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Abstract—Internet of Things is a generic term that refers
to interconnection of real-world services which are provided
by smart objects and sensors that enable interaction with the
physical world. Cities are also evolving into large intercon-
nected ecosystems in an effort to improve sustainability and
operational efficiency of the city services and infrastructure.
However, it is often difficult to perform real-time analysis of
large amount of heterogeneous data and sensory information
that are provided by various sources. This paper describes
a framework for real-time semantic annotation of streaming
IoT data to support dynamic integration into the Web using
the Advanced Message Queuing Protocol (AMPQ). This will
enable delivery of large volume of data that can influence
the performance of the smart city systems that use IoT data.
We present an information model to represent summarisation
and reliability of stream data. The framework is evaluated
with the data size and average exchanged message time using
summarised and raw sensor data. Based on a statistical
analysis, a detailed comparison between various sensor points
is made to investigate the memory and computational cost for
the stream annotation framework.

Keywords-Internet of Things; Smart Cities; Semantic Stream
Annotation; Linked Sensor Data; Knowledge Management.

I. INTRODUCTION

Recent advances in Information Communication Tech-

nologies (ICT) have led to a technological turn in an

increasing number of cities by enabling a new type of

embedded spatial intelligence that advances the information

and knowledge capabilities of communities. The Internet

of Things refers to interconnection of diverse objects or

Things that allows to monitor the physical world and provide

their virtual representations on the internet. The availability

of such connected objects and sensors open opportunities

to observe the status of the physical world in real time,

and process this information to improve the operational

efficiency of the city services and infrastructure.

The integration of a large amount of multi-modal data

streams from diverse application domains (e.g. traffic in-

formation, parking spaces, bus timetables, waiting times at

events, event calendars, environment sensors for pollution

or weather warnings, GIS databases) is one of the key

challenges in developing smart city frameworks. Therefore,

knowledge management is a primary concern for smart

cities, and until recently most of the solutions that have

been created for various scenarios and applications were

existing in isolation. For instance, traffic or governmental

data, encyclopedic sources such as Wikipedia1, and forecast

data collection (e.g. the UK Met Office2) do not interact

with each other, even though they can deal with similar

kind of data. As a result, information managed by one of

these resources may not benefit from information held by

the other. This issue becomes much more noticeable once

we consider the exchange of results between IoT researchers.

For this reason, linkage of the results with other data sources

to enable them to be meaningful is as much essential as

providing access to IoT data stream through web services.

The quality of information and services is another chal-

lenge that can influence the usability of a data source in

heterogeneous and distributed environments. In smart cities,

data sources that are emerged from diverse application

domains can have different qualities, modalities, and trust

and reputation, which need to be identified and associated

to a set of criteria that represent the quality of information

and service. Given that cities are dynamic and evolving

eco-systems, there is also a need to continuously link,

interpret and share dynamic knowledge across city stake-

holders and citizens in order to utilise information before it is

outdated. Real-time stream annotation is, therefore, another

critical endeavour that ought to be dealt within smart city

frameworks.

To overcome these issues within the domain of smart

cities, we propose a framework developed in the scope of

the CityPulse project3 for real-time IoT stream annotation

that employs a knowledge-based approach to represent data

streams and to support mashups. To deal with large amount

of data, we use Advanced Message Queuing Protocol

(AMPQ) as proposed in [12] to increase the performance

of the system. We also present an information model to

provide a representation for summarisation and reliability

of IoT stream data. In order to investigate the performance

of the framework, a traffic dataset is collected from a city

environment. The framework is evaluated with the data size

1https://www.wikipedia.com
2http://www.metoffice.gov.uk/
3http://www.ict-citypulse.eu/page/



and average exchanged message time using summarised and

raw sensor data to investigate the memory and computational

cost for the stream annotation framework. This work is based

on our previous work [1] that offers a way to represent

data stream, and enriches it with semantic annotations. The

remainder of the paper is organised as follows. Section II

describes the related work. Section III details the overall

functional components of the proposed smart city frame-

work. Section IV demonstrates the proposed framework for

semantic annotation of streams and presents an information

model to express summarisation and reliability of stream

data. Section V provides a use case scenario that illustrates

the semantic annotation of a stream data in our system.

Section VI details an evaluation of the proposed framework

and Section VII concludes the paper and describes the future

work.

II. RELATED WORK

IoT research in recent years has focused on modelling

domain knowledge of sensor networks and services. The

SSN ontology [3] is one of the most significant efforts

in development of an information model for sensory data.

The SSN Ontology provides a vocabulary for describing

concepts such as sensors, outputs, observation value and

feature of interests. Most notable extensions include ontolo-

gies for coastal features, services and roles for emergency

response. However, although the SSN ontology defines a

high-level scheme of sensor systems, it does not include

representation of observation and measurement data. IoT-A

model [4] and IoT.est semantic representations [13] describe

how to enhance the utilisation and representation of domain

knowledge in sensor networks where the former provided

an architectural base for further IoT projects, and the latter

enhanced the IoT-A model with some service and test

concepts.

The Observation and Measurement (O&M) descriptions

for sensory data are also described as a part of the Sen-

sor Web Enablement (SWE) standards [2] from the Open

Geospatial Consortium (OGC). While it provides several

important syntactic descriptions, due to the fact that it

is based on XML, it has a weak semantic structure for

expressing knowledge, and lacks some important features to

describe an ontology in more detail. There has been a recent

study to improve the semantic richness of the O&M ontology

where authors transformed it into Ontology Web Language

(OWL) representation [6]. However, the O&M ontology

continues to not only lack temporal features to represent

time-series observations in detail, but also semantics for our

purposes due to the straightforward approach that has been

used in the process.

Another very similar approach has been carried out in [7],

in which all the XML tags of O&M ontology have been

mapped into OWL concepts. However, although the authors

present how to access the annotated data through SPARQL

queries, these queries are not efficient for the applications

that need to access sensor data in real time, as the SPARQL

queries generates significant traffic if the sampling rate

is small. Consequently, there still remains a need for a

framework to handle real-time semantic annotation as well

as efficient knowledge representation of sensory data in

dynamic environments such as smart cities.

III. SMART CITY FRAMEWORK

The CityPulse framework aims to provide an infrastruc-

ture to address the complex task of stream processing by

providing large-scale data analysis and real-time intelligence

functionalities. Figure 1 illustrates an overview of the City-

Pulse framework.

Inter
net o

f

Peopl
e

Inter
net o

f

Thing
s

Virtualisation

Knowledge

Based

Applications

API

Large-Scale

Data Analysis

Reliability

Testing

Figure 1: An overview of the different data sources and key

areas involved in the CityPulse framework.

Sensory data streams involve rapid changes due to dynam-

icity of their environment and are employed on resource con-

straint platforms. Processing and detecting an event is a more

challenging task compare to the conventional stream data.

Therefore, using energy efficient methods as well as multi-

granular representation and management of IoT streams is a

challenging task. The CityPulse project provides energy and

process efficient solution combining data aggregation and

pattern creation to respond to real-time requests considering

resource limitations of devices that provide IoT data.

Smart cities operate in dynamic environments in which the

properties of underlying services and resources dynamically

change and depend on physical world events and phenomena

(e.g. sensor readings - network availability, weather condi-

tions, and temperature). We utilise a domain knowledge to

interpret the aggregated data streams and detect higher-level

events (i.e. machine interpretable or human understandable

events) from Cyber-Physical-Social streams. We also aim

to supply a user-centric decision support which makes use

of contextual information, usage patterns and preferences to

offer ideal configurations of smart city applications. This

enables users (e.g. citizens, enterprises or city councils) to

explicitly specify the requirements and personal preferences

and also finds related information in line with the users’



preferences and context dependent attributes (e.g. location,

time) through a matchmaking mechanism.

IV. REAL-TIME STREAM ANNOTATION

The real-time annotation framework aims to semantic

annotation of IoT stream data by taking into account dimen-

sionality reduction and reliability. The framework involves

four main units: a) virtualisation, b) middleware, c) reliable

information processing and d) semantic annotation. Figure

2 depicts the architecture of the framework.

R
e
l
i
a
b
l
e
 
I
n
f
o
r
m
a
t
i
o
n
 
P
r
o
c
e
s
s
i
n
g

      Virtualisation

Static

Information 

Sources

Social 

Media 

Streams

IoT 

Streams

 
 
K
n
o
w
l
e
d
g
e
 
B
a
s
e

Domain 

Knowledge

Stream 

Datastore

S
t
o
r
e
/
R
e
t
r
i
e
v
e
 

D
a
t
a

      Semantic Annotation

 Resource Management

 Semantic Annotation

    Data Wrapper and 

    Source Adaptation

Semantic Transformation

APIScraper

M

i

d

d

l

e

w

a

r

e

S
t
o
r
e
/
R
e
t
r
i
e
v
e
 

D
a
t
a

Figure 2: Framework for real-time stream annotation in

smart city applications

A. Virtualisation

The virtualisation component facilitates access to het-

erogeneous data sources and infrastructure concealing the

technical facets of data streams such as location, storage

structure, access format, and streaming technology. The

system designates various wrappers to encompass a large

number of input formats, while it provides a unified format

as output which is defined in the system.

In the context of smart cities and real-time information

processing, the IoT resources represent the city sensors

and actuators as well as data repositories which collect

the information relevant to the operation of the city. The

IoT Resource virtualisation allows modelling of the re-

sources (e.g. sensors, actuators, data repositories, citizens)

in a manner which enables a device, such as a parking

application, to access these resources systematically. The

citizen communication devices (e.g. smart phones) can be

also used as virtual sensors with city experience to be the

observed phenomena.

B. Middleware

There are many solutions that offer communication in

distributed systems. The shortcomings of the alternatives

are combinations of coupling of space (i.e. sender and

receiver need to hold references about each other), time

(i.e. the components need to interact at the same time) and

synchronisation (i.e. the individual components block their

activity while waiting for other processes to finish). To solve

these issues we use a publish/subscribe mechanism which

decouples time, space and synchrinasation. Furthermore the

message delivery logic is handled via a message broker,

decoupling it from the application layer.

In particular we are using the Advanced Message Queue

Protocol (AMQP) which has been introduced in [12] as

an open standard for message oriented middleware. The

protocol divides the message brokering task into exchanges

and message queues, whereby the exchange decides which

messages will be pushed into which queue. This leads to

enhanced flexibility for developers and avoids the need for

static implementations. In order to handle scalability issues

which arise in the context of IoT and Smart City data,

we propose aggregating the data before passing it through

the middleware. This phenomenon was demonstrated in [5],

where it has been pointed out that the data abstractions

can help to reduce data traffic and ultimately even energy

consumption at the sensory level. The messages in our

system have three fields. The first field is “message types”:

it defines the type of message. The second field is “meta-

data”: it contains location and time information as well as

information about the data source. The third field is “data”:

it consists of the raw values and identifier.

We have defined three types of messages: transform,

store and forward. Generally the messages include all the

three types. In our case, the subscriber can perform some

computations on the data, or store it for later evaluations and

then publish the transformed data. For instance, a subscriber

can add semantic annotations to the data, while another one

performs Quality of Information (QoI) computation. This ap-

proach allows different components to work asynchronously

on stream data. The semantic annotations can be instantly

accomplished, as the QoI measurements will simply be

delivered when the corresponding data has been collected

after a certain amount of time (e.g. a month). Following

this time period, the affiliated data will be published in the

message queue once again to ensure the semantic data store

can update this missing QoI values.

C. Reliable Information Processing

The dynamicity and heterogeneity of IoT environments

involves changes and prone to errors in the data, specially

when dealing with crowd sourced data. The methods for

information extraction and data processing, however, require

accuracy and trust issues to be taken into account. This

module measures and process accuracy and trust in data



acquisition, federation and aggregation. It integrates tech-

niques for monitoring and testing, ensuring reliable infor-

mation processing. For example, it provides fault tolerance

mechanisms when malfunctioning or disappearing sensor are

detected, or providing conflict resolution strategies when

data analysis result in conflicting information. Provenance

also plays an important role in Smart cities applications.

These applications acquire data from heterogeneous sources,

some of them more reliable (e.g. government data), and

some of them less reliable (e.g. crowd sourced data). Based

on user or application preferences, the application provider

could choose to use less reliable data in cases that it has more

up to date information. The reliable information processing

module performs provenance analysis to assert the reliability

of the data.

D. Data Modelling and Semantic Annotation

Smart city applications use data from different stream

sources. Therefore the amount of traffic generated by these

applications can be voluminous, particularly for real time

applications in environments with resource constrains de-

vices, for example sensors with limited bandwidth, memory

or power. On the one hand, the proposed data model should

be lightweight in order to reduce the traffic and processing

time. On the other hand, it should explicitly represent the

meaning and relationships of terms in vocabularies. In this

study, we present a lightweight data model, which uses well-

known models to represent IoT. The ontology contains 3

main modules, namely Stream Annotation Ontology (SAO),

Quality of Service and Quality of Information (QoS|QoI),

and provenance. Figure 3 shows an overview of the proposed

information model. Some of this modules has been adapted

from the IoT.est model [13]. In the next subsections we

describe these three modules.

1) SAO module: Representing IoT stream data is an

important requirement in semantic stream data appli-

cations, as well as in knowledge-based environments

for Smart Cities. The SAO can be used to express

the features of a stream data. It allows publishing

content-derived data about IoT streams and provides

concepts such as sao:StreamData, sao:Segment,

sao:SegmentAnalysis on top of the TimeLine4[11]

and IoTest models. The SAO uses the broad definition of

the StreamEvent concept in order to express an artificial

classification of a time region, corresponding to a particular

stream data. It also extends the sensor observations de-

scribed in SSN Ontology (ssn:Observations) through

a concept, sao:StreamData, that allows to describe

sao:Segment or sao:Point linked to time intervals

4Timeline Ontology extends OWL-Time with various timelines (e.g.
universal or discrete), temporal concepts, such as instants and intervals, and
interval relationships. Available at: http://motools.sourceforge.net/timeline/
timeline.html

or time instants. Figure 4 shows the basic structure of the

ontology.
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Figure 4: Depiction of the main concepts and relationships

in the Stream Annotation Ontology.

In the context of smart cities, dimensionality reduction

of data stream or stream transformations obtained through

shifted (overlapping) windows can results in a data rate,

different from the sample rate of the original sensor ob-

servation. Using the SAO Ontology, we can describe a

data stream and a timeline instance to link the segment

description with the time extent of a temporal entity rep-

resenting the data stream. Thus, we can express a stream

data as a time interval on the universal timeline, and also

relate such an interval with the corresponding interval on the

discrete timeline along with its discrete sampling rate. With

regards to the previous conceptualisations of sensory data,

the SAO ontology deals with representation of aggregated

stream data and temporal characteristics. It is free from deep

taxonomical organisation, and does not attempt to describe

the deep interrelationships or computation of stream data.

2) QoS and QoI module: Quality of Service (QoS) has

been widely studied in sensor networks, and has well defined

and measurable properties ,such as throughput, jitter or

packet loss, inherited from the field of network communica-

tions. However, although it has been spotted as one crucial

item in data networks, the Quality of Information (QoI) is

still not well defined and sometimes difficult to measure. In

our model we have designed the QoI module based on the

IoT.est model, and enhanced it with some related concepts,

as well as with the help of experts in the field of data

networks and data applications. Figure 5 depicts some of the

concepts that are included in the QoI module. Some of these

concepts could be directly annotated from the raw stream

data and others need data analysis to be quantified. The

process is performed in the reliable information processing

component of the framework shown in Figure 2.

3) Provenance module: Provenance annotation helps in

tracking the source of information and evaluates trustworthi-

ness of different sources of information. Provenance can also

track the algorithms, sample rate and other useful processing

properties. These annotations specifies the reliability of the

information and the adequacy of the data for a particular
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Figure 5: An overview of the Quality of Information module.

application. In our data model the provenance module only

contains a few object properties that link the SAO module

with the prov-o ontology5.

V. USE CASES

One of the key issues in heterogeneous ecosystem of smart

cities is real-time traffic data analysis. Enabling smart cities

to efficiently manage traffic data and provide alternative

routes will not only help in reducing transportation cost but

also pollution that has been caused by traffic congestion. As

a use case scenario, we use public traffic data6 that has been

obtained from the city of Aarhus in Denmark. The database

consists of traffic data that has been measured among various

sensors in different cities providing information regarding

the geographical location, timestamp, and traffic intensity

such as average speed and vehicle count. The data is taken

from 135 sensors and samples every 5 minutes.

5http://www.w3.org/TR/prov-o/
6http://www.odaa.dk/dataset/realtids-trafikdata

While most of the systems constantly create and transmit

raw sensor data, we need to be able to express a narrower,

more specific workflow such as representation of aggregated

and summarised data for individual sensor recordings and

the smart city workflow. This will pave the way towards

having scalable systems, and reduce memory and compu-

tational cost of massive amount of real-time data produced

by sensors. For this reason, the semantic representation of

the summarised data is as important as annotation of raw

stream data. In this section, we exemplify the use of the

proposed information model, describing the outcome of a

pair of sensor recordings, and its representation in a road

traffic environment.

Figure 6: A visual representation of geographical coordinates

on Google Map for a pair of road traffic sensors provided

by city of Aarhus, Denmark.

Figure 6 illustrates a sample location from city of Aarhus

in Denmark on Google Maps showing a pair of traffic

sensor points, that have been virtualised in our system,

and aggregated and semantically annotated based on Stream

Annotation Ontology. The sensor points refer to exact geo-

graphical coordinates (i.e. latitude, longitude), and linked



to resources such as DBPedia7 and GeoNames8 that are

publicly available as a part of the Linked Open Data cloud.

In aggregation process, the streaming data that has been

obtained from these sensors, divided into segments and a

patterns is created for each segment. These patterns represent

an aggregation of a set of raw sensor data during a period of

time. The pattern construction is performed using the Sym-

bolic Aggregate Approximation (SAX) technique [9]. SAX

is used in data mining and time series data for dimensionality

reduction and creation of symbolic patterns. It divides a time

series data into equal segments and then creates a string

representation for each segment. Figure 7 depicts the data

captured for average speed via the corresponding sensor

points and illustrate SAX patterns created from the raw data.
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Figure 7: A real time average speed data obtained from a

pair of sensor points given in Figure 6 is mapped into SAX

word, ”bbbbacdd”, with the segment size of “8” and alphabet

size of “4” for 176 samples.

In listing 1, we describe a set of sensor recordings

obtained from the sensor platforms, given in Figure 6, and

represent summarised data, shown in Figure 7, as well as

temporal entities using the Stream Annotation Ontology. As

the proposed semantic model is directly connected to the

PROV-O Ontology, we can track the provenance of the infor-

mation. For instance, in this case the raw data is coming from

a public provider, and it has been processed with the stream

analysis algorithm SAX, then it has been stored as a stream

observation in SAO ontology. This provenance tracking can

be used to measure the reliability of the information. With

the reliability results, the application developer or the user

can make the decision to trust the information or not. We can

also annotate QoI concepts, sch as freshness of the data,

taken from the database field timestamp; availability,

taken from the database field status; granularity, taken

from the database field VehicleCount.

VI. EVALUATION

In this section, the performance of the stream annotation

framework is evaluated using data size and average message

7http://dbpedia.org/
8http://www.geonames.org/ontology/

@prefix sao: <http://example.com#> .

@prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#> .

@prefix qoi: <http://example.com/QoSQoI.owl#> .

@prefix tl: <http://purl.org/NET/c4dm/timeline.owl#> .

:government a foaf:Organisation, prov: Agent .

:sefki a foaf:Person, prov:Agent ;

foaf:givenName "Sefki" ;

foaf:mbox <mailto:s.kolozali@surrey.ac.uk>

prov:actedonBehalfOf :ccsrSurrey ; .

:sensorRec1 a sao:StreamData, ssn:SensorObservation ;

prov: wasAttributedTo :government .

:sensorRec2 a sao:StreamData, ssn:SensorObservation ;

prov: wasAttributedTo :government .

:traffic-sensor-recording-619 a sao:StreamEvent ;

prov:used [ a sensorRec1; sensorRec2] ;

sao:time [a tl:Interval;

tl:at "2014-02-13T08:25:00"ˆˆxsd:dateTime;

tl:duration "PT15H30M"ˆˆxsd:duration;

] ;

prov:wasAsscoatedWith :sefki ; .

:freshness-traffic-619 a qoi:Freshness ;

qoi:value "2014-02-13T08:25:00"ˆˆxsd:dateTime .

:sax_AverageSpeedSample a SymbolicAggregateApproximation;

rdfs:label "The sax representation of the traffic sensor

recording obtained from Aarhus City.";

sao:value "bbbbacdd";

sao:alphabetsize "4"ˆˆxsd:int ;

sao:segmentsize "8"ˆˆxsd:int ;

prov:wasGeneratedBy traffic-sensor-recording-619;

qoi:hasQoI freshness-traffic-619 .

Listing 1: A excerpt from an RDF data annotated for

a set of sensor recordings given in Figure 7 based on

Stream Annotation Ontology.

exchange time. The evaluations were performed using a

RabbitMQ server, that is based on AMQP, on a Personal

Computer (PC) running Windows 7 Professional operating

system with an Intel Core i7-2670QM 2.2GHz processor

and 4GB RAM memory. The aim of this experiment is

to send the raw and summarised data as messages through

middleware with a different number of consumers to read

the messages.

Our experimental dataset consists of two sets of stream

samples: (i) raw dataset that contains 72240 samples, and

(ii) summarised dataset that contains 444 samples of the

sensor stream data obtained from the road traffic of the city

of Aarhus. The overall results of average message delivery

time are obtained by averaging the results obtained in the

10 experimental runs. The level of accuracy estimated by

these metrics were analysed utilising a two-way Multivariate

Analysis of Variance (MANOVA). The independent vari-

ables were the data dimension (i.e. raw and sax stream data),

and number of consumers (i.e. 1, 2, 3, 4). The dependent

variables were the following metrics: the size of data in

KiloBytes (KB), and the average message exchange time

in second. The Holm-Sidak procedure [8] and a risk α of

.05 were used in the MANOVA tests. In addition, we have

used the following definitions in our interpretations of the

effect sizes: small effect size (η2 ≤ .01), medium effect size

(.01 ≤ η2 ≤ .06) and large effect size (.06 ≤ η2 ≤ .14).
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data (Figure 8b and 8d).

MANOVA level of significance are reported using the F-

statistics, F , and probability, p.

Performance comparison considering the data size and

average message exchange time that were examined using

the middleware are reported in Figure 8. For the raw data,

the data size and average message exchange time were very

high: the data size was 9114 KB and the average time that

was spent for message delivery was in range of 2.9s to

6.5s varying based on the number of consumers. On the

other hand, there was a rapid decrease in message delivery

time and data size for the sax representation of the data

stream. For instance, the data size dropped from its initial

high value to 54 and 58 KB, which led to a dramatic decrease

to 0.25s for the average message delivery time. Intuitively,

the difference in message delivery time for various segment

and alphabet sizes were very low. For example, the average

time difference for the segment size 4 and 8 were 0.01s,

and for the alphabet size it was 0.02s. Similarly, there was

a very low difference (i.e. 4 KB) in data size for the segment

and alphabet size. The overall average differences between

the raw and summarised data were 96.2% and 99.4% for the

data size and average message delivery time, respectively.

The results of the two-way analyses of variance results for

the semantic annotation system is reported in Table I. The

post-hoc analysis revealed that there was a highly significant

Data size Time

Source df F η2 df F η2

DD 1 63808980.48 1.0⋆⋆⋆ 1 2068152.82 1.0⋆⋆⋆

NC 3 0 0 3 69908.90 1.0⋆⋆⋆

DD × NC 3 0 0 3 67934.33 1.0⋆⋆⋆

Table I: Results of two-way analyses of variance for the

stream annotation system based on the raw and SAX stream

data. η2 is the partial eta squared measure of effect size.
⋆p < .05,⋆⋆ p < .01,⋆⋆⋆ p < .001. DD: data dimension; NC:

number of consumers.

effect of the SAX representation of the data stream on both

the data size and average message delivery time (p < .001)

with a very large effect size. Therefore, it is evident that

dimensionality reduction is not only important for memory

space but also for processing time of middleware, which is

currently a crucial issue in real-time IoT environments.

On the other hand, there is also highly significant effects

of the number of consumers (NC) on the average message

delivery time (p < .001) with a very large effect size. Even

though the overall results for the number of consumers are

more or less as reported in [10], the growing delivery time

can be explained by the fact that in our experiment the

consumers are running on the same machine as the producer

which may induce a delay due to low temporary storage



space allocated for each consumer. However, we need to

investigate this result with further experiments on a powerful

cluster server in future.

The interaction between DD and NC was highly sig-

nificant for the average message delivery time whereas

there was no significant interaction between DD and NC

on the data size. Nonetheless, our intuition was solely to

examine the effect of interaction between both factors on

the middleware, as data reduction is an initial process which

cannot be effected by the process of middleware. With these

experiments it can be concluded from highly significant

interaction of DD and NC that both of the factors have

a significant effect on the results, and their effects should be

highly considered in real-time and dynamic environments.

VII. CONCLUSIONS

In this study, we proposed a stream annotation framework

for real time IoT stream using the Advanced Message

Queueing Protocol to support delivery of large volumes

of data. To represent the summarisation and reliability of

stream data, we introduced a new information model that

ensures that summarisation techniques can be interpreted as

time-based events, even where further semantic associations

are unavailable. The framework is tested using different

aspects of the stream data, raw and aggregated, in order

to find the increase in the performance with our annotated

data. The data size and average message exchange time spent

through the middleware are used as evaluation metrics. We

found that in all cases the framework performance increased

99.4% and 96.2% with annotated summarised stream data

in terms of data size and average message delivery time,

respectively.

In future work, we will incorporate a wider set of stream

data and utilising a computer network, with real-time road

traffic to investigate the performance with a large number

of consumers in more detail. Further work is also required

for the Stream Annotation Ontology to provide a better

coverage of stream analysis techniques commonly used by

researchers, as well as to enable better generalisation of the

model, and harmonisation with existing research tools. This

work can help to increase community involvement and will

be extended with a vocabulary to cover representation of data

analysis features that are created by state-of-the-art stream

analysis techniques.
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