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A Kirchhoff Integral Approach to Estimating
Propagation in an Environment With
Nonhomogeneous Atmosphere and

Complex Boundaries
Chris J. Coleman, Member, IEEE

Abstract—For terrestrial radio wave propagation, it has been
previously demonstrated that second order effects, such as diffrac-
tion, can be estimated through a combination of geometric optics
and Kirchhoff style integral relations. In the present paper, it is
shown that the approach can also yield accurate estimates when
refractive effects, such as atmospheric ducting, are present.

Index Terms—Atmospheric propagation, diffraction, Kirchhoff
integral, ducting, reciprocity, refraction.

I. INTRODUCTION

T
HE performance of radar and communications systems,

at Gigahertz frequencies, can be severely affected by

the environment in which they operate. Not only can ground

topography greatly influence radio wave propagation through

diffraction, but subtle variations in the atmosphere can have a

severe impact through refraction. Because of this, radio system

planners require effective tools that allow them to assess the

impact of propagation upon system performance. This report

describes some new techniques that can be used to assess

propagation for which both diffractive and refractive effects

are important. Whilst much of the propagation is adequately

described by geometric optics, there are regions, particularly

at low altitudes, where such a procedure is inadequate. At low

altitudes, direct propagation is limited by the curvature of the

Earth and propagation mechanisms such as diffraction, ducting

and ground reflections can dominate. Such mechanisms require

a more comprehensive approach to Maxwell’s equations than

is afforded by geometric optics and suitable approaches are

usually much more computationally expensive. The parabolic

equation (PE) technique is one such approach, but requires the

solution of a partial differential equation over a fairly refined

grid. Significant savings, however, can be achieved by use of

split step fast Fourier transform techniques. Additional savings

can be made if the PE method is restricted to lower altitudes

and then blended with geometric optics techniques [1]–[3] at

greater heights. Such an approach is the basis of many current

propagation models for microwave systems and [1] provides a
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general overview of PE techniques. Other increasingly popular

approaches are provided by the finite-difference time-domain

(FDTD) technique (see [4]–[6] for some examples of this

approach) and the transmission line matrix (TLM) technique

[7]. Reference [8] provides a general overview of most of the

available approaches to microwave propagation.

The present paper explores an alternative procedure that is

based upon a combination of geometric optics (GO) solutions

and Kirchhoff style integral relations. These relations are de-

rived from the reciprocity theorem, a theorem that allows one

to probe an electromagnetic field with another quite unrelated

field. In essence, the current work can be regarded as an exten-

sion of the ideas of physical optics [9]. An important property

of the approach is that it allows one to generate second order

estimates of the electromagnetic field from first order estimates

(GO estimates for example). Using a simple form of this ap-

proach, Monteath [10] has shown that the effects of ground wave

propagation, and diffraction, can be derived from GO solutions.

The approach has been extended to more complex geometries

in [11] and to propagation through inhomogeneous media in

[12]. In the current paper, the emphasis is on phenomena that

affect GHz frequencies. The paper describes how the basic ap-

proach can be extended to provide a means of estimating prop-

agation in an environment that generates atmospheric ducting,

as well as diffraction over obstacles and reflections from com-

plex terrain. For weakly varying refractive index (such as in

the lower atmosphere), the approach does not require the so-

lution of ray tracing equations and hence results in an efficient

propagation algorithm. The major advantage of the current ap-

proach is that it uses integral propagators to advance the solu-

tion and so the nature of the discretization can vary along the

propagation path, taking advantage of local simplifications. Fur-

thermore, the steplengths in the approximate solution can be

very large and still retain good accuracy. These are major ad-

vantages for the current approach since alternatives such as the

PDE, TLM or FDTD methods require fixed solution grids and

small steplengths.

II. BASIC APPROACH

Consider electromagnetic field with sources outside

a closed surface and another dipole field caused by

0018-926X/$20.00 © 2005 IEEE
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a current element at position . If is contained within

surface then

(1)

Furthermore, if is now a dipole field generated by a

magnetic current element at position , then

(2)

These equations are a variant of the normal reciprocity result

[10] and provide an integral formulation of the electromagnetic

field equations. Furthermore, although the material properties

of the medium do not appear explicitly, the equations will still

apply to non homogeneous media. It is only required that the

dipole fields satisfy the appropriate Maxwell equations for the

non homogeneous medium. Now consider the sources of field

to be bounded, then the above equations will still apply

if is an open surface that extends to infinity and separates the

sources from the point (the open surface can be closed by

an additional surface at infinity on which the integrand disap-

pears). If the fields are known on surface , the above equations

can be used to find the fields at point . As a consequence, on

assuming only forward propagation to be significant, (1) and (2)

can be used to advance an electro-magnetic field onwards from

a surface on which it is known.

The only problem with the above approach is the absence

of suitable dipole fields for media with other than very simple

structure. In the case of homogeneous media, it has been shown

that GO dipole fields can provide an effective development of

the field [11]. Furthermore, the effects of the ground and struc-

tures can be taken into account by means of reflection coeffi-

cients. The GO solutions, however, will have a limited range

of applicability and so (1) and (2) can only be used to develop

the solution to within this range. To overcome this problem, we

could use (1) and (2) to advance the fields to a new surface

that is within the region of validity and then repeat the process

at the new surface and so on until sufficient coverage has been

achieved. Consequently, we can advance the fields on a series

of surfaces to through the propagation region. Fig. 1

shows a typical problem that can be analyzed by such an ap-

proach. It consists of propagation that must travel from a trans-

mitter located over water, surmount a building and then a hill.

It is clear that there will be significant diffraction at the edges

of the building, and the brow of the hill, and so we must place

intermediate surfaces at these locations. It is advisable to place

intermediate surfaces at all points for which there could be a

break down in the GO solution. In particular, features such as

corners, and changes in material properties, will require inter-

mediate surfaces. Essentially, although the geometric optics so-

lution breaks down in the immediate vicinity of these features,

it is valid over the majority of each intermediate surface and

hence is sufficient for the evaluation of the surface integrals.

For near grazing incidence, the direct and reflected rays will

nearly cancel and suitably positioned intermediate surfaces are

Fig. 1. Typical propagation scenario with suitable intermediate surfaces.

Fig. 2. Transmission losses experienced by signals in the scenario of Fig. 1.

required to pick up any ground wave effects. In essence, the re-

peated application of (1) and (2) is a generalization of the pro-

cedure used by Monteath to analyze simple ground wave prop-

agation and diffraction by a screen.

Fig. 2 shows results from simulations of the basic transmis-

sion loss (transmitted power divided by the received power

when the antennas are isotropic) experienced by the transmitted

signal for the scenario of Fig. 1. (Note that the water has

and , the building has and

and the ground has and ). A

particular loss is represented by its deviation from the vertical

line that represents the appropriate intermediate surface. It will

be noted that the approach predicts that power will be diffracted

into the shadow regions behind both the building and the hill.

For many propagation problems, the propagation direction is

roughly horizontal and, in this case, the integral equations can

be approximated by

(3)

where the electric field of the current element can be approxi-

mated by

(4)

for situations where the propagation does not involve ground

reflections ( is the free-space wave-number, is the phase dis-

tance between the source and test point and is the spreading

distance). If ground reflections be present

(5)
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where the subscripts and refer to the distances measured

along the direct and reflected ray paths respectively (super-

scripts are used to identify the direct and reflected parts of

the fields). Quantity is the standard plane wave reflection

coefficient that is appropriate to the polarization of the field

source.

III. EVALUATION OF THE INTEGRALS

In the case of propagation that only involves diffraction over

simple objects (screens for example), the integrals of (1)–(3) can

often be approximated by those of the Fresnel variety. In gen-

eral, however, the integrals are far more complex and must be

evaluated numerically. Unfortunately, such integrals are slow to

converge and need to be taken to very high altitudes before they

are sufficiently accurate (400 m in the simulation of Section II).

Before the integrals start to converge, however, the integrand

has usually settled into a form that can be evaluated by Fresnel

related integrals. In the current study, the approach adopted for

(1)–(3) is to evaluate the integral to this point and then to com-

plete it by means of a suitable analytic result. At the point where

the numerical procedure ends, both the phase and magnitude of

the integrand are expanded as far as quadratic terms in the height

above this point

(6)

(coefficients of the amplitude and phase Taylor series are eval-

uated from suitable numerical derivatives of the integrand). Al-

though the expansion of the amplitude has only a limited range

of validity, the increasing frequency of oscillation for the expo-

nential term will ensure that the amplitude has negligible effect

upon the integral outside this range. Expansions of the form of

(6) were introduced by Monteath in his consideration of ground

waves [10]. The integral of the expansion is evaluated by means

of the analytic results

(7)

(8)

and

(9)

All that is required for to complete the evaluation of the above

expressions is the Fresnel integrals and since

(10)

There exist some excellent rational approximations to and

which can be found in the book by Abramowitz and Stegun [13].

In general, a similar approach can be adopted for integration in

the lateral direction. The current work, however, assumes that

the topography and atmospheric variations are slow enough for

an asymptotic evaluation of lateral integrals. At an intermediate

surface, its is assumed that the fields can be approximated as

where is the horizontal distance

from the source, is the lateral distance from the direct path

and is the electric field for points above this path. Using such

approximations in the integral equations, and integrating first

with respect to the variable , it can be shown that the total sur-

face integral is obtained by multiplying the vertical integral on

the direct propagation path by the factor

where and are the horizontal distances from the integra-

tion surface to the field source and observation points respec-

tively.

For problems involving ground reflections, a further refine-

ment was found to increase accuracy. Both and are sepa-

rated into their direct and reflected components and the integrals

that involve , , and all evalu-

ated separately. The phase structure of these components can

exhibit significant differences and quite different coefficients

are often needed for the analytic completion of these integrals.

For regions of propagation where reflection and diffraction pro-

cesses dominate, the analytic completion is often sufficiently ac-

curate to only require a negligible region of numerical integra-

tion. Where ducting effects occur, however, the analytic com-

pletion should start a significant distance above the duct.

IV. REFRACTIVE EFFECTS

The major aim of the current report is to further develop the

above propagation procedure so that it can incorporate refractive

effects in addition to those of reflection and diffraction. Prob-

lems involving refraction are normally analyzed through nu-

merical solutions of the PE approximation to Maxwell’s equa-

tions [1]. There is no reason, however, why (3) (or (1) and (2))

could not be applied to such problems. Indeed, providing that

the phase distance and the spreading distance take account of

variations in refractive index, we can still use the electric fields

that result from expressions (4) and (5). The exact values for

and will, however, require the solution of complex ray tracing

equations. Phase distance is calculated from with

integration along the ray path between the source and field ob-

servation point. In addition, the calculation of requires the de-

viation in rays as they move out from the source. For weak vari-

ations in refractive index, however, the ray path over a limited

distance will be approximately linear and will be the geometric

distance to a first approximation. Likewise, the phase distance

will be the geometric distance to a first approximation. If

is large, however, phase variations can be quite large even when

phase distance variations are small. Consequently, at microwave
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Fig. 3. Transmission losses experienced over a flat Earth sea.

Fig. 4. Transmission losses experienced over the sea with Earth’s curvature
include.

frequencies, it is the phase variations of the fields that will dom-

inate when refractivity variations are weak and we will need

to calculate phase distance to higher than leading order. Fortu-

nately, we include a higher order approximation to phase when

we simply evaluate the phase distance integral along the straight

line that joins the source to the field observation point. This fol-

lows from Fermat’s principle which implies that a small error in

the ray path will only cause a second order error in the phase dis-

tance. Consequently, for weak variation in refractive index (as

is the case for the atmosphere), there is no need to solve the ray

trace equations that describe the full GO solution. We simply

use the geometric distance for s and evaluated along a straight

line path. This results in considerable computational saving.

As an example of the effectiveness of the method, consider

propagation over sea water ( and ). Fig. 3

shows a simulation of transmission losses over a flat Earth for

an isotropic radiator at 25 m above the sea level on a frequency

of 10 GHz. Equivalent propagation over a curved Earth is shown

in Fig. 4. The effect of Earth’s curvature is simulated by means

of a modified refractive index (denoted by ) in place of the

unmodified refractive index (denoted by ), a convenient form

of being [1] where is the

height above sea level in meters. Fig. 4 shows good agreement

with the corresponding simulation in [1]. Now consider an evap-

orative surface duct with modified refractive index given by [1]

(11)

where is the duct height in meters and is a measure of

the surface roughness (taken to be 15 in the current

work). Fig. 5(a) shows some simulated propagation loss through

(a)

(b)

Fig. 5. (a) Transmission losses with surface duct added. (b) Boresight losses
compared with accurate PE simulations from [1].

a duct of height 30 m. It will be noted that there is significant

propagation in the duct, with loss behavior that is consistent with

that calculated using the PDE approach [1]. Once again there

is good agreement with the corresponding simulations in [1].

More detailed comparisons are shown in Fig. 5(b) for the case

of boresight and it will be noted that the PE results, extracted

from [1], show good agreement with the current simulations.

It will be noted that the choice of intermediate surface spacing

in the above simulations (3.3 km) has given results that com-

pare well with the accurate PDE simulations of [1]. The question

arises, however, as to how we choose the correct spacing in gen-

eral. Basically, we need to ensure that the GO solution remains

valid over the entire region between two adjacent intermediate

surfaces. If represents a typical length scale (duct or building

height for example) we must ensure that and

( is the distance between the surfaces and is the free space

wavelength) for the GO solution to remain valid over the dis-

tance (see [14] for further consideration of GO validity). In

practice, it was found that should be less than . Con-

sequently, for the above ducting problem, a spacing of about 9

km is adequate. When the approximate form of the GO solution

is used, it is also necessary to check that there is no significant

ray focussing over the distance . In the case of atmospheric

propagation, however, focusing is usually insignificant over this

distance.

Fig. 6(a) shows some simulated propagation through an ele-

vated duct. In this case, the modified refractive index takes the

form

(12)
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(a)

(b)

(c)

(d)

Fig. 6. (a) Transmission losses experienced in an elevated duct. (b)
Transmission losses with coarse simulation. (c) Elevated duct losses at a range
of 106.7 km. (d) Elevated duct losses at a range of 166.7 km.

It will be noted that some propagation gets trapped in a duct

below the height of 150 m, a result that is in accord with the pre-

dictions of the parabolic equation method [1]. Fig. 6(b) shows

the simulated results for same problem, but with half the number

of intermediate surfaces and half the number of vertical quadra-

ture intervals. It will be noted that the results are in accord with

those from the more refined simulation and illustrates the ability

to take very large horizontal propagation steps. The second sim-

ulation uses a very coarse discretization but captures the main

detail of the more refined simulation. This is further illustrated

in Fig. 6(c) and (d) which show more detailed comparison at

the ranges of 106.7 and 166.7 km. These figures show the effect

(a)

(b)

Fig. 7. (a) Surface duct that has been intercepted by an island. (b) Detailed
results at the height of the island.

of the duct at two representative ranges and demonstrate good

convergence for the method.

Fig. 7(a) shows a further example that includes the effects of

ground topography. In this example, the surface duct of Fig. 5(a)

is intercepted by a small island. It will be noted that the island

causes most of the power to be scattered upwards, but that there

is also some weak excitement of the duct to the lee of the island.

Fig. 7(b) shows detailed simulation results at the height of the

island).

V. FURTHER REFINEMENTS

One of the main problems with the above approach is the large

computational requirement in the evaluation of integrals over

the intermediate surfaces. PE methods can greatly reduce this

requirement by means of split step FFT techniques, but require

a far greater number of intermediate surfaces. The current ap-

proach requires far fewer intermediate surfaces, but a greater

complexity in the calculations to be performed on these sur-

faces. The Fresnel nature of the surface integrals means that

quadrature points can be fairly sparse at lower altitudes, but

must increase in density with height. Eventually, the quadra-

ture points will become too dense and the integral must be com-

pleted in an analytic manner (as described in Section III). We

can extend the idea of analytic evaluation by noting that both

the phase distance and amplitude of the integrand are usually

slowly varying and so an approximation of the form of (6) can

be effective over large intervals, even at high altitudes. Conse-

quently, an analytic integral of such an expansion can provide

an economical quadrature at these higher altitudes. Defining

by

(13)
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an analytic integral is obtained from the result

(14)

In the current work, this approach is invoked at altitudes where

the phase variations have become too large for the low alti-

tude quadrature rule (Simpson rule in the current work) to be

effective for the chosen quadrature interval. (Note that the in-

tegrand expansion coefficients are found by fitting quadratics

to the phase and amplitude at quadrature points.) Such an ap-

proach allows the use of quite large quadrature intervals at all

altitudes and considerably accelerates the method. Furthermore,

the major contribution to the surface integrals will come from

around the altitude of the observation point in (3) and contri-

butions at altitudes differing by more than a few D (the typical

scale) can usually be ignored. Further savings can be achieved

by calculating the field from a GO estimate at altitudes for which

the field source is clearly within view. For a simple fixed quadra-

ture on the intermediate surfaces, the complexity of the current

technique will be about the same as that for a standard finite

difference approximation of the PE approach. It does not, how-

ever, have the savings that PE methods derive from fast Fourier

transform (FFT) techniques. The major advantage of the cur-

rent approach is in the flexibility of the approximations that can

be applied on the intermediate surfaces. On many of these sur-

faces, a few quadrature intervals will suffice and this can more

than compensates for the lack of FFT techniques. Furthermore,

the use of integral propagators makes it easy to blend different

solution techniques. In particular, the current techniques could

be used to further develop a solution that has been derived up to

a given intermediate surface by another technique. In addition,

for specialised parts of the propagation, it might be possible to

obtain dipole solutions with far greater range of validity than the

GO solutions and hence further increase the steplengths that can

be achieved. A further consideration with any computer tech-

nique is its memory requirement. Being explicit, however, the

requirement of the current technique is very small.

VI. CONCLUSION

The present paper has considered an efficient approach to

the estimation of radio wave propagation through environments

with non homogeneous atmospheres. This approach is based

on Kirchhoff style integral relations and provides an alterna-

tive to the more common split step PE methods. Unlike the

PE methods, however, the current approach does not require

a rectangular grid and hence has few problems with compli-

cated boundaries. Furthermore, the approach does not require

absorbing boundaries or involved patching to upper atmosphere

solutions. The effectiveness of the approach has been demon-

strated through its application to several non trivial problems

and the results found to be in agreement with simulations per-

formed by other approaches. Although the current paper has

concentrated on a pseudo two dimensional form of the tech-

nique, it is readily extended to three dimensions and efficient

methods for achieving this are under development.
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