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Abstract—We present principal component centrality (PCC)
as a measure of centrality that is more general and encompasses
eigenvector centrality (EVC). We explain some of the difficulties
in applying EVC to graphs and networks that contain more than
just one neighborhood of nodes with high influence. We demon-
strate the shortcomings of traditional EVC and contrast it against
PCC. PCC’s ranking procedure is based on spectral analysis of
the network’s graph adjacency matrix and identification of its
most significant eigenvectors.

I. INTRODUCTION

Centrality [3], [4], [6], [14], [20] is a measure to assess the

criticality of a node’s position. Node centrality is a measure

of a node’s importance by virtue of its criticality to the

control/ ability to disrupt the flow of commodity in a network.

Over the years several different meanings of centrality have

emerged based on the context. Among the many centrality

measures, eigenvalue centrality (EVC) is arguably the most

successful tool for detecting the most influential node(s) within

a social graph. Thus, EVC has been a highly popular centrality

measure in the social sciences ( [16], [23], [3], [13], [11],

[12], [24], [22], [5], [4], [18], [14], [25]), where it is often

referred to simply as centrality. As we demonstrate later

in this paper, a key shortcoming of EVC is its focus on

(virtually) only a single community of nodes clustered into

a single neighborhood. In other words, EVC has the tendency

of identifying a set of influential nodes that are all within

the same region of a graph. Meanwhile, when dealing with

massive networks/graphs, it is not necessarily always the case

that there is only a single community of influential nodes;

rather, there may be multiple communities. EVC by its very

nature focuses on the largest community, to the detriment of

other, smaller but perhaps still significant communities.

In order to identify influential neighborhoods, there is a need

to associate such neighborhoods with some form of an objec-

tive measure of centrality that can be evaluated and searched

for. To that end, one can think of a centrality plane that is

overlaid over the underlying graph under consideration. This

centrality plane may contain multiple centrality score maxima,

each of which is centered on an influential neighborhood.

Nodes that have centrality score higher than other nodes are
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Fig. 1. This figure shows a graph on the lower plane, overlayed with another
plane of the interpolated surface plot of node centrality scores. The centrality
planes typically exhibit a number of peaks or local maxima.

located under a centrality peak and are more central than any

of their neighbors. We use the term hubs to refer to nodes

forming centrality maxima. Figure 1 illustrates this concept.

Thus, these hubs form the kernel of influential neighborhoods

in networks. We will show that EVC has a tendency to be

too narrowly focused on a dominating neighborhood. To this

end, we introduce a new measure of centrality that we call

principal component centrality (PCC) that gradually widens

the focus of EVC in a controlled manner. More importantly,

PCC provides a general framework for transforming graphs

into a spectral space analogous to popular signal transforms

that operate on random signals. In essence, PCC is a general

transform of graphs that can provide vital insight into the

centrality and related characteristics of such graphs. Similar to

the Karhunen Loève transform (KLT) of a signal, the proposed

PCC of a graph gives a form of compact representation that

identifies influential nodes and, more importantly, influential

neighborhoods. Hence, PCC provides an elegant graph trans-

form framework.

The rest of this chapter is organized as follows. Section II

gives a brief review of EVC accompanied by a critique of its

application to graph topologies found in wireless networks
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Fig. 2. A spatial graph of 200 nodes. Node colors are indicative of the range
in which their EVC falls.

that motivated the development of a new node centrality.

Section III introduces PCC, a node centrality measure that is

inspired by the KLT and principal component analysis (PCA).

In particular, we demonstrate EVC’s shortcoming by using

both EVC and PCC to compute node centralities in a network

small enough to allow meaningful illustration. We also develop

the equivalence of an inverse PCC transform that attempts

to reconstruct a representation of the original graph from

its influential neighborhoods. Section IV describes in detail

the advantages, mathematical interpretation, visualization and

the effect of varying number of features of PCC. Section V

concludes the chapter.

II. BACKGROUND

Let A denote the adjacency matrix of a graph G(V,E)
consisting of the set of nodes V = {v1, v2, v3, . . . , vN} of

size N and set of undirected edges E. When a link is present

between two nodes vi and vj both Ai,j and Aj,i are set equal

to 1 and set to 0 otherwise. Let Γ(vi) denote the neighborhood

of vi, the set of nodes vi is connected to directly. EVC is a

relative score recursively defined as a function of the number

and strength of connections to its neighbors and as well as

those neighbors’ centralities. Let x(i) be the EVC score of a

node vi. Then,

x(i) =
1

λ

∑

j∈Γ(vi)

x(j)

=
1

λ

N∑

j=1

Ai,jx(j)
(1)

Here λ is a constant. Equation 1 can be rewritten in vector

form equation 2 where x = [x(1), x(2), x(3), . . . , x(N)]′ is

the vector of EVC scores of all nodes.

x =
1

λ
Ax

λx = Ax
(2)

This is the well known eigenvector equation where this

centrality takes its name from. λ is an eigenvalue and x is

the corresponding eigenvector of matrix A. Obviously several

eigenvalue/eigenvector pairs exist for an adjacency matrix A.

The EVC of nodes are defined on the basis of the Perron

eigenvalue λA (the Perron eigenvalue is the largest of all

eigenvalues of A and is also called the principal eigenvalue).

If λ is any other eigenvalue of A then λA > |λ|. The

eigenvector x = [x(1), x(2), . . . , x(N)]′ corresponding to

the Perron eigenvalue is the Perron eigenvector or principal

eigenvector. Thus the EVC of a node vi is the corresponding

element x(i) of the Perron eigenvector x. Note that when the

adjacency matrix A is symmetric all elements of the principal

eigenvector x are positive.

In computing a node’s EVC it takes into consideration its

neighbors’s EVC scores. Because of its recursive definition,

EVC is suited to measure nodes’ power to influence other

nodes in the network both directly and indirectly through

its neighbors. Connections to neighbors that are in turn well

connected themselves are rated higher than connections to

neighbors that are weakly connected. Like closeness and

betweenness, the EVC of a node provides a network-wide per-

spective. At the same time it can take advantage of distributed

methods of computing eigenvectors/eigenvalues of a matrix but

does not have to bear the overhead of excess network traffic.

Sankaralingam [21], Kohlschütter [17] and Canright, Engø-

Monsen and Jelasity [7], Bischof [2], Bai [1] and Tisseur [22]

proposed some parallel algorithms for computing eigenvectors

and eigenvalues of adjacency matrices.

EVC has been used extensively to great effect in the study

and analysis of a wide variety of networks that are shown to

exhibit small-world and scale-free properties. In [8] Canright

and Engø-Monsen correlated EVC with the instantaneous rate

of spread of contagion on a Gnutella network peer-to-peer

graph, a social network of students in Oslo, a collaboration

graph of researchers at Telenor R&D and a snapshot of a

collaboration graph of the Santa Fe Institute. In [19] Newman

analyzed the use of EVC in a lexical network of co-occuring

words in Reuters newswire stories. In [9] Carreras et al. used

EVC to study the spread of epidemics in mobile networks.

Now consider the graph in figure 2. It consists of 200
nodes and is typical of wireless (sensor) networks such as

the ones described by Gupta and Kumar in [15]. Its nodes

are assigned one of six colors from the adjacent color palette.

Each of the six colors represents one of six bins of a histogram

spanning, in uniform step sizes, the range from the smallest

to the largest EVCs. As the legend accompanying figure 2

shows, blue represents the lowest EVCs and red the highest.

We make the following observations:

1) EVCs are tightly clustered around a very small region
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Fig. 3. [Top] Histogram of eigenvalues of adjacency matrix and Laplacian
matrix A of network in figure 2; [Bottom] Cumulative sum of the sequence
of eigenvalues of adjacency matrix and Laplacian matrix of network in figure
2 when sorted in descending order of magnitudes. In both figures the lines
plotted in red color are averages of 50 networks generated randomly with the
same parameters.

with respect to the total size of the network and drops

off sharply as one moves away from the node of peak

EVC.

2) EVC is unable to provide much centrality information

for the vast majority of nodes in the network.

3) The position of the peak EVC node appears somewhat

‘arbitrary’ because a visual inspection shows that almost

equally significant clusters of nodes can be visually

spotted in other locations in the graph. Counter to

intuition, the high EVC cluster is connected to the rest

of the network by a single link.

III. PRINCIPAL COMPONENT CENTRALITY

The EVC of a node is recursively defined as a measure

of centrality that is proportional to the number of neighbors

of a node and their respective EVCs. As equation 2 shows,

the mathematical expression for the vector of node EVCs

is equivalent to the principal eigenvector. Our motivation for

PCC as a new measure of node centrality may be understood

by looking at EVC through the lens of the KLT. When the KLT

is derived from an N × N covariance matrix of N random

variables, the principal eigenvector is the most dominant

feature vector, i.e. the direction in N -dimensional hyperspace

along which the spread of data points is maximized. Similarly,

the second eigenvector (corresponding to the second largest

eigenvalue) is representative of the second most significant

feature of the data set. It may also be thought of as the most

significant feature after the data points are collapsed along the

direction of the principal eigenvector. When the covariance

matrix is computed empirically from a set of data points, the

eigendecomposition is the well known PCA [11]. Since we are

operating on the adjacency matrix derived from graph data we

call the node centrality proposed in this research PCC. In a

covariance matrix, a non-zero entry with a ‘large’ magnitude

at positions (i, j) and (j, i) is representative of a strong

relationship between the i-th and j-th random variables. A

non-zero entry in the adjacency matrix representing a link from

one node to another is, in a broad sense, also an indication

of a ‘relationship’ between the two nodes. Based on this

understanding we draw an analogy between graph adjacency

matrix and covariance matrix.

EVC is the node centrality most often used in the study

of social networks and other networks with small-world

properties. While EVC assigns centrality to nodes accord-

ing to the strength of the most dominant feature of the

data set, PCC takes into consideration additional, subsequent

features. We define the PCC of a node in a graph as the

Euclidean distance/ℓ2 norm of a node from the origin in the

P -dimensional eigenspace formed by the P most significant

eigenvectors. For a graph consisting of a single connected

component, the N eigenvalues |λ1| ≥ |λ2| ≥ . . . ≥ |λN | = 0
correspond to the normalized eigenvectors x1,x2, . . . ,xN .

The eigenvector/eigenvalue pairs are indexed in order of

descending magnitude of eigenvalues. When P = 1, PCC

equals a scaled version of EVC. Unlike other measures of

centrality, the parameter P in PCC can be used as a tuning

parameter to adjust the number of eigenvectors included in

the PCC. The question of selection of an appropriate value

of P will be addressed in subsequent subsection IV-D. Let

X denote the N × N matrix of concatenated eigenvectors

X = [x1x2 . . .xN ] and let Λ = [λ1λ2 . . . λN ]
′

be the vector

of eigenvalues. Furthermore, if P < N and if matrix X has

dimensions N ×N , then XN×P will denote the submatrix of

X consisting of the first N rows and first P columns. Then

PCC can be expressed in matrix form as:

CP =
√
((AXN×P )⊙ (AXN×P ))1P×1

(3)

The ‘⊙’ operator is the Hadamard (or entrywise product or

Schur product) operator. Equation 3 can also be written in

terms of the eigenvalue and eigenvector matrices Λ and X, of

the adjacency matrix A:

CP =
√
(XN×P ⊙XN×P ) (ΛP×1 ⊙ ΛP×1).

(4)

It is important to note a major difference between a tradi-

tional ”signal transform” under KLT as compared with the

proposed PCC ”graph transform”. First, recall that, under KLT,

a transform matrix T is derived from a covariance matrix

C; and then the eigenvector-based transform T is applied on

any realization of the random signal that has covariance C.

Meanwhile, under the proposed PCC, the adjacency matrix

A plays a dual role: at one hand, it plays the role of the

covariance matrix of the KLT; and on the other hand, one can

think of A as being the ”signal” that is represented compactly

by the PCC vector CP . Effectively, the adjacency matrix A

represents the graph (i.e., ”signal”) that we are interested in

analyzing; and at the same time A is used to derive the

eigendecomposition; and hence, we have the dual role for A.
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Fig. 4. Reconstructed topologies of the graph from figure 2 using only the first 1, 2, 3, 5, 10, 15, 50 and all 200 eigenvectors.

Later, we will develop the equivalence of an inverse PCC, and

we will see this dual role of the adjacency matrix A again.

IV. EVALUATION

A. Interpretation of Eigenvalues

The definition of PCC is based on the graph adjacency

matrix A. For a matrix A of size N×N its eigenvectors xi for

1 ≤ i ≤ N are interpreted as N -dimensional features (feature

vectors) of the set of N -dimensional data points represented

by their covariance (adjacency) matrix A. The magnitude of an

eigenvalue corresponding to an eigenvector provides a measure

of the importance and prominence of the feature represented

by it. The eigenvalue λi is the power of the corresponding

feature xi in A.

An alternative representation of a graph’s topology is the

graph Laplacian matrix which is frequently used in spectral

graph theory [10]. The graph Laplacian can be obtained from

the adjacency matrix by setting the diagonal entries of the

adjacency matrix to Ai,i = −
∑N

j=1;i 6=j Ai,j , i.e. a diagonal

entry in a Laplacian matrix is the negative of the sum of all off-

diagonal entries in the same row in the adjacency matrix. This

definition applies equally to weighted and unweighted graphs.

The graph Laplacian is always positive-semidefinite which

means all of its eigenvalues are non-negative with at least

one eigenvalue equal to 0. The adjacency matrix, however,

does not guarantee positive semidefiniteness and typically has

several negative eigenvalues. This is the reason the ordering

of features is based on magnitudes of eigenvalues. The bar

chart at the top of figure 3 plots histograms of eigenvalues

for both adjacency and Laplacian matrices of the network in

figure 2. But why then, did we not use the Laplacian matrix

in the first place? The reason is that the eigendecomposition

of the adjacency matrix yields greater energy compaction than

that of the Laplacian. The middle plot in figure 3 shows the

normalized, cumulative function of the sorted sequence of

eigenvalue powers. The line for the eigenvalue derived from

the adjacency matrix rises faster than that of the Laplacian

matrix. The adjacency matrix’ curve indicates that 25%, 50%
and 75% of total power is captured by the first 15 (7.5%),

44 (22%) and 89 (44.5%) features, respectively. In contrast,

the Laplacian matrix’ eigendecomposition shows that the same

power levels are contained in its first 26 (13%), 61 (30.5%)

and 103 (51.5%) features, respectively. Thus eigendecomposi-

tion of the adjacency matrix of graphs offers more energy

compaction, i.e. a set of features of the adjacency matrix

captures more energy than the same number of features of

the corresponding Laplacian matrix.

B. Interpretation of Eigenvectors

EVC interprets the elements of the Perron-eigenvector x1

of adjacency matrix A as measures of corresponding nodes’

centralities in the network topology (see section ??). Research

on scale-free network topologies has demonstrated EVC’s
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usefulness. However, when applied to large spatial graphs of

uniformly, randomly deployed nodes such as the one in figure

1, EVC fails to assign significant scores to a large fraction

of nodes. For a broader understanding that encompasses all

eigenvectors we revert to the interpretation of eigenvectors

as features. One way of understanding PCC is in terms of

PCA [11], where PCC takes part of its name from. PCA finds

the eigenvectors x1,x2,x3, . . . ,xN and eigenvalues of G’s

adjacency matrix A. Every eigenvector represents a feature of

the adjacency matrix. To understand how these feature vectors

are to be interpreted in graphical terms, refer to equation

5 which uses eigenvectors and eigenvalues to reconstruct an

approximation ÃP of the adjacency matrix A. Reconstruction

can be performed to varying degrees of accuracy depending

on P , the number of features/ eigenvectors used. If we set

P = N in equation 5 (all eigenvectors/eigenvalues are used),

the adjacency matrix can be reconstructed without losses (see

He [16]). Here, Λ̂ denotes the diagonal matrix of eigenvalues

sorted in descending order of magnitude on the diagonal (from

upper left corner to lower right corner).

ÃP = XN×P Λ̂P×NX
T
N×N (5)

where Λ̂ =




λ1 0 · · · 0

0 λ2 · · · 0

...
...

. . .
...

0 0 · · · λN



. To illustrate, consider

the unweighted, undirected graph G(V,E) shown in figure

2 with adjacency matrix A. A’s entries are either 0 or 1.

However, this is not necessarily true for ÃP , the version

of the matrix reconstructed using the P most significant

eigenvectors. The entries in ÃP will very likely contain a lot

of fractions. Therefore, before viewing the recovered topology

in the reconstructed adjacency matrix ÃP its entries have to

be thresholded. Prior to plotting the topology, we rounded

values less than 0.5 down to 0 and round values larger than

or equal to 0.5 up to 1. Figure 4 plots the adjacency matrix

reconstructed from the most significant 1, 2, 3, 5, 10, 15,

50 and all 200 feature vectors. The plot for Ã1 shows that

the recovered topology information is highly localized to the

vicinity of nodes with the highest EVC. The plot using Ã2

adds another highly connected but still very localized cluster

to the network. Adding more feature vectors extends the set

of connected nodes in various parts of the network. As more

eigenvectors are added to the computation of PCC it has the

effect of increasing the resolution of centrality scores in nodes

lying in less well connected regions of the network.

C. Graphical Interpretation of PCC

In this section we evaluate the usefulness of the PCC scores

assigned to nodes of a network. Recall that a node’s PCC is its

ℓ2 norm in P -dimensional eigenspace. Perceptional limitations

restrict us from redrawing the graph in any eigenspace with

more than 3 dimensions. Figure 5 is a drawing of the graph in

figure 2 in the 3-dimensional eigenspace formed by the 3 most

significant eigenvectors of the adjacency matrix A. Nodes are

colored according to their C15 PCC scores, derived from the

15 most significant eigenvectors, divided into 6 equally sized

intervals between the lowest and highest PCC score. Based

on the interpretation of PCC we expect nodes with higher

(red) PCC scores to be located farther away from the origin at

(0, 0, 0) than nodes with lower (blue) PCC scores. From figure

5 we can see that this is clearly the case. For clarification, the

cluster of low-PCC nodes around the origin (0, 0, 0) is marked

with a red, dashed oval.

D. Effect of Number of Features on PCC

In this section we study the effect varying the number

of eigenvectors P has on PCC. For an illustrated example

we revert to the randomly generated network topology of

200 nodes in figure 2. We compute PCC while varying P

from 1 through 2, 3, 5, 10, 15, 50 and 200. Figures 6a, 6b,

6c, 6d, 6e, 6f, 6g and 6h re-plot the network with nodes

colored to indicate their PCC scores. The bin size for all

histograms is set to 0.25. Recall that since PCC score at P = 1
are a scaled versions of EVC, the figure 6a represents the

baseline case of EVC. In figure 6a, EVC identifies a small

cluster in the upper right corner as the nodes most central

to the network. Note that ironically this cluster is separable

from the larger graph by the removal of merely one link!

On the other hand, clusters of nodes in the larger, better

connected part of the graph are assigned EVC on the low

end of the scale. As P is increased from figure 6b through 6h,

more clusters of high PCC nodes pop up. As expected, the

accompanying histograms below each graph plot show that

this has the effect of increasing the variance of PCC scores.

Adding successively more features/eigenvectors will have the

obvious effect of increasing the sum total of node PCC scores,

i.e. 11×NCm > 11×NCn when m > n. However, it is unclear

how much PCC’s scores change as P is varied from 1 through

N . In [7] Canright et al. use the phase difference between
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Fig. 6. PCC of nodes in network of figure 2 when computed using first (a) 1, (b) 2, (c) 3, (d) 5, (e) 10, (f) 15, (g) 50 and (h) 200 eigenvectors. The
histograms accompanying each graph plot show the distribution of PCC of their nodes. The lineplot in the histogram represents the average PCC histograms
of 50 randomly generated networks with the same parameters as the network in figure 2.

eigenvectors computed in successive iterations as a stopping

criteria for their fully distributed method for computing the

principal eigenvector. We use the phase angle between PCC

vectors and EVC to study the effect of adding more features.

We compute the phase angle φ(n) of a PCC vector using n

features with the EVC vector as,

φ(P ) = arccos

(
CP

|CP |
·
CE

|CE |

)
.

(6)

Here, ‘·’ denotes the inner product operator. The relationship

of the phase angle with the number of features used in PCC
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for the network under consideration is plotted in figure 7.

Initially, the function of phase angle φ rises sharply and

then levels off almost completely at 22 features. This means

that, in this example, the relative PCCs of nodes cease to

change with the addition of more features beyond the first 22
features. The phase angle plot may be used for determining

how many features are sufficient for the computation of PCC

of a network.

V. CONCLUSIONS

We reviewed previously defined measures of centrality and

pointed out their shortcomings in general and EVC in partic-

ular. We introduced PCC, a new measure of node centrality.

PCC is based on PCA and the KLT which takes the view of

treating a graphs adjacency matrix as a covariance matrix. PCC

interprets a node’s centrality as its ℓ2 norm from the origin

in the eigenspace formed by the P most significant feature

vectors (eigenvectors) of the adjacency matrix. Unlike EVC,

PCC allows the addition of more features for the computation

of node centralities. We explore two criteria for the selection

of the number of features to use for PCC; a) The relative

contribution of each feature’s power (eigenvalue) to the total

power of adjacency matrix and b) Incremental changes in

the phase angle of the PCC with P features and the EVC

as P is increased. We also provide a visual interpretation of

significant eigenvectors of an adjacency matrix. The use of the

adjacency matrix is compared with that of the Laplacian and

it is shown that eigendecomposition of the adjacency matrix

yields significantly higher degree of energy compaction than

does the Laplacian at the same number of features. We also

investigated the effect of adding successive eigenvectors and

the information they contain by looking at reconstructions of

the original graph’s topology using a subset of features.

In the future we intend to extend the definition of PCC

so it can be applied to both directed and undirected graphs.

Furthermore, we propose to formulate a distributed method for

computing PCC along the lines of Canright’s method [7] for

computing EVC in peer-to-peer systems.
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