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1. INTRODUCTION

The demand for spatial climate data sets in digital

form has risen dramatically in recent years, as com-

puter technology has enabled a variety of hydrologic,

ecological, natural resource, and other models and

decision systems to be linked to geographic informa-

tion systems (GIS) (Nemani et al. 1993, Neilson 1995,

Nusser & Goebel 1997). Methods for mapping climate

from point data fall into 2 main categories: human-
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expert and statistical. Human-expert methods use

human experience, expertise, and knowledge acquisi-

tion capabilities to infer climate patterns from meteoro-

logical regimes, physiographic features, biotic charac-

teristics, and other information sources. They involve

the manual preparation of climate maps (Reed & Kin-

cer 1917, Peck & Brown 1962), often based on topo-

graphic analyses involving the correlation of point cli-

mate data with an array of topographic and synoptic

parameters such as topographic position, slope, expo-

sure, elevation, location of barriers, and wind speed

and direction (Spreen 1947, Burns 1953, Stoeckeler

1963, Schermerhorn 1967, Hovecar & Martsolf 1971,

Bootsma 1976, Houghton 1979, Basist et al. 1994). Most

of the ‘official’ precipitation maps for US states were

created in the 1960s by federal agencies using human-

expert methods. These maps were widely accepted as

reflecting the best understanding of spatial climate

distribution at the time.

Statistical procedures use a numerical function, cal-

culated or prescribed, to weight irregularly spaced

point data to estimate a regularly spaced prediction

grid. Inverse-distance weighting is an example of a

simple statistical interpolation method. Adaptations of

this concept have been used for climate interpolation

(Shepard 1968, Renka 1984, Willmott et al. 1985, Dod-

son & Marks 1997, Thornton et al. 1997). Kriging and its

variants (Matheron 1971) have been applied exten-

sively to the interpolation of climate data (Dingman et

al. 1988, Hevesi et al. 1992, Phillips et al. 1992, Garen et

al. 1994). Kriging involves the development of 1 or more

semivariogram models that best fit the data to arrive at

optimum station weights for interpolation. Splining is a

related statistical method useful in climate interpolation

(Wahba & Wendelberger 1980, Hutchinson 1995). 

Maps created by objective statistical methods rarely

provide the accuracy, detail, and realism required to

supersede manually drawn maps as the official ver-

sions. Hence, few of the official maps produced in the

1960s have been updated with statistically generated

maps. While computerized statistical approaches have

a great potential advantage over human-expert meth-

ods in terms of speed, consistency, and repeatability,

they lack a spatial climate knowledge base that can be

drawn upon to fill the need for expertise and experi-

ence in the mapping process. 

A well-known discipline in computer science known

as knowledge-based system (KBS) technology pro-

vides a useful framework for an effective way to com-

bine the strengths of both human-expert and statistical

methods. Climate mapping situations are ideal candi-

dates for the application of a KBS approach; data are

unrepresentative and new and unexpected situations

continually arise, but a large body of expert knowl-

edge is available. KBS technology is a companion to

expert systems, one of the most successful branches of

artificial intelligence research (Doukidis & Whitley

1988, Studer et al. 1999). KBS has been applied in the

fields of computer science, natural resource manage-

ment (Schmoldt & Rauscher 1996), hydrologic model-

ing (Lam & Swayne 1993), meteorology (Jones &

Roydhouse 1994), and GIS (geographical information

systems; Yuan 1997). Applications of KBS to spatial

problems in GIS are a particularly useful analogue for

climate mapping, because both involve spatial prob-

lems, which are inherently difficult to solve using gen-

eralized computational techniques. KBS holds promise

as a method by which new functions can be developed

and added to the range of specialized methods avail-

able for analyzing spatial data (Holt & Benwell 1999).

An example of a combined statistical/human-expert

approach to climate mapping using KBS is PRISM

(parameter-elevation regressions on independent

slopes model) (Daly & Neilson 1992, Daly et al. 1994,

1997, 2001, Johnson et al. 2000). PRISM is a regres-

sion-based model that uses point data, a digital eleva-

tion model (DEM), other spatial data sets, a knowledge

base, and human-expert parameterization to generate

repeatable estimates of annual, monthly and event-

based climatic elements. These estimates are interpo-

lated to a regular grid, making them GIS-compatible. 

The quality of the PRISM climate maps has been suf-

ficient to enable large-scale updates of the official cli-

mate maps produced in the 1960s by human-expert

methods. Recent PRISM mapping work includes the first

official updates of manually-drawn USDA precipitation

and temperature maps for all 50 states (e.g. USDA-SCS

1965), peer-reviewed by about 40 experts (Bishop et al.

1998, USDA-NRCS 1998, Daly & Johnson 1999, Vogel et

al. 1999, Daly et al. 2001); the first official update of the

manually drawn Climate Atlas of the United States

(USDOC 1968), reviewed and approved by the National

Climatic Data Center (Plantico et al. 2000); a high-

resolution, 103 yr series of monthly temperature and pre-

cipitation maps for the conterminous 48 states (Daly et al.

1999, 2000b, 2001); detailed precipitation and tempera-

ture maps for Canada (e.g. Environment Canada 2001),

China and Mongolia (Daly et al. 2000a); and the first

comprehensive precipitation maps for the European

Alps region, produced for the Hydrologic Atlas of

Switzerland (Schwarb et al. 2001a,b).

The objective of this paper is to describe the thinking

and rationale behind the development of a spatial cli-

mate KBS, and present working examples in the form of

algorithms from PRISM. The paper begins with an

overview of the spatial climate KBS (Section 2); followed

by descriptions of associated algorithms, including the

governing climate-elevation regression function (Section

3), the station weighting approach (Section 4), topo-

graphic facets (Section 5), coastal proximity (Section 6),
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and the 2-layer atmosphere (Section 7). The paper ends

with a summary and conclusions (Section 8). 

2. A KNOWLEDGE-BASED SYSTEM FOR SPATIAL

CLIMATE

The main components of a KBS are: (1) knowledge

acquisition modules that elicit expert information; (2) a

knowledge base in which the knowledge is stored; (3)

an inference engine for inferring solutions to problems

from stored knowledge; and (4) a user interface that

allows the model to accept user input and explain its

processing and reasoning steps (Forsyth 1989). We

would add that an independent verification component

is critical to the ongoing process of knowledge acquisi-

tion and refinement. Below are a presentation of the

conceptual structure of the KBS for spatial climate and

an overview of the knowledge base. 

2.1. Conceptual structure of the KBS

Fig. 1 outlines the conceptual structure of a spatial

climate KBS, using PRISM as an example of the central

computer model. Our KBS is not a mature one, and the

problem domain is very large. Therefore, knowledge

must be accumulated, generalized, and refined

through an ongoing process of model application;

development of algorithm prototypes, parameters, and

parameter settings; and verification of results. Over

time, there is a slow but steady transfer of knowledge

from the user to the model (thick arrow in Fig. 1). 

The PRISM module consists of a local moving-

window, climate-elevation regression function that

interacts with an encoded knowledge base and infer-

ence engine. This knowledge base/inference engine is

a series of rules, decisions and calculations that set

weights for the station data points entering the regres-

sion function. In general, a weighting function contains

knowledge about an important relationship between

the climate field and a geographic or meteorological

factor. The inference engine sets values for input para-

meters by using default values, or it may use the

regression function to infer grid cell-specific parameter

settings for the situation at hand. PRISM acquires

domain knowledge through assimilation of station

data; spatial data sets such as a terrain and others; and

a control file containing parameter settings. 

The other center of knowledge and inference is that of

the user. The user accesses literature, previously pub-

lished maps, spatial data sets, and a graphical user in-

terface to guide the model application. One of most im-

portant roles of the user is to form expectations for the

modeled climatic patterns, i.e. what is deemed ‘correct’.

Based on knowledgeable expectations, the user selects

the station weighting algorithms to be

used and determines whether any para-

meters should be changed from their de-

fault values. Through the graphical user

interface, the user can click on any grid

cell, run the model with a given set of al-

gorithms and parameter settings, view

the results graphically, and access a

traceback of the decisions and calcula-

tions leading to the model prediction. 

If the modeling system is to gain ex-

pertise over time, results must be sub-

jected to a rigorous verification process

that is as independent from the modeling

system as possible. Model diagnostic sta-

tistics such as cross-validation error, con-

fidence interval, and estimation variance

give objective, quantitative feedback on

performance, and they are useful in pa-

rameterizing the model for optimal nu-

merical performance. However, these

measures are highly dependent on

model assumptions and completeness of

the station data. Model results may be in-

dependently evaluated by assessing

their consistency with other spatial ele-

ments, such as stream flow, vegetation
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Fig. 1. The conceptual structure of a knowledge-based system for climate. The
system contains 2 main centers of knowledge and inference: the user and the
model. The user interacts with the model through a graphical user interface.
Verification represents an independent source of knowledge. Knowledge is
accumulated, generalized, and refined through an ongoing process of model
application; development of algorithm prototypes, parameters, and parameter
settings; and verification of results. Over time, there is a slow but steady transfer 

of knowledge from the user to the model (thick arrow)
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patterns, and related climate elements. Because the goal

is to produce maps that best represent the state of (hu-

man) knowledge, the most useful source of verification

may be that of domain experts who can give definite, jus-

tifiable feedback on how well the model results repro-

duce their best knowledge. This feedback can be in the

form of evaluation of the spatial patterns and magnitudes

of the mapped climate values, as well as insight into

station data quality issues (Daly & Johnson 1999). 

2.2. The knowledge base

The knowledge base encoded into PRISM contains

key concepts that describe the spatial patterns of cli-

mate. The knowledge base draws upon over a century

of observations and research in a discipline that can be

termed ‘geospatial climatology’, the study of the spa-

tial patterns of climate and their relationships with

geographic features. The key concepts included to

date are discussed briefly below.

2.2.1. Elevational influence on climate

Climate varies strongly with elevation. Temperature

typically decreases with altitude, and precipitation

generally increases (Oke 1978, Barry & Chorley 1987).

Elevation is an excellent statistical predictor variable,

because it is usually sampled at a far greater spatial

density than climate variables and is often estimated

on a regular grid (i.e. DEM). The PRISM moving-

window climate-elevation regression function is dis-

cussed in Sections 3 and 4. 

2.2.2. Terrain-induced climate transitions

In complex terrain, climatic patterns are defined and

delineated by topographic slopes and barriers, creat-

ing a mosaic of hill slopes, or ‘facets’, each potentially

experiencing a different climatic regime (Daly et al.

1994, Gibson et al. 1997). Topographic facets can be

delineated at a variety of scales. The major leeward

and windward sides of large mountain ranges occur at

relatively large scales, while north- and south-facing

hill slopes with different radiation regimes exist at

small scales. PRISM topographic facet algorithms are

discussed in Section 5. 

2.2.3. Coastal effects

Proximity to a large water body can be a major

determinant of climate regime. For example, gradi-

ents in summer maximum temperature can exceed

20°C in 5 to 20 km, and precipitation patterns are

often delineated by proximity to coastal moisture

sources. PRISM coastal proximity algorithms are dis-

cussed in Section 6. 

2.2.4. Two-layer atmosphere

While climate usually varies with elevation monot-

onically, some cases arise for which a monotonic

change is not realistic. Examples are mid-slope pre-

cipitation maxima where the moist boundary layer is

shallow relative to the terrain height (Giambelluca &

Nullet 1991, Juvik et al. 1993); and wintertime tem-

perature inversions in sheltered valleys, where tem-

perature increases of 2.5 to 3.0°C per 100 m are not

uncommon. PRISM divides the atmosphere into 2

vertical layers to handle these situations (discussed in

Section 7).

2.2.5. Orographic effectiveness of terrain

Terrain features produce varying precipitation-

elevation gradients, depending partly on their effec-

tiveness in blocking and uplifting moisture-bearing

air. Steep, bulky features oriented normal to the

flow can generally be expected to produce steeper

precipitation-elevation slopes than low, gently rising,

features oriented parallel to the flow. A discussion of

how PRISM recognizes and accounts for differences

in orographic effectiveness is not presented here

due to space limitations, but is available from Daly

(2002).

3. GOVERNING EQUATION — THE ELEVATION

REGRESSION FUNCTION

PRISM encodes the assumption that for a localized

region, elevation is the most important factor in the

distribution of many climate elements, such as tem-

perature and precipitation. A regression function

between climate and elevation serves as the main

predictive equation in the model. A linear regression

was chosen over nonlinear functions such as polyno-

mial regression and curve-fitting functions such as

splining, because: (1) altitudinal variations of climate

are often linear (Vuglinski 1972, Hibbert 1979, Han-

son et al. 1982, Osborn 1984), or can be transformed

to approximate linearity; (2) the linear function can

be extrapolated in a stable fashion far beyond the

elevational range of the data; and (3) the linear func-

tion can be easily manipulated to compensate for
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inadequacies in the data, which are rarely sufficient

to fully represent the vertical distribution of the cli-

mate element. A simple, rather than multiple, regres-

sion model was chosen because it is difficult to con-

struct a knowledge base to account for and interpret

the complex relationships between multiple indepen-

dent variables and climate. For the time being, the

knowledge base and inference engine concentrate

on controlling for the effects of variables other than

elevation by weighting the data points based on sev-

eral factors, as will be discussed later. 

The simple linear regression has the form:

Y =  β1 X + β0; β1m ≤ β1 ≤ β1x (1)

where Y is the predicted climate element, β1 and β0 are

the regression slope and intercept, respectively, X is

the DEM elevation at the target grid cell, and β1m and

β1x are the minimum and maximum allowable regres-

sion slopes (Table 1). The climate-elevation regression

is developed from x,y pairs of elevation and climate

observations supplied by station data. All stations
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Table 1. Descriptions and typical ranges and default values of relevant PRISM parameters for regional-scale climatological mod-

eling. In an application, the model operator may: (1) use the default values; (2) adjust the parameters based on expert judgement;

or in some cases, (3) allow the model to estimate the values (see parameters annotated with a or c). Parameters showing only 1 

(default) value are those that are infrequently varied from application to application

Name Description Typical min.default/max.

values

Regression function

r Radius of influence 30/50/100 kma

sf Minimum number of on-facet stations desired in regression 3/5/8 stationsa

st Minimum number of total stations desired in regression 10/15/30 stationsa

Precipitation Temperature

(km–1)b (°C km–1)

β1m Minimum valid regression slope Layer 1 0.0 –10

Layer 2 –0.5 –10

β1x Maximum valid regression slope Layer 1 3.0 0/10/20

Layer 2 0.0 0

β1d Default valid regression slope Layer 1 0.8 –6

Layer 2 –0.2 –6

Distance weighting

a Distance weighting exponent 2.0

Fd Importance factor for distance weighting 0.8

Elevation weighting

b Elevation weighting exponent 1.0

Fz Importance factor for elevation weighting 0.2

∆zm Minimum station-grid cell elevation difference 100/200/300 m

below which elevation weighting is maximum

∆zx Maximum station-grid cell elevation difference 500/1500/2500 m

above which elevation weight is zero

Facet weighting

c Facet weighting exponent 0.0/1.5/2.0

gm Minimum inter-cell elevation gradient, below which a cell is flat 1 m/cellc

λx Maximum DEM filtering wavelength for topographic facet determination 60/80/100 km

Coastal proximity weighting

px Maximum coastal proximity difference, above which proximity weight is zero Varies with application

v Coastal proximity weighting exponent 0.0/1.0/1.0

Vertical layer weighting

y Vertical layer weighting exponent 0.0/1.0/1.0c

aCan be optimized automatically with cross-validation statistics
bPrecipitation-elevation slopes are normalized by the mean precipitation in the regression function, e.g. 

(100 mm km–1 slope)/(1000 mm mean precipitation) = 0.1 km–1 normalized slope
cCan be varied dynamically by the model



Clim Res 22: 99–113, 2002

located within a user-specified maximum radius from

the target grid cell (r) are entered into the regression

function (Table 1). If necessary, the model expands the

radius until the number of stations retrieved is greater

than or equal to st, the minimum number of stations

desired in each regression (Table 1). st is typically set

to a value which represents a compromise between

statistical robustness and a desire for local detail in the

predictions; 10 to 30 stations is a common range.

It is necessary to place bounds on the regression

slope, because sparse station data may not represent

the local climate-elevation relationship accurately,

especially if only a narrow range of elevations is avail-

able. If, during the regression calculations, β1 initially

falls outside of the range defined by β1m and β1x, β1 is

deemed invalid and attempts are made to correct the

problem by omitting stations one by one and rerunning

the regression, starting with those with the lowest

weights (station weighting is discussed below) and

proceeding to those with greater weights. The omis-

sion process ends when either β1 falls within the valid

range or the total number of stations falls to st. If β1

remains invalid when st is reached, β1 is assigned the

value of β1d, the default slope for that layer. β1d is

usually set to the mean regression slope for the model-

ing domain (Table 1). 

β1d, β1m and β1x can be set separately for the 2 atmos-

pheric layers described in Section 7. For precipitation,

they are expressed in units that are normalized by the

average observed value of the climate element in the

regression data set for the target cell. Evidence gath-

ered during model development indicates that this

method of expression is relatively stable in both space

and time (Daly et al. 1994). 

Values of r, st, and sf (sf is the number of stations

desired on the same topographic facet; see Section 5

for discussion) can be determined through jackknife

cross-validation (Daly et al. 1994). The combination of

values that produces the lowest mean absolute predic-

tion error (MAE) can be automatically adopted, or the

user can elect to use other values for any of these para-

meters. 

4. STATION WEIGHTING

Upon entering the regression function, each station

is assigned a weight that is based on several factors.

The combined weight, W, of a station is given as fol-

lows:

W =  [FdW(d)2 + FzW(z)2]1/2 W(c)W(l)W(f)W(p)W(e) (2)

where W(d), W(z), W(c), W(l), W(f), W(p), and W(e) are

the distance, elevation, cluster, vertical layer, topo-

graphic facet, coastal proximity, and effective terrain

weights, respectively. Fd and Fz are the distance and

elevation weighting importance factors. All weights

and importance factors, individually and combined,

are normalized to sum to unity. Distance and elevation

weighting are discussed in this section, facet weight-

ing in Section 5, coastal proximity weighting in Section

6, vertical layer weighting in Section 7, and effective

terrain height in Daly (2002). Cluster weighting, not

discussed in detail here, seeks to down-weight stations

that are located in tight clusters to minimize over-rep-

resentation of one particular location over others in the

regression function. 

The distance and elevation weighting importance

factors, Fd and Fz, apply a measure of scaling to the

vertical dimension by controlling the relative impor-

tance of distance and elevation in the regression equa-

tion. In model applications, the influence of horizontal

distance on inter-station correlation seems to be

greater overall than that of vertical distance. Thus, Fd

is typically set to 0.8 and Fz to 0.2 (Table 1). 

A station’s influence in the regression function is

assumed to decrease as its distance from the target

grid cell increases. The distance weight is given as:

(3)

where d is the horizontal distance between the station

and the target grid cell and a is the distance weighting

exponent. a is typically set to 2, which is equivalent

to an inverse-distance-squared weighting function

(Table 1). 

Elevation weighting allows the model to focus on a

vertical range that is specific to the target grid cell,

thereby accommodating climate profiles that may vary

in slope across the altitudinal range of the data. A sta-

tion’s influence in the regression function is assumed

to decrease as its vertical, or elevational, distance from

the target grid cell increases. Elevation weight is cal-

culated as follows:

(4)

∆z is the absolute elevation difference between the sta-

tion and the target grid cell, b is the elevation weight-

ing exponent, ∆zm is the minimum elevation differ-

ence, and ∆zx is the maximum elevation difference. b,

∆zm, and ∆zx are parameters (Table 1). b is typically set
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to 1.0, which is equivalent to a 1-dimensional inverse-

distance weighting function. ∆zm is the elevation dif-

ference below which the elevation weight is 1. Use of

∆zm creates a ‘plateau’, whereby stations just a few 10s

of vertical meters from the target grid cell elevation do

not dominate the regression to the exclusion of others,

perhaps only 100 vertical meters away. A typical ∆zm

varies from about 100 to 300 m. ∆zx is the elevation dif-

ference beyond which elevation weighting is zero.

This enables data point inclusion to be restricted to a

local elevation range. A typical ∆zx ranges from 500 to

2500 m (Table 1). 

5. TOPOGRAPHIC FACETS

A topographic facet is a contiguous terrain slope

with a common orientation, delineated at a variety of

scales, from the major leeward and windward sides of

large mountain ranges to north- and south-facing hill

slopes. At each grid cell, the model chooses the topo-

graphic facet scale that best matches the data density

and terrain complexity, and assigns the highest

weights to stations on the same topographic facet. The

model can also be configured to estimate the climatic

significance of the facets, reducing the weighting

exponent when facets appear to have little climatolog-

ical importance.

5.1. Delineation of topographic facets

Effective delineation of facet orientation is not a

straightforward process. Tests using simple vector

averages of the east-west and north-south components

of elevation gradients produced misleading results,

especially along ridge lines and valley bottoms, where

the directional gradient was not easily identified. The

current method for delineating topographic facets is

described in Gibson et al. (1997) and is summarized

here.

Facet grids are constructed for 6 DEM smoothing

levels, or scales (Daly et al. 1994). The smoothed DEM

for each level is prepared by applying a modified

Gaussian filter (Barnes 1964) to the original DEM. The

filtering wavelength for each of the 6 levels is con-

trolled by a user-defined maximum wavelength (λx)

(Table 1). The DEM is filtered at equal intervals

between a wavelength equal to the DEM resolution

and λx. The orientation of each cell is computed from

elevation gradients between the 4 adjacent cells (Daly

et al. 1994) and assigned to an orientation bin on an 8-

point compass. Elevation gradients less than a user-

defined constant (gm) are considered flat (Table 1). At

higher wavelengths, a distribution of orientation bins is

created for the target cell by calculating the orienta-

tions of all neighboring cells within a radius that

matches the filter wavelength. The frequency distribu-

tion of bins is simplified using a set of 15 rules, as

described in Gibson et al. (1997). The rule that best

matches the distribution is used to assign an orienta-

tion to the target grid cell. 

Operationally, a combination of station data density

and local terrain complexity determines the appropri-

ate facet smoothing level for a target grid cell. To find

this level, PRISM attempts to retrieve a user-specified

number of stations (sf) that are on the same contiguous

facet as the target cell. Starting with the smallest-

wavelength facets at level 1, then proceeding to level 2

and beyond if necessary, PRISM accumulates stations

until either sf is reached or all facet levels have been

exhausted. 

5.2. Calculation of the facet weight

The facet weight for a station is calculated as:

(5)

where ∆f is the absolute orientation difference

between the station and the target grid cell (maxi-

mum possible difference is 4 compass points, or 180°),

B is the number of intervening barrier cells with an

orientation significantly different than that of the tar-

get grid cell, and c is the facet weighting exponent. A

station is considered to be on the same facet as the

target grid cell, and hence receives full facet weight,

if it meets 2 conditions: (1) it resides on a cell that has

a terrain orientation within one compass point of the

target cell; and (2) the station’s cell is located within

the same group of similarly-oriented cells, or facet, as

the target cell. The value of ∆f quantifies condition 1,

and B quantifies condition 2. B is calculated by identi-

fying a line of cells that follows the shortest distance

between a station and the target grid cell, and count-

ing the total number of cells that do not possess orien-

tations within one compass point of that of the target

grid cell (∆f > 1). A value of B greater than zero indi-

cates that there are grid cells with significantly differ-

ent orientations between the station and the target

cell, suggesting that the station is on a different facet.

This helps discern between stations that are on the

same contiguous facet as the target cell (i.e. the same

mountain slope, where, ∆f = 1 and B = 0) and those

that happen to have the same orientation as the target

cell, but reside on a completely different group of sim-
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ilarly-oriented grid cells (i.e. different mountain

ranges, where ∆f = 1 and B > 0). 

The appropriate value of c depends on the impor-

tance of topographic facets in the modeling region. In

mountainous coastal regions, c is typically set at about

1.5 to 2.0, because of the sharp rain shadows that can

occur to the lee of coastal mountains (Table 1). In

inland and relatively flat regions, where rain shadows

are less pronounced, a value of 1.5 or less will suffice.

The importance of topographic facets in determining

climatic patterns varies both spatially and temporally.

Therefore, an option can be invoked, if sufficient sta-

tion data exist, which allows varying amounts of

‘crosstalk’, or sharing of data points, among topo-

graphic facets. Redefining c as the maximum value of

the facet weighting exponent, PRISM compares the

MAE of the climate-elevation regression line (Eq. 1)

from 2 situations: (1) when stations from only the target

cell’s topographic facet are used; and (2) when all

nearby stations are used (constrained by r and st). If the

addition of stations from other facets increases the

MAE by less than a factor of 2, the facet weighting

exponent is reduced and the influence of off-facet sta-

tions is increased. If the MAE increases by more than

this amount, the facet weighting exponent remains

unchanged. The factor-of-2 criterion was selected after

sensitivity tests suggested that sparse station data

often underestimated the true MAE about the regres-

sion line by about one-half; therefore, increases in

MAE up to twice the original value were not consid-

ered to indicate a major shift in climate regime. The

new value of c is calculated as follows:

(6)

where MAEa and MAEb are the mean absolute errors

of the elevation regression using stations from the

target cell’s facet only and with all nearby stations,

respectively. Stations entering these regressions are

already weighted for distance, elevation, and cluster-

ing. 

5.3. Olympic Mountains rain shadow

Many coastal mountains produce rain shadows

through uplift and blockage of low-level moisture,

which enhances precipitation on their windward expo-

sures and reduces precipitation on their leeward sides.

The Olympic Mountains in northwestern Washington,

containing what are arguably the wettest locations in

the continental United States, provide an example.

Fig. 2 shows the terrain of the Olympic Peninsula as

depicted by a DEM with 500 m grid cell size. At this

scale, the Olympic Mountains appear as a series of

deeply divided ridges and valleys that together form a

roughly elliptical massive. During winter, a nearly con-

tinuous series of Pacific frontal systems affects the

region. Moisture-bearing winds arriving off the ocean

from a generally southwesterly direction are blocked

and uplifted by the large-scale bulk of the mountains,

producing copious precipitation on the windward

slope of the range, but leaving the leeward side in a

significant rain shadow. The locations of precipitation

stations are shown in Fig. 2. There are few stations in

the vicinity of the mountains, especially at higher ele-

vations, making this a challenging area for precipita-

tion mapping. 

Fig. 3 shows topographic facet grids for the region at

2 wavelengths, 4 and 60 km. These represent the

smallest and largest wavelengths typically used in

mapping of precipitation using the PRISM topographic

facet weighting functions. Grid cells with the same ter-

rain orientation naturally occur in groups to form con-

tiguous facets. The 4 km wavelength (Fig. 3a), while

spatially smoother than the 500 m depiction in Fig. 2,

still exhibits small facets made up of few grid cells that

are too finely resolved to be physically important for

some climatic elements, such as precipitation, and are

represented by few stations. The largest-wavelength

facets (Fig. 3b) derived from the highly smoothed DEM

are very generalized, describing broad scale terrain

features and climatically important regimes, such as

the windward and leeward slopes of the Olympic

Mountains. 

Fig. 4a depicts a 1961–1990 mean annual precipita-

tion map for the region. This map was created using
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Fig. 2. Terrain map of the Olympic Peninsula, in the northwest
corner of Washington State, USA. Terrain resolution is 500 m.
Locations of precipitation stations used in mapping are shown 

as black dots, town locations are red dots
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PRISM algorithms that include linear precipitation-

elevation regression functions and topographic facet

station weighting at each grid cell. The model was run

for each month, and the resulting grids summed to pro-

duce an annual total. The topographic weighting expo-

nent c was set to 1.8. Strong orographic enhancement

of precipitation is clearly evident on the southwestern

slopes of the mountains, with annual values exceeding

6000 mm yr–1. In the northeastern portion of the moun-

tains, elevations are relatively high (see Fig. 2), but

lack of exposure to the moist southwesterly flow

reduces precipitation significantly. Downslope warm-

ing and drying along the lower lee slope of mountains

produces further drying, culminating in a precipitation

minimum of less than 500 mm yr–1 on the coastal plain

near Port Angeles. The configuration of these precipi-

tation patterns bears a strong similarity to the long-

wavelength facet configuration in Fig. 3b. Topographic

107

Fig. 3. Topographic facet grids overlain on shaded terrain
grids for the Olympic Peninsula delineated at 2 wavelengths: 

(a) 4 km and (b) 60 km

Fig. 4. Mean annual (1961–1990) precipitation overlain on
500 m terrain for the Olympic Peninsula with: (a) elevation
regression functions and topographic weighting at each grid
cell; (b) same as (a) except without topographic facet weight-
ing; and (c) same as (b) except without terrain (all elevations 

set to zero). Mapping grid resolution is 4 km
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facet weighting effectively constrains the influences of

wet (windward) and dry (windward) stations to those

areas that are most similar topographically. 

Fig. 4b shows a precipitation map produced by the

same PRISM algorithms, but with topographic facet

weighting turned off (c = 0). With nothing to limit the

spatial influence of leeward stations, the area of maxi-

mum precipitation in the original map (Fig. 4a) ‘col-

lapses’ to less than 3000 mm yr–1, with only the south-

ern edge remaining intact. Spatial patterns are no

longer dictated by the patterns of orographic precipita-

tion dynamics, but rather by the locations and avail-

ability of precipitation stations. In Fig. 4c, the effect of

elevation is removed altogether by setting all DEM ele-

vations to zero. This essentially leaves nothing but dis-

tance as the station weighting function. The resulting

map bears little resemblance to the original in Fig. 4a;

now, maxima of less than 3500 mm yr–1 occur in the

vicinity of wetter stations on the windward side of the

mountains.

There is independent evidence to suggest that the

map in Fig. 4a is closer to the ‘true’ precipitation field

than the others. Modeled precipitation values compare

well with runoff from some of the rivers shown in

Fig. 2. On the windward side, mean annual runoff is

3452 mm in the Hoh River watershed (1961–1990),

3442 mm in the Queets River watershed (1965–1990),

and 4042 mm in the Quinault River watershed

(1975–1990) (USDOI-USGS 2001). Estimating that

about 30% of the precipitation might be lost to evapo-

transpiration annually, precipitation on the windward

slopes of the Olympics must be at least 4500 to 5000

mm on average, with higher values likely on the upper

slopes. The patterns and magnitudes of precipitation in

Fig. 4a are also very similar to those of a detailed

annual precipitation map for the period 1930-1957 pre-

pared manually by the Soil Conservation Service in

1965, and often referred to as the ‘official’ precipitation

map of Washington (USDA-SCS 1965). The area of

maximum precipitation on this map is in exactly the

same location as in Fig. 4a, and exceeds 6100 mm,

compared to 7000 mm in Fig. 4a. 

6. COASTAL PROXIMITY

Coastal proximity grids have been developed that

estimate the proximity of each grid cell to major water

bodies. These grids are derived from a variety of

sources that vary from a simple measure of distance

from a coastline in relatively flat terrain, to outputs

from algorithms that model the penetration of marine

influence into complex terrain. This information is

used to select and weight stations according to their

similarity in coastal proximity to the target grid cell.

6.1. Calculation of the coastal proximity weight

The coastal proximity weight for a station is calcu-

lated as:

(7)

where ∆p is the absolute difference between the sta-

tion and target grid cell coastal proximity index, v is

the coastal proximity weighting exponent, and px is the

maximum proximity difference. The exponent v is typ-

ically set at 1.0 for regions where coastal effects are

significant (Table 1). If ∆p for a station exceeds px, that

station’s weight becomes zero (Table 1). 

6.2. Coastal California temperature gradient

The usefulness of coastal proximity weighting is

exemplified when mapping August maximum temper-

ature along the central California coast. During sum-

mer, marine upwelling in an already cool offshore cur-

rent, in combination with northwesterly (onshore)

winds, keeps the coastal strip much cooler than areas

just a few kilometers inland. This effect is relatively

continuous up and down the coastline, with occasional

penetration of coastal air into inland valleys exposed to

the ocean. The coastal/inland temperature gradient is

greatest where inland penetration is blocked by moun-

tains near the coastline. Unfortunately, the distribution

of coastal and inland temperature stations has signifi-

cant gaps, and it does not always depict the situation

accurately (Fig. 5). 

Without coastal proximity weighting, the PRISM-

predicted mean August maximum temperature map

exhibited tongues of warm temperature, influenced by

inland observations, interrupting the coastal tempera-

ture field where there are no coastal stations (e.g. Point

Reyes, northwest of San Francisco; Fig. 5a). Con-

versely, a lack of inland stations allowed too much

coastal influence in areas where terrain blockage of

marine penetration was known to be significant (e.g.

Big Sur area, south of Monterey, Fig. 5a). 

An advection algorithm that simulates the penetra-

tion of marine influence into complex terrain was

used to generate a coastal proximity grid for PRISM,

and coastal proximity weighting was applied (z =

1.0). The result was a significant reduction in the

influence of inland stations on coastal temperature

estimation, and vice versa. A relatively continuous,
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and more realistic, strip of cooler temperatures along

the coast was simulated, with limited areas of pene-

tration inland (e.g. Salinas Valley, southeast of Mon-

terey; Fig. 5b). Jackknife cross-validation errors

helped quantify the effectiveness of coastal proximity

weighting. Without proximity weighting, the MAE

for the 12 coastal stations shown in Fig. 5 was 5.0°C.

With proximity weighting, the MAE was reduced to

1.6ºC. 

7. THE TWO-LAYER ATMOSPHERE

To simulate situations where non-monotonic rela-

tionships between climate and elevation are possible

(e.g. temperature inversions and mid-slope precipita-

tion maxima), climate stations entering the regression

are divided into 2 vertical layers. Layer 1 represents

the boundary layer and layer 2 the free atmosphere

above it. Stations in the same layer as the target grid

cell receive full weight, while those in the adjacent

layer receive lower weights. In essence, the layer

weighting scheme limits the ability of stations in one

layer to influence the regression function of the

other. 

7.1. Calculation of the vertical layer weight

The vertical layer weight for a station is calculated as:

(8)

where ∆l is the absolute layer difference between the

station and the target grid cell (1 for adjacent layer, 0

for same layer), ∆z is the absolute elevation difference

between the station and the target grid cell, and y is

the vertical layer weighting exponent. If the station

and target grid cell are in the same layer, the layer

weight is 1. If not, the layer weight depends on their

elevation difference. As in elevation weighting, the

elevation difference is subject to ∆zm, the minimum

elevation difference. If the elevation difference

between the station and the target grid cell is less than

∆zm, even if station and cell are in different layers, the

layer weight is 1. As a result, the boundary between

layers 1 and 2 is ‘fuzzy’, with a region around this

boundary that shares stations from both layers. The
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Fig. 5. Map of 1961–1990 mean August maximum temperature for the coast of central California (a) without and (b) with coastal
proximity weighting. Open squares denote locations of coastal stations. Solid dots denote inland stations. Modeling grid

resolution is 4 km
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appropriate value of y depends on the importance of a

boundary layer or inversion in the modeling region. A

value of 0.5 to 1.0 is often used where trade-wind

inversions or cold-air drainage are expected to pro-

duce reversals in the lapse of rainfall or temperature

(Table 1). 

When the crosstalk option is invoked, PRISM calcu-

lates the spatially and temporally varying strength of

inversions and boundary layer integrity in the same

manner as is used for topographic facets (see Eq. 6).

Redefining y as the maximum value of the layer

weighting exponent, PRISM compares the MAE of the

climate-elevation regression line (Eq. 1) from 2 situa-

tions: (1) when stations from only the target cell’s layer

are used, and (2) when all nearby stations are used

(constrained by r and st). If the addition of stations from

the adjacent vertical layer increases the MAE by less

than a factor of 2 (see Section 5.2 for explanation), the

layer weighting exponent is reduced (Eq. 6) and

crosstalk is thereby increased. If the MAE increases by

more than this amount, the layer weighting exponent

remains unchanged. 

7.2. Estimation of potential wintertime inversion

height

A simple method was developed to spatially distrib-

ute the height of the top of the wintertime inversion

layer, should it exist, for use in mapping temperature.

While this method may be overly simplistic for some

uses, in this case it is not necessary that the estimated

height be extremely accurate, because it is subject to

∆zm, which varies from about 100 to 300 m. In addition,

the inversion height represents only a candidate divid-

ing line between stations, which may be partially or

fully dissolved if the relationship between the climate

element and elevation is similar above and below it.

Use of the potential inversion height grid in PRISM

modeling is restricted to regions and seasons for which

temperature inversions are known to exist.

A grid of elevations representing the top of the

boundary layer for the contiguous United States under

wintertime temperature inversions was prepared

using a 2.5 min DEM by: (1) finding the minimum ele-

vation of all grid cells within an approximately 40 km

radius of each grid cell of interest; (2) low-pass filtering

this minimum elevation grid by averaging all cells

within a 40 km radius to produce a smooth, ‘base’ ele-

vation grid; and (3) adding a constant, climatological

inversion height to the base elevations. After perform-

ing sensitivity tests, 40 km was subjectively chosen as

the search and averaging radius, because this scale

was small enough to discern many small mountain/val-

ley systems, but large enough to give a stable field that

avoided including very small-scale features that were

best represented as parts of larger scale mountain/val-

ley systems. Radii other than 40 km may be appropri-

ate for modeling domains of different size and resolu-

tion than the contiguous United States at 2.5 min, but

insufficient information has been gathered to general-

ize the procedure. 

Analyses of radiosonde data from several cities in the

United States with persistent, climatological inversions

indicated that the inversion top typically occurred at

200 to 300 m above ground level. The inversion top

was quite consistent; when an inversion formed, it

tended to do so at about the same height each time.

Therefore, 250 m was added to the base elevation at

each grid cell to obtain the potential inversion height

above sea level. A potential wintertime inversion

height grid for the contiguous United States is shown

in Fig. 6. Valleys and other depressions tend to fall

within the boundary layer, while local ridge tops and

other elevated terrain emerge into the free atmosphere

(Johnson et al. 2000). 

8. SUMMARY AND CONCLUSIONS

For the most of the 20th century, climate maps were

produced manually by expert climatologists using pen

and paper. These maps were considered the best avail-

able, but were rarely updated because of the large

amount of effort and expense involved in their produc-

tion. Beginning in the latter part of the 20th century

and continuing today, the demand for updated, GIS-

compatible climate maps has increased dramatically.

In response, a variety of computerized statistical tech-

niques have been used to facilitate the production of

such maps. However, observational data are often too

sparse and unrepresentative to enable statistical
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Fig. 6. Estimated wintertime inversion layer grid for the con-
terminous US. Shaded areas denote terrain estimated to be in
the free atmosphere (layer 2) under winter inversion condi-
tions, should they develop. Unshaded areas are expected to
be within the boundary layer (layer 1). Grid resolution is 4 km
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Free Atmosphere (Layer 2)
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approaches to directly create high-quality climate

maps that truly represent the state of knowledge.

While these approaches have a great potential advan-

tage over human-expert methods in terms of speed,

consistency, and repeatability, they lack a spatial cli-

mate knowledge base that can be drawn upon to fill

the need for expertise and experience in the mapping

process. 

An effective hybrid approach is to use the wealth of

knowledge on climate mapping to help enhance, con-

trol, and parameterize a statistical technique. To that

end, the objective of this paper was to describe the

thinking and rationale behind the development of a

spatial climate knowledge-based system (KBS) and to

present working examples in the form of algorithms

from a statistical regression model known as PRISM

(parameter-elevation regressions on independent

slopes model). The ultimate goal is to develop an

expert system capable of reproducing the process a

knowledgeable climatologist would use to create high-

quality climate maps, with the added benefits of con-

sistency and repeatability. However, knowledge must

first be accumulated and evaluated through an ongo-

ing process of model application; development of

knowledge prototypes, parameters, and parameter set-

tings; testing; evaluation; and modification. 

The knowledge base presented here draws upon

over a century of observations and research in a disci-

pline that can be termed ‘geospatial climatology’, the

study of the spatial patterns of climate and their rela-

tionships with geographic features. The basic concept

is the strong variation of climate with elevation. Eleva-

tion is an excellent statistical predictor variable,

because it is usually sampled at a far greater spatial

density than climate variables and is often estimated

on a regular grid. This climate-elevation relationship

takes the statistical form of a weighted climate-eleva-

tion regression function. The regression function is

evaluated independently at each grid cell, in a mov-

ing-window fashion, to account for spatial variations in

the climate-elevation relationship. Climate stations are

assigned weights that account for other climatically

important factors besides elevation. Aspect and topo-

graphic exposure, which affect climate at a variety of

scales, from hill slope to windward and leeward sides

of mountain ranges, are simulated by dividing the ter-

rain into topographic facets. A coastal proximity mea-

sure is used to account for sharp climatic gradients

near coastlines. A 2-layer model structure divides the

atmosphere into a lower boundary layer and an upper

free atmosphere layer, allowing the simulation of tem-

perature inversions, as well as mid-slope precipitation

maxima. The effectiveness of various terrain configu-

rations at producing orographic precipitation enhance-

ment is also estimated.

While ongoing development will undoubtedly result

in the continued addition of knowledge concerning the

relationships between climate and geographic vari-

ables, effort is also focused on providing dynamically

based knowledge to the system. For example, a trajec-

tory module that calculates relative moisture loss over

terrain barriers during mean onshore storm flow has

been developed and used in precipitation modeling

applications in Alaska and British Columbia, where

data were too sparse to properly locate many signifi-

cant rain shadows. A second model that simulates the

penetration of a shallow marine layer onshore into

complex terrain has been used for coastal temperature

mapping along the west coast of the USA and Canada

(e.g. see Section 6.2).

Both the knowledge base and resulting PRISM algo-

rithms are in a state of constant development. Current

information on mapping activities and access to a large

selection of digital climate layers are available on the

World Wide Web at http://www.ocs.orst.edu/prism/

and http://www.climatesource.com.
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