
A KNOWLaEDGEBA!SED APPROACH TO DATA MANAGEMENT 
FOR INTELLIGENT USER INTERFACE!3 

Carol A. Broverman, W. Bruce Croft 

Department of Computer and Information Science 
University of Massachusetts Amherst, Massachusetts. 01003 

ABsrRAcr 

An intelligent user interface (POISE) is described 
that provides facilities for defining and supporting 
higher-level user tasks. Although an object-based 
data model forms an important part of the POISE 
system, other types of knowledge such as task 
descriptions and tool descriptions are required. The 
management of instantiations of the task and object 
descriptions is a complex process because POISE 
both predicts user actions and allows multiple, 
competing interpretations of user actions. In this 
paper, we describe how the knowledge base 
(including the object data model)wt Ein&;G 
used by the intelligent interface. 
an implementation of the knowledge base in a 
frame-based representation language. 

I INTRODUCI’ION 

The data models used in database systems 
provide languages for describiig objects, relationships 
between objects, constraints, and actions that are to 
be performed on the objects [TsIc82]. A database 
management system manages the schemas defied 
with the data model and the instantiations of the 
schemas that result from dynamic procesring (i.e. the 
database). The objectoriented information that is 
captured with a data model forms an important part 
of the knowledge required for an intelligent user 
interface, but additional mechanisms are required to 
describe and manage other types of knowledge that 
are essential for this application. In this paper, we 
shall show how data models and other types of 
knowledge can be combined and managed to 
support an intelligent user interface. 

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or distributed for di- 
rect commercial advantage, the VLDB copyright notice and the title 
of thP publication and its date appear, and notice is given that copy 
ing is by permission of the Very Large Data Base Endowment. To 
copy otherwise, or to republish, requires a fee and/or special permis- 
sion from the Endowment. 

Certain types of information systems can be 
characterized as consisting of a set of tools that 
support user tasks in a particular environment. 
Office information systems are a good example of 
this type of system and they have been used as the 
major testbed for the intelligent interface described 
in this paper. The tools in current office systems 
are designed to carry out simple tasks that are 
common to most offices. For example, tasks such as 
communication, time management and document 
production are supported by the electronic mail, 
calendar and text editor tools. A more effective 
system would support higher-level tasks that are 
directly related to the goals or functions of the 
office. This type of task often iAvolves 
decisionmaking, complex sequences of actions, and 
interaction with a number of other people. The 
intelligent interface described in this paper consists 
of formalisms used to describe tasks and mechanisms 
for managing instantiations of these tasks. 

The main types of knowledge required for the 
intelligent user interface consist of task descriptions, 
object descriptions and tool descriptions. These 
descriptions are intimately related because tasks 
manipulate objects through the use of tools. For 
example, the task of processing orders in a 
particular company could be described in terms of 
actions of form and mail tools on various form 
objects, together with actions and decision points 
that have no corresponding tools. On the basis of 
this task description, the intelligent interface would, 
in effect, provide a “virtual” tool that could support 
the order processing task. By separating task 
descriptions from tool descriptions, the addition of 
new tools will affect only the way in which a task 
is supported, rather than the description of a task. 
This division between task and tool descriptions is 
analogous to the separation of logical and physical 
levels of description in data models. 

Proreedings of VLDB 85, Stockholm 
96 



Task descriptions in the intelligent user 
interface play a similar role to application programs 
in typical database systems in that they refer to 
objects defined in the knowledge base “schema”. 
However, in contrast to the very structured nature 
of the algorithms specified in application programs, 
task descriptions often have steps that rely on the 
problem-solving abilities of the person(s) using the 
system [FIKEM,BARB83]. Task deccptioz are 
constantly subject to change, 
organizational level and by individuals. T$ 
descriptions also represent only a typical way of 
carrying out a task and many exceptions are 
possible. The type of support provided by the 
intelligent interface depends on the amount of 
structure in the task involved. Generally, the 
interface can automate the more structured parts of 
a task and provide assistance to users for the less 
structured parts [CROFtM]. 

In the next section, we give an overview of 
the POISE intelligent interface and its capabilities 
for task support. The third section contains a more 
detailed discussion of the types of knowledge used 
in POISE and the relationships, between them. In 
particular, we discuss the role of a data model in 
the overall knowledge base and how constraints can 
be specified in both the object and task descriptions. 
During the operation of POISE a variety of task 
and object instantiations are created to record the 
current and predicted states of user activities. The _. . _ _ . 

MOWLEDGE BASE 

TASK DESUUPTIONS MSTANl-lAllONS 

00JEf.X DESCRDTIONS 
OF 

TOOL DESCIUPTlONS 

I NATURAL MCUAGE 
DlCnONARES 

I 

TASKS, 0WECl-S 

I ~~ iWOWL?ZDGE BASE MANAGER 

management of these instantiations is the subject of 
the fourth section. Finally, we show how the 
knowledge base, including the data model, can be 
implemented using a frame-based representation 
language. 

USERS++. -/ MONlTOR 

POISE 

TOOLS 

II OVERVIEW OF POISE &We 1: The POISE lo-t Interface. 

The POISE system provides task support on 
the basis of hierarchies of task descriptions. The 
task descriptions specify the typical steps involved in 
the task, the objects that are affected by the task, 
and the goals of the task steps. The ability to 
combine recognition of user actions and planning 
using the descriptions and goals gives POISE great 
flexibility in the type of task support it can provide. 

A simplified diagram of the main POISE 
components is shown in Figure 1. The knowledge 
base, which is the main subject of this paper, 
consists of two main parts. The first part is the 
relatively static description of the tasks, objects and 
tools in a particular environment. This part of the 
knowledge base also contains the dictionaries and 
other information used by the natural language 
analysis and generation components of the system. 

97 



The second part of the knowledge base 
contains the instantiations which describe the 
dynamic state of the system. For example, in the 
static part of the knowledge base there might be a 
task description for filling out a purchase order 
form. There would also be a description of this 
form as an object type and its relationship to other 
form objects used by the system. After a user had 
started to fill in a particular purchase or&r form, 
the dynamic part of the knowledge base would 
contain pFUtii3l instantiation of the 
‘Fiiut-pt&hase-order-form” task with values 
derived from the actual values filled in by the user. 
There would also be an instantiation of the database 
object that represents the actual purchase order 
form. 

The instantiations in the knowledge base are 
generated and used by other POISE components 
such as the interpreter and planner. The knowledge 
base manager controls access to the knowledge base 
and provides the operations needed to manipulate 
the knowledge. 

The monitor provides the interface between the 
user, the tools and POISE. It is designed to allow 
the user to interact directly with “off-the-shelf” tools 
or to interact with tools through an interface 
specified within the monitor. This design avoids 
simulating within POISE the sophisticated interfaces 
of some tools, but enables the system to understand 
user actions. The tool descriptions, which are used 
by the monitor, define how tasks are implemented 
with the tools. 

The other major components of POISE are 
the focwr, interpreter and planner. The interpreter 
is responsible for interpreting user actions in the 
context of the task descriptions. Since there may be 
multiple, concurrent and competing interpretations of 
actions, the focuser is used to choose the most 
likely interpretations and to control the system’s 
actions [CAIWM]. The focuser must also provide a 
mechanism for backtracking should a user action or 
user error result in incorrect interpretations. 

The planner is similar to the focuser in that it 
manages interpretations of user activities. However, 
in contrast to the focuser’s emphasis on the 
recognition of user actions, the planner takes stated 
task goals and directs the user through sequences of 
actions designed to achieve those goals. The 
focuser, interpreter and planner must work in close 
cooperation for the system to be able to make 
predictions when attempting to recognize user 
actions, or to interpret user actions during the 
planner-directed execution of a task. 

Both the interpreter and planner are aided by 
the constraint propagation which occurs during the 
execution of a task. Specific user actions apply 
constraints to the general task descriptions. 
Constraints also hold between steps specified in task 
descriptions and this information is used to 
propagate constraining parameters throughout the 
executing task. 

As stated previously, the main emphasis of the 
discussions in this paper is on the knowledge base 
and how it is used by POISE components such as 
the focuser, interpreter and planner. 

II TEE KNOWLEDGE BASE 

Tasks, objects and tools are represented in the 
knowledge base using different formalisms. These 
formalisms capture different, though related, 
information that is used by the intelligent interface. 
The following sections contain a discussion of each 
formalism and the type of information represented. 

A. Task DescriptIona 

In order to represent the possible sequences of 
concurrent actions in a task, we are using a 
modified version of an Event Description Language 
[BATE&l]. An example task description is presented 
in Figure 2. The algorithmic syntax of the 
procedure is specified by the IS clause, modified by 
g Cs claa=se and has its parameters defined by 

. The conditions required by a 
task in order to begin are specified by the 
PRECONDITION clause while the goals satisfied by 
a task are contained in the SATISFACITON clause. 

The IS clause of the task definition provides a 
precise way of describing the standard algorithm for 
accomplishing a task in terms of other tasks and 
primitive operations (tool invocations). The 
sequence of constituent tasks is specified using 
regular expression operator, for example, Catenation 
(‘) and Alternation (I). 

The example shown in Figure 2 is a 
“Purchaseitems” task. This task is a typical 
semi&ructured clerical task. The IS clause of this 
task specifies that after a purchase request has been 
received, either a purchase requisition or a purchase 
order is processed. The task is completed by the 
steps involved in the Complete-purchase procedure. 
To get the details of the steps involved in the 
Complete-purchase task, we would have to examine 
the corresponding descriptions. The more detailed 

98 



PROC Purchc.xitemI 

DE?SC Procedure for puhsing items with ttmt-state funds. 

IS Raceivcplrrhrre-rqti 

COND IF 4bchauaqwsUtot&field <- 250 
‘IHEN Rocnrpunbrrorder WILL-EXIST 

IF 4’urcharuequestbtaLfield > 250 
THEN Roceacplrcbuqtition WILL-EXIST 

FOR-PROPEJlTlES (“total-field” “itemizedada” “vendor-field*) 
(eutc~rdcr MATCHES l tuc~quest AND 
l Purchau-ordcr MATCHES .hvoi-liuotnt) OR 

(*Ptmhuuquisition MATCHES l Puchasuquest AND 
l Pttrchsauequisitiott MATCHES l InvoicMaiLfotm) 

PRECONDfTfONS - 

SATfSFACnON ~Itemcktahu = delivered 

Figprr 2: An Fsamplc Proctdure Spedficotion. 

(or ICSS abstract) tasks contain links to the tools 
available in the system. The lowest level procedures 
in this hierarchy correspond (approximately) to tool 
invocations. 

The attributes of a task are defied by the 
WITH clause. Task attributes may be constant 
values, associated objects, or attributes of constituent 
tasks. These attributes described by the WITH 
clause of a task may then be used by higher level 
subsuming tasks. In the example, the 
*Purchase-request object attribute is obtained from a 
parameter of the Receive-purchaswequest subtask. 
Note that a reference to an object is marked by a 
preceding asterisk. 

Constraints may be placed upon the values of 
task attributes and the relationships between task 
attributes. The COND clause is used to describe 
these constraints. In addition to rules specifying 
restrictions on constant values of attributes, the 
COND clause may also include rules establishing 
relationships between associated object and/or task 
attributes. For example, in Figure 2 we see that 
among other wnstraints, the 
‘PurchaseJequisitio~orm object used in the 
Process-purchase-requisition subtask must match the 
%woicedlaiLform object used in the 

Completc,purchase subtask in terms of their tcn.4, 
itemized-order, and vendor fields. COND clause 
rules may also be used to distinguish between two 
tasks where only one of the two can occur 
(Alternation). In the example, the value of the 
“total-field” of the Vurchase~equest attribute 
determines which of Process-purchase-order or 
Pr~urchaswequisitioisition can occur as a subtask. 

Often a constraint (like the one just 
mentioned aboved) can be represented within an 
object description 
“*Purchase-order-form” must YZe its (%a&fiel: 
less than or equal to S2SODO) instead of in the 
relevant task% COND clause. However, additional 
power and clarity can result from the redundant 
expression of the constraint in the task (as shown in 
Figure 2). Thus, when object-related constraints may 
be used to guide task choice, it is appropriate to 
represent thiim 
descriptions. 

in both the task --and object 

The COND and WITH clauses, along with the 
temporal ordering constraints found in the IS clause, 
describe the flow of objects between the subtasks of 
the higher-level task being described. The WITH 
clause depicts the vertical flow of objects through 
the task abstraction hierarchy. 

Ihe POISE formalism also contains a 
description of the state of the knowledge base that 
must exist in order for the task to begin. The 
PRECONDITION clause specifies this set of 
conditions. 

Upon completion of a task, certain conditions 
must be satisfied. This information serves both as 
an aid to the planner and as an alternate means of 
recognixing the completion of a task. The 
SATISFACTION clause specifies these conditions on 
database state. The example task specifies that the 
items of concern in the procedure Purchase-items 
must have been delivered when the task has 
finished. Coal specification in terms of database 
state allows the interface to bypass the usual mode 
of plan interpretation, which is based on a strict 
algorithmic ordering of plan substeps. Each substep 
of the higher level plan (in this case 
Purchaseitems) may also be characterized by its 
goals (which contribute toward the highest-level 
goal); together, the goals of the top-level plan and 
those of its substeps constitute an implicit gcal 
hierarchy. 

B. Object Descriptions 

99 



A data model for the office has been 
suggested by Gibbs and Tsichritxis [GIBBKl,GIBIlg4]. 
It is an example of a semantic data model that was 
designed specifically for the office domain. We have 
adopted a subset of the features in this data model 
for the external representation of the objects in the 
POISE knowledge base. 
follows. 

A summary of this subset 

An object type is the structural specification 
of a class of objects. The general form of an 
object type definition is: 

define object-type object-name 
bi@ 

properties: (p’operty definitions} 
constituents: {constituent definitions} 
mappings : {mapping definitions} 
constraints: {constraint specifications} 

end 

The proper&s section defies the attributes 
possessed by that object. Properties of an object 
type may be hierarchically decomposed. For 
example, a vendor object may have an address as 
one of its properties. The address property may be 
decomposed into street and city, street may be 
further decomposed into number and street name, 
etc. Each successive decomposition would be listed 
in the properties section of the object. Properties 
that are multi-valued are also easily specified. 

The constiruenrs section describes an object in 
terms of constituent objects rather than properties. 
The mappings section defines relationships among the 
constituents specified in the conszituenrs section. 
Therefore, a mappings section will only be present 
when a conrtfruenr~ section is present. 

The constraints section is used to specify data 
type constraints on properties, object type constraints 
on constituents and uniqueness constraints on 
properties and/or constituents. 

Speclalixation relationships are defined via a 
special declaration of the form Objecr2 ISA Objecrl, 
where Object1 and Object2 are declared object 
names. This declaration implies inheritance from 
Object1 to Object2 of all ObjectI’s properties, 
constituents, mappings and constraints. 

In addition to object types, domains and 
rriggers may be specified. Domains are abstract 
datatypes which are used to define non-primitive 
data types. In the office automation application, 
for example, dates may be a domain and its 
associated functions would parse date specifications, 
modify them, display them, compute time 

differences, etc. Triggers are demon-like entities 
that carry out specified actions when certain 
conditions are met upon the invocation of specified 
database operations. 

The use of domains has been presented as a 
declarative method for representing constraints that 
are imposed on single properties. Triggers are 
procedural rather than declarative, and they 
represent object-related constraints dealing with 
relationships between different parts of a single 
object. Triggers are used for constraints that hold 
between one or more slots of a single object, or for 
other such constraints which are more complex than 
simple data type specifications. They can also be 
used to implement simple tasks, such as sending 
mail out on a specified schedule. The POISE system 
treats tasks implemented this way as part of the 
available tool set. 

The object data model provides operations to 
add and remove object instances in the knowledge 
base, to modify object instances, to retrieve object 
instances and to define transactions. The use of 
transactions in a taskoriented environment such as 
POISE raises some interesting questions. Tasks such 
as filling out a form could be specified as 
transactions but, unlike the execution of an 
application program, a task can be suspended 
indefinitely at any point by the user. The locks 
associated with these suspended transactions could 
cause significant problems. Another problem is that 
POISE provides assistance by performing constraint 
checking as soon as possible whereas the normal 
definition of transactions can involve more than one 
user action and allows constraint violation during the 
transaction. These issues are being explored in the 
current application. 

It may be possible to represent task 
descriptions as objects using the model just 
presented. Substeps can be listed in the consriruenr 
section of the specification, WITH clause attributes 
can be represented in the property section, and the 
COND constraints can be represented either in the 
constraint section or as triggers. The formalism 
would require extensions to allow for the 
representation of the PRECONDITION and 
SATISFACTION clauses of the EDL task 
descriptions. 

C. ToolDcsaiptio~ 

The monitor acts as the POISE interface to 
the external world by performing mappings between 
events in the user and task domains and events in 
the lowest level of POISE task descriptions. It 
recognixes user actions on behalf of the planning 
and interpretation components and performs actions 

100 



at the request of the planner. The mappings 
between tool functionality, user actions and task 
descriptions constitute the tool descriptions that are 
defined whenever a new tool is added to the 
system. 

The tool mappings can be quite complex; one 
can usually access a tool function only through a 
predefiied interface that was designed for human 
users. A major part of the tool mappings are the 
functions that access tool functionality through the 
tool’s existing interface. The use of access functions 
implies that changes to the tool set need affect only 
the tool mappings in the monitor, and do not affect 
the POISE task descriptions. 

A set of mappings is also defined between 
objects that tools know about and objects in the 
POISE database. Tools manipulate objects and 
POISE maintains instantiations of selected objects. If 
an object changed by a tool is stored in the POISE 
knowledge base, the monitor informs POISE of the 
change. Note that these mappings would not be 
necessary if the tool set and the intelligent interface 
were designed as an integrated package. For 
example, the forms tool in the current POISE 
system is implemented directly using forms and 
operators defined by the object data model. 

The lowest level POISE task descriptions, 
called primitives, have an important role in the tool 
descriptions. The primitives define what user actions 
POISE will be interested in, and what tool 
functionality will need to be accessed by POISE. 
Consequently, for each action corresponding to a 
POISE primitive, the capability must exist for both 
recognizing and performing that action through the 
tool interface. The POISE primitives thus 
effectively describe the granularity of the tool 
descriptions. 

III IN!RANTIATION MANAGEMENT 

The POISE interface is capable of running in 
two different modes: interpretation and planning. 
While in interpretation mode (the start-up and 
default mode in the current application), POISE 
maintains consistent interpretations or integrated 
views of user actions aa they are being performed. 
These interpretations are represented by hierarchical 
structures of instantiations of static task templates. 
That is, when a user action is recognized by the 
interface, a structure is created which is based on 
the appropriate static task template; this structure is 
then incorporated into a hierarchical interpretation. 
‘Ihe instantiation will contain the dynamically 
determined parameter values particular to that user 

action, as well as the static constraints found in the 
template. 

The dynamic portion of the knowledge base 
contains all current interpretations of user actions; 
some of which may have been designated as more 
likely than others by the focuser as the 
interpretation process proceeds. In addition, as each 
new step is taken by the user, POISE retains a 
copy of the previous interpretation in order to 
facilitate backtracking in the event of an 
interpretation error. 

The second function or mode of the POISE 
interface is to provide the automation of user tasks 
through the use of the planning subsystem. The 
user is able to request the system to carry out a 
task or a series of tasks by specifying a higher-level 
POISE task (task-oriented planning) or by indicating 
conditions which must exist in the dynamic 
knowledge base that would represent the completion 
;L;hec&geted task (goaloriented planning). In the 

, the user may invoke the planning 
subsystem to complete an existing (partially 
instantiated) task or to carry out a new task. In 
the latter case, the intelligent interface is responsible 
for determining the most appropriate way (e.g. 
sequence of POISE tasks) of achieving the specified 
goals. For example, the user may explicitly request 
the interface to complete the task of purchasing a 
desk once a purchase request has been received 
(taskoriented planning). The user could also specify 
the acquisition of a desk as a goal, and the system 
could determine how to achieve that goal (e.g. 
through an instantiation of the Purchase-items task). 

An example snapshot view of the dynamic 
knowledge base (Figure 3) illustrates some 
characteristics of procedure and object instantiation 
management. As procedure instantiations are 
created, object instantiations are also created to 
represent the associated database objects. These 
object instantiations are created by the POISE 
monitor when a tool creates an object in the 
application domain. The object instantiations created 
in this way are known as “base objects”, and they 
uniquely correspond to the real objects being 
manipulated by the user. ‘Baseobject” instautiations 
are linked to the task descriptions which refer to 
them as well as to related object instantiations. For 
example, a baseobject may be connected to another 
base-object which contains it. 

In the example, we can see that wden the 
user invokes the mail tool to read his/her I iail, the 
interface creates an instantiation 0f the 
Receiveinformation procedure, and POISE also 
creates associated object instantiations to represent 
the Purchase-requestform and the 

101 



7 

TIKchasaqu~oflJl.l 
vendor. stceti 
item: t&k 

qwatily: I 
mmounI: loo 
db-uatur: bruebjcct 

T’uccharcorder-fom.1 
ven&r-fleield: stee*uc 

itc.m-t?el& tabk 

qcuntiy: 1 

totJl-tiild: loo 

dbtahAc prdicted 

ngllm 3: slmpllflal example of &stultlatlolm 
dnring tank eseeutbn. 

Purchase-rquesLmaiLobject manipulated by the 
tool. The database status of these objects indicates 
gedthey are base objects. These two objects are 

together to show that the 
PurchascrequesLform ’ part of the 
Purchase-rquesLmaiLobjsc~ 

A second type of object instantiation (in 
addition to “baseobjects”) are “predicted” object 
instantiations. Predicted objects are represented in 
much the same way as base objects, but they are 
conceptually different. Predicted objects serve as 
placeholders for constraints associated with an 
interpretation, and do not correspond to an object 
that the user (or tool) has actually created or 
manipulated. The constraints embodied by the 
predicted objects are derived from the descriptions 
of tasks making up the interpretation as well as 

from the object descriptions associated with the 
interpretation. The use of predicted objects provides 
additional guidance during the parsing of user 
actions into consistent and lUllUllbigUOUS 
interpretations, and facilitates the propagation of 
constraints among related object instantiations. 

Again looking at the example in Figure 3, we 
see that as interpretation proceeds by abstracting 
unambiguously up to Receivcpurchase-request and 
Purchase&ems, the object associated with the new 
instantiation of Purchase-items is represented by a 
predicted instantiation, since this objxt has not 
actually been created by a tool. However, the 
predictions of this object and the constraints it 
embodies are recorded in the dynamic knowledge 
base. 

In contrast to traditional database management, 
where the requirement is to maintain object 
instantiations, the maintenance of a knowledge base 
for an intelligent user interface involves multi-leveled 
demands. These demands include the management 
of the base object instantiations, predicted objects, 
task instantiations, and the relationships between all 
of these different types of instantiations. Also, 
interpretations of instantiations exist as another type 
of unit to maintain, and the knowledge base 
manager must handle multiple copies of possibly 
wnflicting interpretations. Many of these 
management requirements can be handled by 
representing additional information in the object data 
model schemas. For example, a base object may 
have defied relationships to all predicted objects 
which may constrain it, and triggers may be 
attached to propagate changes directly affecting a 
base object to its associated predicted objects for 
consistency checking. 

IV A F’BAME-BASED IMPLEMENTATION 

Frame-based languages [BARRgl] and other 
artificial intelligence representation tools are 
appropriate choices for implementing the knowledge 
base described thus far. These knowledge 
representation techniques offer a skeletal structure 
which is much less restrictive than traditional data 
models, and offer the needed flexibility for 
representing a broad variety of types of knowledge 
and their associated constraints. While a frame-based 
representation language can be used to represent the 
entire knowledge base, only the data model is 
currently implemented with such a tool, while the 
other sections are under development. The data 
model’s view of an object as an aggregate of 
properties or constituents is easily mapped to a 

102 



frame-based view where a frame represents a 
concept as an aggregate of its slots. The 
frame-based implementation of the object portion of 
the knowledge base is described in the remainder of 
this section. 

Object descriptions specified in the external 
language of the data model are converted by POISE 
to the chosen internal representation, which is SRL 
(Schema Representation Language) [WRIGS3]. SRL 
is a frame-based language that has been a testing 
ground for exploring issues in inheritance. SRL was 
designed to allow maximum flexibility in definition 
of the desired representation. 

Some of the features that SRL provides are: 
multiple roles (and thereby multiple inheritance 
path4 multiple contexts, facilities for the 
specification of default values, a search path 
specification language, demons, user-defined relations 
as well as useful system-defied relations, and 
various accompanying packages such as a query 
interface and some data base utility functions. In 
the development of SRL, special attention has been 
paid to dealing with the problems of differentiating 
multiple-path inheritance, allowing users to define 
their own relations and inheritance semantics, and 
allowing selective scwch specifications made by the 
user. 

In our implementation of the knowledge base 
in SRL, we have used the IS-A link to define 
simple inheritance paths. Objects are implemented 
as “schemas” in SRL, with the “slots” of the 
schemas corresponding to what the data model 
refers to as object constituents and properties. 

Constraints on property values are specified 
both declaratively and procedurally, following the 
distinction outlined in the data model. 
Single-property constraints are specified declaratively 
using domains. Domain definitions are embodied in 
a special type of object. More complex constraints 
relating more than one property of an object are 
expressed procedurally using a trigger mechanism 
(called “demons” in SRL). 

Simple data-type restrictions are specified by 
“range” attachment to the slot of interest, and 

&L has a built-in mechanism for executing the 
procedural check corresponding to the declarative 
form whenever a value is put into that slot. More 
complex datachecking, specifically that involving 
inter-slot dependencies, is performed via a 
procedural demon mechanism. The triggers in the 
formal model are implemented using SRL’s demon 
facility. Demons are attached to the slots of 
concern, and fire when triggered by a specified type 
of access (determined by the system designer). 

Demons are used in the current application for both 
complex value-checking and automatic slot-filling 
when possible. 

SRL offers rather complex facilities for 
specialized inheritance (other than the traditional 
ISA link) and additional type of inheritance links, 
which for the most part were judged to be too 
complex for the present application. An additional 
link which is used is the instance link, which is 
similar to the is-u link in terms of inheritance, but 
allows one to distinguish between the concepts in 
the hierarchy and the actual world objects 
corresponding to instantiations of concepts. 

v SUMMARY 

An intelligent user interface that can both 
recognize and carry out user tasks requires complex 
knowledge representation and management 
techniques. A typical database system can only 
partially fulfill those requirements. In particular, a 
database system does not provide facilities for 
defining ser+atructured tasks and managing the 
instantiations of those tasks that arise from different 
interpretations and predictions of user actions. The 
major components of the intelligent user interface 
knowledge base (task descriptions, object descriptions 
and tool descriptions) can, however, be regarded as 
extensions of components of database systems 
(application programs and schemas). 

In the system described in the paper, 
formalisms for defining tasks and tools are combined 
with a data model for describing the objects they 
manipulate. Constraints can be related both to 
objects and to the way in which objects are used by 
tasks. Instantiations of the tasks and associated 
objects are created and used by the focuser, planner 
and interpreter modules of the POISE system. A 
more integrated and uniform formalism for the 
representation of objects, tasks and tools may be 
appropriate, and is currently under investigation. 

klulowiedgementtl 

lhe POISE system was developed with V. Lesser, 
N. Carver, A. Hough, and L. Lefkowitz. This 
research was funded in part by the Digital 
Equipment Corporation External Research Program 
and a contract with Rome Air Development Center 
(RADC). 

103 



BARR81 

BARB83 

BATE84 

cARv84 

CROF84 

GIBBS4 

GIBB83 

TSIC82 

WRIG83 

Barr, Avron; Feigenbaum, Edward A.; 
eds. Tk Handbook qf Artificial 
htcllipace, Vol. 2; 1981. 

Barber, G. %lpporting organixational 
problem solving with a work station”. 
ACM Transactions On o/fice I~ormation 
systems, 1: 45-67; 1983. 

Bates, P.C.; Wileden, J.C. =High-level 
debugging of distributed systems: The 
behavioral abstraction approach”. Journal 
of Systems and Software, 3: 255-264, 1984. 

Carver, Norman F.; Lesser, Victor R.; 
McCue, Daniel L. “Focusing in Plan 
Recognition”. Proceedings of tk National 
Coqference on Artifical 
Austin, Texas, 1984. 

Intelligence; 

Croft, W. BNCC; Lefkowitz, Lawrence S. 
Task Support in an Office System”. 
ACM Tmmctions of office Iqformation 
Systems, 2: 197-212; 1984. 

Fiiea, RE.; Henderson, DA. “On 
supporting the use of procedures in office 
work”. First National Coqference on 
Artificial Intelligence, Stanford, California, 
1980. 

Gibbs, S. “An objectoriented office data 
model.” Ph.D. Thesis, University of 
Toronto, Canada, 1984. 

Gibbs, S.; Tsichritzis, D. “A data 
modeling approach for office information 
systems”, ACM Transactions on Office 
Irtfonnmion systems, 1: 299319; 1983. 

Tsichritzis, D.; Iochovsky, F. Data 
Mudels. Prentice-Hall, 1982. 

Wright, hf.; FOX, MS. SRI, 15 User 
Manual, Intelligent Systems Laboratory, 
Carnegie-Mellon university Robotics 
Institute, 1983. 

104 


