
Applied Soft Computing 10 (2010) 888–896

Contents lists available at ScienceDirect

Applied Soft Computing

journa l homepage: www.e lsev ier .com/ locate /asoc

A Knowledge-Based Ant Colony Optimization for Flexible Job Shop
Scheduling Problems

Li-Ning Xing ∗, Ying-Wu Chen, Peng Wang, Qing-Song Zhao, Jian Xiong
Department of Management Science and Engineering, College of Information System and Management, National University of Defense Technology, Changsha 410073, China

a r t i c l e i n f o

Article history:
Received 22 April 2008
Received in revised form
12 September 2009
Accepted 18 October 2009
Available online 24 October 2009

Keywords:
Combinatorial optimization
Ant Colony Optimization
Flexible Job Shop Scheduling

a b s t r a c t

A Knowledge-Based Ant Colony Optimization (KBACO) algorithm is proposed in this paper for the Flexible
Job Shop Scheduling Problem (FJSSP). KBACO algorithm provides an effective integration between Ant
Colony Optimization (ACO) model and knowledge model. In the KBACO algorithm, knowledge model
learns some available knowledge from the optimization of ACO, and then applies the existing knowledge
to guide the current heuristic searching. The performance of KBACO was evaluated by a large range of
benchmark instances taken from literature and some generated by ourselves. Final experimental results
indicate that the proposed KBACO algorithm outperforms some current approaches in the quality of
schedules.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Scheduling problems have a vital role in recent years due to the
growing consumer demand for variety, reduced product life cycles,
changing markets with global competition and rapid development
of new technologies. The Job Shop Scheduling Problem (JSSP) is one
of the most popular scheduling models existing in practice, which is
among the hardest combinatorial optimization problems [1]. Many
approaches, such as, Simulated Annealing (SA) [2], Tabu Search (TS)
[3], Genetic Algorithm (GA) [4], Ant Colony Optimization (ACO) [5],
Neural Network (NN) [6], Evolutionary Algorithm (EA) [7] and other
heuristic approach [8–10], have been successfully applied to JSSP.

In order to match today’s market requirements, manufacturing
systems need not only automated and flexible machines, but also
flexible scheduling systems. The Flexible Job Shop Scheduling Prob-
lem extends JSSP by assuming that, for each given operation, it can
be processed by any machine from a given set. Bruker and Schlie
[11] were among the first to address this problem. The difficulties
of FJSSP can be summarized as follows.

(1) Assignment of an operation to an appropriate machine;
(2) Sequencing the operations on each machine;
(3) A job can visit a machine more than once (called recirculation).

∗ Corresponding author.
E-mail addresses: xln 2002@nudt.edu.cn, xinglining@gmail.com

(L.-N. Xing), ywchen@nudt.edu.cn (Y.-W. Chen), phd2999@gmail.com (P. Wang),
zqszqr@163.com (Q.-S. Zhao), xiongjian1984@hotmail.com (J. Xiong).

These three features significantly increase the complexity of
finding even approximately optimal solutions.

Although EA has been applied to solve numerous applications,
but there have two disadvantages for solving combinational opti-
mization problems by a canonical EA.

(1) A canonical EA is a ‘generation-evaluation’ type of searching
technique, which only uses fitness value or objective value to
guide the evolutionary search [12].

(2) The optimization results obtained by the canonical EA are still
limited due to the reliance on randomized natural selection and
recombination [13].

For improving the performance of EA, several researches inte-
grated some optimization strategies into the EA [14,15]. Also,
the study of interaction between evolution and learning for solv-
ing optimization problems has been attracting much attention
[16–19]. The diversity of these approaches has motivated our
pursuit for a uniform framework called Knowledge-Based Heuris-
tic Searching Architecture (KBHSA), which integrates knowledge
model and heuristic searching model to search an optimal solu-
tion. We demonstrate the performance of this architecture in the
instantiation of the Knowledge-Based Ant Colony Optimization
(KBACO) which is applied to common benchmark problems. Exper-
imental results show that KBACO algorithm outperforms previous
approaches for solving the FJSSP.

The remainder of this paper is organized as follows. Section 2
reviews some recent works related to the FJSSP. Section 3 describes
the proposed architecture (KBHSA) and its instantiation (KBACO).

1568-4946/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.asoc.2009.10.006

http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:xln_2002@nudt.edu.cn
mailto:xinglining@gmail.com
mailto:ywchen@nudt.edu.cn
mailto:phd2999@gmail.com
mailto:zqszqr@163.com
mailto:xiongjian1984@hotmail.com
dx.doi.org/10.1016/j.asoc.2009.10.006


L.-N. Xing et al. / Applied Soft Computing 10 (2010) 888–896 889

Section 4 presents and analyzes the performance of KBACO when
applied to solve common benchmarks in literature and others
generated by ourselves. Finally, Section 5 gives some concluding
remarks and directions for future work.

2. Related works

There are three parts in this section. Section 2.1 gives the for-
mal definition of FJSSP. Also, a practical model of the FJSSP is also
described. Section 2.2 reviews recent related works for solving the
FJSSP. Current studies of the interaction between evolution and
learning for solving optimization problems are discussed in Section
2.3.

2.1. Problem formulation

Generally, the FJSSP can be formulated as follows [20].

(1) There is a set of n jobs that plan to process on m machines;
(2) Let J = {Ji}1≤i≤n, indexed i, be a set of n jobs;
(3) Let M = {Mk}1≤k≤m, indexed k, be a set of m machines;
(4) Each job Ji consists of a predetermined sequence of operations;
(5) Each operation Oij (operation j of job i) can be processed without

interruption on one of a set of machines Mij(Mij ⊆ M). We denote
pijk to be processing time of Oij on machine Mk.

(6) The objective of FJSSP is to find a minimum makespan.

Hypotheses considered in this paper are listed as follows [21].

(1) Setting up times of machines and move times between opera-
tions are negligible;

(2) Machines are independent from each other;
(3) Jobs are independent from each other;
(4) At a given time, a machine can execute at most one operation.

It becomes available to other operations only if the operation
which is processing is completed;

(5) There are no precedence constraints among the operations of
different jobs;

(6) No more than one operation of the same job can be executed at
a time.

Kacem et al. [22] classified the FJSSP into two sub-problems as
follows.

(1) Total FJSSP (T-FJSSP): each operation can be processed on any
machine;

(2) Partial FJSSP (P-FJSSP): each operation can be processed on one
machine of subset of M.

An instance of a FJSSP with two-job and three-machine is pre-
sented in Fig. 1. The operation sequence, machine alternatives and
processing times are displayed in Table 1. The Gant chart of a feasi-
ble solution is presented in Fig. 1. The makespan for this solution is
53. This solution is not the optimal solution. The optimal solution
must be found by the algorithm.

2.2. Previous works

Hierarchical approaches and integrated approaches are two
types of approaches, which have been used to solve the realistic
instance of FJSSP [21].

(1) In hierarchical approaches, assignment of operations to
machines and the sequencing of operations on the resources
or machines are treated separately. Hierarchical approaches

Fig. 1. The Gant chart of a feasible solution.

are based on the idea of decomposing the original problem in
order to reduce its complexity. Brandimarte [23] was the first
to use the decomposition for the FJSSP. He solved the routing
sub-problem using some existing dispatching rules and then
focused on the scheduling sub-problem, which is solved using
a TS heuristic. Tung et al. [24] developed a similar approach for
scheduling a flexible manufacturing system. Kacem et al. [25]
proposed a GA controlled by the assigned model which is gener-
ated by the approach of localization. Xia and Wu [21] present an
effective hybrid optimization approach for the multi-objective
FJSSP. They make use of Particle Swarm Optimization (PSO) to
assign operations on machines and SA algorithm to schedule
operations.

(2) Integrated approaches were used by considering assignment
and scheduling at the same time. Hurink et al. [26] proposed a TS
heuristic in which reassignment and rescheduling are consid-
ered as two different types of moves. Dauzere-Peres and Paulli
presented a TS procedure based on their proposed neighbor-
hood structure for the FJSSP [27]. In their approach, there is
no distinction between reassigning and resequencing an opera-
tion. Mastrolilli and Gambardella [28] improved Dauzere-Peres’
TS techniques and presented two neighborhood functions.

2.3. Learning for evolution

Generally, there are two approaches to implement the interac-
tion between evolution and learning [20]. The first one is to keep
good features of previous individuals to improve the fitness of indi-
viduals in the current generation. The second one is to keep bad
features of previous individuals to avoid infeasibility in the current
generation. Reynolds [16] implemented the interaction between

Table 1
Example of a two-job, three-machine FJSSP.

Jobs Operation sequence Operations Machine
alternative

Processing
time (s)

J1 O11, O12 O11 M1 10
M2 15

O12 M2 12
M3 18

J2 O21, O22, O23 O21 M1 20
M3 25

O22 M1 25
M2 18

O23 M2 15
M3 25



https://isiarticles.com/article/19037

