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A KINETIC MODEL OF POLYATOMIC GAS

WITH RESONANT COLLISIONS

LAURENT BOUDIN, ALEX ROSSI, AND FRANCESCO SALVARANI

Abstract. We propose a kinetic model describing a polyatomic gas undergoing resonant collisions,
in which the microscopic internal and kinetic energies are separately conserved during a collision
process. This behaviour has been observed in some physical phenomena, for example in the collisions
between selectively excited CO2 molecules. We discuss the model itself, prove the related H-theorem
and show that, at the equilibrium, two temperatures are expected. We eventually present a numerical
illustration of the model and its main properties.

Keywords: Kinetic theory; Resonant collisions; Boltzmann equation.

1. Introduction

The Boltzmann equation [9], which is the starting point of kinetic theory, studies systems of
gaseous particles at the mesoscopic level through the formalism of distribution functions defined
in the phase space. Despite its importance at the theoretical level, the Boltzmann equation only
describes monatomic gases, such as the noble gases. However, when dealing with polyatomic gases
– for example, nitrogen or carbon dioxide – the standard Boltzmann equation cannot properly
capture all physical phenomena at the microscopic level, mainly because it does not take into
account the vibrational and rotational degrees of freedom of polyatomic molecules and their effects
on the internal energy of the system.

Because of the relevance of internal energy in understanding several physical and chemical phe-
nomena, such as combustion, or when dealing with the study of gases under extreme temperatures
and pressure conditions, it is necessary to provide a theoretical framework which takes into account
the behaviour of the internal energy in a kinetic system.

At the level of the macroscopic description, the study of internal energy is one of the purposes
of rational extended thermodynamics [29]. On the other hand, when dealing with the mesoscopic
description, a first popular approach consists in dealing with systems with discrete energy levels,
as in [19, 20, 28, 8]. In that case, the effects of the internal structure of a molecule are taken
into account by introducing a set of distribution functions, each of them representing the (molar)
fraction of the gaseous molecules at a given discrete energy level. The binary interactions conserve
momentum and, when no energy is lost during the collision process, i.e. when the collisions remain
elastic, the kinetic and internal energies of the colliding molecules are modified in such a way that
the total energy is conserved. This choice leads to handle systems of Boltzmann-type equations,
with cross interactions between the different distribution functions describing each internal energy
level.

Another strategy consists in using the so-called ellipsoidal statistics (ES) model, which was first
introduced in [22]. This research direction has gained much attention at the beginning of the 21st
century in the context of BGK equations, see for instance [2, 1, 12], or [25] for Fokker-Planck models.
Let us also point out that, in [14], the authors works with a continuous rotational energy variable
and a discrete vibrational one.

This work was partially supported by the ANR projects Kimega (ANR-14-ACHN-0030-01) and by the Italian
Ministry of Education, University and Research (Dipartimenti di Eccellenza program 2018-2022, Dipartimento di
Matematica ’F. Casorati’, Università degli Studi di Pavia).
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However, in the context of the full Boltzmann equation, several questions are still open. In
particular, it is emphasized in [5, 4] that the kinetic modelling of carbon dioxide is quite intricate,
and induces two kinds of temperatures, related to translational and rotational energies, respectively.
In order to deal with the Boltzmann equation with a continuous internal energy variable, one can
be led to use the phenomenological model of [10] for binary microscopic collisions in a gaseous
mixture. This strategy, nowadays known as the Borgnakke-Larsen procedure, allows to handle the
energy exchanges after a binary collision. The first step of the Borgnakke-Larsen strategy consists
in identifying the total energy of a colliding pair in the mass center. Then a proportion of this
total energy is attributed to the internal energy of the post-collisional molecules and the remainder
is provided to the kinetic energy of the outgoing molecules. The internal energy of the pair is
itself allocated between both molecules. This procedure and its consequences on the underlying
Boltzmann equation have been widely investigated during the last thirty years, see for example
[11, 15, 16, 17] which offer further physical discussions about the model, and [26, 6, 18, 3], where
various mathematical properties of the Borgnakke-Larsen approach are studied.

Unfortunately, the Borgnakke-Larsen procedure cannot cover all polyatomic gas behaviours, for
example the energy exchanges beween selectively excited carbon dioxide molecules. In [24], the
authors show that, under specific temperature and energy conditions, the role of rotational and
vibrational degrees of freedom is dominant in the energy exchange, while the average contribution
of translations is negligible. On the other hand, in the case of self-pressure broadening of highly
polar molecules, such as hydrogen cyanide, collisions in which the rotational energy change of one
molecule is exactly compensated by the rotational energy change of its collision partner play a
major role [23]. Such kinds of collisions, in which the internal energy change of one molecule is
compensated by the internal energy change of its collision partner and, at the same time, the
kinetic energy change of one molecule is compensated by the kinetic energy change of its collision
partner are known in the literature as resonant collisions [27].

In that situation, an alternative to the Borgnakke-Larsen procedure to work with a continuous
internal energy variable is required. In order to give a first answer to this requirement, we propose
a model describing a gas undergoing resonant collisions. In what follows, we consider a non-reactive
polyatomic gas composed of molecules with molecular mass m > 0, moving in Rd, d = 2 or 3.

Note that the notion of resonance studied in this article does not exactly coincide with the one
discussed in [21, 7], which is focused on reactive mixtures. The authors describe the mixtures
through a finite number of densities, each of them representing a gaseous species with a given
discrete internal energy level to mimic non-translational degrees of freedom. Indeed, in [21, 7], the
expression resonant collisions describes the interactions between particles of the same species in
the case of gaseous mixtures. In their approach, the macroscopic kinetic and internal energies are
treated separately, ensuring – as in our case – the existence of two distinct temperatures. However,
as these two meanings have coexisted in the literature for many years and are adopted by different
communities with little interaction between them, we do not see any risk of confusion in using the
expression resonant collisions in this article.

The structure of the article is the following. In Section 2, we describe our microscopic resonant
model. Then, in Section 3, we discuss the related collision operator and the associated H-theorem,
including the existence of two temperatures. Eventually, we present a numerical illustration of the
model.

2. Binary resonant collisions

The first step consists in describing a collision between two molecules. In what follows, we denote
by v, v∗ the post-collisional velocities of the interacting particles, by I, I∗ their post-collisional
internal energies, and by v′, v′∗, I

′, I ′∗ the corresponding pre-collisional quantities.
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We assume that the collision are elastic. This hypothesis guarantees that the momentum and
the total energy of the pair of molecules satisfy

v + v∗ = v′ + v′∗,(1)

1

2
m|v|2 + I +

1

2
m|v∗|2 + I∗ =

1

2
m|v′|2 + I ′ +

1

2
m|v′∗|2 + I ′∗.(2)

When a collision is resonant, the sum of the post-collisional internal energies of the molecules
remains equal to the sum of their pre-collisional ones [23, 24]. Consequently, because of the total
energy conservation, the kinetic energy satisfies the same property. That means that (2) is replaced
by the following equalities

|v|2 + |v∗|2 = |v′|2 + |v′∗|2,(3)

I + I∗ = I ′ + I ′∗.(4)

It is then clear that the velocities obey the same collision rules as in the monatomic case. Hence,
we can write, for some vector ω ∈ Sd−1,

(5) v′ = v − [ω · (v − v∗)]ω, v′∗ = v∗ + [ω · (v − v∗)]ω.

Besides, the simplest possible choice to distribute the internal energy between both particles consists
in introducing an allocation parameter r ∈ (0, 1) and writing

(6) I ′ = r(I + I∗), I ′∗ = (1− r)(I + I∗).

Eventually, for the sake of symmetry, we introduce the additional parameter r′, which happens to
be useful in the Jacobian computations:

(7) r′ =
I

I + I∗
.

The following lemma states that both prime and non-prime variables can be seen indiscriminately
as pre- or post-collisional quantities.

Lemma 1. Let ω ∈ Sd−1 be fixed. Then the function Sω : (v, v∗, I, I∗, r) 7→ (v′, v′∗, I
′, I ′∗, r

′) is an
involution of the set Rd × Rd × R∗+ × R∗+ × (0, 1) onto itself, and its Jacobian equals 1. Moreover,
the following relationships hold:

v = v′ − [ω · (v′ − v′∗)]ω, v∗ = v′∗ + [ω · (v′ − v′∗)]ω,

I = r′(I ′ + I ′∗), I∗ = (1− r′)(I ′ + I ′∗), r =
I ′

I ′ + I ′∗
.

Proof. First note that Equations (5)–(7) do not depend on each other. Since (5) exactly provides
the collision rules for the velocities in the monatomic case, we already know that (v, v∗) 7→ (v′, v′∗) is
an involution and that its associated Jacobian equals 1. So we need to focus on the internal energies
and the allocation parameters. Because of (4), (I, I∗, r) 7→ (I ′, I ′∗, r

′) is clearly an involution too,
and the straightforward computation of the associated Jacobian gives again 1. Then the Jacobian
of Sω is equal to 1, being the product of unit Jacobians. �

Remark 2.1. A variant of this microscopic resonant collision model is discussed in Appendix A,
where the sum of the internal energies is conserved during a collision up to a small correction;
and the same goes for the sum of the kinetic energies, remembering that the total energy is still
conserved. Such a model can be called a quasi-resonant model and can be seen as intermediate
between the resonant and Borgnakke-Larsen models.
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3. Resonant collision operator and H-theorem

The quadratic collision operator Q can be described through its weak form. More precisely, the
associated bilinear operator is given by

(8) 〈Q(f, g), φ〉 =

∫∫
Rd×R∗

+

∫∫
Rd×R∗

+

∫∫
Sd−1×(0,1)

f(v, I)g(v∗, I∗)
[
φ(v′, I ′)− φ(v, I)

]
B(v, v∗, I, I∗, r, ω) dr dω dv∗ dI∗ dv ϕ(I) dI,

where φ : Rd × R∗+ → R is a suitable regular test-function. The velocities and internal energies
v′, I ′, v′∗, I

′
∗ are defined by (5)–(6). And we must make the microreversibility assumptions on the

nonnegative cross section B

B(v, v∗, I, I∗, r, ω) = B(v∗, v, I∗, I, 1− r, ω),(9)

B(v, v∗, I, I∗, r, ω) = B(v′, v′∗, I
′, I ′∗, r

′, ω),(10)

for any v, I, v∗, I∗. Note that (9)–(10) are automatically satisfied when B depends on |v − v∗|,
|(v− v∗) ·ω| (i.e. the cosine of the angle θ between the relative velocity and ω) and I + I∗, since all
those quantities equal their primed counterparts. That means that B should be chosen satisfying

(11) βlb(r)b(cos θ)B̃(|v − v∗|, I + I∗) ≤ B(v, v∗, I, I∗, r, ω) ≤ βub(r)b(cos θ)B̃(|v − v∗|, I + I∗),

where b is L1(−1, 1) (Grad’s cutoff assumption), the β functions satisfy β(r) = β(1 − r) > 0, and

B̃ equals, for instance, (m|v − v∗|2)γ + (I + I∗)
γ for γ ∈ [0, 1], in the same spirit as in [18], which

deals with the Borgnakke-Larsen procedure.

An essential quantity of our model is the nonnegative measure ϕ(I) dI, which is a parameter of
the model (typically, one can take ϕ(I) = Ia for some a ≥ 0). A careful choice of the measure
ϕ(I) dI makes the model automatically consistent, at the macroscopic level, with the energy law of
any type of polyatomic gas [16].

Let us provide other weak formulations of the collision operator.

Lemma 2. Let φ : Rd×R∗+ → R be a function such that the following equality makes sense. Then
we have

(12) 〈Q(f, f), φ〉 =

− 1

4

∫∫
Rd×R∗

+

∫∫
Rd×R∗

+

∫∫
Sd−1×(0,1)

[f(v′, I ′)f(v′∗, I
′
∗)− f(v, I)f(v∗, I∗)] ×

[
φ(v′, I ′) + φ(v′∗, I

′
∗)− φ(v, I)− φ(v∗, I∗)

]
B(v, v∗, I, I∗, r, ω) dr dω dv∗ dI∗ dv ϕ(I) dI.

Proof. It is enough to use in (8) the changes of variables (v, v∗, I, I∗, r) 7→ (v∗, v, I∗, I, 1− r) and Sω,
with a fixed ω ∈ Sd−1. �

Note that the standard conservation properties of the collision operator are consequences of (12).
Indeed, if φ is chosen as 1, v(k) (the k-th coordinate of v in Rd, 1 ≤ k ≤ d), |v|2/2 and I, we
obtain the conservation of the number of molecules, the conservation of the momentum and the
conservations of the kinetic and internal energies (separately) during the collision process, that is

〈Q(f, f), 1〉 = 0, 〈Q(f, f), v(k)〉 = 0, 〈Q(f, f), |v|2〉 = 0, 〈Q(f, f), I〉 = 0.
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We can now focus on the H-theorem corresponding to the collision operator (8). Before stating
it, we need the following lemma, which is used during the proof of the H-theorem. It describes the
collision invariants in the resonant case.

Lemma 3. Let g ∈ L1
loc(Rd ×R∗+) satisfying almost everywhere, for a given function P : Rd ×R×

R∗+ → R,

(13) g(v, I) + g(v∗, I∗) = P (v + v∗, |v|2 + |v∗|2, I + I∗),

then there exist a, b, c ∈ R and p ∈ Rd such that

g(v, I) = a+ p · v + b|v|2 + cI

for almost every v and I.

Proof. For the sake of simplicity, we assume that all the functions are smooth. However, the
computations also hold in the distributional sense. Let us first differentiate (13) with respect to I
to get

∂d+1g(v, I) = ∂d+2P (v + v∗, |v|2 + |v∗|2, I + I∗),

with obvious notations, ∂d+1 being for instance the partial derivative with respect to the internal
energy variable of g. In the same way, we differentiate (13) with respect to I∗ and obtain

∂d+1g(v∗, I∗) = ∂d+2P (v + v∗, |v|2 + |v∗|2, I + I∗).

Consequently, we have, for any v, I, v∗, I∗,

∂d+1g(v, I) = ∂d+1g(v∗, I∗),

which means that ∂d+1g is constant. Hence there exists c ∈ R and a function h of v such that, for
any v, I,

g(v, I) = cI + h(v).

Then (13) becomes

h(v) + h(v∗) = P (v + v∗, |v|2 + |v∗|2, I + I∗)− c(I + I∗).

Consequently, the right-hand side of the previous equality does not depend on I + I∗ anymore, so
that h satisfies

h(v) + h(v∗) = P̃ (v + v∗, |v|2 + |v∗|2)
for another function P̃ . We are hence led back to the standard monatomic case [13, 30], which
means that h(v) has the form a+ p · v + b|v|2, as expected. �

Before writing in detail the H-theorem, we denote by q the Laplace transform of ϕ, that is

q(T ) =

∫ +∞

0
ϕ(I) e−I/KBT dI,

where KB is the Boltzmann constant.

Proposition 1. Assume that the cross section B and the weight function ϕ are positive almost
everywhere. Then, for any nonnegative function g := g(v, I) such that the following quantity is
defined, we have ∫∫

Rd×R∗
+

Q(g, g)(v, I) log g(v, I) dv ϕ(I) dI ≤ 0.

Moreover, the three following properties are equivalent.

(i) Q(M,M) = 0.

(ii)

∫∫
Rd×R∗

+

Q(M,M)(v, I) logM(v, I) dv ϕ(I) dI = 〈Q(M,M), log (M)〉 = 0.
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(iii) There exist n ≥ 0, u ∈ Rd, Tvel, Tie > 0 such that, for any v ∈ Rd and I > 0,

(14) M(v, I) =
n

q(Tie)

(
m

2πKBTvel

)d/2
exp

(
−m|v − u|

2

2KBTvel

− I

KBTie

)
.

Note that Property (i) of the previous proposition must first be understood in a weak sense, i.e.
〈Q(M,M), φ〉 = 0 for any suitable φ. But if we define the strong formulation of Q, it would also
hold pointwise.

Proof. To obtain the inequality, we use Lemma 2 for φ = log f and observe, as classically, that

[f(v′, I ′)f(v′∗, I
′
∗)− f(v, I)f(v∗, I∗)][log f(v′, I ′) + log f(v′∗, I

′
∗)− log f(v, I)− log f(v∗, I∗)] ≥ 0.

Let us now focus on the equivalences. Implication (i) ⇒ (ii) is straightforward. We obtain Impli-
cation (iii) ⇒ (i) using Lemma 2. For the last implication, let g := g(v, I) an almost everywhere
positive function such that 〈Q(g, g), log g〉 = 0. The integrand in the corresponding integral in v∗,
I∗, ω and r, which, as we already know, has a constant sign, is consequently zero almost everywhere.
That ensures that, for almost every (v, v∗, I, I∗, ω, r),

log f(v, I) + log f(v∗, I∗) = log f(v′, I ′) + log f(v′∗, I
′
∗).

Then we integrate with respect to ω ∈ Sd−1 and r ∈ (0, 1) to obtain the existence of a function T
such that, for almost every (v, v∗, I, I∗),

log f(v, I) + log f(v∗, I∗) = T (v + v∗, |v|2 + |v∗|2, I + I∗).

Thanks to Lemma 3, we know then that log f has the form a+ p · v+ b|v|2 + cI, for some constants
a, b, c ∈ R, p ∈ Rd. That eventually leads to the Maxwellian form (14). �

To conclude this section, we can now write down the Boltzmann equation with resonant collisions
in a weak sense. The unknown of the model is the distribution function f := f(t, x, v, I), depending
on time t ≥ 0, space position x ∈ Rd, velocity v ∈ Rd and internal energy I > 0. The time evolution
of f is then governed by the following partial differential equation, written in a distributional sense,

(15)

∫∫
Rd×R∗

+

(∂tf + v · ∇xf) (t, x, v, I)φ(v, I)ϕ(I) dI dv = 〈Q(f, f), φ〉.

4. Numerical illustration

In this last section, we just briefly present some numerical results allowing to confirm Proposi-
tion 1, i.e. the form of the Maxwellian equilibrium.

For the sake of simplicity, we work in a two-dimensional space-homogeneous setting, i.e. we drop
the dependence with respect to the space variable in (15). We choose B equal to 1, which satisfies

(11) with β = 1, b = 1, and γ = 0 in B̃, and ϕ = 1. We take Tfin = 10. We used a standard particle
method involving 106 numerical particles to solve the homogeneous Boltzmann equation. All those
particles are assumed to have the same molecular mass m = 1.

We choose as an initial datum for f the probability density function f0 := f0(v, I) = f0vel(v)f0ie(I),
where f0vel is the probability density of the uniform law on v ∈ (−4, 4)2, and f0ie is the probability
density of the uniform law on I ∈ (0, 10). Note that this choice leads to a distribution with respect
to the (particle) total energy E = 1

2 |v|
2 + I given in Figure 1, i.e.

E 7→
∫
R2

f0
(
v,E− 1

2
|v|2
)

dv.
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Figure 1. Initial distribution w.r.t. the molecular total energy.

The distribution function f fastly reaches its equilibrium, which is described in Proposition 1.
The form (14) of f is confirmed in Figure 2, where the graphs of the following functions, drawn in
the semilog scale,

(a) I 7→
∫
R2

f(Tfin, v, I) dv, (b)
|v|2

2
7→
∫∫

R∗
+×(0,2π)

f(Tfin, |v| cosα, |v| sinα, I) dα dI,

are very close to straight lines.
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Figure 2. Semilog-scaled distributions w.r.t. the molecular internal (a) and kinetic
(b) energies at final time.

Eventually, in Figure 3, we plot the semilog-scaled graph (b) of

E 7→
∫
R2

f

(
Tfin, v,E−

1

2
|v|2
)

dv

.
It is clear that its graph is not close to a straight line at all. This behavior confirms that there

are two distinct temperatures associated to the kinetic and internal energies in the equilibrium.
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Figure 3. Standard-scaled (a) and semilog-scaled (b) distributions w.r.t. the
molecular total energy at final time.

Appendix A. Partially resonant collisions

In this section, we propose an extension of the resonant collisions discussed in 2, towards a model
for partially resonant collisions. The conservation laws of momentum and total energy for elastic
collisions are still given by (1)–(2). We then compute the total energy of the colliding molecules in
the mass center reference frame, i.e.

(16) E =
m

4
|v − v∗|2 + I + I∗ =

m

4
|v′ − v′∗|2 + I ′ + I ′∗.

When the collisions are only partially resonant, we consider that the sum of the internal energies
of the molecules after collision equals its counterpart before collision up to a small correction, and
the same goes for the sums of the kinetic energies of the two molecules. Nevertheless, of course,
(16) must still hold. More precisely, we write, for any η, ν > 0, assumed to be small compared to 1,

I ′ + I ′∗ = (1− η)(I + I∗) + νm
|v − v∗|2

4
(17)

m

4
|v′ − v′∗|2 = (1− ν)

m

4
|v − v∗|2 + η(I + I∗).(18)

The parameters η and ν are the resonance coefficients of the model. When η = ν = 0, we obviously
recover the model for resonant collisions. In what remains, we shall denote

Eη,ν = (1− ν)
m

4
|v − v∗|2 + η(I + I∗).

We need a model to allocate the energies to the two colliding particles after interaction to obtain
the collision rules.

To deal with the internal energies, the simplest choice consists in introducing a parameter r ∈
(0, 1), and then attribute the fraction r of the internal energy to one of the two outgoing particles
and the remaining fraction (1− r) to the other one, that is

I ′ = r Eη,ν , I ′∗ = (1− r)Eη,ν .

We can also link the pre- and post-collisional velocities by proceeding in the following way. From
(18), we deduce that

|v′ − v′∗| = 2

√
Eη,ν

m
.
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Then the pre-collisional velocity v′ − v′∗ can be written with the help of a parameter ω ∈ Sd−1, so
that

v′ − v′∗ = 2

√
Eη,ν

m
Tω

[
v − v∗
|v − v∗|

]
,

where Tω : z 7→ z − 2(ω · z)ω is the orthogonal symmetry with respect to {ω}⊥. We finally find

v′ =
1

2
(v + v∗) +

√
Eη,ν

m
Tω

[
v − v∗
|v − v∗|

]
, v′∗ =

1

2
(v + v∗)−

√
Eη,ν

m
Tω

[
v − v∗
|v − v∗|

]
.

Unfortunately, the inversion of the previous equations, which would allow to write the non-prime
quantities in terms of the prime ones, is not always possible. In fact, given the values of the post-
collisional velocities and internal energies of an interacting pair of particles, it is not guaranteed
that there exists an admissible pair of pre-collisional velocities and internal energies generating the
considered post-collisional values. Indeed, from (17)–(18), we can deduce that

|v − v∗|2 =
(1− η)

1− η − ν
|v′ − v′∗|2 −

4η

m(1− η − ν)
(I ′ + I∗),

and notice that the right-hand side of the previous equation becomes negative as soon as

|v′ − v′∗|2 <
4η

m(1− η)
(I ′ + I ′∗).

A natural way to handle this difficulty would be to work in a weak sense, which is not discussed
any further here. These partially resonant models will be discussed in upcoming contributions in
the framework of Thomas Borsoni’s PhD thesis.

Acknowledgements. L.B. and F.S. thank Prof. Kazuo Aoki and Prof. Laurent Desvillettes for
pointing out the interest of resonant collisions and for useful discussions about this problem.

Conflicts of interest. On behalf of all authors, the corresponding author states that there is
no conflict of interest.

References

[1] P. Andries, J.-F. Bourgat, P. le Tallec, and B. Perthame. Numerical comparison between the Boltzmann and
ES-BGK models for rarefied gases. Comput. Methods Appl. Mech. Engrg., 191(31):3369–3390, 2002.

[2] P. Andries, P. Le Tallec, J.-P. Perlat, and B. Perthame. The Gaussian-BGK model of Boltzmann equation with
small Prandtl number. Eur. J. Mech. B Fluids, 19(6):813–830, 2000.

[3] B. Anwasia, M. Bisi, F. Salvarani, and A. J. Soares. On the Maxwell-Stefan diffusion limit for a reactive mixture
of polyatomic gases in non-isothermal setting. Kinet. Relat. Models, 13(1):63–95, 2020.

[4] K. Aoki, M. Bisi, M. Groppi, and S. Kosuge. Two-temperature Navier-Stokes equations for a polyatomic gas
derived from kinetic theory. Phys. Rev. E, 102(2):023104, 23, 2020.

[5] K. Aoki and S. Kosuge. Shock wave structure for polyatomic gases with large bulk viscosities. In Séminaire
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