
Citation: Masood, S.; Khan, S.A.;

Hassan, A.; Khalique, F. A

Knowledge Base Technique for

Detecting Multiple High-Speed Serial

Interface Synchronization Errors in

Multiprocessor-Based Real-Time

Embedded Systems. Electronics 2022,

11, 2945. https://doi.org/10.3390/

electronics11182945

Academic Editors: Alexander

Barkalov, Larysa Titarenko, Dariusz

Kania and Remigiusz Wiśniewski

Received: 1 August 2022

Accepted: 13 September 2022

Published: 17 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Knowledge Base Technique for Detecting Multiple
High-Speed Serial Interface Synchronization Errors in
Multiprocessor-Based Real-Time Embedded Systems
Sabeen Masood 1,* , Shoab Ahmed Khan 1, Ali Hassan 1 and Fatima Khalique 2

1 Department of Computer and Software Engineering, College of Electrical and Mechanical Engineering,
National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan

2 Department of Computer Science, Bahria University, Islamabad 44000, Pakistan
* Correspondence: sabeen.masood@ceme.nust.edu.pk

Abstract: The heterogeneity of the multiple processing elements (PEs) is a feature of real-time embed-
ded systems. General-purpose processors and several embedded processors, as well as dedicated
high-speed interfaces, are among these elements. Communication between the processors is among
the most significant characteristics of developing such complex systems. Furthermore, synchroniza-
tion is a common issue during interprocessor communication in embedded systems. Debugging and
testing such systems is time-consuming, difficult, and laborious, with the majority of the complexities
centered on debugging real-time interprocessor communication, such as synchronization in terms of
timing and accuracy. While the hardware design features of heterogeneous multiprocessor real-time
embedded systems have received a lot of attention, the design and development of software-based
solutions still have the potential to be addressed. In particular, software-based testing becomes
challenging due to interprocessor communication and the synchronization of real-time applications.
A knowledge-based technique that aids in testing high-speed serial interfaces in multiprocessor-based
real-time embedded systems is proposed that needs debugging in real time while an application is
running. It is becoming much more important to test and validate these interfaces in real time as the
demand for high data transmission rates increases. The presented work uses a technique to simulate,
create and enhance the knowledge base used as correlation-based error detection that reduces the
development time. The proposed technique helps in detecting synchronization-related errors that
occur during communication among multiple high-speed serial interfaces. The presented work also
lists a series of experiments to validate the effectiveness of the proposed technique. The results show
that the presented techniques are effective for error identification in real-time embedded systems.

Keywords: real-time and embedded systems; embedded processors; interfaces; synchronization;
interprocessor communication; debugging; testing

1. Introduction

Modern real-time embedded systems are demanding in terms of computing power
and programmable performance; thus, the number of processors used in these applications
is increasing [1–3]. System-on-Chip (SoC) designs have multiple processing elements (PEs)
on the same die for the sake of meeting the exponential growth in the recent processing
requirements of embedded system applications. These processing components usually
share the system memory and peripherals while execution, thus requiring synchronization
to ensure system integrity [4]. Tasks can be distributed to each processor in multiprocessor
systems to minimize the overall execution time, since the processors are tightly coupled [5].
Multiple processors make it easier to give quick responses and satisfy the requirements
of real-time and functional complexity for complex real-time systems [6]. The field of
real-time embedded systems encompasses a wide variety of systems, from basic control
loops on microcontrollers to complex integrated distributed systems. These systems are

Electronics 2022, 11, 2945. https://doi.org/10.3390/electronics11182945 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11182945
https://doi.org/10.3390/electronics11182945
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-8824-6448
https://doi.org/10.3390/electronics11182945
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11182945?type=check_update&version=2

Electronics 2022, 11, 2945 2 of 22

used in a variety of applications such as energy management [7], autonomous vehicles [8,9],
medical systems [10], avionics [11] and consumer electronics [12]. Many of the latest multi-
processor systems are heterogeneous, such as a multiple digital signal processors (DSPs),
advanced RISC machines (ARMs), general-purpose processors (GPPs) or microcontrollers,
field-programmable gate arrays (FPGAs), application-specific integrated circuits (ASICs),
etc. In general-purpose computing, heterogeneous multiprocessors are less common. The
combinations of heterogeneous multiprocessors pose significant challenges when compared
with the symmetric multiprocessor world [13]. Accordingly, acquiring software from many
types of processors and making them operate together becomes extremely challenging.
The hardware design features of heterogeneous embedded multiprocessor systems have re-
ceived a lot of attention in the last few years. Meanwhile, the challenge of creating efficient
software for this kind of platform still has not been fully addressed yet [14]. With several
PEs, a real-time embedded system connected via different physical interfaces (synchronous
and asynchronous) using interprocessor communication is shown in Figure 1. Real-time
interprocessor communications and time synchronization are important in ensuring good
performance for critical applications in multiprocessor-based embedded systems [15]. Im-
proving the communication efficacy among the processors is one of the key challenges of
an embedded system implementing real-time processing applications. Normally, the main
issues of an embedded system implementing a real- time processing application are the
interprocessor communications and synchronization. Since a single processor is insufficient
for real-time processing, therefore, a way is required for the processors to synchronize their
communication. Processors must synchronize themselves when they collaborate with each
other [16]. Synchronization on a multiprocessor is expensive due to the hardware levels
at which synchronization and communication must happen [17]. The situation becomes
even worse when the CPU used to interact with other processors or other hardware compo-
nents [18] is interrupted, which is common in today’s multiprocessor systems. Moreover,
the resulting gap in the bandwidth of the interface among the memory and processors
has become a critical hurdle for total system performance as the data rate demands have
increased [19]. The demand for increased bandwidth interfaces in computing devices has
led to the adoption of high-speed interfaces identical to those used in communication
devices [20]. In today’s computing industry, featuring communication systems as well
as data centers [21], high-speed serial interfaces (HSSI) are prevalent [22]. Therefore, the
demand for availability, reliability, and high performance in real-time embedded systems
has resulted in more complex computing systems. Developing systems of this complexity
necessitates the use of sophisticated validation and verification approaches [23]. The devel-
opment time is reduced, and difficulties are blocked in the realm of real-time embedded
systems if the errors are detected and fixed earlier in the product cycle. It is significantly
important to understand and examine the behavior in all the possible situations, thus better
achieving the overall system quality for complex systems [24].

As the complication of real-time and embedded systems grows, the demand for devel-
oping the methodologies and tools that give productive ways for the efficient development
of relevant embedded software is growing as well. Developers often devote a considerable
portion of their time to testing and correcting errors [25], which is aided by advanced soft-
ware testing and debugging tools [26]. However, testing such programs is typically more
difficult than testing sequential applications, and it is made much more challenging by the
heterogeneous parallelism in a multiprocessor system on chip (MPSoC). Simultaneous envi-
ronments introduce new types of errors in the error taxonomy that do not exist in sequential
programs, which is one reason for the increased complexity [27]. Furthermore, due to their
complexity, debugging and testing these multiprocessor systems during the design phase
is particularly difficult and time-consuming, as the majority of the complexities are found
in debugging real-time interprocessor communication, which is synchronous in terms of
accuracy and timing. One of the biggest challenges in the creation of embedded system
projects, according to [28], is testing and debugging [29]. Several tools have been proposed

Electronics 2022, 11, 2945 3 of 22

for the development of embedded software, with the validation activity accounting for
more than 60% of the total development effort [30].

Electronics 2022, 11, 2945 3 of 22

complexities are found in debugging real-time interprocessor communication, which is
synchronous in terms of accuracy and timing. One of the biggest challenges in the creation
of embedded system projects, according to [28], is testing and debugging [29]. Several tools
have been proposed for the development of embedded software, with the validation activity
accounting for more than 60% of the total development effort [30].

Figure 1. Multiple PEs with physical interfaces.

Despite the availability of a wide range of testing and debugging techniques, there
are still weaknesses in the testing and debugging process that may be addressed, most
notably in comprise between time, cost, and test efficiency. As embedded systems have
become more complex, specialized testing methodologies have become more recognized
than general testing frameworks for embedded systems. In addition to errors in the pro-
gram logic, timing and accuracy problems in interprocessor communication are possible.
Interchanging among several interfaces might incur significant time delays through tran-
sitioning or processing a different interface when the processors employ a real-time oper-
ating system due to time constraints. Furthermore, emulating high-speed interfaces is dif-
ficult and uncontrolled in order to mimic real-time events. The developers have tested all
the functionality of the PEs separately, but still, the multiprocessor-based real-time em-
bedded system fails due to the high-speed serial (asynchronous as well as synchronous)
interfaces. High-speed interfaces transport a large amount of data across multi PEs during
interprocessor communication. Finding synchronization and timing errors is extremely
difficult without observing the trace of System under Test’s (SuT’s) execution due to the
high-speed interfaces. So, there is a lot of possibility for research in this field to look at
ways to verify interprocessor communications in real-time settings.

The goal of this work tackles the complicated problem of testing and debugging high-
speed serial interfaces while an application is running, which requires real-time testing
and debugging. A variety of factors, i.e., the computational complexity of executing dif-
ferent algorithms, the kind of operating system that runs on a real-time system, etc. affect
interprocessor communications. The research was driven by the experience of building a
multi-PEs based real-time embedded system in which the most challenging part of the
implementation was the testing and debugging of high-speed serial interfaces with sev-
eral apparent and concealed factors affecting interprocessor communication. When high-
speed processing is essential in real-time embedded systems, certain kinds of issues arise

Figure 1. Multiple PEs with physical interfaces.

Despite the availability of a wide range of testing and debugging techniques, there
are still weaknesses in the testing and debugging process that may be addressed, most
notably in comprise between time, cost, and test efficiency. As embedded systems have
become more complex, specialized testing methodologies have become more recognized
than general testing frameworks for embedded systems. In addition to errors in the pro-
gram logic, timing and accuracy problems in interprocessor communication are possible.
Interchanging among several interfaces might incur significant time delays through transi-
tioning or processing a different interface when the processors employ a real-time operating
system due to time constraints. Furthermore, emulating high-speed interfaces is difficult
and uncontrolled in order to mimic real-time events. The developers have tested all the
functionality of the PEs separately, but still, the multiprocessor-based real-time embedded
system fails due to the high-speed serial (asynchronous as well as synchronous) interfaces.
High-speed interfaces transport a large amount of data across multi PEs during interpro-
cessor communication. Finding synchronization and timing errors is extremely difficult
without observing the trace of System under Test’s (SuT’s) execution due to the high-speed
interfaces. So, there is a lot of possibility for research in this field to look at ways to verify
interprocessor communications in real-time settings.

The goal of this work tackles the complicated problem of testing and debugging
high-speed serial interfaces while an application is running, which requires real-time
testing and debugging. A variety of factors, i.e., the computational complexity of executing
different algorithms, the kind of operating system that runs on a real-time system, etc. affect
interprocessor communications. The research was driven by the experience of building
a multi-PEs based real-time embedded system in which the most challenging part of
the implementation was the testing and debugging of high-speed serial interfaces with
several apparent and concealed factors affecting interprocessor communication. When
high-speed processing is essential in real-time embedded systems, certain kinds of issues
arise in numerous fields, i.e., ultrasound systems [31], automobile electronic control unit
applications [32], software-defined radios [33], radar applications [34], etc. As the demand
for the high data transfer rises, testing and debugging high-speed interfaces become
much more complex [35]. Particularly, testing the application with high-speed serial

Electronics 2022, 11, 2945 4 of 22

interfaces is the focus in this work. The proposed knowledge base technique is created
based on synchronization errors encountered on single as well as multiple interfaces when
communication between multi PEs occurs in a real-time embedded system. When an
interface error is received on the real-time embedded system, we compare it with the
knowledge base. To localize the error, we also capture the data through the multiple
emulators at run time. This allows us to identify where the synchronization error is and
which interface is causing this error. The proposed technique rapidly addresses errors while
also examining and diagnosing the behavior of multiple connected serial interfaces with
complex internal architectures. The results show that our presented technique is effective
in discovering and fixing issues that would otherwise be difficult to find and fix.

The research contribution is to design and develop a knowledge base that aids in
the testing of multiple high-speed serial interfaces in multi-processor-based real-time
embedded systems, as well as to simulate, store and detect all possible synchronization-
related errors that occur during PE communication.

The rest of the paper is structured as follows. The related work is discussed in Section 2.
The conceptual idea and the implementation of the approach are discussed in particular
in Sections 3 and 4, respectively. An experimental evaluation of our work is provided in
Section 5. Sections 6 and 7 summarize and conclude this paper.

2. Related Work

Several techniques for testing and debugging high-speed serial interfaces have been
explored in this section and are shown in Table 1. It is becoming more difficult to develop
fault-free electronic equipment as data rates and integration levels grow. As a result,
post-fabrication validation currently consumes about 25% of the total design resources at
Intel [36]. In the target environment, real-time embedded system debugging and testing
has traditionally become difficult and time-consuming due to the inherent absence of
internal system visibility [37]. Furthermore, as the need for increased bandwidth grows,
high-speed serial interfaces (HSSI) are being pushed toward larger data rates [38]. Post-
silicon validation, testing, and debugging of HSSI has made it more crucial to maintain the
design and device quality with the coinciding increase in the complexity of the design and
decrease in the timing budget [39]. It has also become a serious issue and has become much
more difficult to address as a consequence of longer test times, jitter, noise, signal integrity
issues, and the usage of expensive instruments [40]. As the data rate grows for transferring
data faster, it eventually becomes significant to test and verify these interfaces throughout
the development [41]. It is critical and typically takes the majority of the design time.

Testing and Debugging of High-Speed Interfaces

Various methods for testing as well as debugging embedded systems’ high-speed
serial interfaces have been proposed by several studies. A solution to the issue of decreased
General Purpose Input/Outputs (GPIO) pin availability during manufacturing tests and
running complete structural content while embedded in a functioning system is to use the
functional protocol of an existing HSIO port for testing proposed in [42]. By exploiting
the high-speed functional interfaces that are already present in a SoC, such as PCIe or
USB, the approach effectively executes both scan tests and in-system tests. By delivering
packetized test data to the DUT at speeds that are noticeably faster than those made possible
using GPIOs, this technique shortens test times by utilizing the native protocol of these
scaled high-speed interfaces. HSIO links validation uses the modified golden section direct
search optimization approach published in [43] for quick and accurate jitter tolerance
(JTOL) testing. The algorithm performed admirably when compared to the USB3 Gen1,
SATA, and PCIe standards. Using the suggested techniques, other standards based on
the receiver JTOL test, including XAUI, can be effectively adapted using the proposed
methods. The work in [44] investigates and analyzes the causes of timing (jitter) noise in
serial transmission lines. A complete method for estimating the frequency components of
timing noise as well as simulating the behavior of timing noise sources is also presented.

Electronics 2022, 11, 2945 5 of 22

The focus of the research is on jitter reduction methods. The half-rate series-parallel
pseudo random binary sequence (PRBS) generator in the proposed BIST system uses a
specific pattern to self-synchronize the received data stream with the reference data at
the bit error checker for HSSI. To test and validate the high-speed PCI-E interface for
Opengear’s devices, the synchronous reconstruction approach is proposed in [35]. To
define the quality of communication interfaces, a Bit Error Rate Tester (BERT) technique is
proposed in [45]. The BER tester core in FPGAs and Special Additive White Gaussian Noise
(AWGN) generating core used for BERT are introduced. It is more efficient to combine
BERT and an AWGN on FPGAs in respect to volume, cost, and energy than current related
speed stand-alone systems; it offers an advantage of significant speed over the software
simulations. The spread spectrum, error-correcting codes, data recovery interfaces/native
clock, and user-defined modulation are among the communication devices that can be
tested and evaluated using the complete BERT technique. Two case studies are used to
validate the proposed solution: an AWGN baseband transmission system is assessed by
one of them, and a high-speed serial interface is evaluated by the other. BERT electronic test
equipment is employed to ensure that the high-speed serial interface transceivers function
properly. To enable bit error rate monitoring without the need for off-chip subsystems such
as memory and the PRBS generator, a half-rate BIST system is presented in [46].

The work in [47] proposed a test and debug technique for the serial interface,
i.e., JESD204B Rx PHY, allowing at-speed testing on 28 nm Silicon-On-Insulator (SOI)
technology. Custom analog circuits are used for the primary BIST, while to debug BIST,
conventional digital logic is used. The BIST circuitry is used to deliver a very low-cost
testing mechanism with a 0.5% area overhead and a 2.5% current consumption overhead.
To test the JESD Rx PHY manufacturing defects, a combination of ATPG patterns and BIST
is used. The BIST focuses on at-speed transition defects as well as analog block defects
in the 2.4 GHz digital domain. ATPG is implemented to overcome systematic jamming
issues and defects in @60 MHz at-speed transitions. The second batch of serial pattern
generators and data checkers is created on the digital boundaries to aid debugging. Ac-
cording to [20], the data eye margin test has become a common design-for-test (DfT) based
high–speed links test technique when used in conjunction with loopback configuration.
The test methodologies and DfT circuitry for backing high-speed serial interfaces are sum-
marized in this paper (e.g., SATA). This work also provides fundamental implementation
descriptions and silicon experiences as well as manufacturing test techniques for devices
that employ external loopback. In addition, they provided an overview of test pattern
creation, acquisition, and control implementations. The work in [48] explained how to test
and classify HSIO interfaces using external measuring devices and ATE. The problems
that the tester faced when working through high-speed devices were also mentioned. This
work also included ATEs hardware testing-based solutions. The work in [49] has been
used to build a test harness intended for a DMA controller and high-speed synchronous
serial interface. The suggested test harness is employed to stimulate the device under
test’s various capacities as well as to assess its behavior. The test harness enables testers
to analyze the behavior of peripherals integrated with the SoC. The work in [50] demon-
strated a subtle method for debugging, testing, and validating high-speed serial interfaces
as well as conducting functional testing. With the external loopback approach, many of
the present restrictions of ATE can be alleviated. Using a BERT for FPGA and novel jitter
injection method, high-speed interfaces were assessed and tested without needing the DfT
capabilities and ATE instruments; this approach also overcomes traditional ATE instrument
limitations. Depending on the applications, the technique intends to use ATE instruments
or conducts the testing of an external loopback except for an ATE. Electronic test equipment
BERT is utilized to accelerate post-silicon validation.

According to the literature review, several studies have been conducted on the high-
speed serial interfaces in multiprocessor-based embedded systems. However, the majority
of these studies focus on functional testing and debugging; specialized electronic equipment
for testing are employed by many of the studies or to test and debug high-speed serial

Electronics 2022, 11, 2945 6 of 22

interfaces through an external provider. Furthermore, there is currently a gap in the research
on testing and debugging high-speed serial interfaces regarding synchronization-related
issues during interprocessor communication. As a result, developing a knowledge base
technique that identifies errors on single as well as multiple interfaces that can assist the
developers in testing and debugging multiprocessor-based real-time embedded systems is
the main objective of this study. No previous research has addressed the issues highlighted
in this work to our highest knowledge.

Table 1. A benchmark table was created to contrast our results with the literature. The table
summarizes our research and highlights the contributions and limits of each study.

Sr No Research Paper and Year Contributions Limitation

1 Pandey et al. (2022) [42]
Tested existing high-speed functional interfaces
of a System on Chip (SoC), such as PCI-E or USB,
using both scan and in-system testing.

Implementation uses a limited
bandwidth for testing.

2 Wacher et al. (2021) [43]

Performed jitter tolerance testing for high-speed
Input/Output (HSIO) links validation using the
modified golden section direct search
optimization approach.

External measuring device used.

3 Tsimpos (2020) [44]
Calculation of the jitter noise frequency
components and the behavioral modeling of
jitter noise sources in HSSI.

Focus on jitter tolerance testing
of HSSI.

4 Gabauer (2019) [35]
Use synchronous reconstruction method
implemented on an FPGA to test and validate
the high-speed interface, i.e., PCI-E interface.

Test only PCI-E Interface.

5 Bodha et al. (2019) [46]
Half-rate built-in self-test (BIST) system for
high-speed serial interface is used to enable bit
error rate measurement.

Focus on manufacturing testing.

6 Piplani et al. (2017) [47]

To test and debug high-speed serial interface i.e.,
JESD204B Receiver Physical Layer (JESD204B Rx
PHY) using BIST and Automatic Test Pattern
Generator (ATPG) patterns.

Focus on manufacturing testing.

7 Moreira and Werkmann
(2016) [48]

Use of automated test equipment (ATE) and
external measuring devices to characterize and
test high-speed I/O digital interfaces.

External measuring devices
are used.

8 Arora and Jaliminche
(2015) [49]

Proposed software test harness for direct
memory access (DMA) controller) and
high-speed synchronous serial interface.

Use test harness for identifying
manufacturing faults.

9 Masood et al. (2022)

A knowledge-based technique is proposed that has been developed to aid in detecting
and fixing synchronization-related errors on multiple high-speed serial interfaces in
multi-PEs-based real-time embedded systems. The proposed technique helps to
identify and fix the synchronization related errors that occur during interprocessor
communication among multiple high-speed serial interfaces.

3. Synchronization Errors

One of the most critical factors influencing the complexity and performance of the
real-time embedded systems is synchronization [2]. Several processing elements (PEs) are
associated via various kinds of high-speed interfaces in an embedded system.

Testing and debugging these kinds of systems differ from testing and debugging non-
real-time systems, making it a very challenging task. Furthermore, real-time application
synchronization makes testing and debugging more complex. The implications of faults
on synchronization must be addressed in critical real-time applications. Faults worsen the
synchronization problem by generating worst-case scenarios such as message propagation
delays and read errors.

Many circuit-level synchronization approaches have been developed, such as VLSI
arrays or concurrent system models that use distributed clock lines or semaphores to
provide the required synchrony. It can also occur at different levels, including logical
clocks, communications, and computing processes. Preserving consistent distributed

Electronics 2022, 11, 2945 7 of 22

information, guaranteeing consistent scheduling, diagnostics, coordinating functional units,
reconfiguration, and application-specific choices are all aspects of synchronization. The
present literature contains a wide range of system models and synchronization approaches.
Both software and hardware methods have been formulated to offer the various degrees
of granularity required to coordinate system services [51]. To develop new ways for
detecting and locating synchronization errors in multi-PE embedded systems as well as
improving interprocessor communication, embedded system testers and researchers are
working consistently.

We noticed synchronization errors in embedded system real-time communication
while making the embedded system, as illustrated in Table 2 and further reported in [52].
These are synchronization and timing errors rather than functional errors, and they are
caused by high-speed synchronous serial interfaces. Figure 2 depicts the synchronization
errors that arise during interprocessor communication in detail.

Table 2. Synchronization Errors.

Sr No Symbol Name

1 Rx_Delay Receiving Delay
2 Tx_Delay Transmitting Delay
3 D_Override Data Override
4 Out_of_Sync Out of Synchronization
5 No_Rx No Receiving
6 No_Tx No Transmission
7 Bit_Miss Bit Miss
8 D_Read Double Read

Electronics 2022, 11, 2945 7 of 22

degrees of granularity required to coordinate system services [51]. To develop new ways
for detecting and locating synchronization errors in multi-PE embedded systems as well
as improving interprocessor communication, embedded system testers and researchers
are working consistently.

We noticed synchronization errors in embedded system real-time communication
while making the embedded system, as illustrated in Table 2 and further reported in [52].
These are synchronization and timing errors rather than functional errors, and they are
caused by high-speed synchronous serial interfaces. Figure 2 depicts the synchronization
errors that arise during interprocessor communication in detail.

Table 2. Synchronization Errors.

Sr No Symbol Name
1 Rx_Delay Receiving Delay
2 Tx_Delay Transmitting Delay
3 D_Override Data Override
4 Out _of_Sync Out of Synchronization
5 No_Rx No Receiving
6 No_Tx No Transmission
7 Bit_Miss Bit Miss
8 D_Read Double Read

Figure 2. Detail of the synchronization errors during interprocessor communication.

4. Proposed Technique
We proposed a knowledge base technique that is utilized for testing high-speed serial

interfaces in multiprocessor-based real-time embedded systems as well as finding and re-
straining synchronization-related issues in inter-processor communication. The proposed
technique is catering to an embedded system having many PEs joined with multiple high-
speed serial interfaces. The PEs have all been functionally tested and verified for correct-
ness. Several synchronization issues occur when these PEs communicate with one another
through these interfaces in multiprocessor-based real time embedded systems. These is-
sues might occur due to inter-PEs communication rather than the functionality of a given

Figure 2. Detail of the synchronization errors during interprocessor communication.

4. Proposed Technique

We proposed a knowledge base technique that is utilized for testing high-speed serial
interfaces in multiprocessor-based real-time embedded systems as well as finding and
restraining synchronization-related issues in inter-processor communication. The proposed
technique is catering to an embedded system having many PEs joined with multiple

Electronics 2022, 11, 2945 8 of 22

high-speed serial interfaces. The PEs have all been functionally tested and verified for
correctness. Several synchronization issues occur when these PEs communicate with one
another through these interfaces in multiprocessor-based real time embedded systems.
These issues might occur due to inter-PEs communication rather than the functionality
of a given PE. Designers cannot be accessible at all times to monitor and observe what is
happening on these interfaces.

The proposed technique used scenario-based analysis for test case generation. Scenario
analysis is a popular way of building test cases from use cases. Use cases are the descriptions
of the scenarios for which communication’s impacts are examined. Each use case has a
particular scenario. Additionally, use cases are employed as a direction for the simulation.
First, use case scenarios are developed in which communications at various links occurred
in a synchronization sink. At a few links, there were also synchronization issues. As a
result, we were able to achieve all noticeable effects. Numerous synchronization errors
were discovered in interprocessor communication. Test cases are generated using a test case
generator to cover all scenarios across multiple interfaces to assess that PEs communication
occurs both with and without synchronization errors using use cases in the proposed
technique. The test cases are stored in a knowledge base in circumstances where there is a
specific error. Numerous synchronization errors are induced in the interfaces, since these
interfaces are prone to a variety of errors. The synchronization error generator will generate
these errors. The simulators receive the test cases after that. In the proposed technique,
across multiple PEs, the communication is simulated on multi simulators. Every simulator
instance is associated with a different PE. These instances are used to develop to simulate
interprocessor communication for testing and debugging the embedded system. The
simulator simulates the outputs of each particular error depending on the particular test
case and created synchronization errors. The simulated results are saved in the knowledge
base. These errors in interprocessor communication are detected and simulated in Xilinx.

The knowledge base technique contains test cases, synchronization errors and the
simulated waveform across these synchronization errors. Figure 3 depicts the knowledge
base creation steps. First, we created a knowledge base that includes every conceivable
and specified combination of synchronization-related errors that might arise in high-speed
serial interfaces, as shown in Figure 2. Then, the proposed technique was used for localizing
the synchronization errors by capturing the real-time data across multi PEs interfaces in
a multiprocessor-based real-time embedded system using multiple emulators. Then, we
compared the actual result of the real-time embedded system with the result stored in
the knowledge base to find the correlations between them. The steps for the detection
and localization of the errors are shown in Figure 4. Each emulator is connected with a
different PE. So, if there are six PEs, it means that they connected with six different PCs
using emulators.

This way, we will have six screens that show what is happening inside the PEs using
emulators. The environmental setup of the emulator is shown in Figure 5. Emulators
communicate with the PC over the universal serial bus (USB) and with processors over a
joint test action group (JTAG). The emulator is used to find the outputs at each interface,
as further reported in [53]. The input to the system is the ramp signal. The ideal signal
for testing the interprocessor communication with a high-speed serial interfaces is a ramp
(rectifier in analogy to half-wave rectification).

The input to the system is the ramp signal. The ideal signal for testing the interpro-
cessor communication with high-speed serial interfaces is a ramp (rectifier in analogy to
half-wave rectification). Ramp signals contain values that provide visible signs of several
errors that may happen during interprocessor communication as well as assist in under-
standing the dynamic system behavior via the velocity factor. The ramp function r (n) is
a function that only occurs on the positive side and is zero on the negative side [54]. It is
denoted by r (n) and may be represented in equation form as shown below.

r(n) =
{

n, for n ≥ 0
0, for n < 0

(1)

Electronics 2022, 11, 2945 9 of 22

Electronics 2022, 11, 2945 8 of 22

PE. Designers cannot be accessible at all times to monitor and observe what is happening
on these interfaces.

The proposed technique used scenario-based analysis for test case generation. Sce-
nario analysis is a popular way of building test cases from use cases. Use cases are the de-
scriptions of the scenarios for which communication’s impacts are examined. Each use
case has a particular scenario. Additionally, use cases are employed as a direction for the
simulation. First, use case scenarios are developed in which communications at various
links occurred in a synchronization sink. At a few links, there were also synchronization
issues. As a result, we were able to achieve all noticeable effects. Numerous synchroniza-
tion errors were discovered in interprocessor communication. Test cases are generated us-
ing a test case generator to cover all scenarios across multiple interfaces to assess that PEs
communication occurs both with and without synchronization errors using use cases in the
proposed technique. The test cases are stored in a knowledge base in circumstances where
there is a specific error. Numerous synchronization errors are induced in the interfaces, since
these interfaces are prone to a variety of errors. The synchronization error generator will
generate these errors. The simulators receive the test cases after that. In the proposed tech-
nique, across multiple PEs, the communication is simulated on multi simulators. Every sim-
ulator instance is associated with a different PE. These instances are used to develop to sim-
ulate interprocessor communication for testing and debugging the embedded system. The
simulator simulates the outputs of each particular error depending on the particular test
case and created synchronization errors. The simulated results are saved in the knowledge
base. These errors in interprocessor communication are detected and simulated in Xilinx.

The knowledge base technique contains test cases, synchronization errors and the
simulated waveform across these synchronization errors. Figure 3 depicts the knowledge
base creation steps. First, we created a knowledge base that includes every conceivable
and specified combination of synchronization-related errors that might arise in high-
speed serial interfaces, as shown in Figure 2. Then, the proposed technique was used for
localizing the synchronization errors by capturing the real-time data across multi PEs in-
terfaces in a multiprocessor-based real-time embedded system using multiple emulators.
Then, we compared the actual result of the real-time embedded system with the result
stored in the knowledge base to find the correlations between them. The steps for the de-
tection and localization of the errors are shown in Figure 4. Each emulator is connected
with a different PE. So, if there are six PEs, it means that they connected with six different
PCs using emulators.

Figure 3. Creation of knowledge base technique.

Electronics 2022, 11, 2945 9 of 22

Figure 3. Creation of knowledge base technique.

Figure 4. Steps for detection and localization of the errors.

This way, we will have six screens that show what is happening inside the PEs using
emulators. The environmental setup of the emulator is shown in Figure 5. Emulators com-
municate with the PC over the universal serial bus (USB) and with processors over a joint
test action group (JTAG). The emulator is used to find the outputs at each interface, as
further reported in [53]. The input to the system is the ramp signal. The ideal signal for
testing the interprocessor communication with a high-speed serial interfaces is a ramp
(rectifier in analogy to half-wave rectification).

Figure 5. Environmental setup of emulator.

The input to the system is the ramp signal. The ideal signal for testing the interpro-
cessor communication with high-speed serial interfaces is a ramp (rectifier in analogy to
half-wave rectification). Ramp signals contain values that provide visible signs of several
errors that may happen during interprocessor communication as well as assist in under-
standing the dynamic system behavior via the velocity factor. The ramp function r (n) is a
function that only occurs on the positive side and is zero on the negative side [54]. It is
denoted by r (n) and may be represented in equation form as shown below. r n = n, for n ≥ 00, for n < 0 (1)

To test the multiple interfaces across multi PEs, we generated a ramp signal continu-
ously and increased the ramp signal from 0 to 255 where the value of n in Equation (1) is
0 to 255. To produce all conceivable forms of the ramp, we reported in the article to ob-
serve how the shape of a ramp signal varies by inducing synchronization errors.

Figure 4. Steps for detection and localization of the errors.

Electronics 2022, 11, 2945 9 of 22

Figure 3. Creation of knowledge base technique.

Figure 4. Steps for detection and localization of the errors.

This way, we will have six screens that show what is happening inside the PEs using
emulators. The environmental setup of the emulator is shown in Figure 5. Emulators com-
municate with the PC over the universal serial bus (USB) and with processors over a joint
test action group (JTAG). The emulator is used to find the outputs at each interface, as
further reported in [53]. The input to the system is the ramp signal. The ideal signal for
testing the interprocessor communication with a high-speed serial interfaces is a ramp
(rectifier in analogy to half-wave rectification).

Figure 5. Environmental setup of emulator.

The input to the system is the ramp signal. The ideal signal for testing the interpro-
cessor communication with high-speed serial interfaces is a ramp (rectifier in analogy to
half-wave rectification). Ramp signals contain values that provide visible signs of several
errors that may happen during interprocessor communication as well as assist in under-
standing the dynamic system behavior via the velocity factor. The ramp function r (n) is a
function that only occurs on the positive side and is zero on the negative side [54]. It is
denoted by r (n) and may be represented in equation form as shown below. r n = n, for n ≥ 00, for n < 0 (1)

To test the multiple interfaces across multi PEs, we generated a ramp signal continu-
ously and increased the ramp signal from 0 to 255 where the value of n in Equation (1) is
0 to 255. To produce all conceivable forms of the ramp, we reported in the article to ob-
serve how the shape of a ramp signal varies by inducing synchronization errors.

Figure 5. Environmental setup of emulator.

Electronics 2022, 11, 2945 10 of 22

To test the multiple interfaces across multi PEs, we generated a ramp signal continu-
ously and increased the ramp signal from 0 to 255 where the value of n in Equation (1) is 0
to 255. To produce all conceivable forms of the ramp, we reported in the article to observe
how the shape of a ramp signal varies by inducing synchronization errors.

The ramp signal is generated continuously in these PEs and increased from 0 to 255.
Once a ramp signal is given input to the interface, the ramp signal is generated as the output.
Sometimes, intricacies are faced in the interfaces, due to which different waveforms are
received as the output of the last processor. Some values have been missed or overlapped
if the ramp signal is erroneous.

It is possible that after passing through six different interfaces, six different errors will
occur, and it is also possible that the same error will occur on all six different interfaces.
In consideration of the problem, we capture all the real-time data of every PE when the
signal goes from one processor to another by using emulators, and their results are shown
on different screens. We used a debug board in the multiprocessor embedded system
environment where multi PEs are connected. Figure 6 shows the emulator environment
where two emulators are connected with two PEs.

Electronics 2022, 11, 2945 10 of 22

The ramp signal is generated continuously in these PEs and increased from 0 to 255.
Once a ramp signal is given input to the interface, the ramp signal is generated as the
output. Sometimes, intricacies are faced in the interfaces, due to which different wave-
forms are received as the output of the last processor. Some values have been missed or
overlapped if the ramp signal is erroneous.

It is possible that after passing through six different interfaces, six different errors
will occur, and it is also possible that the same error will occur on all six different inter-
faces. In consideration of the problem, we capture all the real-time data of every PE when
the signal goes from one processor to another by using emulators, and their results are
shown on different screens. We used a debug board in the multiprocessor embedded sys-
tem environment where multi PEs are connected. Figure 6 shows the emulator environ-
ment where two emulators are connected with two PEs.

Figure 6. Emulator environment where two emulators connected with two PEs.

The waveform of the signal of simulated synchronization errors that are already rec-
orded in the knowledge base was compared to the incoming output signal of high-speed
interfaces. Then, the system’s specific use case was compared with the closest correlation.
In this way, the proposed technique has been validated. The outputs are also used to au-
tomatically narrow down and determine the individual interfaces that are creating errors.

5. Real-Time Embedded System under Test
The system under test consists of six PEs, i.e., advanced RISC machines (ARMs), field

programmable gate arrays (FPGAs), and digital signal processors (DSPs), as shown in
Figure 7. The PEs interact with each other with different types of high-speed serial inter-
faces. The ASP line is an audio serial port. Figure 8 shows the ASP initialization code. It is
used for audio streaming as well as data transmission because the SoC is used for video
processing. The ARM interface operates at a speed of 4 Mbps, while the shared memory
interface operates at 10 Mbps, the UART operates at 115,200 bps, and the EMIF operates
at 20 Mbps.ARMs control all the signals. UART (universal asynchronous receiver-trans-
mitter) is used only for the control path.

The functionality of each processing element is tested individually, but still, it fails
when interprocessor communication occurs due to high-speed serial interfaces. High-
speed serial interfaces act as conveyor belts in the system. Several synchronization-related
errors have been identified due to high-speed serial interfaces while developing and test-
ing the embedded system. In debugging mode, processing elements are working nor-
mally, but they send ramps instead of data. Once the system is fully loaded, numerous
synchronization issues arise due to high-speed serial interfaces. Therefore, we run the sys-
tem in debugging mode and send the ramps.

Figure 6. Emulator environment where two emulators connected with two PEs.

The waveform of the signal of simulated synchronization errors that are already
recorded in the knowledge base was compared to the incoming output signal of high-
speed interfaces. Then, the system’s specific use case was compared with the closest
correlation. In this way, the proposed technique has been validated. The outputs are
also used to automatically narrow down and determine the individual interfaces that are
creating errors.

5. Real-Time Embedded System under Test

The system under test consists of six PEs, i.e., advanced RISC machines (ARMs),
field programmable gate arrays (FPGAs), and digital signal processors (DSPs), as shown
in Figure 7. The PEs interact with each other with different types of high-speed serial
interfaces. The ASP line is an audio serial port. Figure 8 shows the ASP initialization code.
It is used for audio streaming as well as data transmission because the SoC is used for video
processing. The ARM interface operates at a speed of 4 Mbps, while the shared memory
interface operates at 10 Mbps, the UART operates at 115,200 bps, and the EMIF operates at
20 Mbps.ARMs control all the signals. UART (universal asynchronous receiver-transmitter)
is used only for the control path.

Electronics 2022, 11, 2945 11 of 22
Electronics 2022, 11, 2945 11 of 22

Figure 7. Real-time embedded system under test.

Figure 8. Initialize ASP function Code.

Figure 7. Real-time embedded system under test.

Electronics 2022, 11, 2945 11 of 22

Figure 7. Real-time embedded system under test.

Figure 8. Initialize ASP function Code. Figure 8. Initialize ASP function Code.

Electronics 2022, 11, 2945 12 of 22

The functionality of each processing element is tested individually, but still, it fails
when interprocessor communication occurs due to high-speed serial interfaces. High-speed
serial interfaces act as conveyor belts in the system. Several synchronization-related errors
have been identified due to high-speed serial interfaces while developing and testing the
embedded system. In debugging mode, processing elements are working normally, but they
send ramps instead of data. Once the system is fully loaded, numerous synchronization
issues arise due to high-speed serial interfaces. Therefore, we run the system in debugging
mode and send the ramps.

Initially, a knowledge base has created with simulated waveforms where we induced
synchronization errors on multiple different high-speed serial interfaces. We have created
thousands of combinations of these errors in the knowledge base and then perform actual
testing by capturing the real-time data using emulators. We have used Spectrum Digital
XDS560-V2 (Spectrum Digital emulator, Stafford, TX, USA), Blackhawk USB200 (EWA
Technologies Blackhawk emulator, Cerritos, CA, USA), and E-Elements v2-1(E-Elements
technology co ltd emulator, Taipei, Taiwan) for capturing real-time data across PEs. Spec-
trum Digital XDS560-V2 and Blackhawk USB200 emulators are used for capturing the data
in ARM 1 and ARM2. They are also used for DSP1 and DSP2. E-Elements v2-1 emulators
used for FPGA1 and FPGA2.

After acquiring the actual system ramps using emulators, we compare the actual
system’s ramps to the stored simulated ramps of the knowledge base and compute the
correlations between them. In this way, we can identify and localize the errors using the
knowledge base technique. For example, the embedded system is running, and if we do
not achieve the desired results, we attribute it to some type of synchronization error. A
mode in the DSPs is enabled (debugging mode) where the DSPs perform their respective
processing so they run in maximum load, but on the links, a ramp is sent. Every DSP
receives a ramp from its connected PE and passes it forward at the time DSP is interrupted
for transmission under actual load. The knowledge base created is then used to localize the
error by matching the outputs of PE with the one stored in the knowledge base. Then, the
comparator computes the correlations between them. Using the knowledge base technique,
we would detect and locate the errors in this manner.

6. Experiments

Several experiments are conducted in detail to determine the applicability of our
technique. The design architecture of the embedded system for the knowledge-based
technique is developed using Verilog HDL, which was implemented with the help of the
Xilinx ISE tool with four processing elements to validate the knowledge base technique.
Behavioral simulations have been performed, as shown in Figure 9. The target device is
xc7z010-3clg400 where the optimization goal is speed. Since it is not possible to force errors
in real-time communication, we simulate the environment in Verilog where synchronization
errors are introduced in the incoming signals using the Xilinx tool, and then, we plot these
signals in Matlab. Generating synchronization-related errors on DSPs is not easy, because
these are usually undeterministic. Therefore, the FPGA platform is only used to create all
types of synchronization errors in Verilog. The simulated waveforms of the errors are then
stored in the knowledge base. We induced the synchronization-related errors on multiple
interfaces and then simulated those errors using Verilog and plot them in Matlab. We have
used a ramp signal for simulation where we induced errors in single interfaces and then
induced multiple errors on multiple interfaces.

Electronics 2022, 11, 2945 13 of 22Electronics 2022, 11, 2945 13 of 22

Figure 9. Verilog behavioral simulation.

Experimental Setup
The experimental setup involves four PEs. All four PEs connected with each other

and run on different clock rates in which PE1, PE2 and PE3 send the data to PE4. PE4
generates the cumulative output of all the three PEs.

Several synchronization errors have been induced on a single interface as well as the
combination of the interfaces using Verilog in the experiments. Although these errors can
be induced on the software, it is not possible to induce these errors on real-time embedded
systems. Then, we self-simulate all potential synchronization errors on a single interface.
Afterwards, the different combinations of errors are again simulated on different inter-
faces, and input and output are collected and saved into a knowledge base. In Figure 10,
the PE1, PE2, and PE3 run on 10 ns, 20 ns, and 30 ns. PE4 generates the cumulative output
of all the PEs where all the PEs are running at different clock rates. Interprocessor com-
munication occurs without any synchronization errors on all the PEs in Figure 10. A dif-
ferent experiment has been conducted in this study.

Initially, a single synchronization error is induced on a single interface. Later, two syn-
chronization errors are induced on two different interfaces. Then, three synchronization
errors are induced on three interfaces. Thus, three different combinations are generated
to be analyzed, which are shown in Table 3.

Table 3. Synchronization errors on three different interfaces.

Experiment No PE1 Clock (10 ns) PE2 Clock (20 ns) PE3 Clock (30 ns) PE4
1 Delay Delay Delay Combined Output
2 Delay Bit miss Bit miss Combined Output
3 Delay Bit miss Double Read Combined Output

Figure 9. Verilog behavioral simulation.

Experimental Setup

The experimental setup involves four PEs. All four PEs connected with each other and
run on different clock rates in which PE1, PE2 and PE3 send the data to PE4. PE4 generates
the cumulative output of all the three PEs.

Several synchronization errors have been induced on a single interface as well as
the combination of the interfaces using Verilog in the experiments. Although these errors
can be induced on the software, it is not possible to induce these errors on real-time
embedded systems. Then, we self-simulate all potential synchronization errors on a single
interface. Afterwards, the different combinations of errors are again simulated on different
interfaces, and input and output are collected and saved into a knowledge base. In Figure 10,
the PE1, PE2, and PE3 run on 10 ns, 20 ns, and 30 ns. PE4 generates the cumulative
output of all the PEs where all the PEs are running at different clock rates. Interprocessor
communication occurs without any synchronization errors on all the PEs in Figure 10. A
different experiment has been conducted in this study.

Initially, a single synchronization error is induced on a single interface. Later, two
synchronization errors are induced on two different interfaces. Then, three synchronization
errors are induced on three interfaces. Thus, three different combinations are generated to
be analyzed, which are shown in Table 3.

Table 3. Synchronization errors on three different interfaces.

Experiment No PE1 Clock (10 ns) PE2 Clock (20 ns) PE3 Clock (30 ns) PE4

1 Delay Delay Delay Combined Output
2 Delay Bit miss Bit miss Combined Output
3 Delay Bit miss Double Read Combined Output

Electronics 2022, 11, 2945 14 of 22Electronics 2022, 11, 2945 14 of 22

(a)

(b)

Figure 10. (a) Simple View. (b) Expanded View-Normal Communication between PEs.

All simulations of these synchronization errors are stored on a knowledge base. Syn-
chronization errors generated by the high-speed synchronous serial interfaces are simu-
lated this way all across the system. We presume that the code is functioning and that the
problems are limited to interprocessor communication.

7. Results Analysis
The experimental results of the technique that are showing the benefits in terms of

performance and scalability are shown in this section. The first experiment involves four
PEs in which the ramp signal is given to the input of the PEs. All PEs are communicated
with each using different clock rates where delays are induced in all three PEs, i.e., PE1,
PE2, and PE3, as shown in Figure 11.

Figure 10. (a) Simple View. (b) Expanded View-Normal Communication between PEs.

All simulations of these synchronization errors are stored on a knowledge base. Syn-
chronization errors generated by the high-speed synchronous serial interfaces are simulated
this way all across the system. We presume that the code is functioning and that the prob-
lems are limited to interprocessor communication.

7. Results Analysis

The experimental results of the technique that are showing the benefits in terms of
performance and scalability are shown in this section. The first experiment involves four
PEs in which the ramp signal is given to the input of the PEs. All PEs are communicated
with each using different clock rates where delays are induced in all three PEs, i.e., PE1,
PE2, and PE3, as shown in Figure 11.

Electronics 2022, 11, 2945 15 of 22Electronics 2022, 11, 2945 15 of 22

(a)

(b)

Figure 11. (a) Communication between PEs with delays−Simple view. (b) Communication between
PEs with delays−Expanded view.

PE 4 generates the cumulative output of all the PEs shown in Figure 11a, which pro-
vides the simple view of the embedded system, and Figure 11b provides the expended
view of where delays are induced in all three PEs.

Two synchronization errors such as delay and bit miss errors induced on the PEs in
the second experiment are shown in Table 3. All PEs communicate with each other with
different data rates. Figure 12a provides a simple view of the embedded system where
PE1, PE2, and PE3 contained two errors. Figure 12b provides the expended view of the
PEs of the embedded system where PE1 contained a delay error, PE2 and PE3 contained
bit miss errors, and PE4 generated the cumulative output of all the PEs in the system.

Figure 11. (a) Communication between PEs with delays−Simple view. (b) Communication between
PEs with delays−Expanded view.

PE 4 generates the cumulative output of all the PEs shown in Figure 11a, which
provides the simple view of the embedded system, and Figure 11b provides the expended
view of where delays are induced in all three PEs.

Two synchronization errors such as delay and bit miss errors induced on the PEs in
the second experiment are shown in Table 3. All PEs communicate with each other with
different data rates. Figure 12a provides a simple view of the embedded system where PE1,
PE2, and PE3 contained two errors. Figure 12b provides the expended view of the PEs of
the embedded system where PE1 contained a delay error, PE2 and PE3 contained bit miss
errors, and PE4 generated the cumulative output of all the PEs in the system.

Electronics 2022, 11, 2945 16 of 22Electronics 2022, 11, 2945 16 of 22

(a)

(b)

Figure 12. (a) Communication between PEs with delays and miss bit errors−Simple view. (b) Com-
munication between PEs with delays and miss bit errors−Expanded view.

Thus, in the third experiment on three different PEs, three different synchronization
errors are induced in the embedded system. Firstly, the delay was induced on PE1; then,
a bit miss error was induced on PE2. Lastly, a double read error was induced on PE3.
Figure 13a provides a simple view of the embedded system where PE1, PE2, and PE3
contained three errors on three different interfaces. Figure 13b provides the expended
view of the PEs of the embedded system where PE1 contained a delay error, PE2 contained
a bit miss error, PE3 contained a double read error, and PE 4 generated the cumulative
output of all the PEs in the system.

Figure 12. (a) Communication between PEs with delays and miss bit errors−Simple view. (b) Com-
munication between PEs with delays and miss bit errors−Expanded view.

Thus, in the third experiment on three different PEs, three different synchronization
errors are induced in the embedded system. Firstly, the delay was induced on PE1; then,
a bit miss error was induced on PE2. Lastly, a double read error was induced on PE3.
Figure 13a provides a simple view of the embedded system where PE1, PE2, and PE3
contained three errors on three different interfaces. Figure 13b provides the expended view
of the PEs of the embedded system where PE1 contained a delay error, PE2 contained a bit
miss error, PE3 contained a double read error, and PE 4 generated the cumulative output of
all the PEs in the system.

Electronics 2022, 11, 2945 17 of 22Electronics 2022, 11, 2945 17 of 22

(a)

(b)

Figure 13. (a) Communication between PEs with delays, bit miss and double read−Compressed
view. (b) Communication between PEs with delays, bit miss and double read−Expanded view.

Every possible error was simulated by ourselves and stored in the knowledge base.
If a new error comes into the real-time system, our proposed framework will simulate that
error and will store it on the knowledge base. Once a knowledge base is created, the next
step is to capture the real-time data from different interfaces using emulators.

Every emulator is attached to a PE with a different PC in the proposed approach.
Different emulators were used that connected with the interfaces of the PE in which the
data in real time were captured.

Input from one processor to the other is sent by a ramp signal. Using emulators, every
PE’s real-time data are captured. The comparisons are being made with the already sim-
ulated synchronization waveforms that have been stored in the knowledge base. The out-
puts of the emulators are compared with the stored results in the knowledge base for pos-
sible matches using correlations shown in Figures 14 and 15. This helps identify the spe-
cific PE that is malfunctioning. When the real-time data from multiple interfaces do not
reflect the actual outcomes, then correlations between the actual results and the
knowledge base’s stored results are examined. This allows us to identify where the syn-
chronous error is and which interface is causing the error; then, we fix that error immedi-
ately.

Figure 13. (a) Communication between PEs with delays, bit miss and double read−Compressed
view. (b) Communication between PEs with delays, bit miss and double read−Expanded view.

Every possible error was simulated by ourselves and stored in the knowledge base. If
a new error comes into the real-time system, our proposed framework will simulate that
error and will store it on the knowledge base. Once a knowledge base is created, the next
step is to capture the real-time data from different interfaces using emulators.

Every emulator is attached to a PE with a different PC in the proposed approach.
Different emulators were used that connected with the interfaces of the PE in which the
data in real time were captured.

Input from one processor to the other is sent by a ramp signal. Using emulators,
every PE’s real-time data are captured. The comparisons are being made with the already
simulated synchronization waveforms that have been stored in the knowledge base. The
outputs of the emulators are compared with the stored results in the knowledge base for
possible matches using correlations shown in Figures 14 and 15. This helps identify the

Electronics 2022, 11, 2945 18 of 22

specific PE that is malfunctioning. When the real-time data from multiple interfaces do not
reflect the actual outcomes, then correlations between the actual results and the knowledge
base’s stored results are examined. This allows us to identify where the synchronous error
is and which interface is causing the error; then, we fix that error immediately.

Electronics 2022, 11, 2945 18 of 22

Figure 14. Comparison result of P3 running on 30 ns.

Figure 15. Comparison result of P4 (Combined output).

8. Discussion
Numerous PEs in a real-time embedded system interacted using a variety of physical

interfaces. The foundation of communication today is high-speed interfaces, which are
essential elements of any electrical design. Embedded to high-performance systems, on-
chip to longer distance communications employ a high-speed serial interface. The neces-
sity for fast data processing has led to a steady increase in the data transmission speed of
these interfaces. As the requirement for fast transfer rates has grown, it has become more
complicated than ever to test, debug, and validate these interfaces throughout develop-
ment. This can be accomplished either via the acquisition of specialist test equipment and
software or by a third-party vendor. Testing is a systematic procedure for locating and

Figure 14. Comparison result of P3 running on 30 ns.

Electronics 2022, 11, 2945 18 of 22

Figure 14. Comparison result of P3 running on 30 ns.

Figure 15. Comparison result of P4 (Combined output).

8. Discussion
Numerous PEs in a real-time embedded system interacted using a variety of physical

interfaces. The foundation of communication today is high-speed interfaces, which are
essential elements of any electrical design. Embedded to high-performance systems, on-
chip to longer distance communications employ a high-speed serial interface. The neces-
sity for fast data processing has led to a steady increase in the data transmission speed of
these interfaces. As the requirement for fast transfer rates has grown, it has become more
complicated than ever to test, debug, and validate these interfaces throughout develop-
ment. This can be accomplished either via the acquisition of specialist test equipment and
software or by a third-party vendor. Testing is a systematic procedure for locating and

Figure 15. Comparison result of P4 (Combined output).

8. Discussion

Numerous PEs in a real-time embedded system interacted using a variety of physical
interfaces. The foundation of communication today is high-speed interfaces, which are es-
sential elements of any electrical design. Embedded to high-performance systems, on-chip

Electronics 2022, 11, 2945 19 of 22

to longer distance communications employ a high-speed serial interface. The necessity
for fast data processing has led to a steady increase in the data transmission speed of
these interfaces. As the requirement for fast transfer rates has grown, it has become more
complicated than ever to test, debug, and validate these interfaces throughout develop-
ment. This can be accomplished either via the acquisition of specialist test equipment and
software or by a third-party vendor. Testing is a systematic procedure for locating and
reducing errors in computer software or a piece of electronic hardware so that it performs
as intended. Several investigations have been made on high-speed serial interfaces in
multiprocessor-based embedded systems in the literature; most of these studies were based
on functional debugging and testing, and many of the studies used electronic equipment to
test and debug high-speed serial interfaces. Moreover, testing and debugging approaches
do functional testing and debugging, but the problem reported in this study is that the
synchronization errors are caused due to interprocessor communication. These are not
functionality-related errors of the PEs. All individual PEs are functionally debugged and
tested. Furthermore, research into synchronization-related errors on high-speed serial
interfaces during interprocessor communication is still lacking in the literature. There-
fore, we present a knowledge-based technique for real-time testing of embedded systems’
high-speed serial interfaces. To detect and localize errors in real-time interprocessor com-
munication, we proposed a technique that simulates communication across several PEs.
We conducted research based on interprocessor communication for this aim and were able
to uncover synchronization errors as a result. The proposed system aids in the detection of
possible interprocessor communication synchronization errors.

Numerous experiments are carried out to prove the technique’s effectiveness by cre-
ating synchronization-related errors on interfaces. Synchronization and interprocessor
communication are the most critical aspects that influence the performance of the embed-
ded system. In this study, different kinds of synchronization errors are identified and
induced on individual PEs. Then, they are induced cumulatively on several PEs in dif-
ferent experiments. The induced errors are simulated and stored on the knowledge base.
Emulation is now most commonly used to investigate and troubleshoot the behavior of
sophisticated devices with internal structures that are way too complex to be effectively
described by computer simulation tools. From each PE, emulators are used to gathering
real-time data. If the expected results do not reflect the actual results of PEs, a comparison
with the knowledge base’s results is performed. Correlations between actual and simulated
results are then calculated; i.e., the incoming waveforms are compared to the waveforms of
simulated synchronization errors recorded in the knowledge base. In this way, different
types of synchronization errors across single as well as multiple interfaces are detected
and localized. Early detection and correction of these errors lower development time and
block difficulties in the line. In the proposed technique, a knowledge base including all of
the simulated waveforms of possible synchronization errors has already been built; thus,
testing can be performed quickly and development time can be reduced once the test case
fails. According to these findings, the technique is useful to test and debug high-speed
serial interfaces in multiprocessor-based embedded systems. The work’s limitation is
the need for more test cases, which may be developed by using various communication
environments. Each new simulation environment, on the other hand, will have to be able
to supplement current test cases that are continually updated to undertake more system
testing and debugging.

9. Conclusions

The complexity of embedded systems has steadily arisen in recent years. Multiproces-
sors are being widely used in embedded devices these days. In multiprocessor systems, the
linking architecture connects the processors and allows data to flow between them. One of
the major issues with embedded systems that handle real-time processing applications is
interprocessor communication and synchronization. Multiple PEs in an embedded system
must be synchronized in order to interact with one another via a variety of high-speed

Electronics 2022, 11, 2945 20 of 22

serial interfaces. Developers typically spend a substantial amount of time testing and
correcting errors in real-time embedded system programs. In this paper, we presented
a knowledge base technique for zeroing errors on multiple high-speed serial interfaces
in a multiprocessor-based real time embedded system. The proposed technique aids in
the testing of high-speed serial interfaces in multiprocessor-based real-time embedded
systems that require debugging in real time, whereas an application is running because
several factors influence interprocessor communication. The work’s drawback, as in other
circumstances like it, is the requirement for more test cases, which might be produced by
using real-time constraints in different communication contexts. Experimental results have
been carried out running on a multiprocessor-based embedded system. The results show
that the proposed framework is capable of identifying and localizing errors that are usually
hard to recognize as well as helping to reduce design time.

Author Contributions: Conceptualization, S.M. and S.A.K.; Data curation, S.M., A.H. and F.K.;
Investigation, S.M., A.H. and F.K.; Methodology, S.M., S.A.K., A.H. and F.K.; Project administration,
S.A.K.; Resources, F.K.; Software, S.M. and A.H.; Supervision, S.A.K. and A.H.; Validation, S.M. and
S.A.K.; Visualization, S.M. and F.K.; Writing—original draft, S.M.; Writing—review & editing, S.A.K.
and A.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cassano, L.; Cozzi, D.; Jungewelter, D.; Korf, S.; Hagemeyer, J.; Porrmann, M.; Bernardeschi, C. An inter-processor communication

interface for data-flow centric heterogeneous embedded multiprocessor systems. In Proceedings of the 2014 9th IEEE International
Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS), Santorini, Greece, 6–8 May 2014. [CrossRef]

2. Chung, M.K.; Shim, H.; Kyung, C.M. Performance improvement of multiprocessor simulation by optimizing synchronization and
communication. In Proceedings of the 16th IEEE International Workshop on Rapid System Prototyping (RSP’05), Montreal, QC,
Canada, 8–10 June 2005. [CrossRef]

3. Maruf, M.A.; Azim, A. Requirements-preserving design automation for multiprocessor embedded system applications. J. Ambient.
Intell. Humaniz. Comput. 2021, 12, 821–833. [CrossRef]

4. Moudgill, M.; Kalashnikov, V.; Senthilvelan, M.; Srikantiah, U.; Li, T.; Balzola, P.; Glossner, J. Synchronization on heterogeneous
multiprocessor systems. In Proceedings of the International Symposium on Systems, Architectures, Modeling, and Simulation,
Samos, Greece, 20–23 July 2009. [CrossRef]

5. Rahman, M.M. Process synchronization in multiprocessor and multi-core processor. In Proceedings of the International Conference
on Informatics, Electronics & Vision (ICIEV), Dhaka, Bangladesh, 18–19 May 2012. [CrossRef]

6. Chen, Y.; Yang, Y.; Wang, F.; Kai, G. Inter Multi processor communication scheme and shared memory control in the HDTV
decoder SOC design. In Proceedings of the 2005 IEEE International Workshop on VLSI Design and Video Technology, Suzhou,
China, 28–30 May 2005. [CrossRef]

7. Pinheiro, E.M.; Correia, S.D. Software Model for a Low-Cost, IoT oriented Energy Monitoring Platform. Int. J. Comput. Sci. Eng.
2018, 5, 1–5. [CrossRef]

8. Dezan, C.; Zermani, S.; Hireche, C. Embedded Bayesian Network Contribution for a Safe Mission Planning of Autonomous
Vehicles. Algorithms 2020, 13, 155. [CrossRef]

9. Baras, N.; Nantzios, G.; Ziouzios, D.; Dasygenis, M. Autonomous Obstacle Avoidance Vehicle Using LIDAR and an Embedded
System. In Proceedings of the 2019 8th International Conference on Modern Circuits and Systems Technologies (MOCAST),
Thessaloniki, Greece, 13–15 May 2019; pp. 1–4.

10. Qiang, Z.; Wang, H.; Ning, W.; Song, X.; Sha, M.; Kang, Z.; Sun, X. Application of medical embedded system and clinical nursing
effect of neonatal intestinal bacteria. Microprocess. Microsyst. 2021, 83, 103981. [CrossRef]

11. Garcia, J.; Shannon, R.; Jacobson, A.; Mosca, W.; Maldonado, R.; Burger, M. Powerful authentication regime applicable to naval
OFP integrated development (PARANOID): A vision for non-circumventable code signing and traceability for embedded avionics
software. J. Def. Anal. Logist. 2021, 5, 46–76. [CrossRef]

12. Akesson, B.; Nasri, M.; Nelissen, G.; Altmeyer, S.; Davis, R.A. An Empirical Survey-based Study into Industry Practice in
Real-time Systems. In Proceedings of the Real-Time Systems Symposium, Houston, TX, USA, 1–4 December 2020. [CrossRef]

13. Shee, S.L.; Parameswaran, S. Design methodology for pipelined heterogeneous multiprocessor system. In Proceedings of the 44th
ACM/IEEE Design Automation Conference, San Diego, CA, USA, 4–8 June 2007. [CrossRef]

14. Senouci, B.; Kouadri, M.A.M.; Rousseau, F.; Petrot, F. Multi-CPU/FPGA platform based heterogeneous multiprocessor prototyp-
ing: New challenges for embedded software designers. In Proceedings of the 19th IEEE/IFIP International Symposium on Rapid
System Prototyping, Monterey, CA, USA, 2–5 June 2008. [CrossRef]

http://doi.org/10.1109/DTIS.2014.6850669
http://doi.org/10.1109/rsp.2005.38
http://doi.org/10.1007/s12652-020-02086-9
http://doi.org/10.1109/ICSAMOS.2009.5289224
http://doi.org/10.1109/ICIEV.2012.6317471
http://doi.org/10.1109/iwvdvt.2005.1504611
http://doi.org/10.14445/23488387/IJCSE-V5I7P101
http://doi.org/10.3390/a13070155
http://doi.org/10.1016/j.micpro.2021.103981
http://doi.org/10.1108/JDAL-03-2020-0006
http://doi.org/10.1109/RTSS49844.2020.00012
http://doi.org/10.1109/DAC.2007.375276
http://doi.org/10.1109/RSP.2008.27

Electronics 2022, 11, 2945 21 of 22

15. Xiao, H.; Isshiki, T.; Li, D.; Kunieda, H.; Nakase, Y.; Kimura, S. Optimized communication and synchronization for embedded
multiprocessors using ASIP methodology. IPSJ Trans. Syst. LSI Des. Methodol. 2012, 5, 118–132. [CrossRef]

16. Chen, C.; Du, G.; Zhang, D.; Song, Y.; Hou, N. Communication synchronous scheme for MPSoC. In Proceedings of the International
Conference on Anti-Counterfeiting, Security and Identification, Chengdu, China, 18–20 July 2010. [CrossRef]

17. Tullsen, D.M.; Lo, J.L.; Eggers, S.J.; Levi, H.M. Supporting fine-grained synchronization on a simultaneous multithreading
processor. In Proceedings of the Fifth International Symposium on High-Performance Computer Architecture, Orlando, FL, USA,
9–13 January 1999.

18. Brunel, J.Y.; Kruijtzer, W.M.; Kenter, H.J.H.N.; Petrot, F.; Pasquier, L.; De Knok, E.A.; Smits, W.J.M. COSY communication IP’s. In
Proceedings of the 37th Design Automation Conference, Los Angeles, CA, USA, 5–9 June 2000. [CrossRef]

19. Kim, H.; Abraham, J.A. On-chip source synchronous interface timing test scheme with calibration. In Proceedings of the Design,
Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 12–16 March 2012. [CrossRef]

20. Meixner, A.; Kakizawa, A.; Provost, B.; Bedwani, S. External loopback testing experiences with high speed serial interfaces. In
Proceedings of the IEEE International Test Conference, Santa Clara, CA, USA, 28–30 October 2008. [CrossRef]

21. Arora, S.; Aflaki, A.; Biswas, S.; Shimanouchi, M. SERDES external loopback test using production parametric-Test hardware. In
Proceedings of the International Test Conference, Fort Worth, TX, USA, 15–17 November 2016. [CrossRef]

22. Fan, Y.; Zilic, Z. Accelerating Test, Validation and Debug of High Speed Serial Interfaces; Springer: Dordrecht, The Netherlands, 2011.
[CrossRef]

23. Junior, J.C.V.S.; Brito, A.V.; Nascimento, T.P. Testing real-time embedded systems with hardware-in-the-loop simulation using
high level architecture. In Proceedings of the Brazilian Symposium on Computing Systems Engineering (SBESC), Foz do Iguacu,
Brazil, 3–6 November 2015. [CrossRef]

24. Hopkins, A.B.T.; McDonald-Maier, K.D. Debug support for embedded processor reuse. In Proceedings of the 2006 IEEE
International Symposium on Circuits and Systems, Kos, Greece, 21–24 May 2006. [CrossRef]

25. Parnin, C.; Orso, A. Are automated debugging techniques actually helping programmers? In Proceedings of the International
Symposium on Software Testing and Analysis, Toronto, ON, Canada, 17–21 July 2011. [CrossRef]

26. Bagherzadeh, M.; Hili, N.; Dingel, J. Model-level, platform-independent debugging in the context of the model-driven devel-
opment of real-time systems. In Proceedings of the 11th Joint Meeting on Foundations of Software Engineering, Paderborn,
Germany, 4–8 September 2017. [CrossRef]

27. Pouget, K. Programming-Model Centric Debugging for Multicore Embedded Systems. Embedded Systems. Université de
Grenoble, 2014. NNT: 2014GRENM008. Available online: https://tel.archives-ouvertes.fr/tel-01548327/document (accessed on
12 September 2022).

28. Bergeron, J. Writing Testbenches: Functional Verification of HDL Models, 2nd ed.; Kluwer Academic Publishers: Norwell, MA,
USA, 2003.

29. Bergeron, J. Writing Testbenches Using System Verilog; Springer: Berlin/Heidelberg, Germany, 2006.
30. Jeannet, B.; Gaucher, F. Debugging embedded systems requirements with stimulus: An automotive case-study. In Proceedings of

the 8th European Congress on Embedded Real Time Software and Systems, Toulouse, France, 27–29 January 2016; Available
online: https://hal.archives-ouvertes.fr/hal-01292286 (accessed on 12 September 2022).

31. Song, J.; Zhang, Q.; Zhou, L.; Quan, Z.; Wang, S.; Liu, Z.; Fang, X.; Wu, Y.; Yang, Q.; Yin, H.; et al. Design and Implementation of a
Modular and Scalable Research Platform for Ultrasound Computed Tomography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control
2022, 69, 62–72. [CrossRef] [PubMed]

32. Bandiziol, A.; Grollitsch, W.; Brandonisio, F.; Nonis, R.; Palestri, P. Design of a transmitter for high-speed serial interfaces in
automotive micro-controller. In Proceedings of the 39th International Convention on Information and Communication Technology,
Electronics and Microelectronics, MIPRO 2016-Proceedings, Opatija, Croatia, 30 May–3 June 2016.

33. Mohammadi, R.; Ndiritu, S. Software Defined Radio: High Performance, Flexible Technology for Spectrum Monitoring; Per Vices:
Toronto, ON, Canada, 2021.

34. Ying, W.; Jie, W. Radar Broadband Signal High-precision On-line Testing Method. In Proceedings of the 2021 Global Reliability
and Prognostics and Health Management (PHM-Nanjing), Nanjing, China, 15–17 October 2021; pp. 1–6. [CrossRef]

35. Gabauer, J. Test and Validation of the Integrity and Performance of High Speed Interfaces; University of Queensland: St Lucia,
Australia, 2019.

36. Patra, P. On the cusp of a validation wall. IEEE Des. Test Comput. 2007, 24, 193–196. [CrossRef]
37. Vermeulen, B. Functional Debug Techniques for Embedded Systems. IEEE Des. Test Comput. 2008, 25, 208–215. [CrossRef]
38. Fan, Y.; Cai, Y.; Zilic, Z. A high accuracy high throughput jitter test solution on ATE for 3GBPS and 6GBPS serial-ata. In

Proceedings of the IEEE International Test Conference, Santa Clara, CA, USA, 21–26 October 2007. [CrossRef]
39. Hong, D.; Cheng, K.T. Efficient Test Methodologies for High-Speed Serial Links; Lecture Notes in Electrical Engineering; Springer:

Dordrecht, The Netherlands, 2010; Volume 51. [CrossRef]
40. Association, S.I. International Technology Roadmap for Semiconductors, 2013 edition. Available online: http://www.itrs2.net/20

13-itrs.html (accessed on 29 December 2021).
41. Kandalaft, N.; Attaran, A.; Rashizadeh, R. High speed test interface module using MEMS technology. Microelectronics. Reliab.

2015, 55, 374–382. [CrossRef]

http://doi.org/10.2197/ipsjtsldm.5.118
http://doi.org/10.1109/ICASID.2010.5551347
http://doi.org/10.1145/337292.337515
http://doi.org/10.1109/date.2012.6176574
http://doi.org/10.1109/TEST.2008.4700557
http://doi.org/10.1109/TEST.2016.7805841
http://doi.org/10.1007/978-90-481-9398-1
http://doi.org/10.1109/SBESC.2015.34
http://doi.org/10.1109/iscas.2006.1692870
http://doi.org/10.1145/2001420.2001445
http://doi.org/10.1145/3106237.3106278
https://tel.archives-ouvertes.fr/tel-01548327/document
https://hal.archives-ouvertes.fr/hal-01292286
http://doi.org/10.1109/TUFFC.2021.3105691
http://www.ncbi.nlm.nih.gov/pubmed/34410922
http://doi.org/10.1109/PHM-Nanjing52125.2021.9613122
http://doi.org/10.1109/MDT.2007.54
http://doi.org/10.1109/MDT.2008.66
http://doi.org/10.1109/TEST.2007.4437594
http://doi.org/10.1007/978-90-481-3443-4_1
http://www.itrs2.net/2013-itrs.html
http://www.itrs2.net/2013-itrs.html
http://doi.org/10.1016/j.microrel.2014.11.010

Electronics 2022, 11, 2945 22 of 22

42. Pandey, A.; Tully, B.; Samudra, A.; Nagarandal, A.; Natarajan, K.; Singhal, R. Novel Technique for Manufacturing & In-system
Testing of Large Scale SoC using Functional Protocol Based High-Speed I/O. In Proceedings of the 2022 IEEE 40th VLSI Test
Symposium (VTS), San Diego, CA, USA, 25–27 April 2022.

43. Wacher, A.V.; Baylon, R.B.; Rangel-Patino, F.E.; Silva-Cortes, J.L.; Vega-Ochoa, E.A.; Rayas-Sánchez, J.E. Fast Jitter Tolerance
Testing for High-Speed Serial Links in Post-Silicon Validation. IEEE Trans. Electromagn. Compat. 2021, 64, 516–523. [CrossRef]

44. Tsimpos, A. Multi-Data Rate Receiver for High Speed Serial Interfaces. Ph.D. Thesis, Electronics and Computers Section,
University of Patras, Patras, Greece, 2020.

45. Fan, Y.; Zilic, Z. BER testing of communication interfaces. IEEE Trans. Instrum. Meas. 2008, 57, 897–906. [CrossRef]
46. Bodha, R.R.R.; Sarafi, S.; Kale, A.; Koberle, M.; Sturm, J. A Half-Rate Built-In Self-Test for High-Speed Serial Interface using a

PRBS Generator and Checker. In Proceedings of the Austrochip Workshop on Microelectronics (Austrochip), Vienna, Austria,
24 October 2019.

47. Piplani, S.; Fonseca, H.; Sharma, V.M.; Cervini, D.; Hardisty, D. Test and debug strategy for high speed JESD204B Rx PHY. In
Proceedings of the IEEE 26th Asian Test Symposium (ATS), Taipei, Taiwan, 27–30 November 2017. [CrossRef]

48. Moreira, J.; Werkmann, H. An Engineer’s Guide to Automated Testing of High-Speed Interfaces, 2nd ed.; Artech: Boston, MA, USA,
2016; Volume 2.

49. Arora., H.; Jaliminche, L.N. Design and implementation of test harness for device drivers in SOC on mobile platforms. In
Proceedings of the International Conference on VLSI Systems, Architecture, Technology and Applications (VLSI-SATA), Bengaluru,
India, 8–10 January 2015. [CrossRef]

50. Fan, Y.; Zilic, Z. A versatile scheme for the validation, testing and debugging of high speed serial interfaces. In Proceedings of the
IEEE International High Level Design Validation and Test Workshop, San Francisco, CA, USA, 4–6 November 2009. [CrossRef]

51. Suri, N.; Hugue, M.M.; Walter, C.J. Synchronization Issues in Real Time Systems. Proc. IEEE 1994, 82, 41–54. [CrossRef]
52. Masood, S.; Khan, S.A.; Hassan, A. Simulating synchronization issues on a multiprocessor embedded system for testing. In

Proceedings of the IEEE International Conference on Information Communication and Software Engineering, Chengdu, China,
19–21 March 2021. [CrossRef]

53. Masood, S.; Khan, S.A.; Hassan, A.; Fatima, U. A novel framework for testing high-speed serial interfaces in multiprocessor based
real-time embedded system. Appl. Sci. 2021, 11, 7465. [CrossRef]

54. Singh, S. Proposed Concept of Signals for Ramp Functions. In Proceedings of the World Congress on Engineering and Computer
Science 2010 Vol I WCECS 2010, San Francisco, CA, USA, 20–22 October 2010.

http://doi.org/10.1109/TEMC.2021.3122348
http://doi.org/10.1109/TIM.2007.913760
http://doi.org/10.1109/ATS.2017.43
http://doi.org/10.1109/VLSI-SATA.2015.7050470
http://doi.org/10.1109/HLDVT.2009.5340167
http://doi.org/10.1109/5.259425
http://doi.org/10.1109/ICICSE52190.2021.9404126
http://doi.org/10.3390/app11167465

	Introduction
	Related Work
	Synchronization Errors
	Proposed Technique
	Real-Time Embedded System under Test
	Experiments
	Results Analysis
	Discussion
	Conclusions
	References

