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A Knee Point Driven Evolutionary Algorithm
for Many-Objective Optimization
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Abstract—Evolutionary algorithms have shown to be
promising in solving many-objective optimization problems,
where the performance of these algorithms heavily depends
on whether solutions that can accelerate convergence towards
the Pareto front and maintain a high degree of diversity will
be selected from a set of non-dominated solutions. In this
work, we propose a knee point driven evolutionary algorithm
to solve many-objective optimization problems. Our basic
idea is that knee points are naturally most preferred among
non-dominated solutions if no explicit user preferences
are given. A bias towards the knee points in the non-
dominated solutions in the current population is shown to
be an approximation of a bias towards a large hypervolume,
thereby enhancing the convergence performance in many-
objective optimization. In addition, as at most one solution
will be identified as a knee point inside the neighborhood
of each solution in the non-dominated front, no additional
diversity maintenance mechanisms need to be introduced in
the proposed algorithm, considerably reducing the computa-
tional complexity compared to many existing multi-objective
evolutionary algorithms for many-objective optimization.
Experimental results on 16 test problems demonstrate the
competitiveness of the proposed algorithm in terms of both
solution quality and computational efficiency.

Index Terms—Evolutionary multi-objective optimization,
knee point, hypervolume, many-objective optimization, con-
vergence, diversity

I. INTRODUCTION

ULTI-objective optimization problems (MOPs) are
commonly seen in real-world applications, es-
pecially in the areas of engineering, biology and eco-
nomics [1]-[5]. Such optimization problems are charac-
terized by multiple objectives which conflict with each
other. Due to the conflicting nature of the objectives,
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usually no single optimal solution exists; instead, a set
of trade-off solutions, known as Pareto optimal solutions
can be found for MOPs. Over the past two decades,
evolutionary algorithms (EAs) and other population-
based meta-heuristics have been demonstrated to be a
powerful framework for solving MOPs, since they can
find a set of Pareto optimal solutions in a single run.
A large number of multi-objective evolutionary algo-
rithms (MOEAs) have been developed, e.g., NSGA-II [6],
SPEA2 [7], IBEA [8], MOEA/D [9], PESA-II [10], and
M-PAES [11], just to name a few. In all these MOEAs,
a variety of selection strategies have been proposed to
achieve fast convergence and high diversity, which play
the most important role in determining the effectiveness
and efficiency of the MOEA in obtaining the Pareto
optimal solutions.

Among various selection strategies, the Pareto-based
non-dominated sorting approaches are the most popu-
lar, where solutions having a better Pareto rank in the
parent population or a combination of the parent and
offspring populations are selected. In addition to the
dominance based criterion, a secondary criterion, often a
diversity-related strategy, will be adopted to achieve an
even distribution of the Pareto optimal solutions. NSGA-
II [6] and SPEAZ2 [7] are two representative Pareto-based
MOEAs, which have been shown to be very effective in
solving MOPs having two or three objectives. However,
the efficiency of such Pareto-based MOEAs will seriously
degrade when the number of objectives is more than
three, which are often known as many-objective opti-
mization problems (MaOPs).

MaOPs are widely seen in real-world applications, see
e.g. [12], [13]. Increasing research attention has therefore
been paid to tackling MaOPs in recent years, as it has
been shown that MaOPs cannot be solved efficiently
using MOEAs developed for solving MOPs with two
or three objectives [14]-[17]. For example, NSGA-II per-
forms very well on MOPs with two or three objectives,
however, its performance will dramatically deteriorate
when the MOPs have more than three objectives [18].
The main reason for this performance deterioration is
that the selection criterion based on the standard dom-
inance relationship fails to distinguish solutions in a
population already in the early stage of the search,
since most of the solutions in the population are non-
dominated, although some of them may have a better
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ability to help the population to converge to the Pareto
optimal front [19]. Once the dominance based selection
criterion is not able to distinguish solutions, MOEAs will
often rely on a secondary criterion, usually a metric for
population diversity. As a result, MOEAs may end up
with a set of well-distributed non-dominated solutions,
which are unfortunately far from Pareto optimal.

To enhance the ability of MOEAs to converge to the
Pareto front, a variety of ideas have been proposed,
which can be largely divided into three categories [20],
[21]. The first group of ideas is to modify the traditional
Pareto dominance definition to increase the selection
pressure towards the Pareto front. This type of ideas
has been widely adopted for solving MaOPs, such as
e-dominance [22], [23], L-optimality [24], fuzzy domi-
nance [25], and preference order ranking [26]. Compared
with MOEAs using the traditional Pareto dominance
relationship, these strategies have been shown to consid-
erably improve the performance of MOEAs for solving
MaQPs, although they are very likely to converge into a
sub-region of the Pareto front.

The second category of the ideas aims to combine
the traditional Pareto dominance based criterion with
additional convergence-related metrics. Based on these
ideas, solutions are selected first based on the dominance
relationship, and then on the convergence-related metric.
For example, some substitute distances based on the
degree to which a solution is nearly dominated by any
other solutions were proposed in [27] by Képpen and
Yoshida to improve the performance of NSGA-IL In [28],
a binary e-indicator based preference is combined with
dominance to speed up convergence of NSGA-II for
solving MaOPs. A grid dominance based metric was also
defined by Yang et al. in [29], based on which an effective
MOEA, termed GrEA, for MaOPs has been proposed.

The third type of ideas is to develop new selection
criteria based on some performance indicators. Three
widely used performance indicator based MOEAs are
IBEA [8], SMS-EMOA [30] and HypE [31]. IBEA uses a
predefined optimization goal to measure the contribu-
tion of each solution, while SMS-EMOA and HypE are
based on the hypervolume value.

There are also a large number of other many-objective
optimization algorithms, which adopt different ideas
from those discussed above. For example, some re-
searchers attempted to solve MaOPs by using a reduced
set of objectives [32], [33], while others suggested to
use interactive user preferences [34] or reference points
[36] during the search. An interesting MOEA for solving
MaOPs, called NSGA-III, was also based on a set of
reference points [35], where non-dominated solutions
close to the reference points are prioritized. Note also
that some MOEAs have shown to perform fairly well
for some MaOP test problems [37], such as the decom-
position based multi-objective evolutionary algorithm,
termed MOEA /D [9], although they are not specifically
designed for solving MaOPs.

In multi-objective optimization, knee points are a sub-

set of Pareto optimal solutions for which an improve-
ment in one objective will result in a severe degradation
in at least another one. For MOPs, solutions in the knee
region of the Pareto front will be naturally preferred
if no other user-specific or problem-specific preferences
are available. As previously discussed, most existing
MOEAs do not work efficiently for MaOPs mainly due
to the loss of selection pressure because most or all
solutions in the population are non-dominated already
in a very early search stage. In this work, we propose
a knee point driven evolutionary algorithm (KnEA), in
which preferences are given to knee points among the
non-dominated solutions in selection. In other words,
knee points are used as the secondary criterion for
selecting parents for the next generation in addition
to the non-dominance selection criterion. Therefore, the
proposed KnEA belongs to the second class of MOEAs
discussed above for solving MaOPs. Note however, that
by knee points, we do not mean the knee points of
the theoretical (true) Pareto front; instead, we mean the
knee points of the non-dominated fronts in the current
population during the search process. Since at most
one knee point is identified in the neighborhood of
each solution, a preference over the knee points also
promotes diversity of the population, and consequently
no additional measures need to be taken in KnEA in
environmental selection. Note that calculating a diversity
measure such as the crowding distance in NSGA-II can
be highly time-consuming for MaOPs.

New contributions of the present work can be sum-
marized as follows:

(1) A knee point driven MOEA has been suggested,
where knee points of the non-dominated fronts in
the current population are preferred in selection.
We show that preference over knee points can
approximately be seen as a bias towards larger
hypervolume, which is therefore very effective in
both accelerating the convergence of the popula-
tion to the Pareto optimal front and maintaining
diversity of the solutions. We should stress that a
large body of research work has been performed on
identifying knee points in solving MOPs, most of
which, however, concentrated on how to accurately
find the knee points or local knee regions of the
true Pareto front. To the best of our knowledge,
no work has been reported on using knee points
as the secondary criterion to enhance the search
performance of MOEAs for MaOPs.

(2) Within the KnEA, an adaptive strategy for identify-
ing knee points in a small neighborhood, i.e., local
knee regions, has been proposed without using
prior knowledge about the number of knee points
in the true Pareto front. The purpose of the adap-
tive strategy is not to find precisely the knee points
of the true Pareto front; instead, it is meant to
locate those local knee points of the non-dominated
fronts in the population combining the parent and
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offspring populations at the present generation to
accelerate the convergence and promote diversity.

(3) Extensive experimental results have been con-

ducted to verify the performance of KnEA for solv-
ing MaOPs by comparing it with several state-of-
the-art MOEAs for MaOPs on two suites of widely
used test problems. Our results demonstrate that
KnEA outperforms the compared MOEAs for
MaQOPs in terms of two widely used performance
indicators. Moreover, KnEA is computationally
much more efficient than two of the three com-
pared Pareto-based MOEAs and comparable to rest
one, although it is slightly inferior to MOEA/D,
which is known for its high computational effi-
ciency for MaOPs.

The rest of this paper is organized as follows. In
Section 11, existing work related to the identification of
knee points in multi-objective optimization is discussed
and the motivation of using knee points as a selection
criterion is justified. The details of the proposed KnEA
for MaOPs are described in Section III. Simulation re-
sults are presented in Section IV to empirically compare
search performance and runtime of the KnEA with four
state-of-the-art methods for MaOPs. Finally, conclusions
and future work are given in Section V.

II. RELATED WORK AND MOTIVATION

In this section, we first review the related work on
finding knee points in evolutionary multi-objective op-
timization. Then we elaborate the motivation of using
knee points detected during the search for driving the
population towards the Pareto optimal front and main-
taining population diversity.

A. Related Work

A large number of MOEAs have been proposed to find
local regions or points of interest in the Pareto optimal
front [38]-[40]. Among various preferences, knee points
are often considered to be of interest in the Pareto opti-
mal front and much research work has been dedicated to
finding knee points or knee regions (neighboring regions
of knee points) using MOEAs.

Intuitively, a knee point in the Pareto optimal front
refers to the solution with the maximum marginal rates
of return, which means that a small improvement in
one objective of such a solution is accompanied by a
severe degradation in at least another. As knee points are
naturally preferred, several multi-objective optimization
algorithms have been developed to find the knee points
or knee regions in the Pareto optimal front instead of
approximating the whole front. Das [41] suggested a
method to find the knee points in the Pareto front
based on normal boundary intersection, which has been
shown to be very efficient for characterizing knee points.
Branke et al. [42] proposed two variants of NSGA-II for
finding knee regions, where the crowding distance in
NSGA-II was substituted by two new measures, an angle

based measure and a utility measure. The variant with
the utility measure can be used for problems with any
number of objectives, while the one with the angle-based
measure works only for bi-objective problems. These two
variants of NSGA-II have been shown to perform very
well on finding knee regions in the Pareto front, which,
however, are not able to control the spread of these
regions.

To control the spread of knee regions, Rachmawati and
Srinivasan [43], [44] developed an MOEA based on a
weighted sum niching method, where the extent and
the density of convergence of the knee regions were
controlled by the niche strength and the total number
of solutions in the region, known as pool size. However,
such control on the extent and the density of the knee
regions is very rough. Schiitze et al. [45] presented two
strategies for finding knee points and knee regions that
can be integrated into any stochastic search algorithms.
Experimental results illustrated that these two strategies
were very efficient in finding the knee points and knee
regions of bi-objective optimization problems. However,
these methods are not extendable to MOPs with more
than two objectives.

Bechikh et al. proposed an MOEA for finding knee
regions, termed KR-NSGA-II [46] by extending the ref-
erence point based MOEA, called R-NSGA-II [47]. In KR-
NSGA-II, the knee points were used as mobile reference
points and the search of the algorithm was guided
towards these points. KR-NSGA-II has been shown to
perform well in controlling the extent of knee regions for
MOPs with two or more objectives, assuming that some
prior information on the number of knee points of the
MOP is known. Deb and Gupta [48] suggested several
new definitions for identifying knee points and knee
regions for bi-objective optimization problems. The pos-
sibility of applying such methods to solve bi-objective
engineering problems has also been discussed. Branke et
al. [42] presented two test problems with knee points,
one bi-objective and one three-objective, to evaluate the
ability of MOEAs for finding knee points. TuSar and Fil-
ipi¢ [49] extended these two test problems to 4-objective
and 5-objective optimization problems.

Various definitions for characterizing knee points and
knee regions have been suggested, see, e.g., [41]-[44],
[48]. In this work, we adopt the definition presented
by Das [41], [46], which will be further discussed in
Section III-C.

B. Motivation of This Work

As can be seen in the discussions above, the impor-
tance of knee points and knee regions has long been
recognized in evolutionary multi-objective optimization.
Nevertheless, the use of knee points to improve the
search ability of MOEAs, especially for solving MaOPs,
has not been reported so far. In this work, we hypothe-
size that the search ability of MOEAs for solving MaOPs
can be significantly enhanced by giving preferences to
the knee points among non-dominated solutions.
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Fig. 1. An illustration of the motivation of KnEA. In the figure, B
can be seen as a knee point among the five non-dominated solutions
A, B', B, C and D. Selecting solution B, the knee point can be more
beneficial than B’ in terms of hypervolume.

To elaborate this hypothesis, consider five non-
dominated solutions of a bi-objective optimization prob-
lem, A(1,16), B'(6,11), B(7,7), C(11,6) and D(16,1),
where the two elements of a solution indicate the values
of the two objectives, as shown in Fig. 1. From Fig. 1,
we can see that solution B can be considered as a knee
point of the non-dominated front consisting of the five
non-dominated solutions. Assume that four solutions are
to be selected from the five non-dominated solutions for
next population. Since these five solutions are all non-
dominated, a secondary criterion must be used for se-
lecting four out of the five solutions. If a diversity-based
criterion, for example, the crowding distance defined
in [6] is used for selection, then solutions A, B’, C and D
will be selected. If we replace solution B’ with the knee
point B, the selected solution set will be A, B, C'and D.

Let us now compare the quality of the above two
solution sets using the hypervolume, which is one of
the most widely used performance indicators in multi-
objective optimization [50]. For calculating the hyper-
volume of the two sets, we assume that the reference
point is (18,18). In this case, the hypervolume of the
solution set consisting of A, B/, C' and D is 139, while
the hypervolume of the solution set consisting of A, B,
C and D is 150.

From the above illustrative example, we can observe
that selecting knee points can be more beneficial than
selecting more diverse solutions in terms of the hyper-
volume. To take a closer look at the relationship between
the position of point B and the hypervolume of the
solution set 4, B, C' and D, we move the position of
B from B(6,7), which is the leftmost possible position,
to B(11,7), which is rightmost possible position to main-
tain the non-dominated relationship between B and B'.
Now we examine the relationship between the distance
of B to the extreme line AD, which is described by
fi+ fo = 17, and the hypervolume of the solution set A,
B, C, and D on five different positions. The results are
listed in Table I.

TABLE I
RELATIONSHIP BETWEEN DISTANCE OF B TO THE EXTREME LINE AD
WITH THE HYPERVOLUME OF SOLUTION SET A, B, C' AND D.

Position of B | B(6,7) | B(/,7) | B(74/9,7) | B(10,7) | B(L7)
Distance to AD | 2.83 2.12 1.26 0 —0.71
Hypervolume 159 150 139 123 114

From Table I, we can see that when B moves from
B(6,7) to B(7,7), the hypervolume of the solution set
consisting of A, B, C and D decreases from 159 to 150,
while the distance to the extreme line decreases from
2.83 to 2.12. When point B further move to the right
to B(74/9,7), the hypervolume drops to 139, which is
equal to the hypervolume of the solution set consisting
of A, B', C' and D. In this case, the distance of point B
to the extreme line is further reduced to 1.26 and B is no
longer a typical knee point. If point B continues to move
to B(10,7), B is exactly located on the extreme line, and
the hypervolume of solution set consisting of A, B, C
and D becomes 123, which is even smaller than that of
solution set consisting of A, B’, C and D. Therefore, we
can conclude that the more typical B is a knee point, the
more likely it will contribute to a large hypervolume.

From the above example, we can hypothesize that
a preference over knee points can be considered as
an approximation of the preference over larger hyper-
volumes. Compared with the hypervolume based se-
lection, however, knee point based selection offers the
following two important advantages. First, the identi-
fication of knee points is computationally much more
efficient than calculating the hypervolume, in partic-
ular when the number of objectives is large. To be
more specific, the computational time for calculating
the hypervolume increases exponentially as the number
of objectives increases, while the time for identifying
knee points increases only linearly. Second, although the
hypervolume implicitly takes diversity into account, it
cannot guarantee a good diversity. By contrast, diversity
is explicitly embedded in the knee point identification
process proposed in this work, since at most one solution
will be labeled as a knee point in the neighborhood of a
solution. The above hypothesis has been verified by our
empirical results comparing the proposed method with
HypE, a hypervolume based method. Refer to Section IV
for more details.

III. THE PROPOSED ALGORITHM FOR MANY-OBJECTIVE
OPTIMIZATION

KnEA is in principle an elitist Pareto-based MOEA.
The main difference between KnEA and other Pareto-
based MOEAs such as NSGA-II is that knee points are
used as a secondary selection criterion in addition to
the dominance relationship. During the environmental
selection, KnEA does not use any explicit diversity mea-
sure to promote the diversity of the selected solution
set. In the following, we describe the main components
of KnEA.
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Algorithm 1 General Framework of KnEA

Algorithm 2 Mating_selection(P, K, N)

Require: P (population), N (population size), K (set
of knee points), T' (rate of knee points in population)
1: r < 1, t + 0 /*adaptive parameters for finding knee
points*/
K<+
: P+ Initialize(N)
: while termination criterion not fulfilled do
P’ «+ Mating_selection(P, K, N)
P <« PJVariation(P’,N)
F < Nondominated_sort(P) /*find the solutions
in the first ¢ fronts F;, 1 < j < 4, where i is the
minimal value such that |[F; U...UF;| >= N */
8 [K,rt] + Finding_knee_point(F,T,r,t)

. P+ Environmental_selection(F, K, N)
10: end while
11: return P

NG e e

A. The General Framework of the Proposed Algorithm

The general framework of KnEA is similar to that
of NSGA-II [6], which consists of the following main
components. First, an initial parent population of size
N is randomly generated. Second, a binary tournament
strategy is applied to select individuals from the parent
population to generate N offspring individuals using
a variation method. In the binary tournament selec-
tion, three tournament metrics are adopted, namely, the
dominance relationship, the knee point criterion and a
weighted distance measure. Third, non-dominated sort-
ing is performed on the combination of the parent and
offspring population, followed by an adaptive strategy
to identify solutions located in the knee regions of
each non-dominated front in the combined population.
Fourth, an environmental selection is conducted to select
N individuals as the parent population of the next
generation. This procedure repeats until a termination
condition is met. The above main components of KnEA
are presented in Algorithm 1.

In the following, we describe in detail the binary tour-
nament mating selection, the adaptive knee point detec-
tion method and the environmental selection, which are
three important components in KnEA.

B. Binary Tournament Mating Selection

The mating selection in KnEA is a binary tournament
selection strategy using three tournament strategies,
namely, dominance comparison, knee point criterion and
a weighted distance. Algorithm 2 describes the detailed
procedure of the mating selection strategy in KnEA.

In the binary tournament mating selection in KnEA,
two individuals are randomly chosen from the parent
population. If one solution dominates the other solution,
then the former solution is chosen, referring to lines 4-7
in Algorithm 2. If the two solutions are non-dominated
with each other, then the algorithm will check whether
they are both knee points. If only one of them is a knee

Require: P (population), K (set of knee points), N
(population size)

1. Q<+ 0

2: while |Q| < N do

3. randomly choose a and b from P
4:  if a < b then

5 Q + QU{a}

6: else if b < a then

7 Qe QUIb)

8. else

9: if a € K and b ¢ K then

10: Q + QU{a}

11: elseif a ¢ K and b € K then
12: Q « QU{b}

13: else

14: if DW(a) > DW(b) then
15: Q + QU{a}

16: else if DW(a) < DW(b) then
17: Q <+ QU{b}

18: else

19: if rand() < 0.5 then

20: Q + QU{a}

21: else

22: Q < QUI{b}

23: end if

24: end if

25: end if

26:  end if

27: end while
28: return @)

point, then the knee point is chosen, seeing lines 9-12 in
Algorithm 2. If both of them are knee points or neither
of them is a knee point, then a weighted distance will
be used for comparing the two solutions, as described in
lines 14-17 in Algorithm 2. The solution with the larger
weighted distance wins the tournament. If both solutions
have an equal weighted distance, then one of them will
be randomly chosen for reproduction.

A weighted distance is designed for choosing a win-
ning solution in the binary tournament mating selection
if neither the dominance comparison nor the knee point
criterion can distinguish the two solutions involved in
the tournament. We adopted here the weighted distance
measure to address some potential weakness of the
crowding distance metric proposed in NSGA-II [6]. Fig. 2
illustrates a situation, where if the crowding distance is
used, neither solution B nor solution C' will have the
chance to win against other solutions. However, from
the diversity point of view, it would be helpful if either
B or C can have a chance to win in the tournament for
reproduction.

The weighted distance of a solution p in a population
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Fig. 2. Anillustrative example where the proposed weighted distance
may be advantageous over the crowding distance. In the example,
neither solution B nor C will have the chance to win against other
solutions if the crowding distance is adopted. Both B and C' have a
chance to win according to the defined weighted distance.

based on the k-nearest neighbors is defined as follows:

k
DW(p) = Z Wy, dispp, ey
1=1
T'ps
Wy, = = 2)
Zf:l rpi
1
sz‘ (3)

= — - -
|dispp, — % > im1 dispp,|

where p; represents the i-th nearest neighbor of p in
the population, w,, represents the weight of p;, dispp,
represents the Euclidean distance between p and p;, and
rp, represents the rank of distance dis,,, among all the
distances disy,,, 1 < j < k. From (3), it can be seen
that a neighbor of p will have a larger rank if it is
nearer to the center of all considered neighbors of p. By
using the above weighted distance, we can verify that
both solutions B and C have a certain probability to be
selected in tournament selection. Note that some existing
distance metrics can also address the above weakness
of the crowding distance, such as the grid crowding
distance (GCD) proposed in GrEA [29]. Compared to
GCD, the weighted distance presented above is easier
to calculate.

C. An Adaptive Strategy for Identifying Knee Points

Knee points play a central role in KnEA. The knee
points are used as a criterion only next to the dominance
criterion in both mating and environmental selection.
Therefore, an effective strategy for identifying solutions
in the knee regions of the non-dominated fronts in the
combined population is critical for the performance of
KnEA. To this end, an adaptive strategy is proposed for
finding knee points in the population combining the par-
ent and offspring populations at the present generation.

Algorithm 3 Finding_knee_point(F,T,r,t)
Require: I (sorted population), T" (rate of knee points
in population), r, ¢ (adaptive parameters)
1: K < () /* knee points */
2: for all F; € F do
3:  E <+ Find_extreme_solution(F;) /* F; denotes the
set of solutions in the i-th front */
L + Calculate_extreme_hyperplane(E)
update r by formula (7)
Jfmax < maximum value of each objective in F;
fmin < minimum value of each objective in I}
calculate R by formula (6)
calculate the distance between each solution in F;
and L by formula (5)
10: sort F; in a descending order according to the
distances
11: SiZ@Fi — |Fl|
12 for all p € F; do
13: NB <« {alae F; = |f] - fJI < R/,1<j < M}
14: K« K\U{p}
15: F, + F,\NB
16:  end for
17 t=|K|/Sizep,
18: end for
19: return K, r and ¢

o ® N9

Fig. 3 presents an example for illustrating the main
idea for determining knee points in the proposed strat-
egy, where the non-dominated front of a bi-objective
minimization problem in consideration consists of nine
solutions. First of all, an extreme line L is defined by the
two extreme solutions, one having the maximum of f;
and the other having the maximum of f; among all the
solutions in the non-dominated front. Then, we calculate
the distance of each solution to L. A solution is identified
as a knee point if its distance to the extreme line is the
maximum in its neighborhood.

By looking at Fig. 3, we can see that solution B
is a knee point in its neighborhood denoted by the
rectangle in dashed lines, as it has the maximum distance
to L among A, B, C and D inside its neighborhood.
Intuitively, solution E is also a knee point compared
with solution F' in its neighborhood. Note that if there
is only one solution in its neighborhood, e.g., solution
G in Fig. 3, this solution will also be considered as a
knee point. The above knee point definition leads to the
benefit that the diversity of the population is implicitly
taken into account.

The use of distance to the extreme line L to charac-
terize knee points was first proposed by Das [41]. For a
bi-objective minimization problem, L can be defined by
ax+by+c = 0, where the parameters can be determined
by the two extreme solutions. Then the distance from a
solution A(za,ya) to L can be calculated as follows:

_awa +bya + |
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Fig. 3. An illustration for determining knee points in KnEA for a bi-
objective minimization problem. In this example, solutions B, E and
G are identified as knee points for the given neighborhood denoted
by the rectangles in dashed lines.

For minimization problems, only solutions in the con-
vex knee regions are of interest. Therefore, the distance
measure in (4) can be modified as follows to identify
knee points:

lazatbyate|l
d(A, L) = Vargr ifazatbysate<0 (5)
; _lazatbyatel Guharwise
VaT i

The above distance measure for identifying knee
points can be easily extended to optimization problems
with more than two objectives, where the extreme line
will become a hyperplane.

The example in Fig. 3 indicates that the size of neigh-
borhood of the solutions will heavily influence the re-
sults of the identified knee points. Given the size of the
neighborhood defined in Fig. 3, solutions B, £ and G
are identified as knee points. Imagine, however, that if
all solutions are included in the same neighborhood of a
solution, then only solution E will be identified as knee
point. For this reason, a strategy to tune the size of the
neighborhood of solutions is proposed, which will be
described in the following.

Assume the combined population at generation g con-
tains Nr non-dominated fronts, each of which has a set
of non-dominated solutions denoted by F;, 1 <i < Np.
The neighborhood of a solution is defined by a hyper
cube of size R} x R2 x --- x R} x --- x R}, where
1 <j < M, M is the number of objectives. Specifically,
the size of the neighborhood regarding objective j, R,
is determined as follows:

R} = (fmax} — fmin)) - r, (6)

where fmaxg and fming denote the maximal and the
minimal values of the j-th objective at the g-th gener-
ation in set F;, and 7, is the ratio of the size of the
neighborhood to the span of the j-th objective in non-
dominated front F; at generation g, which is updated as

follows:
1—tg_1/T
Tg=Tg_1¥e€ M | (7)

DTLZ2,M=3,T=0.5
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Fig. 4. An example of the changes of the parameters Ré, rq and tg
of the first front over the number of generations on DTLZ2 with 3
objectives.

where 7, is the ratio of the size of the neighborhood
to the span of the j-th objective of the solutions in F; at
the (g — 1)-th generation, M is the number of objectives,
ty—1 is the ratio of knee points to the number of non-
dominated solutions in front i at the (g—1)-th generation,
and 0 < 7' < 1 is a threshold that controls the ratio of
knee points in the solution set F;. Equation (7) ensures
that r, will significantly decrease when t,_; is much
smaller than the specified threshold T, and the decrease
of 1, will become slower as the value of ¢,_; becomes
larger. r, will remain unchanged when ¢,_; reaches the
given threshold T'. ¢, and r, are initialized to 0 and 1,
respectively, i.e., to = 0 and 79 = 1.

Fig. 4 presents the change of parameters R/, 7, and
ty on DTLZ2 with three objectives as the evolution pro-
ceeds, where T is set to 7' = 0.5. The size of the neighbor-
hoods is adapted according to the ratio of the identified
knee points to the total number of non-dominated solu-
tions. In the early stage of the evolutionary optimization,
the size of neighborhoods will decrease quickly, and
thus the number of found knee points will significantly
increase. The ratio of knee points to all non-dominated
solutions (t,) will increase as the evolution proceeds,
which, in the meantime, will gradually decrease the size
of the neighborhoods. When ¢, is close to the threshold
T, the size of the neighborhoods will remain constant.

The main steps of the adaptive strategy for detecting
knee points are presented in Algorithm 3. The same pro-
cedure can be repeated for all non-dominated fronts in
the combined population until knee points are identified
for all non-dominated fronts. Note, however, that in the
late search stage of MOPs, and actually already in the
early stages of MaOPs, we only need to find the knee
points in the first front due to the large number of non-
dominated solutions present in this front.

From the above descriptions, we can find that the pro-
posed adaptive knee point identification algorithm dif-
fers considerably from the existing methods for finding
knee points. Whereas most existing MOEAs for finding
the knee points are to accurately locate the knee points
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Algorithm 4 Environmental_selection(F, K, N)

Require: F' (sorted population), K (set of knee points),
N (population size)

[y

: Q < 0 /*next population*/

: Q(*Fluuﬂfl

Q< QUIKNF)

. if |Q| > N then

delete |Q] — N solutions from @ which belong to

K F; and have the minimum distances to the

hyperplane

6: else if || < N then

7. add N—|Q)| solutions from F;\(K () F;) to @ which
have the maximum distances to the hyperplane

8: end if

9: return @

N

SN

in the true Pareto front, the proposed adaptive strategy
aims to find out the knee solutions in the neighborhoods,
which will be preferred in the mating and environmental
selection. Note again that by knee points here, we do not
mean the knee points of the true Pareto front; instead,
we mean the knee points of the non-dominated fronts
in the combined population at the current generation.
In addition, some of the solutions identified as knee
points may not be true knee points, which however can
speed up the convergence performance and enhance the
diversity of the population.

D. Environmental Selection

Environmental selection is to select fitter solutions
as parents for the next generation. Similar to NSGA-
II, KnEA selects parents for the next generation from a
combination of the parent and offspring populations of
this generation, which therefore is an elitist approach.
Whereas both NSGA-II and KnEA adopt the Pareto
dominance as the primary criterion in environmental
selection, KnEA prefers knee points instead of the non-
dominated solutions with a larger crowding distance as
NSGA-II does. Algorithm 4 presents the main steps of
environmental selection in KnEA.

Before environmental selection, KnEA performs non-
dominated sorting using the efficient non-dominated
sorting (ENS) algorithm reported in [51], forming Np
non-dominated fronts, F;, 1 < 7 < Ng. Similar to NSGA-
II, KnEA starts to select the non-dominated solutions
in the first non-dominated front (F}). If the number of
solutions in Fy is larger than the population size N,
which is very likely already in the early generations
in many-objective optimization, then knee points in F}
are selected first as parents for the next population. Let
the number of knee points in F; be NP;. In case NP,
is larger than N, then N knee points having a larger
distance to the hyperplane are selected, referring to line 5
in Algorithm 4. Otherwise, N P; knee points are selected
together with (N — N P;) other solutions in F that have
a larger distance to the hyperplane of F}.

200, : :

| ! Discarded Non-dominatefl - =

L _ _ I Solutions - _ - =
Selected Solutions Based|
on Distance to Hyperplane
Selected Solutions Base:
on Knee Point

=
a1
o

100

Number of Solutions

ol
=

5 10 50 100 250
Generations

Fig. 5. An example showing the number of solutions in the first
non-dominated front, together with the number of solutions selected
based on the knee point criterion and the distance to the hyperplane
criterion. The results are obtained on the three-objective DTLZ2 using
a population size of 100, i.e., the combined population size is 200.

If the number of solutions in Fj is smaller than N,
KnEA turns to the second non-dominated front for se-
lecting the remaining (N —|F}|) parent solutions. If | F5| is
larger than N — |F}|, then the same procedure described
above will applied to F5. This process is repeated until
the parent population for the next generation is filled up.

It would be of interest to know how many solutions
in the combined population are non-dominated, how
many are identified as knee points and how many will
be selected based on the distance to the hyperplane as
the evolution proceeds. Take the three-objective DTLZ2
as an illustrative example and assume the population
size is 100 and 7" is set to 7" = 0.5. Fig. 5 presents the
number of solutions in the first non-dominated front in
the combined population at generations 5, 10, 50, 100
and 250, where the number of identified knee points and
the number of solutions selected based on the distance
to the hyperplane are also indicated in black and grey,
respectively. From the figure, we can see that the number
of non-dominated solutions is slightly less than 100 at
generation 5 and thus all solutions in the first non-
dominated front will be selected. At generation 50, by
contrast, almost all solutions (180 out of 200) are non-
dominated and a majority of the selected solutions (91
out of 100) are knee points. We can imagine that as the
number of objectives increases, most selected solutions
will be knee points even in early generations. These re-
sults indicate that the proposed method is different from
the non-dominance based selection and the distance
based selection, and therefore the identified knee points
play an essential role in determining the performance of
the algorithm.

E. Empirical Computational Complexity Analysis

In this section, we provide an upper bound of the run-
time of KnEA. Within one generation, KnEA mainly per-
forms the following five operations: a) mating selection,
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b) genetic variations, c) non-dominated sorting, d) knee
point identification, and e) environmental selection. For
a population size N and an optimization problem of M
objectives, mating selection needs a runtime of O(M N?)
to form a mating pool of size N, as the calculation of the
weighted distances involves calculating the distance be-
tween pairs of solutions in the population. Genetic vari-
ations, here the simulated binary crossover (SBX) [52]
and polynomial mutation [53], are performed on each
decision variable of the parent solutions, which needs
a runtime of O(DN) to generate N offspring, where
D is the number of decision variables. Non-dominated
sorting needs a runtime of O(M N?) in the worst case
for the combined population of size 2N for optimization
problems with M objectives. Knee point identification
consists of the following two operations. First, obtaining
the hyperplane and calculating the distance between
each non-dominated solution and the hyperplane, which
at most needs a runtime of O(MN). Second, checking
whether the non-dominated solutions are knee points in
their neighborhoods, which costs a runtime of O(M N?).
Therefore, knee point identification takes at most a run-
time of O(M N?) in total. For environmental selection, a
runtime of O(N1logN) is needed, since the most time-
consuming step is to sort the non-dominated solutions
according to their distances to the hyperplane. Therefore,
KnEA needs at most a total runtime of O(GM N?), where
G is the number of generations.

Compared with most popular MOEAs for MaOPs,
KnEA is computationally very efficient. A theoretical
comparison of the computational time of KnEA with
these algorithms is beyond the scope of this work;
however, we will empirically compare the runtime per-
formance of KnEA with four state-of-the-art MOEAs for
MaOPs, details of which will be presented in the next
section.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we verify the performance of KnEA by
empirically comparing it with four popular MOEAs for
MaQPs, namely, GrEA [29], HypE [31], MOEA /D [9] and
NSGA-III [35]. The experiments are conducted on 16 test
problems taken from two widely used test suites, DTLZ
[54] and WFG [55]. For each test problem, 2, 4, 6, 8 and 10
objectives will be considered, respectively. We compare
both the quality of the obtained non-dominated solution
sets in terms of widely used performance indicators and
the computational efficiency with respect to runtime.
Note that the ENS-SS reported in [51] has been adopted
as the non-dominated sorting approach in all compared
MOEAs.

A. Experimental Setting

For a fair comparison, we adopt the recommended
parameter values for the compared algorithms that have
achieved the best performance. Specifically, the parame-
ter setting for all conducted experiments are as follows.

TABLE II
SETTING OF POPULATION SIZE IN NSGA-III AND MOEA /D, WHERE
p1 AND p2 ARE PARAMETERS CONTROLLING THE NUMBERS OF
REFERENCE POINTS ALONG THE BOUNDARY OF THE PARETO FRONT
AND INSIDE IT, RESPECTIVELY.

NuTnbfzr of Parameter (p1,p2) Population size
objectives

2 (99, 0) 100

4 @, 0) 120

6 4 1) 132

8 3,2) 156

10 3, 2) 275

1) Crossover and mutation: The simulated binary
crossover [52] and polynomial mutation [53] have been
adopted to create offspring. The distribution index of
crossover is set to n. = 20 and the distribution index
of mutation is set to n,,=20, as recommended in [56].
The crossover probability p. = 1.0 and the mutation
probability p,, = 1/D are used, where D denotes the
number of decision variables.

2) Population sizing: To avoid that the generated refer-
ence points are all located along the boundary of Pareto
fronts for problems with a large number of objectives, the
strategy of two-layered reference points recommended
in NSGA-III [35] was adopted to generate uniformly
distributed weight vectors in NSGA-III and MOEA /D.
Table II presents the setting of population size in NSGA-
I and MOEA/D, where p; and p; are parameters
controlling the numbers of reference points along the
boundary of the Pareto front and inside it, respectively.
For each test problem, the population size of HypE,
GrEA and KnEA is set to the same as that of NSGA-
IIT and MOEA/D.

3) Number of runs and stopping condition: We perform
20 independent runs for each algorithm on each test
instance on a PC with a 3.16GHz Intel Core 2 Duo CPU
E8500 and the Windows 7 SP1 64 bit operating system.
The number of iterations is adopted as the termination
criterion for all considered algorithms. For DTLZ1 and
WFG2, the maximum number of iterations is set to 700,
and to 1000 for DTLZ3 and WFG1. For DTLZ2, DTLZ4,
DTLZ5, DTLZ6, DTLZ7 and WFG 3 to WFG9, we set the
maximum number of iterations to 250.

4) Other parameters: The parameter setting for div in
GrEA is taken from [29], which stands for the number
of divisions in each dimension in GrEA. The method for
calculating hypervolume suggested in [50] is adopted
in HypE: the exact method suggested in [50] is used
to calculate the indicator value for test instances with
two objectives, and otherwise the Monte Carlo sampling
described in [31] is adopted to approximately calculate
the indicator, where 10,000 samples are used in our
experiments. For MOEA /D, the range of neighborhood
is set to N/10 for all test problems, and Tchebycheff ap-
proach is employed as the aggregation function, where
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TABLE III
PARAMETER SETTING OF div IN GREA ON DTLZ AND WFG TEST
SUITS

Problem | Obj.2 | Obj. 4 | Obj. 6 | Obj. 8 | Obj. 10
DTLZ1 55 10 10 10 11
DTLZ2 45 10 10 8 12
DTLZ3 45 11 11 10 11
DTLZ4 55 10 8 8 12
DTLZ5 55 35 14 11 11
DTLZ6 55 36 20 20 20
DTLZ7 16 9 6 6 4
WEG1 45 8 9 7 10
WEG2 45 11 11 11 11
WEFG3 55 18 18 16 22

WEFG4-9 45 10 9 8 12

TABLE IV
PARAMETER SETTING OF T'IN KNEA ON DTLZ AND WFG TEST
SUITS

Problem | Obj.2 | Obj. 4 | Obj. 6 | Obj. 8 | Obj. 10
DTLZ1 0.6 0.6 0.2 0.1 0.1
DTLZ3 0.6 0.4 0.2 0.1 0.1
DTLZ5 0.6 0.5 0.5 0.3 0.3
DTLZ6 0.6 0.5 0.4 0.3 0.3
DTLZ7 0.6 0.5 0.5 0.5 0.4
WFG4 0.6 0.5 0.5 0.3 0.3
WEFG9 0.6 0.5 0.5 0.3 0.3
others 0.6 0.5 0.5 0.5 0.5

N is the population size. 3-nearest neighbors are used
for calculating the weighted distance in KnEA, unless
otherwise specified. Table III lists the parameter setting
of div in GrEA on DTLZ and WEFG test suites. To get
the optimal setting for div, we tested many values for
div for each of the test instances based on the recom-
mendation in [29] and chose the one that produced the
best performance for GrEA. Table 1V lists the setting of
T in KnEA on DTLZ and WEG test suites. As shown in
the table, for DTLZ2, DTLZ4 and all test problems in the
WEG suite except for WFEG4 and WFG9, T is set to 0.6
for problems with two objectives and 0.5 otherwise.

5) Quality metrics: Two widely used performance in-
dicators, the hypervolume (HV) [50] and the inverted
generational distance (IGD) [57], [58] are used to eval-
uate the performance of the compared algorithms. In
this work, (1,1,...,1) is chosen as the reference point
in hypervolume calculation. For the objective values of
WEFG test problems to have the same scale, each of the
objective values has been normalized before calculating
the hypervolume. In addition, since the exact calculation
of hypervolume is computationally extremely intensive
for MaOps, the Monte Carlo method is adopted for
estimating the hypervolume when the test problem has
more than 4 objectives, where 1,000,000 sampling points
are used. On the other hand, IGD requires a reference set
of Pareto optimal solutions, which are uniformly chosen
from the true Pareto fronts of test problems. It is believed
these two performance indicators can not only account
for convergence (closeness to the true Pareto front),
but also the distribution of the achieved non-dominated
solutions. Note that the larger the hypervolume value is,

TABLE V
SETTING OF TEST PROBLEMS DTLZ1 TO DTLZ7

Problem Number of Number of Parameter
Objectives (M)  Variables (n) (k)
DTLZ1 2,4,6,8,10 M—-1+k 5
DTLZ2 2,4,6,8,10 M-—-1+k 10
DTLZ3 2,4,6,8,10 M-—-1+k 10
DTLZ4 2,4,6,8,10 M-—-1+k 10
DTLZ5 2,4,6,8,10 M—-1+k 10
DTLZ6 2,4,6,8,10 M—-1+k 10
DTLZ7 2,4,6,8,10 M—-1+k 20

the better the performance of the algorithm. By contrast,
a smaller IGD value indicates better performance of the
MOEA.

B. Results on the DTLZ Suite

The DTLZ test suite [54] is a class of widely used
benchmark problems for testing the performance of
MOEAs. Seven test functions, from DTLZ1 to DTLZ7, are
used in the experiments here and their parameters are
set as suggested in [54], which are presented in Table V.

The results on the seven DTLZ test problems are given
in Table VI, with both the mean and standard deviation
of the IGD values averaged over 20 independent runs
being listed for the five compared MOEAs, where the
best mean among the five compared algorithms is high-
lighted. From the table, we can find that both MOEA /D,
HypE and NSGA-II performed well on DTLZ test
problems with two objectives. Among the seven DTLZ
test problems, MOEA/D achieved the smallest IGD
values on five bi-objective test problems, while HypE
and NSGA-III achieved an IGD value very close to the
smallest one on all bi-objective DTLZ test problems. Note
that MOEA /D obtained a worse IGD value on the bi-
objective DTLZ4. It appeared that MOEA/D does not
work well on DTLZ4 with any number of objectives.
The main reason is that DTLZ4 is a non-uniform MOP,
which means that a set of evenly distributed weight com-
binations will lead to non-uniformly distributed Pareto
optimal solutions. This is a known weakness of weighted
aggregation methods for non-uniform MOPs.

For DTLZ test problems with more than three ob-
jectives, GrEA and NSGA-III performed better than
MOEA/D and HypE on all test problems except for
DTLZ5 and DTLZ6. MOEA/D and HypE worked very
well on DTLZ5 and DTLZ6 with more than three ob-
jectives. HypE obtained the smallest IGD value among
the five MOEAs under comparison on all DTLZ5 test in-
stances with more than four objectives and DTLZ6 with
10 objectives, while MOEA /D obtained the smallest IGD
value on DTLZ6 with 6 and 8 objectives and obtained
the second smallest IGD value on the remaining test
instances of DTLZ5 and DTLZ6 with more than three
objectives except for DTLZ5 with 4 objectives (on this
instance, MOEA /D achieved a value very close to the
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TABLE VI
IGD RESULTS OF THE FIVE COMPARED ALGORITHMS ON DTLZ1 TO DTLZ7, WHERE THE BEST MEAN FOR EACH TEST INSTANCE IS SHOWN
WITH A GRAY BACKGROUND

GrEA

NSGA-III

KnEA

3.2201E-3 (2.02E-5)
4.8789E-2 (6.01E-3)
1.0536E-1 (6.72E-2)
1.2305E-1 (3.37E-2)
1.7756E-1 (3.69E-2)

1.8512E-3 (8.52E-5)
4.0182E-2 (1.83E-4)
8.0213E-2 (1.17E-3)
1.3814E-1 (4.11E-2)
1.3406E-1 (3.66E-2)

2.2770E-3 (1.23E-4)
5.1140E-2 (6.79E-3)
1.6217E-1 (2.23E-2)
2.6544E-1 (2.18E-2)
2.4424E-1 (3.23E-2)

1.0559E-2 (3.97E-5)
1.2487E-1 (7.78E-4)
2.5591E-1 (2.00E-3)
3.4959E-1 (2.65E-3)
3.4384E-1 (2.63E-03)

3.9811E-3 (1.16E-5)
1.1604E-1 (1.33E-4)
2.5871E-1 (1.47E-3)
3.8780E-1 (4.35E-3)
4.2250E-1 (7.50E-2)

5.7892E-3 (1.00E-3)
1.2451E-1 (2.10E-3)
2.5499E-1 (1.93E-3)
3.4812E-1 (8.40E-3)
3.2818E-1 (4.67E-2)

1.0747E-2 (2.98E-4)
1.4101E-1 (3.10E-2)
3.3091E-1 (1.92E-1)
42811E-1 (2.52E-1)
4.9388E-1 (2.91E-1)

4.3476E-3 (3.46E-4)
1.1725E-1 (1.90E-3)
2.8209E-1 (6.65E-2)
4.9400E-1 (1.79E-1)
5.0141E-1 (1.28E-1)

7.1996E-2 (1.31E-2)
1.9241E-1 (2.74E-2)
5.5634E-1 (9.83E-2)
8.8696E-1 (6.85E-2)
8.7947E-1 (1.64E-1)

8.8575E-3 (5.04E-4)
1.4473E-1 (7.24E-2)
2.5515E-1 (1.93E-3)
3.4667E-1 (1.96E-3)
3.4736E-1 (1.38E-3)

3.9883E-3 (2.70E-5)
1.3346E-1 (7.32E-2)
2.7069E-1 (3.99E-3)
3.9306E-1 (3.02E-3)
4.1024E-1 (2.19E-2)

5.9260E-3 (6.91E-4)
1.2611E-1 (3.14E-3)
2.5392E-1 (1.42E-4)
3.3896E-1 (2.62E-3)
3.2591E-1 (2.04E-3)

8.2565E-3 (2.69E-4)
1.5966E-2 (1.04E-3)
1.3084E-1 (1.54E-2)
2.2361E-1 (3.95E-2)
3.1038E-1 (6.47E-2)

4.1603E-3 (1.39E-5)
4.5300E-2 (1.17E-2)
3.1645E-1 (7.08E-2)
3.1737E-1 (9.53E-2)
4.1988E-1 (8.12E-2)

6.7929E-3 (1.03E-3)
8.3933E-2 (2.52E-2)
2.0106E-1 (4.13E-2)
2.5071E-1 (4.24E-2)
2.5135E-1 (4.31E-2)

8.5374E-3 (5.23E-6)
2.9803E-2 (5.24E-3)
2.3027E-1 (1.68E-1)
4.1556E-1 (1.79E-1)
4.7387E-1 (1.08E-1)

4.1321E-3 (7.72E-7)
1.8616E-1 (5.29E-2)
1.4700E+0 (4.05E-1)
2.8652E+0 (6.39E-1)
3.7696E+0 (4.27E-1)

3.2900E-2 (8.05E-3)
2.2044E-1 (5.13E-2)
3.9050E-1 (7.46E-2)
3.8130E-1 (5.66E-2)
3.7462E-1 (4.38E-2)

Problem  Obj. HypE MOEA/D
2 19146E-3 (747E-6)  |1.8057E-3 (1.81E-5)
4 1.2845E-1 (7.70E-3) 9.2918E-2 (2.95E-4)
DTLZ1 6 2.3463E-1 (2.23E-2) 2.0355E-1 (4.55E-2)
8  3.2690E-1 (196E-2)  1.9820E-1 (6.66E-3)
10 3.2591E-1 (1.92E-2) 2.2471E-1 (1.37E-2)
2 5.5610E-3 (8.45E-5) 3.9634E-3 (2.44E-6)
2.4772E-1 (2.68E-3) 2.3719E-1 (1.79E-3)
DTLZ2 3.8253E-1 (1.17E-2) 4.7756E-1 (6.73E-2)
8  59205E-1 (2.63E-2)  7.6487E-1 (7.53E-2)
10 7.1588E-1 (3.13E-2) 8.9000E-1 (5.45E-2)
6.1526E-3 (19SE-4) | 4.3390E-3 (2.14E-4)
49340E-1 (4.66E2)  2.3896E-1 (7.80E-4)
DTLZ3 7.5556E-1 (5.18E-2) 7.4559E-1 (1.91E-1)
8  9.0628E-1 (3.88E-2)  9.5772E-1 (9.21E-2)
10 9.6857E-1 (4.83E2)  1.0364E+0 (6.94E-2)
5.8710E-3 (2.10E-4)  5.5751E-1 (3.28E-1)
45634E-1 (4.40E-3)  5.1153E-1 (2.02E-1)
DTLZ4 5.9335E-1 (1.27E-1) 6.3958E-1 (9.95E-2)
5.7719E-1 (2.60E-2) 7.4405E-1 (7.85E-2)
10 6.5036E-1 (1.49E-2) 8.3080E-1 (3.64E-2)
5.1750E-3 (1.38E-4) 4.1369E-3 (1.76E-6)
2.4911E-2 (2.82E-3)  2.8469E-2 (2.26E-3)
DTLZ5 2.5307E-2 (3.54E-3) 7.6702E-2 (1.44E-2)
3.2089E-2 (3.78E-3) 6.9405E-2 (1.75E-2)
10 3.3685E-2 (2.67E-3) 8.1111E-2 (2.34E-2)
4.8444E-3 (2.24E-4) 4.1320E-3 (2.15E-7)
2.6170E-1 (9.75E-2) 4.6896E-2 (5.00E-3)
DTLZ6 2.1229E-1 (7.22E-2) 1.4971E-1 (4.91E-2)
8  2.1145E-1 (6.32E-2)  |1.3321E-1 (3.69E-2)
10 1.2351E-1 (1.67E-2) 2.4177E-1 (5.51E-2)
4.3180E-3 (1.78E-5) 7.1417E-2 (1.61E-1)
1.1427E+0 (3.13E-2) 8.2375E-1 (4.49E-1)
DTLZ7 1.7579E+0 (9.27E-2) 7.7783E-1 (2.05E-1)
2.8847E+0 (L44E-1)  1.6876E+0 (2.92E-1)
10 3.5870E+0 (1.01E-1) 1.7550E+0 (5.08E-1)

2.4814E-2 (2.23E-3)
1.7933E-1 (5.68E-3)
3.8856E-1 (2.83E-2)
1.0671E+0 (2.03E-2)
1.4079E+0 (1.08E-1)

5.9160E-3 (1.89E-4)
1.8538E-1 (7.96E-3)
6.1746E-1 (2.28E-2)
9.7790E-1 (6.04E-2)
1.2284E+0 (9.01E-2)

5.5982E-3 (4.79E-4)
1.4060E-1 (4.82E-2)
3.8160E-1 (1.86E-3)
8.6947E-1 (6.49E-2)
1.1988E+0 (5.41E-2)

11

second smallest IGD value. These empirical results may
illustrate that HypE and MOEA/D are well suited for
dealing with MaOPs whose Pareto front is a degenerated
curve.

Similar to GrEA and NSGA-III, the performance of
KnEA is also very promising on the seven DTLZ test
problems with more than three objectives. For DTLZ2,
DTLZ4 and DTLZ7 with more than three objectives,
KnEA achieved a slightly better IGD value than GrEA
and NSGA-III on all test instances except for DTLZ2
with 4 objectives. For DTLZ5 and DTLZ6 with more

than three objectives, KnEA achieved a similar IGD value
as GrEA and NSGA-III on DTLZ5, but it achieved a
much better IGD value than GrEA and NSGA-III on
DTLZ6, although these IGD values obtained by KnEA
are still slightly worse than those obtained by HypE
and MOEA /D. Note, however, that GrEA and NSGA-III
outperformed KnEA on DTLZ1 and DTLZ3 with more
than three objectives. This may be attributed to the fact
that DTLZ1 and DTLZ3 are multi-modal test problems
containing a large number of local Pareto optimal fronts
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Fig. 6. Runtime (s) of the five algorithms on all DTLZ test problems,
where the runtime of an algorithm on M objectives is obtained by
averaging over the runtimes consumed by the algorithm for one run
on all DTLZ problems with M objectives.

and preference over knee points in the neighborhood
easily results in the preference over local Pareto optimal
solutions. This could be partly alleviated by using a
smaller threshold 7', which is the predefined maximal
ratio of knee points to the non-dominated solutions
in a non-dominated front. Therefore, for multi-modal
MOPs, T needs to be chosen more carefully to balance
exploration and exploitation. More detailed discussions
on the influence of 7" on the performance of KnEA will
be presented in Section IV-D.

From the 35 test instances of the DTLZ test suite
presented in Table VI, we can find that KnEA wins in
11 instances in terms of IGD, while GrEA wins 5, HypE
5, MOEA/D 7 and NSGA-III 7. From these results, we
can conclude that KnEA outperforms HypE, MOEA/D,
GrEA and NSGA-III on DTLZ test problems in terms
of IGD, especially for problems with more than three
objectives.

Fig. 6 illustrates the runtime of the five algorithms
on all DTLZ test problems, where the runtime of an
algorithm on M objectives is obtained by averaging over
the runtimes consumed by the algorithm for one run on
all M-objective DTLZ problems. Note that the runtimes
are displayed in logarithm in the figure. As shown in
the figure, MOEA/D outperforms the four compared
MOEAs on all instances in terms of runtime, which are
much less than HypE, GrEA, NSGA-III and KnEA. Note
however, that although KnEA consumed more time than
MOEA /D did, it used much less time than GrEA and
HypE and consumed comparable runtime with NSGA-
III. We see that KnEA took roughly only one third of
the runtime of GrEA on bi-objective instances. As the
number of objectives increases, the runtime of KnEA in-
creased only very slightly. For 10-objective test problems,
the runtime of KnEA is only about one seventh of that
of GrEA. Among the five algorithms under comparison,
HypE consumes the highest amount of runtime on all
numbers of objectives, which is due to its very intensive
computational complexity for repeatedly calculating the

hypervolume.

The runtime of MOEA /D should remain roughly the
same as the number of objectives increases. The main
reason is that MOEA/D decomposes an MOP into a
number of single-objective optimization subproblems,
where the number of subproblems is determined by the
predefined population size, regardless of the number of
objectives of the MOP. However, from Fig. 6, we can see
that the runtime of MOEA/D on DTLZ test problems
increased as the number of objectives increases, which
is attributed to the larger population size on problems
with an increased number of objectives. The runtime
consumed by KnEA, NSGA-III, GrEA and HypE is ex-
pected to increase as the number of objectives increases,
since GrEA, NSGA-III and KnEA are all based on non-
dominated sorting and the number of non-dominated
solutions will increase significantly as the number of
objectives increases, while the computational time for
calculating the hypervolume suffers from a dramatic
increase when the number of objectives increases.

The rapid increase in runtime of GrEA can be at-
tributed to its environmental selection, where only one
solution is selected at a time from solutions that cannot
be distinguished using dominance comparison, which
is quite time-consuming when the number of non-
dominated solutions becomes large. In KnEA, by con-
trast, all other non-dominated solutions apart from the
knee points can be selected at once according to their
distance to the hyperplane. This saves much time for
KnEA compared to GrEA and HypE, particularly when
the number of objectives is large.

To summarize, we can conclude from Table VI and
Fig. 6 that KnEA performs the best among the five com-
pared algorithms. KnEA is computationally also much
more efficient than many Pareto-based or performance
indicator based popular MOEAs such as GrEA and
HypE, and comparable with NSGA-III and MOEA/D,
which are computationally very efficient MOEAs.

C. Results on the WFG Suite

The WEFG test suite was first introduced in [59] and
systematically reviewed and analyzed in [55], which was
designed with the aim to introduce a class of difficult
benchmark problems for evaluating the performance of
MOEAs. In this work, we used nine test problems, from
WEFGL1 to WFG9. The parameters of these problems are
set as suggested in [55], which are listed in Table VII.

Like in previous work, we compare the quality of the
solution sets obtained by the compared algorithms on
the nine WFG test problems in terms of hypervolume,
which is another very popular performance indicator
that takes both accuracy (closeness to the true Pareto
front) and the diversity of the solution set into account.
Table VIII presents the mean and standard deviation
of the hypervolumes of the five algorithms on WFGI1
to WFG9, averaging over 20 independent runs, where
the best mean among the five algorithms is highlighted.
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TABLE VIII
HYPERVOLUMES OF THE FIVE ALGORITHMS ON WFG1 TO WFG9, WHERE THE BEST MEAN FOR EACH TEST INSTANCE IS SHOWN WITH A GRAY
BACKGROUND
Problem  Obj. HypE MOEA/D GrEA NSGA-III KnEA

WEG1

L O = N

4.2990E-1 (2.62E-3)
8.0119E-1 (2.42E-3)
9.0084E-1 (7.07E-3)
9.6318E-1 (5.15E-4)
9.8739E-1 (9.08E-3)

6.3175E-1 (4.79E-3)
9.4650E-1 (1.57E-2)
9.4059E-1 (6.64E-2)
9.0191E-1 (7.96E-2)
8.3757E-1 (1.29E-1)

6.3072E-1 (6.86E—4)
9.4877E-1 (4.31E-3)
9.7543E-1 (4.86E-3)
9.8379E-1 (2.41E-3)
9.8728E-1 (2.00E-3)

6.3033E-1 (1.07E-2)
7.2716E-1 (3.57E-2)
7.3024E-1 (5.24E-2)
5.4589E-1 (5.88E-2)
4.9141E-1 (6.73E-2)

6.2722E-1 (1.90E-2)
9.7950E-1 (4.96E-3)
9.8950E-1 (1.65E-2)
9.9091E-1 (4.73E-3)
9.9443E-1 (5.51E-3)

WEG2

N

10

1.9803E-1 (7.64E-5)
5.9595E-1 (4.04E-3)
5.0112E-1 (1.02E-1)
9.9691E-1 (5.62E-4)
9.9901E-1 (2.63E-4)

5.0407E-1 (3.13E-2)
7.9745E-1 (5.20E-2)
7.6779E-1 (8.63E-2)
9.1592E-1 (1.12E-1)
9.3037E-1 (4.78E-2)

5.4851E-1 (5.11E-4)
9.4954E-1 (4.92E-3)
9.3146E-1 (7.54E-2)
9.6876E-1 (3.52E-3)
9.7813E-1 (343E-3)

55176E-1 (1.85E-3)
9.3457E-1 (7.44E-2)
9.5678E-1 (7.08E-2)
9.9228E-1 (3.04E-3)
9.9660E-1 (2.28E-3)

5.4979E-1 (1.03E-3)
9.7240E-1 (2.46E-3)
9.8882E-1 (1.77E-3)
9.9161E-1 (1.08E-3)
9.9317E-1 (1.31E-3)

WEG3

10

4.3313E-1 (1.30E-3)
4.8242E-1 (2.11E-2)
3.6553E-1 (4.23E-4)
4.5940E-1 (1.76E-2)
4.4752E-1 (5.21E-3)

4.8868E-1 (1.96E-3)
5.7038E-1 (7.53E-3)
5.7269E-1 (1.48E-2)
5.9451E-1 (6.48E-3)
6.0178E-1 (4.76E-3)

4.8970E-1 (1.07E-3)
5.6215E-1 (6.06E-3)
5.8912E-1 (3.50E-3)
5.9245E-1 (3.51E-3)
6.0055E-1 (2.09E-3)

4.9073E-1 (9.04E-4)
5.4981E-1 (6.34E-3)
5.5618E-1 (1.56E-2)
5.3840E-1 (2.63E-2)
6.0049E-1 (1.80E-2)

4.9286E-1 (8.69E-4)
5.4941E-1 (1.08E-2)
5.4849E-1 (1.37E-2)
5.5483E-1 (2.05E-2)
5.5756E-1 (1.50E-2)

WFG4

10

2.0985E-1 (4.59E-5)
5.1111E-1 (5.67E-4)
5.2722E-1 (8.08E-3)
6.5253E-1 (1.09E-3)
6.4900E-1 (4.51E-2)

2.0563E-1 (9.26E-4)
3.4408E-1 (2.14E-2)
2.5191E-1 (2.55E-2)
3.8362E-1 (4.64E-2)
4.0333E-1 (7.03E-2)

2.0597E-1 (5.47E-4)
5.1253E-1 (5.14E-3)
6.2377E-1 (4.58E-3)
6.7778E-1 (7.65E-3)
8.1735E-1 (5.89E-3)

2.0727E-1 (6.71E-4)
4.7834E-1 (8.03E-3)
5.8534E-1 (2.76E-2)
7.0102E-1 (9.95E-3)
7.8515E-1 (1.65E-2)

2.0793E-1 (3.85E-4)
5.0660E-1 (4.50E-3)
6.2568E-1 (1.33E-2)
7.5446E-1 (6.69E-3)
8.3767E-1 (6.59E-3)

WEFG5

10

1.7937E-1 (1.52E-4)
2.9364E-1 (6.14E-3)
3.0323E-1 (1.38E-2)
4.7190E-1 (8.51E-3)
4.8701E-1 (4.23E-3)

1.7821E-1 (6.95E-5)
3.0592E-1 (1.90E-2)
2.4446E-1 (2.89E-2)
3.2769E-1 (1.94E-2)
3.1971E-1 (2.73E-2)

1.7592E-1 (9.25E-5)
4.9028E-1 (2.71E-3)
6.0923E-1 (8.17E-3)
6.4884E-1 (6.33E-3)
7.8627E-1 (6.50E-3)

1.7834E-1 (4.55E-5)
4.6965E-1 (3.98E-3)
6.0141E-1 (6.78E-3)
7.1140E-1 (5.45E-3)
7.8370E-1 (5.18E-3)

1.7399E-1 (2.66E-3)
4.8274E-1 (2.81E-3)
6.0681E-1 (5.31E-3)
7.1573E-1 (7.18E-3)
8.1223E-1 (3.48E-3)

WEFG6

10

9.7306E-2 (9.01E-4)
1.2887E-1 (3.70E-3)
1.2832E-1 (1.72E-3)
1.3260E-1 (8.53E-4)
1.3391E-1 (1.91E-3)

1.6798E-1 (1.41E-2)
2.9948E-1 (2.17E-2)
3.1998E-1 (4.92E-2)
3.4564E-1 (3.05E-2)
3.6008E-1 (4.07E-2)

1.6607E-1 (6.9096E-3)
4.7686E-1 (1.75E-2)
5.9722E-1 (2.38E-2)
6.1993E-1 (1.60E-2)
7.6846E-1 (1.60E-2)

1.7070E-1 (9.18E-3)
4.5274E-1 (1.21E-2)
5.9342E-1 (2.38E-2)
6.8735E-1 (1.58E-2)
7.7138E-1 (1.95E-2)

1.7043E-1 (8.75E-3)
4.6385E-1 (1.74E-2)
5.8903E-1 (1.92E-2)
6.9360E-1 (1.89E-2)
7.8831E-1 (1.53E-2)

WEG7

10

1.7148E-1 (7.26E-3)
4.8545E-1 (1.02E-2)
3.8823E-1 (8.75E-4)
7.5233E-1 (3.53E-2)
7.9526E-1 (2.91E-2)

2.0843E-1 (2.84E-4)
3.8074E-1 (2.48E-2)
3.6256E-1 (4.17E-2)
3.8309E-1 (5.04E-2)
3.7048E-1 (5.45E-2)

2.0627E-1 (2.28E-4)
5.5277E-1 (2.14E-3)
6.8524E-1 (6.43E-3)
7.1584E-1 (7.08E-3)
8.7285E-1 (6.48E-3)

2.0884E-1 (3.46E-4)
5.2453E-1 (5.85E-3)
6.4957E-1 (3.81E-2)
7.6820E-1 (8.62E-3)
8.5128E-1 (1.05E-2)

2.0896E-1 (2.40E-4)
5.3764E-1 (3.35E-3)
6.8807E-1 (6.74E-3)
7.8708E-1 (1.20E-2)
8.9484E-1 (3.18E-3)

WEGS

10

4.4350E-2 (1.68E-3)
1.1250E-1 (9.82E-4)
1.3361E-1 (1.38E-2)
1.8083E-1 (2.24E-3)
1.8045E-1 (4.23E-3)

1.5386E-1 (2.40E-3)
2.1642E-1 (1.10E-2)
1.9018E-1 (1.86E-2)
3.1187E-1 (2.63E-2)
3.1283E-1 (4.53E-2)

1.4837E-1 (1.30E-3)
3.7820E-1 (6.32E-3)
4.6842E-1 (3.58E-2)
4.6036E-1 (2.07E-2)
7.1165E-1 (4.59E-3)

1.4731E-1 (1.33E-3)
3.3674E-1 (1.03E-2)
4.3429E-1 (1.95E-2)
5.6980E-1 (1.48E-2)
6.6252E-1 (2.81E-2)

1.4170E-1 (5.94E-3)
3.4842E-1 (9.69E-3)
4.3532E-1 (3.25E-2)
5.5710E-1 (2.08E-2)
7.1503E-1 (5.14E-2)

WEG9

10

2.0467E-1 (5.57E-4)
3.3698E-1 (2.14E-2)
1.8562E-1 (3.74E-3)
3.2783E-1 (6.45E-2)
3.4602E-1 (2.05E-2)

1.7407E-1 (3.41E-2)
2.6820E-1 (3.57E-2)
1.6388E-1 (4.18E-2)
3.0523E-1 (4.51E-2)
3.0884E-1 (4.32E-2)

2.0275E-1 (1.14E-3)
4.9720E-1 (5.19E-3)
5.7679E-1 (3.88E-2)
6.5642E-1 (1.44E-2)
7.9937E-1 (4.68E-3)

1.9825E-1 (2.00E-2)
4.1054E-1 (5.53E-2)
4.8225E-1 (4.56E-2)
6.7658E-1 (2.39E-2)
7.5520E-1 (9.49E-3)

1.7393E-1 (6.23E-2)
4.9287E-1 (5.36E-3)
5.9820E-1 (4.28E-2)
7.2698E-1 (8.28E-3)
8.0769E-1 (8.06E-3)
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TABLE VII
PARAMETER SETTING FOR TEST PROBLEMS WFG1 TO WEG9

Number of Position Distance Number of
Objectives (M)  Parameter (K) Parameter (L) Variables
2 4 10 K+ L
4 6 10 K+ L
6 10 10 K+ L
8 7 10 K+ L
10 9 10 K+ L

From this table, the following observations can be made.
First, MOEA/D, HypE and NSGA-III still achieved a
good performance on WFG test problems with two ob-
jectives in terms of hypervolume. MOEA /D and NSGA-
III obtained a hypervolume close to the best one on all
WEFG test problems with two objectives, while HypE
obtained the best hypervolume on WFG4, WFG5 and
WFG9 with two objectives among the five algorithms
under comparison. These empirical results confirm that
MOEA/D, HypE and NSGA-III are promising algo-
rithms for MOPs with a small number of objectives.
For WFG problems with two objectives, the performance
of GrEA and KnEA is also encouraging, since they
were able to produce comparable results with those of
MOEA/D, HypE and NSGA-III on all WEG problems
with two objectives.

By contrast, KnEA, NSGA-III and GrEA performed
consistently much better than MOEA /D and HypE in
terms of hypervolume on WFG problems with more
than three objectives. The best hypervolume or close to
the best hypervolume was obtained by KnEA, NSGA-
III and GrEA on all WEG problems with more than
three objectives, especially for WFG5, WFG6, WFGS8 and
WEFG9. On these four WFG problems, KnEA, NSGA-III
and GrEA obtained a hypervolume that is at least two
times of that obtained by HypE and MOEA/D. HypE
and MOEA/D achieved a good performance on some
WEFG test instances with more than three objectives.
Among the five compared algorithms, HypE obtained
the best hypervolume on WFG2 with eight and 10 ob-
jectives, while MOEA /D achieved the best hypervolume
on WFG3 with four, eight and 10 objectives.

KnEA performed comparably well with NSGA-III and
GrEA on WFG test problems with more than three objec-
tives, and often better on most WFG test instances when
the number of objectives is larger than six. For all 18
WEFG test instances with eight and 10 objectives, KnEA
only obtained a slightly worse hypervolume than NSGA-
I and GrEA on WFG2 with eight and 10 objectives,
WFG3 with eight and 10 objectives and WFG8 with
eight objectives. These results indicate that KnEA is more
suited to deal with MaOPs with more than six objectives
than GrEA and NSGA-IIL

Overall, KnEA performed better than MOEA/D,
HypE, NSGA-III and GrEA on the WFG test suite in
terms of hypervolume. KnEA achieved the best hy-
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Fig. 7. Runtime(s) of the five algorithms on all WFG test problems,
where the runtime of an algorithm on M objectives is obtained by
averaging over the runtimes consumed by the algorithm for a run on
all M-objective WFG problems.

pervolume on 22 test instances out of 45 WFG test
instances considered in this work, while GrEA, NSGA-
I, HypE and MOEA /D achieved the best hypervolume
on 10 instances, 3 instances, 5 instances and 5 instances,
respectively. Therefore, we can conclude that KnEA is
very competitive for solving the WFG test functions,
especially for problems with more than three objectives.
Note that KnEA performed very well for all WFG test
functions even on the multi-modal problems WFG4 and
WFG9, since a small value of 7" has been adopted
in KnEA on WFG4 and WFG9 with a large number
of objectives, which confirms that a carefully selected
small value of T is helpful for KnEA to achieve a good
performance on multi-modal problems.

Fig. 7 illustrates the runtime of the five algorithms
on all WFG test problems, where the runtime of an
algorithm on M objectives is obtained by averaging over
the runtimes consumed by the algorithm for one run on
all WFG test problems with M objectives. Note that in
the figure the runtimes are displayed in logarithm. As
can be seen from Fig. 7, we can find that the average
runtime of KnEA is much less than that of GrEA and
HypE, comparable to NSGA-III, however, is still slightly
more than that of MOEA/D. This demonstrates that the
performance of KnEA is very promising in terms of
runtime.

From Table VIII and Fig. 7, we can conclude that over-
all, KnEA showed the most competitive performance on
the WEG test problems. In addition, KnEA is computa-
tionally much more efficient than GrEA and HypE, and
comparable to NSGA-III and MOEA /D, which is very
encouraging.

D. Sensitivity of Parameter T in KnEA

KnEA has one algorithm specific parameter 7', which
is used to control the ratio of knee points to the non-
dominated solutions in the combined population. In
the following, we investigate the influence of T" on the
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Fig. 8. IGD values on DTLZ1 of KnEA with different settings for
parameter 7', averaging over 20 independent runs.

performance of KnEA, which varies from 0.1 to 0.9. Note
that 0 <7 < 1.

From the parameter settings in the previous experi-
ments, we have already noted that 7" has been set to
different values in KnEA depending on whether the
optimization problem has a large number of local Pareto
optimal fronts. The main reason is that a relatively small
T is helpful for KnEA to escape from local Pareto fronts.
For this reason, we consider the setting of 7" on two
DTLZ test problems, DTLZ1 and DTLZ2, with the former
representing a class of optimization problems having
a large number of local Pareto fronts, while the latter
representing a class of test problems that do not have
a large number of local Pareto optimal fronts. Note
that similar results have been obtained on other test
problems.

Fig. 8 shows the results of IGD values for different
settings of parameter 7' on DTLZ1 with 2, 4, 6, 8
and 10 objectives, averaging over 20 independent runs.
Note that in the figure the IGD values are displayed
in logarithm. We can see that as T varies from 0.1 to
0.9, the IGD value of KnEA on DTLZ1 first decreases,
and then will increase again. For DTLZ1 with 2 and 4
objectives, the best performance has been achieved when
T is around 0.6, while for DTLZ1 with 6 objectives, the
best performance is achieved when 7" = 0.2, and for
DTLZ1 with 8 and 10 objectives, " = 0.1 produces the
best performance. In general, the experimental results
confirm that for multi-modal MOPs, a relatively small
T, e.g. between 0.1 and 0.4 may be more likely to lead
to good performance, particularly when the number of
objectives is larger than four. For multi-modal MOPs
having two to four objectives, T can be set to between
0.5 and 0.6.

The experimental results on DTLZ2 are summarized
in Fig. 9, where the mean IGD values for different
settings of parameter 7' on DTLZ2 with 2, 4, 6, 8 and
10 objectives averaging over 20 independent runs are
presented. We can see from the figure that the IGD value
will first become smaller as 7' increases up to 0.6 for
the bi-objective DTLZ2 and up to 0.5 for DTLZ2 having
more than two objectives. Compared to the 7' values

DTLZ2

[ | —e— 10-objective:
—+— 8-objectives
11| —— 6-objectives
—=— 4-objectives
| | —=— 2-objectives

N

01 02 03 04 05 06 07 08 09
T

Fig. 9. IGD values on DTLZ2 of KnEA with different settings for
parameter 7', averaging over 20 independent runs.

that produce the best performance for DTLZ1, we can
conclude that for MOPs that do not have a large number
of local Pareto fronts, T can be set between 0.5 and
0.6, where a slightly larger 7" can be used for a smaller
number of objectives.

To summarize the above results, we can conclude that
although the performance of KnEA varies with the value
of parameter T, there is a pattern that can be followed
to guide the setting for 7. For MOPs without a large
number of local Pareto optimal fronts, 7" can be set to 0.6
for bi-objective problems, to a value around 0.5 for prob-
lems having more than two objectives. For MOPs with
a large number of local Pareto optimal fronts, 7" = 0.5 is
recommended for bi- or three-objective problems, while
for problems with more than three objectives, a small
value of T' is recommended and the larger the number
of objectives is, the smaller the value of T should be
used.

V. CONCLUSIONS AND REMARKS

In this paper, a novel MOEA for solving MaOPs, called
KnEA, has been proposed. The main idea is to make
use of knee points to enhance the search performance
of MOEAs when the number of objectives becomes
large. In KnEA, the knee points in the non-dominated
solutions are preferred to other non-dominated solutions
in mating selection and environmental selection. To the
best of our knowledge, this is the first time that knee
points have been used to increase the selection pressure
in solving MaOPs, thereby improving the convergence
performance of Pareto-based MOEAs.

In KnEA, a new adaptive algorithm for identifying
knee points in the non-dominated solutions has been
developed. While most existing MOEAs for knee points
aim to accurately locate the knee solutions in the true
Pareto front, the proposed adaptive knee point identifi-
cation algorithm intends to find knee points in the neigh-
borhood of solutions in the non-dominated fronts during
the optimization, thereby distinguishing some of the
non-dominated solutions from others. To this end, the
adaptive strategy attempts to maintain a proper ratio of
the identified knee points to all non-dominated solutions
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in each front by adjusting the size of the neighborhood of
each solution in which the solution having the maximum
distance to the hyperplane is identified as the knee point.
In this way, the preference over knee points in selection
will not only accelerate the convergence performance but
also the diversity of the population.

Comparative experimental results with four popular
MOEAs, namely, MOEA /D, HypE, GrEA and NSGA-III
demonstrate that the proposed KnEA significantly out-
performs MOEA /D and HypE, and is comparable with
GrEA and NSGA-III on MaOPs with more than three
objectives. Most encouragingly, KnEA is computation-
ally much more efficient compared with other Pareto-
based MOEAs such as GrEA and performance indicator
based MOEAs such as HypE. Therefore, the overall
performance of KnEA is highly competitive compared
to the state-of-the-art MOEAs for solving MaOPs.

This work demonstrates that the idea of using knee
points to increase the selection pressure for MaOPs
is very promising. Further work on developing more
effective and computationally more efficient algorithms
for identifying knee solutions is highly desirable. In
KnEA, non-dominated solutions other than the knee
points have been selected according to their distance to
the hyperplane. This idea has been shown to be effective
in KnEA, however, the performance of KnEA could be
further improved by introducing criteria other than the
distance to the hyperplane. Finally, the performance of
KnEA remains to be verified on real-world MaOPs.
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