comptes-Rendus de l'Academie des Sciences de Paris (Ser. 1312 (1991), 
9-102). Extensions to 2 x 2 systems have been obtained recently by the authors 
[37]. 

2. KINETIC FORMULATIONS OF ENTROPY SOLUTIONS 

We begin with a result showing the relations between entropy solutions of 
(1), (2) and the kinetic system (5)-(7). 

Theorem 1. (1) Let P E LooCiR: x (0, (0)) n C(O, 00; L 1(:JR:)) solve (1), 
(2), and set f(x, v, t) = Xp(X,t/v). Then, f E C(O, 00; Ll(:JR: x :JRv )) n 
LOO(:JR: x (0, (0); Ll(:JRv )) solves (5) for some m satisfying (7) supported in 
:JR: x [-Ro' Ro] x (0, (0) where Ro = IlpIIL"'" In addition, if we denote by f./, 
the bounded nonnegative measure on :JR defined by 

( 12) 1 g(v) df./,(v) = 1 g(v) dm for all g E 9J(:JR) 
IR 1R~ xlRv x(O, 00) 

then f./, ELI (:JR) n L 00 (:JR) and we have 

{ fRf./,dv ::; ~ SUPt~O IIp(t)1122(R~) a.e. in R 
f./, ::; SUPt>o IIp(t)IIL1(R~) 

(13) 

(2) Let f E C(O, 00; LI(:JR: x :JRv )) n LOO(:JR: x (0, (0) and LI(:JRv ) solve 
(5), (6) for some m satisfying (7), and set p(x, t) = fR f(x, v, t) dv. Then 
p E LOO(:JR: x (0, (0)) n C(O, 00; LI(:JR:)) solves (1), (2). 

Remarks. (1) Of course, p E C ([0, (0) ; L I (:JR:)) if and only if 

1 N f E C([O, (0) ; L (:JRx x :JRv ))' 

in which case the suprema in (13) may be replaced by their values at t = 0. 
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(2) The above result still holds if we only assume P E Co (lR~ x (0, 00)) , in 
which case m is a nonnegative measure on lR~ x lRv x (0, 00) satisfying the 
following bounds for all R E (0, 00) : 

( 14) 

Before we begin the proof of Theorem 1, let us mention the following imme-
diate consequence of uniqueness results for (1), (2) due to Kruzkov [21]. 

Corollary 1. Let pO E Loon L I (lR N ). Then there exists a unique 
I NooN I 

f E C([O, 00); L (lRx x lRv)) n L (lRx x (0, 00); L (lRv)) 

solving (5), (6), (9) with m satisfying (7). 

Remarks. (1) The measure m, in the above result, is also uniquely determined 
since 8m/8v is by (5), and then the uniqueness of m follows from (7). 

(2) The measure m can be interpreted as the Kruzkov's entropy dissipation. 
Indeed, choosing for S the Kruzkov entropy (p - k)+ ' we find that the right-
hand side of (2) is exactly (formally) -m(x, k, t) since the kinetic formulation 
gives the value (S'(v) , 8v m) = -m(x, k, t). The equality 

{ 8 + ~8 . + } m(x,v,t)=- 8t(P-v) +8 8Xi[Slgn (P-V)(Ai(P)-Ai(V))] 

(in the sense of distributions) can easily be justified. 
(3) Let us observe that fR(xa(v) - Xp(v))+ dv = (a - P)+ so that we have 

for all t 2: ° 
r (PI - P2)+ dx = r U; - J;t dxdv iRN iRN +1 

:::; r (p~ - p~t dx = r (I( - I;t dx dv iRN iRN+1 

where (PI' f l ) and (P2' f 2) are the solutions corresponding to initial condi-
tions (p~, I() and (p~, ~) respectively (recall that .t = Xp?(v) for i = 1, 2). 
This fact again is deduced from Theorem 1 and classical comparison-uniqueness 
results for (1), (2). 

We now, tum to the proof of Theorem 1. We begin with the proof of the 
second assertion, which is based upon the following remark 

(15) J Xa(v)rp(v) dv = foa rp(a) da for all rp E C(lR) , a E lR. 

Then, at least formally, (1), (2) follow from multiplying (5) by 1, rp' (v) where 
rp is a C 2 convex function, and integrating over v E lR. The sign in (2) is 
then deduced from the sign of m (7) and the convexity of rp. Now, to justify 
this formal computation, the only difficulty consists in justifying the integration 
by parts over lR in the "product" rp (v)8 m / 8v. In order to do so, we first 
remark that without loss of generality we may assume that rp(O) = 0 and rp" 
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has bounded support so that rp' is bounded. Then, .Iet IfI E C;'(IR) satisfy 
o ~ IfI ~ 1, IfI == 1 on [-1, +1], Supp IfI C [-2, +2], and set, for n ~ 1, 
IfIn(V) = IfI(v/n). Next, let g E 9(1R: x (0, 00», g ~ o. We want to show 

I a N a 
- rp(p) a~ + L l1j(P) a~. dx dt ~ o. 

j=1 1 

( 16) 

This inequality will yield (2) while (1) is shown by similar computations. 
Then, we mUltiply (5) (in distributions sense) by g(x, t)rp'(V)IfIn(V) and find 

N I n ag '" n ag I II I I - rp (p){j( + L...Jl1j (p) ax. dxdt = - g(rp IfIn + rp IfIn)dm 
j=1 1 

( 17) 

where rpn(t) = f~ rp' (V) IfIn (u) du, 117(t) = f~ aj(u)rp' (V)IfIn(V) dv . 
Next, we observe that (7) implies 

I II II I I I C grp IfIn dm ~ 0, grp IfIn dm ~ n 
for some C ~ 0 independent of n. Then, (17) yields (16) since rpn (p), 117 (p) 
converge respectively to rp(p), l1j(P) in L1~C. 

We now tum to the proof of the first assertion in Theorem 1. We denote by 
T the distribution of order at most 1 defined by a f / at + a (v) . Y' x f . Observe 
that Supp T C 1R: x [-Ro ' RoJ x (0, 00). In addition, since we have by (15) 

l f dv = p, l aj(v)f dv = Aj(p) 

we deduce from (1) that T satisfies 
N (18) (T, g ® I) = 0 for all g(x, t) E 9"(lRx x (0, 00». 

In view of the restriction on the support of T mentioned above, we may define 
a distribution m on 1R: x IRv x (0, 00) by 

(19) (m, g) = - (T, [Voo g(x, w, t)dW) Vg E 9"(IR: x IRv x (0, 00». 

Clearly, m is of order at most 1 and, because of (18), is supported in 1R: x 
[-Ro' RoJ x (0,00). Of course, T = am/av in 9"' . 

Therefore, if g(x, t) E 9"(IR: x (0, 00» ~ 0 and IfI E 9"(lRv ) ~ 0, we may 
set rp(v) = f;(f~oo IfI(u)du)dt and deduce from (19) 

(m, g ® IfI) = -(T, g ® rp/) 

= I f(x, v, t) [rpl (v) ~~ + t ai(v)rp' (v) ;~.] dx dv dt 
/=1 1 

I a N a 
= rp(p) a~ + L 11i (P) a~. dx dt ~ 0 

i=1 1 
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in view of (15) and (2). This sign, by an easy adaptation of the proof of 
Schwarz lemma on nonnegative distributions, is enough to ensure that m is a 
nonnegative measure on lR: x lRv x (0, 00) (supported in lR: x [-Ro ' Ro] x 
(0, 00». The above computation shows in particular in view of (18) that 

/ 
p2 8g ~_ 8g 

(m, g@I)= 27it+ L.,.'tl i (P)8x dxdt, 
i=1 I 

(20) 

where fii(t) = J~ a/a)a da. 
Next, we wish to justify the choice of g(x, t) = g(t) in (20). This is done 

by considering gn(x, t) = g(x/n)g(t) with g E 9(lRN) , 0 ~ g ~ 1, g == 1 if 
Ixl ~ 1, g E 9(0,00), g 2: 0, from which we deduce 

2 

(21) 0 ~ (, g(t)dm(x, v, t) = / P2 g'(t)dxdt. 
lIR>IRvx(O,oo) 

We then deduce easily from (21) the fact that m satisfies (7) and the first bound 
in (13) by observing that J p2 d x is a nonincreasing function of t > 0 in view 
of (2). 

There only remains to show that f..l E L 00 (lR) and satisfies the second bound 
in (13). This is shown by an argument quite similar to that above replacing 
g@1 by g@I/fJw) where w is arbitrary in lR and I/fe = tl/f(i), I/fEC;'(lR), 
I/f 2: 0, JIR I/f dv = 1 . We then obtain 

(22) 

where (jJe(t) = J~ J~ I/fe(w - a) da ds for all t E lR. We then conclude easily 
since 0 ~ (jJe(t) ~ It I on lR for all e > o. 

We now conclude this section by recalling a Boltzmann-like (or more precisely 
a BGK-like) model proposed by Perthame and Tadmor [29] which yields (1), 
(2) as an "hydrodynamicallimit" and in fact "converges to (5)-(7)". It consists 
in solving 

(23) 
8 fe e 1 e. N 
-8 +a(v)·\7 f =-(Xp,(v)-f)=O mlR xlRvx(O,oo), t x e x 

(24) 

together with the initial condition 

(25) felt=o = Xpo(X)(v) in lR: x lRv. 

By following Kruzkov's theory [21] of conservation laws (1), (2), it was shown 
in [29] that, if Po E L1(lRN) n Loo(lRN) , then l converges in Ll(lRN x (0, T» 
(VT < 00) to the solution p of (1), (2), (4). Notice that (23), (24) is a semilin-
ear, nonlocal, hyperbolic (first-order) equation which is rather simple to solve 
for e > 0 fixed. Let us remark finally that F satisfies the following properties 

e fe N (26) If I ~ 1 a.e., Supp c lRx x [-Ro' Ro] x [0, 00), 
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f e 2: 0 c > 0 a.e. lor v _ , f e :S 0 c < 0 a.e. lor v _ . 

We then want to show 

Theorem 2. The solution fe of (23)-(25) converges in LI(lR: x lRv x (0, T)) 
(VT < 00) to the solution of (5)-(7), (9). In addition, t(Xp' - fe) may be 
written as 8 mJ 8v where me is a nonnegative measure on lR: x lRv x [0, 00) 
bounded independently of e which converges weakly to the measure m uniquely 
determined by (5)-(7). 

Remarks. (1) In fact, one can show that fe converges in C([O, T]; L I) (VT < 
00) to f and that me is a tight family of bounded nonnegative measures. 

(2) It would be useful to have more qualitative information on m, for in-
stance, its support. For example, one may deduce from the above result and 
from [29] that m vanishes on open sets of the form {(x, v, t)/(x, t) E & , 
v E lR} where & is an open set on which p is locally Lipschitz. In other 
words, m is "supported by the shocks". Another way to check this fact is to 
use the equality mentioned in Remark (2) following Corollary 1. 

Proof of Theorem 2. In view of the results recalled above, we only need to show 
that t(xp' - fe) can be written as 8me/8v where me is a nonnegative measure 
bounded independently of e > O. This fact can be shown in several ways. One 
way is to observe that if 0: E lR, g( v) ELI (lR) satisfies 

{
-I :s g :s 0 for v :s 0, 
o < g < 1 for v 2: 0, 
fR g(v) dv = 0: 

(28) 

then 

(29) { Xa(v) - g(v) :;:: q'(v) 
for some nonnegative, bounded, continuous function q. 

Indeed, set q( v) = f~oo (Xa (w) - g( w)) dw. In the case when 0: > 0, the other 
case being treated similarly, we see that q is nondecreasing on (-00, 0:) and 
nonincreasing on (0:, +00). And we conclude since q(-oo) = 0 and q(+oo) = 
0: - fR g dv = O. 

Another possible proof consists in recalling the following elementary lemma 
(due to Y. Brenier [5]) and copying the proof of Theorem 1 (which then becomes 
simpler since distributions theory is no more needed). 0 

Lemma 1. Let 0: E lR and let rp be a C l convex function on lR such that rp' is 
bounded. Then, Xa (v) is a minimizer of 
(30) 

inf {fa rp' (v )g( v) dv / gEL \lR), fa g dv = 0:, 0 :s g sign v :s 1 a.e. on lR} . 

In addition, Xa(v) is the unique minimizer of (30) if rp' is strictly increasing 
on lR. 
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Remark. In fact, Lemma 1 is equivalent to (29) since, if we denote by J.l the 
bounded nonnegative measure given by rp" , we have easily 

fa rp' (v)[g(v) - Xa(v)] dv = fa q(v) dJ.l(v) ~ O. 

And the uniqueness of Xa follows since, arguing by contradiction, if g is 
another minimizer, we find that q vanishes on the closure of Supp(J.l), which 
is JR since rp' is strictly increasing on JR. 

Of course, (29) or Lemma 1 is probably the key point making possible the 
kinetic formulation (5)-(7) of scalar conservation laws (1), (2). 

3. ApPLICATIONS TO COMPACTNESS AND REGULARITY OF ENTROPY SOLUTIONS 

In this section we deduce from the kinetic formulation (5)-(7) new infor-
mations on compactness and regularity properties of entropy solutions of 
(1), (2). We begin with compactness properties and consider a family l E 
C(O, 00; L 1 (JRN)) n L 00 (JRN X (0, 00)) of solutions of (1), (2). We assume that 
l is bounded on JRN x (0, 00) and in L 1(JRN) uniformly in t, independently 
of e and denote by Ro a common bound in L 00 • 

We next introduce a nondegeneracy assumption on the curve (v f-+ a(v)) in 
JRN 

meas{lvl < Ro' 1: + a(v) . ~ = O} = 0 
N 2 2 for all (1:, ~) E JR x JR such that 1: + ~ = 1. 

(31) 

The assumption means that the curve (v f-+ a(v)) cannot "stay" in a given 
hyperplane. When N = 1 , this condition is closely related (it is in fact stronger) 
to a condition introduced by Tartar [32], namely, that a is not constant on a 
nonempty open interval. In higher dimensions, the strict analogue of Tartar's 
condition (and its implications!) was not known and a related attempt can be 
found in Engquist [14]. With this condition, we can prove 

Theorem 3. Under assumption (31), l is relatively compact in L 1 (( 0, T) x B R) 
('<IT, R < 00) . 

Remarks. (1) In view of Theorem 1, Theorem 3 is shown if we prove that 

(32) fa fe 1/1 dv is relatively compact in L:oc(JR: x (0, 00)) 

where 
1/1 = 1[_R R lev). 

0' 0 

(2) We will give examples of fluxes A satisfying condition (31) later on. At 
this stage, let us only mention that, when N = 1, (31) reduces to 

(33) meas{lvl < Ro' a(v) = J,.} = 0 for all J,. E lR. 

(3) It is worth remarking that one can use this compactness result at the level 
of the BGK model considered in the preceding section to deduce directly the ex-
istence of solutions, providing thus an alternate route to existence theory (which 
is in some sense independent of BY estimates or L 1 -contraction arguments). 
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(4) It is obvious that the following choice of A provides an example where 
(31) does not hold. We choose A(v) = (v 2 ,V2) in two dimensions (n = 2) so 
that (1) reads 

8p 8 2 8 2 
Dr + 8 x (p ) + 8 y (p ) = O. 

And since all functions po(x - y) are steady solutions of that equation, it is 
obvious that Theorem 3 cannot hold (as remarked in [14]). This example shows 
that a condition like (31) is necessary. 

We are going to show below that Theorem 3 is a straightforward consequence 
of the following general compactness result, which is a variant of the results 
shown in DiPerna, Lions, and Meyer [13] (the proof of this result is sketched 
in the appendix). 

Theorem B. Let 1 < p :::; 2, let f be bounded in Lfoc (lR~ x lRv x (0, 00)), let 
g belong to a compact set of LP (lR~ x lRv x (0, 00)) , and let r 2: O. We assume 
that f satisfies 

N 
8 f" 8 f 1/2 r/2.' (34) 7ii+L...tai(v)8x=(-Llx,t+1) (-Llv+1) g zn9 

i=1 I 

where a E C:~ca with I = r, 0: = 1 . if r is an integer, I = [r], and 0: = r - I if 
r is not an integer. Let IfI E Lpl (lRv) with compact support. 

Finally, we assume that a satisfies 
meas{v E SUPPIfI, ,+a(v)·~ = O} = 0 

V(" ~) E lR X lRN with ,2 + 1~12 = 1. 
(35) 

Then, JR flfl dv belongs to a compact set of Lfoc(lR~ x (0, 00)) . 
In order to deduce Theorem 3 from Theorem B, we use the kinetic formu-

lation, i.e., we consider fe = Xp' (see also the Remark (1) above) and only 
need to show that the associated Lagrange multipliers 8me /8v can be writ-
ten in the form of the right-hand side of (34). Recall also that we know from 
Theorem 1 that me is a bounded family of bounded nonnegative measures on 
lR~ x lRv x (0, 00). Then, if we choose p < (N + 2)/(N + 1), we know from 
Sobolev embeddings that me is bounded in W-S'P(lR~ x lRv x (0,00)) for 
1 > s > (N + 2)/p'. Notice that s goes to 0+ as p goes to 1+. This easily 
yields (34) for r> 1 + (N + 2)/p' . And Theorem 3 then follows from Theorem 
B upon choosing IfI(V) = l[_R R j(v), 

0' 0 

Remark. We want to emphasize here some relationship between measure valued 
solutions, Young's measures and our kinetic formulation. This relationship can 
be seen by taking weak limits of entropy solutions l of (1), (2) as in Tartar [32] 
and considering (up to subsequences) the Young's measures Vx t associated to 
l , namely, probability measures on lR, parametrized (in a ~easurable way) 
by (x, t) E lRN X (0, 00) , such that for all (jJ E C(lR) 

(jJ(P") --; f (jJ(A)dvx,t(A) W - Loo(lR: x (0, oo)t· 
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Therefore, if (fe, me) converge weakly (in L';, in the sense of measures) 
respectively to (f, m) , we see that (5) or (7) still hold. In addition, for any 
rp E C 1 (ffi.) , we deduce from the above convergence 

J rp(A)dvx,/~·)-rp(O)= J Jrp'(v)dv; 

hence 8J/8v=ao -vX ,1 in g' and J=JX;.(v)dvx,/(A) a.e. 
Then, (5)-(7) and these equalities give a formulation of the evolution of 

Young's measures which is in fact equivalent (by the same proof as in Theorem 
1) to the notion of measure-valued solutions satisfying an entropy condition as 
defined for instance by DiPerna [11]. 

We now turn to regularity results for entropy solutions of (1), (2). We shall 
need to strengthen assumption (31). We consider an initial condition pO E 

LI n Loo(ffi.N) and let Ro > 11/llcc(JRN). We shall use the following condition 
on a: 
(36) 3a E (0, 1], 3C ~ 0, meas{lvl < Ro' 11' + a(v) . ~I :::; a} :::; car> 

for a E (0, 1), (1',~) E ffi. X ffi.N with 1'2 + 1~12 = 1. 

Then, denoting by p the entropy solution of (1), (2), (4) which belongs to 
C([O, 00) ; L I (ffi.~)) n L 00 (ffi.~ x (0, 00)) and satisfies IlpIIL~, = IIpoilL 00 (JRN) , we 
have 

Theorem 4. Under condition (36), we have Jor all e E (0, 1) and Jor all S E 
(0, a/(a+2)) 

P E ~~~p(ffi.: x (0, 00)), 
(37) 

Ilpllws,P(B1/,X(e. Ije)) :::; C with p = ~::, 

(38) 

Jor some C ~ 0 depending only on e, s, Ro' and IIpoIIL1(JRN). 

Remarks (1). Such regularizing effects results appear to be completely new when 
N ~ 2. When N = 1 , various related regularizing effects have been obtained. 
First of all, when A is strongly convex or concave, i.e., A" > 0, then it is a 
classical fact that p is in BY for t > O. Notice that in that case (36) holds with 
a = 1 , and thus we do not recover fully this classical result. Other results of that 
sort have been shown when N = I-see, for example, Benilan and Crandall [3], 
Liu and Pierre [24], Dafermos [9]. They all show that some nonlinear function 
of p is in BY for t > O. Let us take a typical example taken from [3]: we 
consider the case when A(t) = altl m if t ~ 0, = Pltl m if t < 0 with a, P E ffi., 
m ~ 2. Then, A(p) is bounded in BY for positive time. But this in general 
does not imply any regularity on p. If, for instance, a = P =1= 0, then a 
function p taking only values + 1 and -1 will be such that A(p) == 1 ! Other 
regularity results can be found in Zumbrun [36] which for similar reasons are 
not strictly comparable to ours. This shows that such regularity results valid for 
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very specific fluxes A are not comparable to Theorem 4. Let us mention that, 
in the above example, by a direct examination based upon Lax [22]-Oleinik [26] 
formula, one can check that u E C(O, 00; Wi:;I) for all s < 1/(m - 1) (and 
this is sharp!). Let us also point out that (36) holds with a = 1/(m - 1) if 
m~2. 

(2) We gave in the preceding remark various examples of fluxes A satisfying 
(36). Let us mention a few other examples. Still if N = 1 , if A(t) = sin t or 
A(t) = cos t , then (36) holds with a = !. When N ~ 2, computing the sharp 
exponent a for which (36) holds is a delicate matter. Let us consider a few 
examples when N = 2: take first a l (v) = v, a2 (v) = eV (i.e., Al = v 2/2, 
A2 = eV , which are both strongly convex); then (36) holds with a = !. If 
we take a l (v) = Ivlmv, a2(v) = IvlPv with ° < m =1= p; then (36) holds with 
a = max( 1 + m, 1 + p) -I . 

(3) It is clear that Theorem 4 is not sharp with respect to the "best" range 
of possible s. We conjecture that (38) holds if s < a (instead of a/(a + 2)) 
while (37) holds for all 1 ::::; p < 00 with s < alp (instead of a/(a + 2) when 
p=(4+a)/(2+a)). 

The proof of Theorem 4 that we postpone relies upon the following result, 
which is a variant of the results shown in DiPerna, Lions, and Meyer [13], 
variant whose proof is sketched in the appendix. 

Theorem A. Let 1 < p ::::; 2, let 1 ::::; q ::::; 2, let a satisfy (36), and let IjI E 

C;'(lR) be supported in (-Ro' Ro)' Let f E Wi~/(lR~ x lRv x lRt ) for some 
a ~ 0, let g E L~c(lR~ x lRv x lRt ) if q > 1, or let g be a locally bounded 
measure onlR~ x lRv x lRt if q = 1. We assume that f satisfies 

8f 8g . ,N 
(39) 8t + a(v) . yo xf = 8v m 9 (lRx x lRv x lRt )· 

Then, let 
( )

-1 a a a 
()=- -+2--I I I' P P q 

r be given by 
1 () 1-() - = - + -- l' = () + (1 - ())a. r q p' 

Then J fiji dv E Wi~~r (lR~ x lRt ) for all s E ((), 1'). 

Remarks. (1) Similar results can be obtained if we replace (as in [13]) 8g/8v 
by 

(-.1.x ,t + 1 (/2 (-.1.v + l)m/2g with v E [0,1), m ~ 0. 

(2) Of course, local bounds on J fiji dv in W S , r depend on s, p, q, a, N 
and on local bounds on f and g. 

In order to simplify the presentation, we will not bother to keep track of the 
bounds in the proof of Theorem 4 and will only show that 

p E Wi~/(lR~ x (0, 00)) n C((O, 00); Wi:;I(lRN)). 
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Further simplification will be achieved by observing that since pO and p belong 
to L 00 , by the finite speed of propagation of solutions (1), (2), we may assume 
without loss of generality that pO and p have bounded supports in x (uniform 
in t bounded in [0,00) of p). 

As we shall see, the proof of Theorem 4 uses Theorem A with p = 2, q = 1 , 
some interpolation arguments together with a bootstrap argument made possible 
by the following property of entropy solutions of (1), (2). 

Lemma 2. (i) Let If/ ELI n L 00 (JRN) , If/;::: O. Then, 

for Ip(x, t) - p(y, t)llf/(x - y) dx dy 
}ItN xItN 

is a non increasing function of t ;::: O. 
(ii) If pO E Ws,I(]RN) for some s E (0, 1), then IIp(t)lIws.I(It:) is a nonin-

creasing function of t ;::: 0 . 
Recall that 

11 IqJ(x) - qJ(y)1 
IIqJllws.I(ItN ) = IIqJIILi(ItN ) + N+s dx dy. 

ItN xRN Ix - yl 
Therefore, (ii) follows from (i) in a straightforward way. The proof of 
(i) is in fact a general (abstract) fact about L I-contractive, translation-
invariant semigroups. Indeed, we know from Kruzkov's theory [21] that 
faN IpI (t) - P2(t)1 dx is a nonincreasing function of t ;::: 0 whenever PI' P2 
are entropy solutions of (1), (2). In particular, since p(. - h, t) is the entropy 
solution of (1), (2) corresponding to l(· - h) for all hE]RN, we deduce that 

r Ip(x, t) - p(x - h, t)1 dx is a nonincreasing function of t > O. ' 
}ItN 

And Lemma 2(i) follows upon multiplying by If/(h) and integrating with respect 
to hE]RN . 

We offer a final observation before going into the computations that will 
yield Theorem 4: the kinetic formulation (5)-(7) is of course valid for t > 0, 
while the "velocity-averaging" Theorem B requires f and g to be defined for 
t E JR. This is easily resolved by applying Theorem B to fqJ(t) , gqJ(t) where 
qJ E Coo(JR), qJ == 0 for t :::;; 0, and qJ =1= 1 for t ;::: h > 0 where h > 0 can 
be made arbitrarily small. In doing so, we add to the right-hand side of (39) a 
term of the form of qJ' which does not affect the conclusion of Theorem B. 

With all these simplifications and modifications in mind, we may proceed 
with the proof of Theorem 4; we use the kinetic formulation (5)-(7). Since 
f E L~oc(]R: x (0, 00)), we may apply Theorem A with q = 1, p = 2, a = 0, 
~nd If/ such that If/ == 1 on [-lIpoIlLoo , IllIILoo]. Notice that the choice q = 1, 
P = 2 that we shall use repeatedly yields 

n n + 4 n + 4a 
O=n+4' r=n+2' T= n+4' 

We then deduce from Theorem A that p E Hii~ r (JR: x (0, 00)) for all s < T I = 
n/(n + 4) . 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



182 P. L. LIONS, B. PERTHAME, AND E. TADMOR 

In particular, p E Jfi~~ICJR~ x (0,00)) for all s < TI . By the compact 
support simplification and Lemma 2(ii), we deduce in fact that p(t) is bounded 
in Ws,l(lR~) for t ~ e ("Ie> 0). Then, since p E C([O, 00); LI(lR~)), 
we deduce that p E C((O, 00); Ws,l(lR~)) for all s E (0, TI ) and that p E 

W S , I (lR~ x (e, l/e)) (using equation. (1) to recover the fractional regularity in 
t) for all s E (0, TI ), e E (0,1). Since J = xp(v) , we deduce easily that 
J E Ws,l(lR~ x lRv x (e, l/e)) for all e E (0,1) and for all s E (0, TI ). For 
instance, one may observe that J ELI (lRv; W S , I (lR~ x (e, l/e))) , while 8 J/8v 
is a bounded measure on lR~ x lRv x (0, 1/ e) . 

Next, using interpolation theory and the fact that J E L 00 , we deduce that 
JE Ws,2(lR~xlRvx(e, l/e)) for all s E (0,1) and for all SE (0, TI/2). At this 
stage, we may again apply Theorem A with q = 1, p = 2, and (J = s. We then 
deduce by the same argument as before that p E Jfi~~r (lR~ x (0, oo))nC((O, 00); 
Ws,l(lR~)) for all s E (0, T2) where T2 = (a+2T1)/(a+4). Reiterating this 
argument, we conclude the proof of Theorem 4 since T = a/(a + 2) is the 
unique fixed point of the increasing map (T I 1--+ T 2) . 

4. MOMENTS ESTIMATES AND BOUNDS ON ENTROPY SOLUTIONS 

In this section, we show how one can deduce from the kinetic formulation 
new Lfoc bounds on entropy solutions of multidimensional scalar conservation 
laws. If N ~ 2, such results seem to be new, while, if N = 1 , related results 
exist for convex flux A (by the Lax-Oleinik formula) or for more general fluxes 
and we refer to Liu and Pierre [24], Dafermos [9], etc. In fact, if N = 1, 
quite general results showing La; bounds on solutions for positive time t can 
be deduced from the regularizing effect results shown in Lions [23]; indeed, 
one just has to "raise solutions at the Hamilton-Jacobi level" by considering 
J~oo p(y , t) dt and apply the results of [23]. However, all these one-dimensional 
results seem to be of a different nature than the ones that follow since we shall 
obtain results on L P (Ixl::; R, t E (0, R)) bounds on solutions for all R < 00. 
In fact, our results seem to be more related to dispersive local estimates for 
Schrodinger like equations as shown by Vega [34], Sjolin [30], Constantin, and 
Saut [8], etc. Our method of proof will be to adapt the method introduced 
by Perthame [27, 28], which provides local higher integrability in v (or more 
precisely local in x, t, higher moments in v) for solutions of kinetic type 
equations by some kind of dispersion analysis. 

We shall use the following condition on a: 

I { Cla(v)1 if la(v)1 ~ 1, 
(40) Ivlla (v)l::; Cla(v)II/2 if la(v)1 ::; I, on JR, for some C ~ O. 

Proposition 1. Under condition (40), the entropy solution p oj (1), (2), (4) 
satisfies Jor all r > 0 and Jor all R E (0, 00) 

(41) rR r I rp Ivl'la(v)1 1/ 2 dvl dxdt::; CII/II~i:'(lRN) 10 llxl5,R 10 
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where C 2: 0 depends only on A and R. 

Remarks. (1) Since we have IIp(t)IILIH(IRN) ~ IlpoIIL1H(IRN) for all t 2: 0, r > 0, 
we immediately see that ft Ivj'ja(v)I/2 dv can be replaced by any ft w(v) dv 
where w(v) = Ivlrla(v)1 when Ivl and la(v)1 are large. 

(2) In addition, the above remark shows that (41) yields some new informa-
tion only when 

llo t Iv(ja(v)II/2 dvlltl-(IH) ~ +00 as It I ~ +00. 

In particular, if la(v)1 "behaves like Ivl et " as Ivl goes to +00 for some a> 0, 
the above result yields a local bound in LP with p = 1 + r + a/2, representing 
thus a gain of a/2 in terms of the integrability exponents. 

(3) The L 1 case and related questions Demangel and Serre [10]) seems to 
be out of the scope of the higher moment techniques. 

Proof of Proposition 1. In order to simplify the presentation, we shall consider 
only the case when r = I-the general case being handled in a similar manner. 
We then follow the method of proof introduced in Perthame [27, 28]. Let rp, If! 
denote two cut-off functions rp, If!: rp, If! E C;" (]RN) , 0 ~ rp, If! ~ 1 on ]RN , 
rp = If! = 1 if Ixl ~ R, Supp rp, Supp If! C B2R+1 • We introduce a function 
d(v) > 0 which is equal to la(v)II/2 "far from" the set {a(v) = O} such as, 
for instance, d(v) = max(la(v)I/2 , 1). We now set 'P(x, v) = If!(x/d(v)) and 
deduce from (5) 

a a(v) ( x) am 
(42) at (f'P) + a(v) 0 \7 x(f'P) = d(v) . \7 x If! d(v) f + 'P av . 

Since f has the same sign as v, we can write the left-hand side of (41) as 
foR f

1
xl:5,R flRv v la( v )1 1/ 2 f dv dx dt. And writing equation (42) in integral form 

(along the characteristic lines x - a(v)t), we deduce 

r vla(v)II/2 r r rp(x)('Pf)(x,v,t)dxdtdv 
llR lo llRN 

= r vla(v)II/2 dv rR dt r ,dxrp(x) 
llR lo lIRA 

(43) x {('Pf)(x-a(v)t, v,O) 

t [a(v) + lo d(v)' (\7 x If! f)(x - a(v)s, v, t - s) 

+('P~:)(x-a(v)s,v,t-S)] dS}. 

Noticing that 

( am) . ( a , ) av (x-a(v)s, v, t-s) = av +sa (v)o\7x ·(m(x-a(v)s, v, t-s)), 
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the last term of the right-hand side of (43) may be written after an integration 
by parts as 
(44) 

_ {R dt ( dxrp(x) tds (dvm(x-a(v)s,v,t-s) 1o lRN 1o lR 

x [:v (v(/a(v)/1/2)'I' + C/v//a(v)/1/2)'V'I'. :v (x ~~;~)s)] 

-l v/a(v)/1/2 dv lN dX foR dt fot dssa'(v). (~~~~'V'I'+'Vrp(X)'I'). 

All these terms and the two first terms of the right-hand side of (43) can 
be treated in a similar way, and thus we will present the analysis of only the 
relevant ones. In this treatment, we shall use the following change of variables. 
For a fixed v with /a(v)/2: 1, we set 

(45) u = /a(v)/s, 
, 

x = x + ye, Y E JR, -I e = a(v)/a(v)/ . 

The first term we treat is the first term of the right-hand side of (43). Then, 
before performing the integration with respect to v, we find for /a(v)/ 2: 1 

v/a(v)/1/2 {R { rp'I'J(x-a(v)s,v,O)dxds 1o lRN 
1/2 ( , 

::; v/a(v)/ lRxRN - 1 rp(x + ye) 

{ , du, 
x lRJ(x +e(y-u),v,O)/a(v)/dydx 

::; { vJ(x'+ze,v,O)dxdz (rp(x'+ye)dy 
lRn - 1 xR lR 

::;C(R) ( v/(x,v)dx. 
lRN 

For laC v) / ::; 1 , the same estimate holds with a straightforward verification that 
we skip. Performing the last integration in v , we find the desired estimate since 
fa: fa v v~(x, v) dx dv = IIpoll22(RN) . 

The second term we treat is the second term of the right-hand side of (43). 
Again, before the integration with respect to v, this term is bounded by 

( 46) 
3/2 'lRl1R Cv/a(v)/ d(v)- rp(x)J(x - a(v)s, v, r) ds dx dr ° RII' ° 

::; C(R)/a(v)/'/2/d (v) {R ( vJ(x, v, r)dxdr 1o lRN 

using the same argument as above. This last quantity after integrating with 
respect to v yields foR fRN /p(x, r)/2 dx dr, which is bounded by Rllpoll22(RN) . 
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The last term we consider is the last term in (44)-the others being treated 
similarly. For v fixed, we obtain 

(47) 

iv (a(v)I'/2a' (v) ·IN dx 

x foR dt fot \lrp(X)I{I (X~~;~)S) m(x-a(v)s, v, t-S)SdSi 

:::; 2(R + 1)lvlla' (v)lla(v)I-I/2 d(v) 

x r rR rR m(x - a(v)s, v, r) drdsdx, JaN Jo Jo 
since we deduce from the restrictions on the supports of rp and I{I 

Ixl :::; 2R + 1, la(v)ls:::; Ixl + d(v) :::; 2R + 1 + d(v) :::; 2(R + l)d(v). 

We may now perform the same analysis as above on the right-hand side of (47) 
and find when la(v)1 ~ 1 an upperbound of the form 

C(R) r rR m(x, v, r)dxdr, JaN Jo 
while, if la(v)1 :::; 1, we also obtain such an upperbound, using in each case the 
condition (40). Then, integrating this bound with respect to v and using the 
first bound in (13), we conclude easily. 0 

5. RELATED EQUATIONS 

In this section, we briefly mention how to adapt the kinetic formulation (5)-
(7) to related classes of equations. We will present here two classes of problems 
that we know how to treat, namely, multidimensional scalar conservation laws 
with source terms or degenerate second-order scalar conservation laws. Before 
going into a more precise description, we want to emphasize the fact that we do 
not know if or how one can adapt our approach to systems of conservation laws 
except for very special ones like the one-dimensional monoatomic isentropic 
gas dynamics system for which we presented some results in our announcement 
(Comptes-Rendus Acad. Sci. Paris Ser. 1312 (1991), 9-102). 

Next, let us begin with multidimensional scalar conservation laws with source 
terms, namely, 

(48) 
a N a 
a~ + L ax. (Aj(p)) = A(p) for t ~ 0, x E JRN 

j=1 I 

with initial condition (4). Here, the fluxes Aj satisfy the same conditions as in 
the introduction, while A E CI(JR; JR) with A(O) = 0 (for example). Entropy 
conditions then become 

a N a , 
a/(p) + L ax. (17j(P)) :::; A(p)S (p) in g' 

j=1 I 

(49) 

for all convex functions S, where 17j is still given by (3). 
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In order to avoid L 00 blow-up difficulties, we assume for simplicity 

(50) (sign t)A(t) :::; Co on JR, for some Co ~ 0, 

or 

(51) 3a:::; 0:::; P; A(a) ~ 0 ~ A(P). 

In both cases, there exists a unique solution 

P E LOO(JR; x (0, T» n C([O, 00); L\JR;)) 
("IT < 00) of (48), (49), (4). 

Then, the kinetic formulation (5)-(7) is to be modified as follows: we still 
impose (6) and (7) and we replace the kinetic equation (5) by 

af af am. , 
(52) Ft+a(v).Vxf+A(v)av = av mg. 

Then, it is possible to adapt all our arguments and methods to recover the exact 
analogues of all the results above. 

Another extension (which can be combined of course with the preceding one 
by adding a source term on the right-hand side) concerns second-order, possibly 
degenerate, parabolic equations in conservation form 

a NaN a 2 

aPt + I: -a (Aj(p» - I: a a (Ajj(p» = 0 in JR; x (0,00) 
x· x· x· j=1 I j,j=1 I J 

(53) 

together with initial condition (4). Here and below, we assume that Aj' Aij E 

CI~~ 1 (JR) and that (Aij) satisfies the degenerate ellipticity condition 

(54) 

i.e., 
N I: A;)t)~j~j ~ 0 for all t E JR, ~ E JRN. 

j,j=1 
Of course, the above class of equations contains as special cases the scalar 

conservation laws (1) but also the heat equation (take Aj == 0, Aij == <5ij) or 
various porous media type equations (take Aj == 0, Aij(t) == rp(t)<5jj with rp 
nondecreasing). There does not seem to be a general existence, uniqueness, and 
stability theory for such a general class of equations. Part of the difficulties is 
the very notion of solutions (say in LOO(JR: x (0, 00)) n C([O, 00); L1(JR:)): 
indeed, if Aj == 0, Aij(t) == rp(t)<5 jj , weak solutions, i.e., solutions of (53) in 
distributions sense, are known to exist and to be unique ( ... ), and we refer to 
Brezis and Crandall [6], Benilan and Crandall [3, 4] (and the references therein) 
for rather general uniqueness and stability results in that direction. On the other 
hand, if Aij == 0, entropy conditions are necessary for uniqueness! In general, 
the analogue of entropy conditions exists here, namely, 

as(p) NaN a 2 

----at + I: ax. (l1j(P» - I: ax8x. (l1ij(P» :::; 0 in 9' 
;=1 I j,j=1 I ) 

(55) 
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where 17/1) = J~ s' (s)A~(s) ds, 17ij(t) = J~ S' (S)A~j(s) ds, for all convex func-
tions S. 

It is not difficult to build one solution of (53), (55), (4) in L 00 (lR: x (0, 00)) n 
C ([0, 00) ; L 1 (lR:)) or even an L 1 -contraction, translation invariant, semigroup 
solution of (53), (55). In particular, it is possible to build a solution that satisfies 
in addition that, if / has finite total variation, then p(l) for all 1 ;::: 0 has 
finite total variation and its total variation is a nonincreasing function of t ;:::0. 
However, the main open question seems to be the uniqueness of such solutions 
(or semigroups). We do not know how to solve this problem, but we hope that 
the kinetic formulation of (53), (55) we are going to present might tum out to 
be useful in that respect. Anyway, we will also indicate some applications of 
that formulation to surprisingly general compactness results. 

The kinetic formulation is in fact very close to (5)-(7) and is given by (6), 
(7) and 

(56) 

of N of N o2f am 
8t + I>i(V) . ox - L ai/v) ox8x 

i=l I i,j=l I j 
OV 

ing'(lR: x lRv x (0,00)) 

where aiel) = A;(l), aij(t) = A;j(t) on lR. Of course, the corresponding initial 
condition is (9). 

It is worth remarking that the above formulation applies to heat or porous 
medium equation and that in the example of the heat equation (Ai == 0, Ai) == 
J i) the measure m is given by lV'xp(x, 1)1 2 • Jo(V - p(x, I)). Moreover, any 
solution of (53) satisfies (56) with 

op op 
m = Jo(v - p(x, l))aij(v)-;:;-~ 

uXi uXj 

on open subsets of lR7 x lR: where it is lipschitz continuous. 
Next, the proof of Theorem 1 can be adapted to the above general situation 

proving thus that (53), (55) is equivalent to (56), (6), and (7). Uniqueness of 
solutions, however, is a general open problem even if some partial results can 
probably be deduced from Volpert and Hudjaev [35]. 

Let us conclude by mentioning an application to Ll~C compactness of 
bounded solutions of (53), (55) which holds under the nondegeneracy condition 

(57) 
meas {V E lRl, + Lai(v)C;i = 0, Laij(v)C;ic;j = o} = 0 

I l,j 

for all (, , c;) E lR X lRN with ,2 + Ic;I2 = 1. 

This follows directly from a velocity-averaging compactness result presented in 
the Appendix (Theorem C) which is a variant of the results of [13]. Additional 
regularity can also be obtained, but we will not pursue this here. Let us finally 
mention that if we consider sequences of solutions l corresponding to fluxes 
(A~ , A~) converging to (Ai' Ai) as e going to 0 (assuming (54) for all e> 0), 
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l is compact in L:oc as soon as the following condition holds for all R 

(58) 
meas {V/IV I :$ R, IT + 2;:a~(v)'il :$ tJ, I:a~)V)'i'j:$ tJ} -> 0 

I I,J 

as tJ -> 0+, uniformly in e. 

ApPENDIX. VELOCITY -AVERAGING REVISITED 

We briefly explain how the proofs of Theorems A and B are adapted from 
those made in [13]. First of all, Theorem A is proven exactly as in [13], the 
only modification being the estimate 

[+R 1 o-m 

1 -R IT + a( v) . ,1m IIHa(v)'~I~o dv :$ C tJ 

for all R E (0,00), m > 1, tJ E (0,1), for some constant C > 0 de-
pending only on R, m, and x. This is easily shown by introducing: J.l(t) = 
meas{v E (-R, R), IT + a(v) ·,1:$ t} for t ;::: O. Then, the above integral may 
be written as 

:$ ~C [00 /:m dt :$ CtJ°-m. 10 t 
We now briefly indicate how Theorem B is deduced from the arguments of 

[13]. Let' E C;'(JR) with, == 1 near 0, Supp' c (-1, +1). Let Po = *p(;i-) 
with 0:$ P E C;'(JR), fR P dx = 1, and set lfIo = IfI * Po' Observe, of course, 
that Supp lfIo C Supp IfI + Supp Po so that (35) yields 

meas{v E Supp 1//0 ' IT + a(v)· '1:$ tJ} -> 0 as tJ -> 0+ 

for all (T, ,) E JRo x JRN with i + 1,12 = 1 . Then, we deduce 

sup{ meas{ v E Supp lfIo' IT + a( v) . ,I :$ tJ} / 

(T, ,) E JR x JRN, l + 1,12 = I} = O. 

At this stage, denoting by !T and !T- I the Fourier and the inverse Fourier 
transforms in (x, t) , we may write, after having localized (34) so that f, g 
have compact supports in (x, t), 

L flfl dv = L f(lfI- lfIo) dv + L l//o!T- 1 (, (T + a~v) . ')!T f) dv 

+ L lfIo!T- 1 (1-' (T+a~V)")!Tf) dv. 

The last term can be shown to be compact in LP because of (34) as in [13]. 
Again, as in [13], the second term can be shown to be small in L P (uniformly 
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in J), as 0 goes to 0 because of the above condition. Finally, since '¥6 - '" 
in Lpi (lR) , we deduce easily 

III J(", - "'6) dv tp ~ II", - "'61Id(R)11 (lIJIP dV) IIp IILP 

~ Gil", - "'611 Lpl (R) 

for some C 2:: 0 independent of J. This yields the conclusion of Theorem B. 
Finally, we present a result (proven exactly as in [13] with the above modifi-

cations) concerning equations of the form 

aJ N aJ N a 2J 
-a + Lai(v)-a - L aij(v) a a t x· x· x· i=1 I i,j=1 I} 

= (-Llx,t + 1)1/2(-Llv + 1)rl2g in ~' 

where r 2:: 0, g belongs to a compact set of LP (lR: x lRv x lRt ), J is bounded in 
N I 

Lfoc(lRx x lRv x lR+) with 1 < p ~ 2 and ai' aij are smooth. Let '" E LP (lRv) 
with compact support. 

Theorem C. With the above notation and assumptions and if in addition we have 
N 

meas {V E Supp "', -c + a(v)· ~ = 0, .L aij(v)~i~j = o} 
I,}=I 

Jor all (-c, ~) E lR X lRN with -c2 + 1~12 = 1, 

then, fa J", dv belongs to a compact set oj Lfoc(lR: x lRt ) . 
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ABSTRACT. We present a new formulation of multidimensional scalar conser-
vation laws, which includes both the equation and the entropy criterion. This 
formulation is a kinetic one involving an additional variable called velocity by 
analogy. We also give some applications of this formulation to new compactness 
and regularity results for entropy solutions based upon the velocity-averaging 
lemmas. Finally, we show that this kinetic formulation is in fact valid and 
meaningful for more general classes of equations like equations involving non-
linear second-order terms. 
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