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Abstract

In a preceding paper, Bruyère and Carton introduced automata, as

well as rational expressions, which allow to deal with words indexed by

linear orderings. A Kleene-like theorem was proved for words indexed by

countable scattered linear orderings. In this paper we extend this result

to languages of words indexed by all linear orderings.

1 Introduction

One of the fundamental results in automata theory is Kleene’s theorem [16]
which asserts the equivalence between sets of words accepted by automata and
set of words described by rational expressions. During the past fifty years
Kleene’s theorem has been extended to various notions of infinite words, as
well as structures like trees, pictures, and traces.

In [5, 3], Bruyère and Carton introduce automata and rational expressions
for words on linear orderings. These notions unify naturally previously defined
notions for finite words, left- and right-infinite words, bi-infinite words, and
ordinal words. They also prove that a Kleene-like theorem holds when the
orderings are restricted to countable scattered linear orderings; recall that a
linear ordering is scattered if it does not contain any dense sub-ordering. This
result extends Kleene’s theorem for finite words [16], infinite words [6, 17], bi-
infinite words [13, 18] and ordinal words [8, 10, 27]. Since [3], the study of
automata on linear orderings was carried on in several papers, that address the
emptiness problem and the containment problem for languages [26, 9], as well
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as the classification of rational languages with respect to the rational operations
needed to describe them [4]. More recently, Carton and Rispal [21] proved that
regular languages of words over countable scattered linear orderings are closed
under complementation.

In this paper we come back to Kleene’s theorem, and show that the assump-
tion that the linear orderings are countable and scattered, is not necessary.
When all linear orderings are considered instead of countable and scattered
ones, no change has to be made to the notion of automata already introduced
in [3]. However the set of operators for the rational expressions has to be ex-
tended in order to deal with words indexed by a dense linear ordering. To cope
with this issue, we add a shuffle operator for languages, which is a variant of
the classical shuffle operation on linear orderings. A similar (but not equiva-
lent) notion of shuffle for languages was already considered in [11, 15, 24]. This
operator allows to extend the definition of rational languages of words, and to
prove a general Kleene-like theorem.

Words indexed by a countable linear ordering were first considered in [11],
where they were introduced as frontiers of labeled binary trees. Some kind of
rational expressions were studied in [11, 15, 24], which lead to a characterization
of words which are frontiers of regular trees.

Other related works can be found in the area of specification and verification
of real-time systems. Indeed, words indexed by R (or other linear orderings)
appear as a simple and natural way to model the behavior of a finite state
real-time system. For example, ordinal words (called Zeno words) were recently
considered as modeling infinite sequences of actions which occur in a finite
interval of time [14, 2]. While the intervals of time are finite, infinite sequences
of actions can be concatenated. A Kleene’s theorem already exists for standard
timed automata (where infinite sequences of actions are supposed to generate
divergent sequences of times) [1]. In [2], automata considered by Choueka and
Wojciechowski are adapted to Zeno words. A kind of Kleene’s theorem is proved,
that is, the class of Zeno languages is the closure under an operation called
refinement of the class of languages accepted by standard timed automata. More
recently, Dima introduces a notion of real-time automata [12] that captures a
class of timed languages which is closed under complementation and for which
a Kleene’s theorem is proved. Let us finally mention the paper [20] which
introduces star-free expressions for words indexed by R, and shows that star-
free languages of words indexed by R coincide with languages definable in some
first-order logic, extending McNaughton-Papert theorem.

The paper is organized as follows: we recall in Sect. 2 some useful definitions
related to linear orderings. Sections 3 and 4 respectively introduce rational
expressions and automata for words over linear orderings. Section 5 states the
main theorem and provides a few examples. Sections 6 and 7.
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2 Linear Orderings

In this section we recall useful definitions and results about linear orderings. A
good reference on the subject is Rosenstein’s book [22].

A linear ordering J is an ordering < which is total, that is, for any j 6= k
in J , either j < k or k < j holds. Given a linear ordering J , we denote by −J
the backwards linear ordering obtained by reversing the ordering relation. For
instance, −ω is the backwards linear ordering of ω which is used to index the
so-called left-infinite words.

The sum of orderings is concatenation. let J and Kj for j ∈ J , be linear
orderings. The linear ordering

∑

j∈J Kj is obtained by juxtaposition of the
orderings Kj with respect to J . More formally, the sum

∑

j∈J Kj is the set L
of all pairs (k, j) such that k ∈ Kj. The relation (k1, j1) < (k2, j2) holds iff
j1 < j2 or (j1 = j2 and k1 < k2 in Kj1). The sum of two orderings K1 and K2

is denoted K1 + K2.
Two elements j and k of a linear ordering J are called consecutive if j < k

and if there is no element i ∈ J such that j < i < k. An ordering is dense if
it contains no pair of consecutive elements. More generally, a subset K ⊂ J
is dense in J if for any j, j′ ∈ J such that j < j′, there is k ∈ K such that
j < k < j′.

The notion of a cut is needed to define a path in an automaton. A cut of a
linear ordering J is a pair (K, L) of intervals such that J = K∪L and such that
for any k ∈ K and l ∈ L, k < l. The set of all cuts of the ordering J is denoted
by Ĵ . This set Ĵ can be linearly ordered by the relation defined by c1 < c2 iff
K1 ( K2 for any cuts c1 = (K1, L1) and c2 = (K2, L2). This linear ordering
can be extended to J ∪ Ĵ by setting j < c1 whenever j ∈ K1 for any j ∈ J .

The consecutive elements of Ĵ deserve some attention. For any element j
of J , define two cuts c−j and c+

j by c−j = (K, {j} ∪ L) and c+
j = (K ∪ {j}, L)

where K = {k | k < j} and L = {k | j < k}. It can be easily checked that the
pairs of consecutive elements of Ĵ are the pairs of the form (c−j , c+

j ).
An ordering J is complete if for any cut (K, L) such that K 6= ∅ and L 6= ∅,

either K has a greatest element or L has a least element.

3 Words and rational expressions

Given a finite alphabet A, a word (aj)j∈J is a function from J to A which
maps any element j of J to a letter aj of A. We say that J is the length |x|
of the word x. For instance, the empty word ε is indexed by the empty linear
ordering J = ∅. Usual finite words are the words indexed by finite orderings
J = {1, 2, . . . , n}, n ≥ 0. A word of length J = ω is usually called an ω-word or
an infinite word. A word of length ζ = −ω+ω is a sequence . . . a−2a−1a0a1a2 . . .
of letters which is usually called a bi-infinite word.

The sum operation on linear orderings leads to a notion of product of words
as follows. Let J and Kj for j ∈ J , be linear orderings. Let xj = (ak,j)k∈Kj

be a word of length Kj, for any j ∈ J . The product
∏

j∈J xj is the word z of
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length L =
∑

j∈J Kj equal to (ak,j)(k,j)∈L. For instance, the word aζ = b−ωaω

of length ζ is the product of the two words b−ω and aω of length −ω and ω
respectively.

We now recall the notion of rational set of words on linear orderings as
defined in [3]. The rational operations include of course the usual Kleene oper-
ations for finite words which are the union +, the concatenation · and the star
operation ∗. They also include the omega iteration ω usually used to construct
ω-words and the ordinal iteration ♯ introduced by Wojciechowski [27] for ordinal
words. Four new operations are also needed: the backwards omega iteration −ω,
the backwards ordinal iteration −♯, a binary operation denoted ⋄ which is a kind
of iteration for all orderings, and finally a shuffle operation which allows to deal
with dense linear orderings.

Let us recall the already known rational operations. We respectively denote
by N , O and L the classes of finite orderings, the class of all ordinals and
the class of all linear orderings. For an ordering J , we denote by Ĵ∗ the set
Ĵ \ {(∅, J), (J, ∅)} where (∅, J) and (J, ∅)} are the first and last cut. Given
two sets X and Y of words, define

X + Y = {z | z ∈ X ∪ Y },
X · Y = {x · y | x ∈ X, y ∈ Y },

X∗ = {
∏

j∈{1,...,n} xj | n ∈ N , xj ∈ X},

Xω = {
∏

j∈ω xj | xj ∈ X},
X−ω = {

∏

j∈−ω xj | xj ∈ X},

X♯ = {
∏

j∈α xj | α ∈ O, xj ∈ X},
X−♯ = {

∏

j∈−α xj | α ∈ O, xj ∈ X},

X ⋄ Y = {
∏

j∈J∪Ĵ∗ zj | J ∈ L, zj ∈ X if j ∈ J and zj ∈ Y if j ∈ Ĵ∗}.

We use the notation X⋄ as an abbreviation for (X ⋄ ε) + ε.
We now define the new shuffle operation which is needed to deal with dense

orderings.

Definition 1 Let A be a finite alphabet, n ≥ 1, and L1, . . . , Ln ⊆ A⋄. We

define the shuffle of L1, . . . , Ln, and denote by sh(L1, . . . , Ln) the set of words

w ∈ A⋄ that can be written as w =
∏

j∈J wj where

• J is a complete linear ordering without first and last element;

• there exists a partition (J1, . . . , Jn) of J such that all Ji’s are dense in J ,

and for every j ∈ J , if j ∈ Jk then wj ∈ Lk.

Let us remark that our definition of shuffle slightly differs from others, e.g.
from [15, 24], because in Definition 1 we assume that J is a complete dense
ordering.

Only countable orderings are considered in [15, 24]. Recall that Q is the
unique countable and dense ordering without first and last element. Their defi-
nition of the shuffle operation is based on a partition (J1, . . . , Jn) of Q into dense
subsets J1, . . . , Jn. Then points of each Ji are substituted by words from Li as
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we do. Our definition is not a straightforward generalization of this shuffle
because Q is of course not complete. Actually the assumption that J is com-
plete yields a more general notion of shuffle. The completion of Q yields the
ordering R. If each point of R \ Q is substituted by the empty word, one ob-
tains a shuffle in the sense of [15, 24]. This shows that our rational expression
sh(L1, . . . , Ln, ε) corresponds to the shuffle of languages L1, L2, . . . , Ln in the
sense of [15, 24].

An abstract rational expression is a well-formed term of the free algebra
over {∅} ∪ A with the symbols denoting the rational operations as function
symbols. Each rational expression denotes a set of words which is inductively
defined by the above definitions of the rational operations. A set of words is
rational if it can be denoted by a rational expression. As usual, the dot denoting
concatenation is omitted in rational expressions.

Example 2 Consider the word w = (wr)r∈R of length R over the alphabet A =
{a, b}, defined by wr = a if r ∈ Q, and wr = b otherwise. Then it is not difficult
to check that w ∈ sh(a, b). Consider now the word w′ = (w′

q)q∈Q of length Q

over the alphabet A, defined by w′
q = a if q ∈ {m/2n | m ∈ Z, n ∈ N}, and

w′
q = b otherwise. It can be checked that w′ ∈ sh(a, b, ε) but that w′ /∈ sh(a, b)

because Q is not complete.

Example 3 The rational expression a∗(ε+sh(a∗, ε))a∗ denotes the set of words
(over the unary alphabet {a}) whose length is an ordering containing no infinite
sequence of consecutive elements. It is clear that the length of any word denoted
by this expression cannot contain an infinite sequence of consecutive elements.
Conversely, let J be such an ordering. Define the equivalence relation ∼ on J
by x ∼ y iff there are finitely many elements between x and y. The classes of ∼
are then finite intervals. Furthermore the ordering of these intervals must be
a dense ordering with possibly a first and a last element. This completes the
converse.

Example 4 The rational expression (ε + sh(a)) ⋄ a denotes the set of words
(over the unary alphabet {a}) whose length is a complete ordering. The shuffle
operator is defined using complete orderings and the ordering Ĵ is always com-
plete. It follows from these two facts that the length of any word denoted by
this expression is complete. Conversely, let J be a complete orderings. Define
the equivalence relation ∼ on J by x ∼ y iff there is an open dense interval
containing both x and y. Each class of ∼ is either a singleton or an open dense
interval. Let K be the ordering of the singleton classes and let L0 be the order-
ing of the dense classes. Let L1 be the ordering of pairs of consecutive elements
in K and let L be L0 ∪L1 equipped with the natural ordering. It can be shown
that K = L̂. This gives the expression (ε+sh(a))⋄a where ε is due to L1, sh(a)
to L0 and a to K. This completes the converse.
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4 Automata

In this section, we recall the definition given in [3] for automata accepting words
on linear orderings. As already noted in [3], this definition is actually suitable
for all linear orderings.

Automata accepting words on linear orderings are classical finite automata
equipped with limit transitions. They are defined as A = (Q, A, E, I, F ), where
Q denotes the finite set of states, A is a finite alphabet, and I, F denote
the set of initial and final states, respectively. The set E consists in three
types of transitions: the usual successor transitions in Q × A × Q, the left

limit transitions which belong to 2Q × Q and the right limit transitions which
belong to Q × 2Q. A left (respectively right) limit transition (P, q) ∈ 2Q × Q
(respectively, (q, P ) ∈ Q × 2Q) will usually be denoted by P → q (respectively
q → P ).

We say that a transition leaves a state q if it either a successor transition
q a−→ p for some state p or a right limit transition q → P for some subset P of
states. We say that it enters a state q if it is either a successor transition p a−→ q
or a left limit transition P → q. The sets of transitions leaving and entering a
state q are respectively denoted by Out(q) and In(q).

We sometimes write that an automaton A has transitions P1, . . . , Pm →
q1, . . . , qn when A has all left limit transitions Pi → qj for 1 ≤ i ≤ m and
1 ≤ j ≤ n. Analogously we shall use the notation q1, . . . , qn → P1, . . . , Pm for
right limit transitions.

A word x = (aj)j∈J of length J is accepted by A if it is the label of a

successful path. A path γ is a sequence of states γ = (qc)c∈Ĵ of length Ĵ
verifying the following conditions. For two consecutive states in γ, there must
be a successor transition labeled by the letter in between. For a state q ∈ γ
which has no predecessor on γ, there must be a left limit transition P → q
where P is the limit set of γ on the left of q. Right limit transitions are used
similarly when q has no successor on γ.

Since a sequence of states indexed by Ĵ is actually a function from Ĵ into Q,
we sometimes use a functional notation and the state qc of a path γ is also
denoted by γ(c).

Observe that the ordering Ĵ always has a first element and a last element,
namely the cuts cmin = (∅, J) and cmax = (J, ∅). For any cut c ∈ Ĵ , define the
sets limc− γ and limc+ γ as follows:

lim
c−

γ = {q ∈ Q | ∀c′ < c ∃k c′ < k < c and q = qk},

lim
c+

γ = {q ∈ Q | ∀c < c′ ∃k c < k < c′ and q = qk}.

A sequence γ = (qc)c∈Ĵ of states is an accepting path for the word x =

(aj)j∈J if the following conditions are fulfilled. For any pair (c−j , c+
j ) of consec-

utive cuts of J , the automaton must have the successor transition qc−
j

aj−→ qc+

j
.

For any cut c 6= cmin which has no predecessor in Ĵ , limc− γ → qc must be a left
limit transition. For any cut c 6= cmax in Ĵ which has no successor, qc → limc+ γ
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must be a right limit transition. A path is successful if its first state qcmin
is

initial and its last state qcmax
is final.

Example 5 Let A = {a, b}. The automata A pictured in Fig. 1 has two suc-
cessor transitions, three left limit transitions and three right limit transitions.
State 0 is the only initial state, and state 5 is the only final state.

0

1 2

3 4

5

a

b

0, 2, 4 → {1, 2, 3, 4}

{1, 2, 3, 4} → 1, 3, 5

Figure 1: Automaton accepting sh(a, b)

Let us show that this automata accepts words in sh(a, b). Consider indeed a
word w = (wj)j∈J , and assume first that w is accepted by A. Let γ = (qc)c∈Ĵ be
a successful path labeled by w. The ordering J must be dense since there are no
consecutive transitions in A. It must also be complete since there is no state with
incoming left limit transitions and leaving right limit transitions. Occurrences
of both a and b must be dense in J since all limit transitions involve the four
states {1, 2, 3, 4}. Finally, J cannot have a first or a last element. Indeed, the
only transition leaving state 0 is a limit one, and similarly for the only transition
entering state 5.

Conversely, let w = (wj)j∈J be a word indexed by a complete ordering J
such that occurrences of both a and b are dense in J . Since J is complete, any
cut of J (apart from cmin and cmax) are either preceded or followed by a letter.
Then the sequence γ = (qc)c∈Ĵ defined as follows is a successful path labeled
by w.

• qcmin
= 0,

• qcmax
= 5,

• qc = 1 if c is followed by an a and qc = 2 if c is preceded by an a,

• qc = 3 if c is followed by a b and qc = 4 if c is preceded by a b.

The construction of an automaton accepting sh(L1, . . . , Ln) from automata
accepting L1, . . . , Ln is a straightforward generalization of the automaton for
sh(a, b) which is pictured in Fig. 1.

5 Rational expressions vs automata

In this section we state the main theorem of the paper, i.e. that automata and
rational expressions define the same languages of words over linear orderings.
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Theorem 6 A set of words over linear orderings is rational iff it is recognizable.

This result was proved in [3] for the restricted case of countable scattered
linear orderings. Many arguments still hold in the general case. As in [3], the
only if part of the proof relies upon an induction on the rational expression.
The only modification with respect to the proof of [3] is that we have to show
that the shuffle of rational languages is rational. For the if part of the proof, we
use as in [3] Yamada’s classical technique, i.e. an induction on the set of states
visited by a successful path of the automaton. A key ingredient is the use of
successive condensations of linear orderings.

We illustrate the theorem with a few examples, over the alphabet A = {a, b}.

0 1

a

0, 1 → {0, 1}

{0, 1} → 0, 1

Figure 2: Automaton accepting a∗(ε + sh(a∗, ε))a∗

Example 7 The automaton pictured in Fig. 2 accepts the set a∗(ε+sh(a∗, ε))a∗

of words already considered in Example 3.

0 1 2
a, b

a, b

a, b 2 → {1}, {0, 1}, {1, 2}, {0, 1, 2}

{1}, {0, 1}, {1, 2}, {0, 1, 2}→ 0

Figure 3: Automaton accepting words with a complete length

Example 8 The automaton pictured in Fig. 3 accepts words over {a, b} whose
length is a complete ordering. Since all limit transitions enter state 0 and leave
state 2, the length of an accepted word must be complete. Conversely, let x be
a word of length J where J is a complete ordering. Define the path γ which
maps any cut (K, L) of Ĵ to 0 if K has no greatest element, to 2 if L has no
least element and to 1 otherwise. It is pure routine to check that this defines
an accepting path for x.

Example 9 The automaton pictured in Fig. 4 accepts words over {a} whose
length is a non scattered ordering. Let w = (wj)j∈J be a word labeling a
successful path γ in A. Let K be the set of positions j such that wj is read by
the transition 1 a−→ 2 in γ. It can be checked that K is a dense subordering of J .
Therefore, the ordering J is not scattered.
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0

1 2

a

a

a
1 → {1}

{1} → 1

2 → {2}

{2} → 2

0, 2 → {1, 2}, {0, 1, 2}

{1, 2}, {0, 1, 2} → 0, 1

Figure 4: Automaton accepting words with a non scattered length

For the converse, recall that each linear ordering J can be written J =
∑

k∈K Jk where each ordering Jk is scattered and the ordering K is either the
one-element ordering if J is scattered or a dense ordering [22, chap. 4]. From
this decomposition, a word w whose length is not scattered is equal to a product
∏

k∈K wk where K is a dense ordering. Then a path γk from state 1 to state 2
labeled by wk can be constructed as follows. Let Jk be the length of wk and let
zk be an arbitrarily chosen element of Jk. Any cut of Jk before zk is mapped to
state 1 and any cut after zk is mapped to state 2. A path labeled by w is finally
constructed as follows. Any cut inside some wk is mapped to the corresponding
state in γk and any remaining gap is mapped to state 0.

6 From rational expressions to automata

In this section we prove that every rational set of words is accepted by some
automaton. The proof goes by induction on the rational expression denoting
the set. For each rational operation we must describe a corresponding con-
struction for the automata. The constructions given in [5] for the operators
∪, ·, ⋆, ω , −ω, ♯, −♯ and ⋄, do not depend on any particular assumption on
the linear orderings, and thus remain correct in our context. Therefore we only
have to provide a construction for the shuffle operation.

We shall work with normalized automata, i.e automata which have a unique
initial state i and a unique final state f 6= i, and have no transition which enters
i or leaves f . Note that these conditions imply that the states i and f can only
occur as the first state and the last state of a path. Therefore the transitions of
the form P → q or q → P where P contains i or f cannot occur in a path. In
the sequel, we assume that a normalized automaton does not have transitions
of the form P → q or q → P where P contains i or f .

The following lemma, the proof of which can be found in [3], states that
the empty word can be added or removed without changing recognizability.
Furthermore a recognizable set which does not contain the empty word can be
accepted by a normalized automaton. Note that this condition is necessary since
a normalized automaton cannot accept the empty word.
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Lemma 10 Let X be a set of words. The set X is recognizable iff X + ε is

recognizable. Furthermore if ε /∈ X, then X can be recognizable by a normalized

automaton.

We have to show that for every n ≥ 1, if X1, . . . , Xn are recognizable then
sh(X1, . . . , Xn) is also recognizable.

We first assume that the empty word does not belong to any of the Xi’s.
Then by our assumption the languages X1, . . . , Xn are accepted by the normal-
ized automata A1, . . . ,An, respectively. Suppose that At = (Qt, Et, {it}, {ft})
for every t ∈ {1, . . . , n}, and Qi ∩ Qj = ∅ whenever i 6= j. Consider the au-
tomaton A obtained by juxtaposition of A1, . . . ,An, by adding two new states
i, f which are the initial state and the final state of A (respectively), and by
adding all transitions of the form P → i1, . . . , in, f and f1, . . . , fn, i → P , where
1 ≤ k ≤ n and P ⊇ {i1, . . . , in, f1, . . . , fn}. The construction is pictured in
Figure 5.

i

in An fn

...

i1 A1 f1

f

Figure 5: Automaton for sh(X1, . . . , Xn)

Let us show that A accepts exactly sh(X1, . . . , Xn). First assume that w ∈
sh(X1, . . . , Xn), i.e. w =

∏

j∈J wj where J is a complete linear ordering without
first and last element, and (J1, . . . , Jn) is a partition of J such that all Ji’s are
dense in J , and for every j ∈ J , if j ∈ Jk then wj ∈ Xk. Then every wj is the
label of a successful path γj in some At (t is such that j ∈ Jt). It is clear that
the paths γj can be concatenated, with an additional state i at the beginning
and an additional state f at the end, to form a successful path in A.

Conversely if w = (xk)k∈K is a word indexed by the linear ordering K and
is the label of a successful path γ = (γk)k∈K̂ in A, then w can be written
as w =

∏

j∈J wj where each wj is the label of a subpath of γ of the form
(it, . . . , ft) where all intermediate states belong to At. This determines a parti-
tion (J1, . . . , Jn) of J such that if j ∈ Jt then wj ∈ Xt. The transitions of A en-
sure that i and f are the initial and final states of γ, respectively, and that i and f
do not occur elsewhere in γ. Moreover the condition P ⊇ {i1, . . . , in, f1, . . . , fn}
ensures that each Ji is dense in J .

10



In order to prove that w ∈ sh(X1, . . . , Xn), there remains to show that J
is complete. Assume for a contradiction that J is not complete; this implies
that J can be written as J = J ′ + J ′′ where J ′ has no greatest element and
J ′′ has no least element. Thus we have w = w′ · w′′ with w′ =

∏

j∈J′ wj and
w′′ =

∏

j∈J” wj . We have w′ = (xk)k∈K′ and w′′ = (xk)k∈K′′ with K = K ′+K ′′,
and K ′ has no greatest element and K ′′ has no least element. Therefore in the
path γ, if k denotes the cut (K ′, K ′′), we must have γk = q for some state q
such that A admits transitions P1 → q and q → P2, where P1 is the limit set on
the left of q and P2 is the limit set on the right of q. But the very definitions
of w′ and w′′ imply that P1, P2 ⊇ {i1, . . . , in, f1, . . . , fn}, and the definition of
transitions of A yields that q ∈ {i1, . . . , in, f} ∩ {f1, . . . , fn, i} which is empty,
leading to a contradiction.

The case where the empty word ε belongs to some Xt can be treated by
a slight modification of the previous construction. Let H = {t | ε ∈ Xt}.
Consider the automata A′ obtained from A by adding a new state st for each
t ∈ H , and by adding transitions of the form P → ik, f, st and fk, i, st → P , for
k = 1, . . . , n, t ∈ H , and P satisfies

• for every j 6∈ H , P ⊇ {ij, fj}

• for every j ∈ H , P ∩ {ij, fj , sj} equals either {ij, fj}, or {ij, fj , sj}, or
{sj}

Let us show that A′ accepts sh(X1, . . . , Xn). If w ∈ sh(X1, . . . , Xn), then
one finds a successful path γ for w in A′ in a similar way as in the previous
case, except that for each wj equal to ε and such that j ∈ Jt, we associate the
path (st) to wj . Conversely if w = (xk)k∈K is a word indexed by the linear
ordering K and is the label of a successful path γ = (γk)k∈K̂ in A, then w can
be written as w =

∏

j∈J wj where each wj is either the label of a subpath of γ
from it to ft where all intermediate states belong to At, or wj = ε is the label
of some empty path from st to st. Note that the length of the word w is not
complete but the ordering J is complete. Indeed, a gap in the length of w is
labelled by some state st. For each of these cuts, a point j is added in J such
that wj = ε. These points make complete the ordering J . As in the previous
case, this decompostion of w determines a partition (J1, . . . , Jn) of J such that
wj ∈ Xt whenever j ∈ Jt, and the very definition of A′ ensures that J and
(J1, . . . , Jn) satisfy the required conditions.

7 From automata to rational expressions

In this section, we prove that for any automaton A, there is a rational expression
denoting the set of words accepted by A. The proof is based on an extension of
Yamada’s classical approach.

The proof structure is similar to the one given in [5] for the case of languages
of words indexed by countable scattered orderings. For the sake of readability
we shall repeat some arguments of [5], and also point out the main differences
with [5] along the proof.
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We start with the following lemma, which gives a characterization of the
orderings of the form J∪Ĵ . Lemma 8 of [5] is almost the same but the hypotheses
on J and J ′ are weaker. They do not exclude a dense interval only containing
elements of J ′. This case cannot occur since the ordering K is scattered in [5].

Lemma 11 Let K be a complete linear ordering with a least and a greatest

element, and let (J, J ′) be a partition of K. Suppose that any element of J has

a predecessor and successor in J ′, and that there is at least one element of J
between two elements of J ′. Then J ′ equals Ĵ , that is K = J ∪ Ĵ .

Proof We define a function f from K into J ∪ Ĵ as follows. For any k ∈ K,
define

f(k) =

{

k if k ∈ J
(

{j ∈ J | j < k}, {j ∈ J | k < j}
)

if k ∈ J ′.

Since J ∩J ′ = ∅ and K = J ∪J ′, the function f is well defined. The restriction
of f to J is the identity. The image of an element of J ′ is a cut of J . Therefore
f is a function from K into J ∪ Ĵ .

We claim that the function f is one-to-one. We first show that k 6= k′

implies f(k) 6= f(k′). If k ∈ J or k′ ∈ J , the result is trivial. Suppose then
that k, k′ ∈ J ′ and that k < k′. By our second hypothesis there exists j′ ∈ J
such that k < j′ < k′, which implies {j ∈ J | j < k} 6= ({j ∈ J | j < k′}, thus
f(k) 6= f(k′).

We now prove that the function f is onto. It is clear that J ⊆ f(K). Let
(L, M) be a cut of J . We claim that there is k ∈ J ′ such that (L, M) = f(k).
Since K is complete and has a least and a greatest element, any subset of K
has a greatest lower bound and a least upper bound. Define the two elements
l and m of K by l = sup(L) and m = inf(M). If l belongs to L, it has a
successor k in J ′ and one has (L, M) = f(k). If m belongs to M , it has a
predecessor k in J ′ and one has (L, M) = f(k). If l and m do not belong to L
and M , they belong to J ′ and their image by f is the cut (L, M). Since f is
one-to-one, l and m are equal. �

Now let us prove that for any automaton A, there is a rational expression
denoting the set of words accepted by A.

In the sequel we shall prove that every word accepted by A belongs to
some rational language L. The task to check that every word w ∈ L labels an
accepting run of A is easy and is left to the reader.

We first introduce some notation. Let A = (Q, A, E, I, F ) be a fixed au-
tomaton. The content C(γ) of a path γ is the set of states which occur inside γ.
It does not take account the first and the last state of the path. Recall that a
path γ labeled by a word of length J is a function from Ĵ into Q. The content
of a path γ is thus formally defined by C(γ) = γ(Ĵ∗). The full content FC(γ)
of γ is defined by FC(γ) = γ(Ĵ).

A path γ from a state p to a state p′ which is of content P and labeled by x
is denoted by

γ : p
x
 
P

p′.

12



If x 6= ε, the path γ uses a first transition σ which leaves p and a last transition σ′

which enters p′. To emphasize the use of σ and σ′, the path γ is then denoted

γ : σ
x
 
P

σ′.

In both notations, we may omit the label or the content of the path if they are
not relevant.

Let P be a subset of states and let σ and σ′ be two transitions of A. We
define the sets of words ΠP

σ,σ′ , ∇P
σ,σ′ , ∆P

σ,σ′ , and ΓP
σ,σ′ as follows.

ΠP
σ,σ′ = {x | σ

x
 
P

σ′}

∇P
σ,σ′ = {x | σ

x
 
P

σ′ without any transition P → r}

∆P
σ,σ′ = {x | σ

x
 
P

σ′ without any transition r → P}

ΓP
σ,σ′ = {x | σ

x
 
P

σ′ without any transition r → P or P → r}.

Note that without any transition P → r means that the path γ does not use
any left limit transition of the form P → r for any r ∈ C(γ) except perhaps for
the last transition if σ′ is a left limit transition of this form. Thus, the left limit
limc− γ at any cut c different from the last cut must be a strict subset of P .
Both sets ∇P

σ,σ′ and ∆P
σ,σ′ are subsets of ΠP

σ,σ′ and the set ΓP
σ,σ′ is equal to the

intersection ∇P
σ,σ′ ∩ ∆P

σ,σ′ .
The paths considered in the definition of the sets ΠP

σ,σ′ , ∇P
σ,σ′ , ∆P

σ,σ′ , and
ΓP

σ,σ′ use at least one transition. Therefore, the empty word is not contained in
them. Since a path is successful if its first and last states are respectively initial
and final, the set of words accepted by the automaton A is equal to the union

ε(A) +
⋃

P⊆Q,σ∈Out(I),σ′∈In(F )

ΠP
σ,σ′

where ε(A) is equal to ε if I ∩ F 6= ∅ and to ∅ otherwise. We claim that any
set ΠP

σ,σ′ , ∇P
σ,σ′ , ∆P

σ,σ′ and ΓP
σ,σ′ is rational. The proof is by induction on the

cardinality of P .
We first suppose that P is the empty set ∅. If both transitions σ and σ′ are

equal to the same successor transition p a−→ q, all four sets ΠP
σ,σ′ , ∇P

σ,σ′ , ∆P
σ,σ′

and ΓP
σ,σ′ are equal to the singleton {a}. Otherwise, they are all empty. In both

cases, there are rational. This completes the base case of the induction.
We now suppose that for any R ( P and any transitions τ and τ ′, all four

sets ΠR
τ,τ ′ , ∇R

τ,τ ′ , ∆R
τ,τ ′ and ΓR

τ,τ ′ are rational. We claim that the sets ΠP
σ,σ′ ,

∇P
σ,σ′ , ∆P

σ,σ′ and ΓP
σ,σ′ can be expressed by rational expressions involving the

sets ΠR
τ,τ ′ , ∇R

τ,τ ′, ∆R
τ,τ ′ and ΓR

τ,τ ′.
We refer the reader to the paper [5] for the proof that ∇P

σ,σ′ , ∆P
σ,σ′ and ΓP

σ,σ′

are rational, since this proof does not depend on any assumption on the linear
ordering J . It is based on the ordering of the cuts where the left or right limit
set is P . If only cuts where the left (or right) limit set is P occur, then the
ordering of these cuts is well-ordered and thus scattered.
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Therefore we only have to prove that ΠP
σ,σ′ is rational. For this case the

arguments of [5] cannot still be used, as they heavily depend on the assumption
that J is countable and scattered.

We shall use the following notions and properties. Let J be a linear ordering.
A condensation of J is an equivalence relation ∼ on J such that each of its classes
is an interval. Disjoint intervals are naturally ordered and the quotient J/∼ can
be endowed with a linear ordering induced by the ordering of J .

The quotient J/∼ inherits some properties of J . If J has a least or a greatest
element, then J/∼ has also a least or a greatest element which are the class of
the least or greatest element of J . If J is complete, then J/∼ is also complete.

Let us mention some useful properties of consecutive classes k and k′ of J/∼
when the ordering J is complete. Define j and j′ by j = sup(k) and j′ = inf(k′).
By definition, one has j ≤ j′. If j < j′, then j and j′ respectively belong to k
and k′ since the classes k and k′ are consecutive. In that case, the interval k is
right closed and k′ is left closed. If j = j′, then j belongs to either k or k′. In
the former case, k is right closed and k′ is left open and in the latter case, k is
right open and k′ is left closed. Note that it is impossible that k is right open
and k′ is left open.

In the sequel we will deal with intervals of Ĵ . Each interval I has the form
(c1, c2), (c1, c2], [c1, c2) or [c1, c2], which will be expressed by saying that I has
the type ( ), ( ], [ ) or [ ], respectively.

We shall consider successive condensations. Given a linear ordering J and a
condensation ∼1 of J , one can define another condensation ∼2 over K = J/∼.
Then ∼2 can be seen as a condensation over J , and in a similar way we shall
often see equivalence classes of ∼2 as intervals of J .

Now let us turn to the proof that ΠP
σ,σ′ is rational. We first give a sketch

of the proof. It consists in cutting the path associated with any element of
ΠP

σ,σ′ into intervals of the form ( ) or [ ] only, in such a way that the set of open
intervals and the set of closed intervals interleave as in Lemma 11. This will
allow to use the operation ⋄ to find an adequate rational expression. In the
course of the proof the shuffle operation will also be involved.

The above collection of intervals ( ) and [ ] is defined via four successive
condensations, that can be briefly described as follows. Let γ be a path labeled
by a word x = (aj)j∈J in ΠP

σ,σ′ . The first condensation ∼1 consists in cutting
γ into intervals such that transitions of the form P → . . . and . . . → P in γ
occur only at the extremity of these intervals. For each interval one can use the
induction hypothesis to find a corresponding rational expression. The second
condensation ∼2 is obtained by merging elements of K = J/∼1 as follows: two
elements k1 < k2 of K are merged iff all elements of the interval [k1, k2], seen
as intervals of Ĵ , have the same type. The aim of the third condensation ∼3

is to make intervals ( ] and [ ) “disappear”. This is done by merging triplets of
consecutive elements of L = K/∼2 which, seen as intervals of Ĵ , have the form
[ ),[ ],( ] (successively), and then merging the remaining couples of consecutive
elements of L which, seen as intervals of Ĵ , have the form [ ),[ ] (respectively
[ ],( ]). This gives rise to a set M = L/∼3 of intervals of Ĵ that only have the
form ( ) or [ ]. In the set M there can exist dense intervals consisting only in
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intervals of Ĵ of the form [ ]; the last condensation ∼4 consists in an appropriate
condensation of elements of M (the shuffle operation appears here) whose effect
is to make “disappear” such dense intervals. The resulting quotient set N =
M/∼4 consists only in intervals of Ĵ of the form ( ) or [ ], such that the set of
intervals ( ) and the set of intervals [ ] interleave as Lemma 11 requires.

Let us point out that the two condensations ∼1 and ∼2 already appear in [5],
and actually suffice to obtain a rational expression for ΠP

σ,σ′ if we consider only
languages of words indexed by countable scattered orderings. Here we have to
introduce two new condensations ∼3 and ∼4 to deal with all linear orderings.

As before, let γ be a path labeled by a word x = (aj)j∈J in ΠP
σ,σ′ , and let p

and p′ be its first and last state, respectively.

• First condensation

Consider the following condensation ∼1 on Ĵ defined as follows. For any
cuts c1, c2 ∈ Ĵ , the relation

c1 ∼1 c2

holds iff for any c ∈ [c1, c2), limc+ γ 6= P and for any c ∈ (c1, c2], limc− γ 6= P .
Any equivalence class of ∼1 is an interval. Let us study the structure of the

equivalence classes of ∼1 and the consecutive elements of the quotient ordering
K = Ĵ/∼1. Note that K is a complete ordering with a least and a greatest
element.

Let k ∈ K be an equivalence class of ∼1, with c1 = inf(k) and c2 = sup(k).
For any c ∈ (c1, c2), one has limc+ γ 6= P and limc− γ 6= P . By definition of ∼1,
one checks that k is left open iff limc+

1

γ = P . Symmetrically, k is right open iff

limc−
2

γ = P .

Consider two consecutive elements k and k′ of K. As Ĵ is complete, it is
impossible that k is right open and k′ is left open. We also claim that it is
impossible that k is right closed and k′ is left closed. Otherwise, the greatest
element max(k) and the least element min(k′) would be consecutive elements
of Ĵ , thus they would satisfy max(k) ∼1 min(k′) and this is a contradiction.
This proves that, either k is right open and k′ is left closed, or k is right closed
and k′ is left open. Moreover, any element k of K which is right open always
has a successor k′ which is then left closed. Symmetrically, if k is left open, it
has a predecessor k′ which is right closed.

• Second condensation

We now define a condensation ∼2 on the ordering K. For all k1, k2 ∈ K, the
relation

k1 ∼2 k1

holds iff elements of the interval [k1, k2] have all the type ( ], or have all the type
[ ) .

As done for K, we study the quotient ordering L = K/∼2 which is a complete
linear ordering with a least and a greatest element.

If l is an equivalence class of ∼2 with elements of type ( ), then l is a singleton
since K is complete. In the same way, any equivalence class of ∼2 with elements

15



of type [ ] is a singleton. This is no longer true for the classes containing elements
of type ( ] or [ ).

The ordering Ĵ is complete, thus any equivalence class l of ∼2 that consists
in elements of type [ ), always has a successor, and if l is left open, it also has a
predecessor. In the same way, any class l with elements of type ( ] always has a
predecessor and if l is right open, it also has a successor. Moreover, any class l
reduced to a singleton of type ( ) has a predecessor and a successor.

Now consider two consecutive elements l < l′ of L. Since ∼2 is a conden-
sation, it is impossible that l is right open and l′ is left open. Let k = sup(l)
and k′ = inf(l′). Assume first that l and l′ are right and left closed. Then k
and k′ are consecutive elements of K, for which we already know the possible
configurations. Moreover, k and k′ have different types since they are in differ-
ent classes. Assume now that l is right open and that l′ is left closed. If follows
that k = k′ and the type of k is different from the type of the elements of l. As
l is right open, two types are possible for its elements: ( ] or [ ). If the type is
[ ), one checks that k has type [ ] due to the properties seen for K. If the type
of the elements of l is ( ], then k has either type [ ] or [ ). The last case when l
is right closed and l′ is left open is symmetrical.

Let us go further. We consider L as a collection of intervals of Ĵ which
partition Ĵ , by composing the two condensations ∼1 and ∼2. To avoid any
confusion, when L is seen as the quotient ordering over K, that is L = K/∼2,
an equivalence class is described as an interval composed with elements k of K.
When L is seen as the quotient ordering over Ĵ , a class is described as an interval
of elements c of Ĵ . A class l is then seen as the interval

⋃

k∈l k of Ĵ .
Let us detail the different cases. We begin with the classes l reduced to

a singleton k of type ( ) or [ ]. Seen over Ĵ , we respectively get l = (c, c′) or
l = [c, c′]. Let τ be the transition leaving γ(c) and let τ ′ be the transition
entering γ(c′). Therefore, if l = (c, c′), the label y of the path γ(c)  γ(c′)
belongs to

ΓP
τ,τ ′ with τ = γ(c) → P and τ ′ = P → γ(c′) (1)

and if l = [c, c′], then either y = ε (when c = c′) or y belongs to

Zτ,τ ′ = ΓP
τ,τ ′ ∪

⋃

R(P

ΠR
τ,τ ′ with τ 6= γ(c) → P and τ ′ 6= P → γ(c′). (2)

We proceed with the classes l with all their elements of type [ ). Suppose
that l is left open. We have seen before that over Ĵ , l is an interval l = (c, c′)
such that limc+ γ = P and limc′− γ = P . The path γ(c)  γ(c′) does not
involve any right limit transition r → P . Let τ be the transition leaving γ(c)
and let τ ′ be the transition entering γ(c′). Therefore, the label y of the path
γ(c) γ(c′) belongs to

∆P
τ,τ ′ with τ = γ(c) → P and τ ′ = P → γ(c′). (3)

A similar description holds for classes l with elements of type ( ], which are
right open. With the same notation, we have l = (c, c′) and the label y of the
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path γ(c) γ(c′) belongs to

∇P
τ,τ ′ with τ = γ(c) → P and τ ′ = P → γ(c′). (4)

Two cases have still to be considered: the case of left closed classes l with
elements of type [ ) and the symmetrical case of right closed classes l with
elements of type ( ]. In the former case, l is an interval l = [c, c′) over Ĵ such
that limc+ γ 6= P and limc′− γ = P . The path γ(c) γ(c′) is again without any
right limit transition r → P and with the same notation as before, y belongs to

∆P
τ,τ ′ with τ 6= γ(c) → P and τ ′ = P → γ(c′). (5)

In the latter case, a symmetric description holds with l = (c, c′] and y belongs
to

∇P
τ,τ ′ with τ = γ(c) → P and τ ′ 6= P → γ(c′). (6)

• Third condensation

We now define a third condensation ∼3 on L, that we obtain by merging
pairs or triples of consecutive elements of L as follows.

Consider an element l = [c1, c2) of L as described in Equation (5). Recall
that l has a successor l′ which is necessarily a singleton k of type [ ]. Such a
class l′ has been described in Equation (2). The class l′ is equal to an interval
l′ = [c2, c3]. Analogously, if l′′ = (c3, c4] is an element of L as described in
Equation (6), it has a predecessor l′ = [c2, c3] as described in Equation (2).

Let l′ = [c2, c3] be an interval of Equation (2). If it has a predecessor [c1, c2)
of Equation (5) and a successor (c3, c4] of Equation (6), then we merge the three
intervals [c1, c2), [c2, c3] and (c3, c4] in a single interval [c1, c4]. Otherwise, if l′

has only a predecessor [c1, c2) (respectively a successor (c3, c4]), then we merge
the intervals [c1, c2) and [c2, c3] (respectively [c2, c3] and (c3, c4]) in a single
interval [c1, c3] (resp. [c2, c4]).

Let M = L/∼3. Note that all elements of M , seen as intervals of Ĵ , have
the form ( ) and [ ] only. Let M1 (resp. M2) denote elements of M which are
open (resp. closed) intervals of Ĵ .

Consider m = [c, c′] in M2. Let y be the label of path γ(c)  γ(c′) (see
Equations (2), (5) and (6) ). If c = c′ then y = ε. Assume now that c 6= c′; let
τ be the transition leaving γ(c) and let τ ′ be the transition entering γ(c′). The
label y belongs to

Yτ,τ ′ = Y ′
τ,τ ′ ∪ Zτ,τ ′ (7)

where Y ′
τ,τ ′ corresponds to the case where m is obtained by merging two or

three consecutive elements of L, and Zτ,τ ′ corresponds to the case where m

is an interval of Ĵ which comes directly from the first condensation (i.e. m
corresponds to an equivalence class of ∼1 which was not merged with other
classes during the second and third condensations).

We have
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Y ′
τ,τ ′ =

⋃

(τ ′

1,τ1)∈T1

(τ ′

2,τ2)∈T2

∆P
τ,τ ′

1
Zτ1,τ ′

2
∇P

τ2,τ ′ ∪
⋃

(τ ′

3
,τ3)∈T3

∆P
τ,τ ′

3
∇P

τ3,τ ′

∪
⋃

(τ ′

1
,τ1)∈T1

∆P
τ,τ ′

1
Zτ1,τ ′ ∪ ∆P

τ,τ ′ (8)

∪
⋃

(τ ′

2
,τ2)∈T2

Zτ,τ ′

2
∇P

τ2,τ ′ ∪ ∇P
τ,τ ′

where the sets T1, T2 and T3 are defined by

T1 = {(τ ′
1, τ1) | ∃q τ ′

1 = P → q, τ1 ∈ Out(q) and τ1 6= q → P}

T2 = {(τ ′
2, τ2) | ∃q τ ′

2 ∈ In(q), τ ′
2 6= P → q and τ2 = q → P}

T3 = {(τ ′
3, τ3) | ∃q τ ′

3 = P → q and τ3 = q → P}.

Let us give some details about Equation (8):

• the first line corresponds to the case where three consecutive elements of
L (of type [ ), [ ], ( ], respectively) are merged. The second term of the
union allows to deal with the case where the element of type [ ] is reduced
to a singleton.

• the second line corresponds to the case where two consecutive elements
of L (of type [ ), [ ], respectively) are merged. As before, the term ∆P

τ,τ ′

allows to deal with the case where the element of type [ ] is a singleton.

• the third line corresponds to the case where two consecutive elements of
L (of type [ ], ( ], respectively) are merged. The last term allows to deal
with the case where the element of type [ ] is a singleton.

Note that if m is not the first element of M1 ∪ M2, then τ belongs to T1 =
{τ1 | ∃τ ′

1 (τ ′
1, τ1) ∈ T1} and if m is not the last element of M1 ∪ M2, then τ ′

belongs to T ′
2 = {τ ′

2 | ∃τ2 (τ ′
2, τ2) ∈ T2}. Otherwise, the set Yτ,τ ′ is such that

τ = σ or τ ′ = σ′. Moreover, when τ = σ and τ ′ = σ′, the definition of Zτ,τ ′

given by Equation (2) must be slightly changed into Zσ,σ′ = ΓP
σ,σ′ due to the

content equal to P .

• Fourth condensation

At this step there could exist in M dense intervals consisting only in elements
of M2. Indeed assume that there exist m1, m2 ∈ M1 such that m1 < m2, and
]m1, m2[∩M1 = ∅. Since there cannot exist in M two consecutive elements that
belong to M2 (by the very definition of ∼3), the interval ]m1, m2[ of M consists
either in a singleton m ∈ M2, or in a dense interval of elements of M2.

We shall define a (last) condensation ∼4 which will merge elements of such
dense intervals of elements of M2. This will involve the shuffle operation for the
corresponding rational expression.
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Given a linear ordering (J, <) and a set F , we call labeling of J by F any
function l : J → F . We say that an interval I of J is homogeneous for l if for
every t ∈ l(I), the set {x ∈ I | l(x) = t} is dense in I.

Lemma 12 If J is a dense infinite linear ordering and F is a finite set, and

l : J → F is a labeling of J by F , then there exists a non-trivial interval I of J
which is homogeneous for l.

Proof Easy induction on the cardinality of F . �

Consider the finite labeling l : M → 2P which maps every element m ∈ M
to the full content of m (when m is seen as an interval of Ĵ). The condensation
∼4 on M is obtained by merging, within every interval ]m1, m2[ of M such that
m1, m2 ∈ M1 and ]m1, m2[∩M1 = ∅, all elements of M that belong to the
same homogeneous interval with respect to the labeling l. More formally, for
m, m′ ∈ M such that m < m′ we set m ∼4 m′ iff [m, m′] is contained in an open
interval I such that I ∩ M1 = ∅ and I is homogeneous for l.

Observe that this merges elements of M2, which are closed intervals of Ĵ ,
into open intervals of Ĵ .

Let N = M/∼4. By the very definition of ∼4, N consists only in closed and
open intervals of Ĵ . Let us denote by N1 (respectively N2) the set of elements
of N which are open (respectively closed) intervals of Ĵ . We denote by N ′

1 the
elements of N1 which appeared during the fourth condensation, i.e. which were
obtained by merging a dense interval of elements of M2.

Lemma 13 The ordering N and the partition (N1, N2) of N satisfy the hypothe-

ses of Lemma 11. Thus N2 = N̂1, that is N = N1 ∪ N̂1.

Proof First of all, N is a condensation of M , thus N is complete with a least
and a greatest element. Now consider an element n of N1. Since n is open it
has predecessor and successor which are closed and thus in N2.

It remains to show that for all elements n, n′ ∈ N2 with n < n′, there exists
n′′ ∈ N1 such that n < n′′ < n′. Assume for a contradiction that there is no
such n′′. Observe first that n, n′ cannot be consecutive elements of N . Indeed n
and n′ are closed intervals of Ĵ , and since ∼1 is a refinement of ∼4, this would
imply the existence of two consecutive equivalence classes k1, k2 of ∼1 such that
k1 is right closed and k2 is left closed, which was shown to be impossible. The
fact that n, n′ are not consecutive, and that the interval [n, n′] of N contains
only elements of N2, yield that [n, n′] is a dense interval of elements of N2. Now
every element of N2 coincides, as an interval of Ĵ , with an equivalence class of
∼3 (in M2), since elements of N2 are closed intervals of Ĵ and the condensation
∼4 only merges classes of ∼3 which are closed intervals of Ĵ , into open intervals.
Therefore we can see the interval [n, n′] as an interval of elements of M2, and
apply Lemma 12 to get a non-trivial interval I of [n, n′] which is homogeneous
for our labeling l (restricted to [n, n′]). From the definition of ∼4 it follows that
[n, n′], seen as an interval of N , contains an element of N ′

1, which contradicts
our hypothesis. �
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We shall give now rational expressions that correspond to elements of N
(seen as intervals of Ĵ).

Let us first give a rational expression for open intervals of Ĵ which corre-
spond to elements of N ′

1. Let z = (c, c′) in N ′
1. By the very definition of ∼4,

z was obtained by merging a dense interval I of elements of M2, where I is
homogeneous for the labeling l. Let R1, . . . , Rn ⊆ P be the the distinct values
l(m) for m ∈ I. We have FC(z) = ∪1≤i≤nRi. On the other hand z contains
infinitely many equivalence classes of ∼3 since it belongs to N ′

1, which implies
FC(z) = P . We have shown that ∪1≤i≤nRi = P .

¿From the above arguments it follows that the label of the path γ(c) γ(c′)
belongs to

UP =
⋃

n≥1,Ri 6=Rj ,∪n
i=1

Ri=P

sh(SR1
, . . . , SRn

). (9)

where, for every R ⊆ P , SR denotes the language of labels of paths γ(c1) γ(c2)
having a full content equal to R, and such that (c1, c2) ∈ M2, and P → γ(c2)
and γ(c1) → P are transitions of A.

For every R ( P one has

SR =
⋃

(τ,τ ′)∈TR

ΠR′

τ,τ ′

where TR denotes the set of couples (τ, τ ′) such that τ ∈ Out(q), τ ′ ∈ In(q′),
R = R′ ∪ {q, q′}, and P → q and q′ → P are transitions of A.

Further SP satisfies

SP =
⋃

(τ,τ ′)∈TP

ΠR′

τ,τ ′ ∪
⋃

(τ,τ ′)∈T ′

Y ′
τ,τ ′

where

• TP denotes the set of couples (τ, τ ′) such that τ ∈ Out q, τ ′ ∈ In(q′),
P = R′ ∪ {q, q′}, and P → q and q′ → P are transitions of A.

• T ′ denotes the set of couples (τ, τ ′) such that τ ∈ Out q, τ ′ ∈ In(q′), and
P → q and q′ → P are transitions of A.

This shows that UP is rational.
We can give now a rational expression for open intervals of Ĵ which corre-

spond to elements of N1. Let z = (c, c′) in N1, the label of the path γ(c) γ(c′)
belongs to (see Equations (1), (3) and (4) and (9))

Xτ,τ ′ = ΓP
τ,τ ′ ∪ ∆P

τ,τ ′ ∪∇P
τ,τ ′ ∪ UP with τ = γ(c) → P and τ ′ = P → γ(c′).

Consider now elements of N2. It follows from the very definition of ∼4 that
the rational expression which corresponds to elements of N2 (seen as closed
intervals of Ĵ) is the same as the one for elements of M2. More precisely let x =
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[c, c′] in N2. Assume first that c 6= c′. Let y be the label of path γ(c)  γ(c′),
and let τ be the transition leaving γ(c) and let τ ′ be the transition entering
γ(c′). Then the label y belongs to the language Yτ,τ ′ as defined in Equation (7).

Let us consider the case c = c′. If N̂∗
1 contains an element [c, c], then

N1 6= ∅ and there are in A two transitions P → q and q → P for some state q.
Analogously, if the first element of N̂1 is equal to [c, c], then N1 6= ∅ and the
first transition σ is equal to p → P (similarly for the last element of N̂1).

Finally, we consider the label x ∈ ΠP
σ,σ′ of the path γ. We shall use the

languages Yτ,τ ′ as defined in Equation (7). If N1 = ∅, then N̂1 is reduced to a
singleton [c, c′] with c 6= c′. It follows that x ∈ Yσ,σ′ . If N1 6= ∅, we decompose

x thanks to the rational operation ⋄ used on N1 ∪ N̂1
∗
. Different cases have

to be considered depending on the transitions σ and σ′. Define the two sets X
and Y by

X =
⋃

τ=q→P
τ ′=P→q′

Xτ,τ ′ and Y =
⋃

τ∈T1

τ ′∈T ′

2

Yτ,τ ′.

Add to Y the empty word if there are in A two transitions P → q and q → P
for some state q. Define the set Yσ =

⋃

τ ′∈T ′

2
Yσ,τ ′ if σ 6= p → P and Yσ = ε if

σ = p → P . Define also the set Yσ′ =
⋃

τ∈T1
Yτ,σ′ if σ′ 6= P → p′ and Yσ′ = ε if

σ′ = P → p′. Then the label x belongs to Yσ(X ⋄ Y )Yσ′ showing the inclusion

ΠP
σ,σ′ ⊆ Yσ,σ′ ∪ Yσ(X ⋄ Y )Yσ′ .

It can be verified that the other inclusion holds. Clearly, the set Yσ,σ′ is
included in ΠP

σ,σ′ . One checks that the right limit transitions q → P and the
left limit transitions P → q′ involved in the operation ⋄ are well managed by
the conditions imposed by T1 and T ′

2.
Therefore, ΠP

σ,σ′ is expressed as a rational expression on the sets ∇P
τ,τ ′ , ∆P

τ,τ ′ ,
ΓP

τ,τ ′ and ΠR
τ,τ ′ with R ( P . This completes the proof.

8 Conclusion and open questions

We considered rational expressions and automata for words indexed by linear
orderings, and prove that these two formalisms capture the same languages.

A natural question is whether the class of recognizable languages is closed
under complementation. It has been proved in [21] that the answer is positive
when one considers only words indexed by countable and scattered orderings
(the proof relies upon semigroup theory). However the answer is negative in the
general case: one can prove that the set of words indexed by a non scattered
ordering is recognizable, while its complement is not.

The connections between automata over linear orderings and logic would be
interesting to explore. In his seminal paper [6], Büchi proved that recognizable
languages of finite words coincide with languages definable in the weak monadic
second order theory of (ω, <), which allowed him to prove decidability of this
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theory. In [7] he proved that a similar equivalence holds between recognizable
languages of infinite words of length ω and languages definable in the monadic
second order theory of (ω, <). The result was then extended to languages of
words indexed by a countable ordinal [8]. What can be said about monadic sec-
ond order theories for linear orderings beyond ordinals ? Using the automata
technique, Rabin proved in [19] decidability of the monadic second order theory
of the binary tree, from which he deduces decidability of the monadic second
order theory of Q, which in turn implies decidability of the monadic second
order theory of countable linear orderings. On the other hand, Shelah [23] im-
proved model-theoretical techniques [25] that allow him to reprove almost all
known decidability results about monadic second order theories, as well as new
decidability results for the case of linear orderings. On the other hand he proved
that the monadic second order theory of the real line is undecidable. Shelah’s
decidability method is model-theoretical, and up to now no corresponding au-
tomata techniques are known. This led Thomas to ask [25] whether there is an
appropriate notion of automata for words indexed by linear orderings beyond
the ordinals. As mentioned in [3], this question was an important motivation
for the introduction of automata considered in the present paper. It would
be interesting to provide a logical characterization of recognizable languages of
words over linear orderings.
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