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Abstract: In this paper, a knowledge-based Artificial Fish-Swarm (AFA) optimization algorithm with 

crossover, CAFAC, is proposed to enhance the optimization efficiency and combat the blindness of the 

search of the AFA. In our CAFAC, the crossover operator is first explored. The knowledge in the Culture 

Algorithm (CA) is next utilized to guide the evolution of the AFA. Both the normative knowledge and 

situational knowledge is used to direct the step size as well as direction of the evolution in the AFA. Ten 

high-dimensional and multi-peak functions are employed to investigate this new algorithm. Numerical 

simulation results demonstrate that it can indeed outperform the original AFA.  
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1. INTRODUCTION 

The Artificial Fish-Swarm Algorithm (AFA) is a simulation 

behaviour and population based optimization method, which 

was firstly developed by Li Xiao-lei in 2002. (Li, et al., 

2002). The AFA can search for the global optimum 

effectively, and has an adaptive ability for search space. The 

AFA individual behaviour is to hunt for the local optimum. 

Therefore, avoiding individual premature becomes indeed 

difficult. In this case, artificial fish can be stuck into local 

optima when dealing with multi-modal optimization 

problems. To improve the global convergence of the AFA, 

we embed the crossover operator into the process of the 

AFA, and apply culture algorithms to guide the evolution of 

artificial fish.  

The Cultural Algorithm (CA) was proposed by Reynolds in 

1994, which has been utilized in various evolutionary 

algorithms (Reynolds, 1994; Chung and Reynolds, 1996; 

Reynolds and Chung, 1997; Coelho and Mariani, 2006; Wu, 

et al., 2010a, b).  

In this paper, we add the crossover operation into the AFA, 

and a fusion of the CA and AFA with crossover, CAFAC, is 

proposed to overcome the drawback of the blind search of 

the regular AFA. A total of four versions of the CAFAC 

algorithm are explored.  

The rest of this paper is organized as follows. Section 2 

briefly introduces the background of the AFA and CA. 

Section 3 discusses the underlying principle of the four 

versions of CAFAC. In Section 4, ten test functions are used 

to investigate the behaviour of our CAFAC and compare it 

with the original AFA.  

2. ARTIFICIAL FISH-SWARM ALGORITHM AND 

CULTURAL ALGORITHMS 

2.1 The Artificial Fish-Swarm Algorithm 

In lakes and seas, the fish can find the areas with the most 

nutriment. The basic idea of the AFA is to imitate the fish 

behaviours, such as praying, swarming and chasing. Suppose 

that the problem under consideration has D-dimensions. 

Initialize the swarm with N artificial fish. The state of one 

artificial fish can be formulated as: 

1
( , , )

i i iD
X x x= K 1, ,for i N= K , where 

i
X represents the 

target variable for the problem under consideration. 

( )
i

y f X=  stands for the food concentration of the artificial 

fish currently, where it is the objective function. The  

parameters in the AFA can be depicted as in Table 1: 

Table 1.  Parameters in AFA 

ij j id X X= −  distance between Xi and Xj 

Visual visual distance of the artificial fish 

individual 

step size of the movement of artificial fish 

δ  crowd factor of the artificial fish 

 

The basic behaviours of the artificial fish are explained as 

follows: 

(1). Preying: suppose the current state of the artificial fish is 

,
i

X the artificial fish selects a state
j

X randomly within the 

visual distance, such as (0,1)
j i

X X rand visual= + × . 

If ( ) ( )
j i

f X f X< the artificial fish moves from 
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i
X towards

j
X , which means that 1.t t

i i
X X

+→ The 

formulation can be explained as follows: 

1
(0,1)

t t

j it t

i i t t

j i

X X
X X rand step

X X

+
−

= + × ×
−

 .          (1) 

If ( ) ( ),
j i

f X f X> the artificial fish selects another state 

randomly again. If the artificial fish cannot meet the 

requirement in a given time, it moves one step randomly as: 
1 (0,1)t t

i i
X X rand step+ = + × .                  (2) 

 (2). Swarming: suppose the current state of the artificial fish 

is ,
i

X  and nf is the number of its fellows within the visual 

distance, which is equal to the number of elements in the set 

of { | }
j ij

B X d Visual= ≤ . If 0nf ≠ , which means the set B 

is not empty, let 
1

/
nf

centre j

j

X X nf
=

=∑  and ( )
center center

y f X=  

stand for the fitness of the centre position. 

If ,
center i

nf y yδ× < ×   this area is not crowded. If 

,
center i

y y< the artificial fish moves one step towards the 

centre position:  

1
(0,1)

t t

t t c i

i i t t

c i

X X
X X rand step

X X

+ −
= + × ×

−
.        (3) 

Otherwise, it executes the behaviour of preying. 

(3). Chasing: suppose the current state of the artificial fish 

is ,
i

X and 
min

X  stands for the best artificial fish individual 

within '
i

X s visual distance. nf is the number of
min

'X s  

fellows within the visual distance. 
min min

( )y f X=  , if 

min i
y y<  and

min
,

i
nf y yδ× < ×  the artificial fish moves one 

step to
min

X : 

1 min

min

(0,1)
t t

t t i

i i t t

i

X X
X X rand step

X X

+ −
= + × ×

−
.       (4) 

Otherwise, it executes the behaviour of preying. 

2.2 Culture Algorithms 

As proposed by Reynolds, the CA is composed of the 

population space, belief space, and communication protocol 

(Chung, 1997). The framework of the CA can be given in 

Fig. 1. 

Belief Space

Knowledge updated

Accept( ) Influence( )

Evolution of 

individals

Population Space

Evaluate( )Select( )

 

Fig. 1. The Framework of Culture Algorithms 

3. NOVEL KNOWLEDGE-BASED AFA WITH 

CROSSOVER 

The AFA has many interesting features, such as tolerance of 

initial values and parameters settings. However, due to the 

random step length and random behaviour, the artificial fish 

converges slowly at the mature stage of the algorithm. Thus, 

the optimization precision usually cannot be high enough, 

which result in the blindness of search and poor ability of 

maintaining the balance of exploration and exploitation. To 

combat with these shortcomings, a novel cultured AFA with 

crossover, CAFAC, is proposed and studied in this paper to 

enhance the optimization performance of the original AFA, 

especially the precision of the AFA. 

We first add the crossover operation to the AFA in order to 

change the state of the artificial fish such that it can search 

for the possible solution in more diverse areas. When the 

artificial fish hunts for food, it generally moves to a better 

direction. The exploitation of the crossover operator can 

help the artificial fish not only jump out the blindness search 

but also inherits the advantage of its parents. Next, inspired 

by the principle of the CA, we apply the normative 

knowledge and situational knowledge stored in belief space 

(Reynolds and Peng, 2004) in the CA into the AFA. Here, 

the fish swarm is regarded as the population space, where 

the domain knowledge is extracted from. Hence, the domain 

knowledge is formed and stored in belief space so as to 

model and impact the evolution of the population at 

iteration. Note that in this paper, the optimization problems 

under consideration are all static and constraint-free. In the 

four versions of the CAFAC, we use the situational 

knowledge and normative knowledge to guide the direction 

and step size of the evolution procedure. Both of them can 

be depicted as follows. 

3.1 Structures of Belief Space in CAFAC   

The situational knowledge provides a set of exemplars or 

best individuals, which are available for the interpretation of 

specific individual experience (Chung, 1997). Here, the 

situational exemplar set consists of only the best particle 

found so far, that is, at t iteration, 

1 2
| { , , , }t t t t t

n
S S S s s s=< = >K , In other words, it can be 

initialized with the best particle in the initial fish swarm, and 

updated by the following function:  

1 1

,1
X ( ) ( )

gbest

t t t

gbest jt

j t

j

if f X f s
s

s otherwise

+ +

+
 <

= 


,               (5) 

where 
1t

gbest
X

+
 denotes the best artificial fish individual in the 

swarm at generation 1t + . 

The normative knowledge describes the feasible solution 

space of the optimization problems (Chung, 1997). It is a set 

of information for each variable, and is given as:  

, , ,N I U L D= ,                            (6) 
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where U, L and D are n -dimensional vectors, and 

{ }|I x l x u= ≤ ≤ , n is the number of the variables, 
j

l  and 

j
u are the lower and upper bounds for the thj variable, 

respectively, 
j

L and 
j

U are the values of the fitness function 

associated with the bound 
j

l  and 
j

u . Generally, 
j

l  and 
j

u  

are initialized with the lower and upper bounds of 

individuals.
j

L  and 
j

U  are usually initialized with positive 

infinity. The normative knowledge is updated as follows: 

, ,1

, ,1

(X )

( )

t t

i j i j j i jt

j t

j

t t

k j k j j k jt

j t

j

x if x l or f L
l

l otherwise

x if x u or f X U
u

u otherwise

+

+

 ≤ <
= 


 ≥ <
= 


,                    (7) 

,1

,1

( ) ( )

( ) ( )

t t

i i j j i jt

j t

j

t t

k k j j k jt

j t

j

f X if x l or f X L
L

L otherwise

f X if x u or f X U
U

U otherwise

+

+

 ≤ <
= 


 ≥ <
= 


  ,              (8) 

where the th
i individual affects the lower bound for 

variable j , and the th
k individual affects the upper bound for 

variable j . Note, t denotes the current generation of the 

belief space. 

3.2 Acceptance Function in CAFAC   

The acceptance function determines which individuals and 

their performances can have impact on the knowledge in the 

belief space. The number of the individuals accepted for the 

update of the belief space is obtained according to the 

following function (Reynolds and Chung, 1994):  

( , ) /
a

f N t N N tβ β= ⋅ + ⋅    ,                        (9) 

where, N is the size of the swarm, t is the iteration number, 

and 0.2β = . 

3.3 Influence Functions in CAFAC   

The belief space can influence the evolution in the 

population space in three different waysÖ 

• Determining the step size of the evolution.  

• Determining the direction of the evolution. 

• Determining the visual distance of the AFA. 

More precisely, if the normative knowledge is used to 

determine the step size of the evolution and visual distance 

in the AFA, our knowledge-based AFA is named as CAFAC 

(Ns). The influence function for the CAFAC is defined as in 

Tables 2, 3, and 4. 

If the situational knowledge is used to guide the direction of 

the evolution, our knowledge-based AFA is named as 

CAFAC (Sd).  

If the normative knowledge guides the step size and visual 

distance and the situational knowledge is used to determine 

the direction of the evolution, respectively, our knowledge-

based AFA is named as CAFAC (Ns+Sd).  

If the normative knowledge is used to determine the step 

size and direction of the evolution and visual distance, our 

knowledge-based AFA is named as CAFAC (Ns+Nd).  

Table 2.  Influence Function for Swarming 

swarming 
(Ns) 

1 ( ) (0,1) ( )t t
t t k ck ik
ik ik t t

c i

size I rand x x
x x

X X

+ × × −
= +

−
 

swarming 

(Sd) 
1

(0,1) ( )

(0,1) ( )

(0,1) ( )

t t
t t tck ik
ik ik kt t

c i

t t
t t t tck ik
ik ik ik kt t

c i

t t
t ck ik

ik t t

c i

rand step x x
x if x s

X X

rand step x x
x x if x s

X X

rand step x x
x otherwise

X X

+

 × × −
 + <
 −

 × × −

= − >
−


× × − +

 −


 

swarming 

(NsSd) 
1

( ) (0,1) ( )

( ) (0,1) ( )

( ) (0,1) ( )

t t
t t tk ck ik
ik ik kt t

c i

t t
t t t tk ck ik
ik ik ik kt t

c i

t t
t k ck ik

ik t t

c i

size I rand x x
x if x s

X X

size I rand x x
x x if x s

X X

size I rand x x
x otherwise

X X

+

 × × −
 + <
 −

 × × −

= − >
−


× × − +

 −


 

swarming 

(NsNd) 
1

( ) (0,1) ( )

( ) (0,1) ( )

( ) (0,1) ( )

t t
t t tk ck ik
ik ik kt t

c i

t t
t t t tk ck ik
ik ik ik kt t

c i

t t
t k ck ik

ik t t

c i

size I rand x x
x if x l

X X

size I rand x x
x x if x u

X X

size I rand x x
x otherwise

X X

+

 × × −
 + <
 −

 × × −

= − >
−


× × − +

 −


 

Table 3.  Influence Function for Preying 

selection 

operator 

 

1 (0,1) ( )t t

i i i
X X rand size I

+ = + ×  

_i try num≤   

preying(Ns) 

1
1

1

( ) (0,1) ( )t t
t t k ik ik
ik ik t t

i i

size I rand x x
x x

X X

+
+

+

× × −
= +

−
 

preying(Sd) 

1

1

1
1

1

1

1

(0,1) ( )

(0,1) ( )

(0,1) ( )

t t
t t tik ik
ik ik kt t

i i

t t
t t t tik ik
ik ik ik kt t

i i

t t
t ik ik

ik t t

i i

rand step x x
x if x s

X X

rand step x x
x x if x s

X X

rand step x x
x otherwise

X X

+

+

+
+

+

+

+

 × × −
 + <
 −

 × × −

= − >
−


× × − +

 −
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preying 

(NsSd) 

1

1

1
1

1

1

1

( ) (0,1) ( )

( ) (0,1) ( )

( ) (0,1) ( )

t t
t t tk ik ik
ik ik kt t

i i

t t
t t t tk ik ik
ik ik ik kt t

i i

t t
t k ik ik

ik t t

i i

size I rand x x
x if x s

X X

size I rand x x
x x if x s

X X

size I rand x x
x otherwise

X X

+

+

+
+

+

+

+

 × × −
 + <
 −

 × × −

= − >
−


× × − +

 −


 

preying 

(NsNd) 

1

1

1
1

1

1

1

( ) (0,1) ( )

( ) (0,1) ( )

( ) (0,1) ( )

t t
t t tk ik ik
ik ik kt t

i i

t t
t t t tk ik ik
ik ik ik kt t

i i

t t
t k ik ik

ik t t

i i

size I rand x x
x if x l

X X

size I rand x x
x x if x u

X X

size I rand x x
x otherwise

X X

+

+

+
+

+

+

+

 × × −
 + <
 −

 × × −

= − >
−


× × − +

 −


 
_i try num>   

preying(Ns) 
1 ( ) (0,1)t t

ik ik k
x x size I rand

+ = + ×  

preying 

(Sd) 
1

(0,1)

(0,1)

(0,1)

t t t

ik ik k

t t t t

ik ik ik k

t

ik

x rand step if x s

x x rand step if x s

x rand step otherwise

+

 + × <


= − × >


+ ×

 

preying 

(NsSd) 
1

( ) (0,1)

( ) (0,1)

( ) (0,1)

t t t

ik k ik k

t t t t

ik ik k ik k

t

ik k

x size I rand if x s

x x size I rand if x s

x size I rand otherwise

+

 + × <


= − × >


+ ×

 

preying 

(NsNd) 
1

( ) (0,1)

( ) (0,1)

( ) (0,1)

t t t

ik k ik k

t t t t

ik ik k ik k

t

ik k

x size I rand if x l

x x size I rand if x u

x size I rand otherwise

+

 + × <


= − × >


+ ×

 

Table 4.  Influence Function for Chasing 

Chasing(Ns) 
1

min

( ) (0,1) ( )t t
t t k muink ik
ik ik t t

i

size I rand x x
x x

X X

+ × × −
= +

−
 

Chasing 

(Sd) 

min

min

1 min

min

min

min

(0,1) ( )

(0,1) ( )

(0,1) ( )

t t
t t tk ik
ik ik kt t

i

t t
t t t tk ik
ik ik ik kt t

i

t t
t k ik

ik t t

i

rand step x x
x if x s

X X

rand step x x
x x if x s

X X

rand step x x
x otherwise

X X

+

 × × −
 + <
 −

 × × −

= − >
−


× × − +

 −


 

Chasing 

(NsSd) 

min

min

1 min

min

min

min

( ) (0,1) ( )

( ) (0,1) ( )

( ) (0,1) ( )

t t
t t tk k ik
ik ik kt t

i

t t
t t t tk k ik
ik ik ik kt t

i

t t
t k k ik

ik t t

i

size I rand x x
x if x s

X X

size I rand x x
x x if x s

X X

size I rand x x
x otherwise

X X

+

 × × −
 + <
 −

 × × −

= − >
−


× × − +

 −


 

Chasing 

(NsNd) 

min

min

1 min

min

min

min

( ) (0,1) ( )

( ) (0,1) ( )

( ) (0,1) ( )

t t
t t tk k ik
ik ik kt t

i

t t
t t t tk k ik
ik ik ik kt t

i

t t
t k k ik

ik t t

i

size I rand x x
x if x l

X X

size I rand x x
x x if x u

X X

size I rand x x
x otherwise

X X

+

 × × −
 + <
 −

 × × −

= − >
−


× × − +

 −


 

 

In Table 2, 3, and 4, ( )
k k k

size I u l= −  is the size of the belief 

interval, which is decided by the normative knowledge for 

the th
k variable. The rand(0,1) is a random number uniformly 

distributed within interval of (0,1). The other parameters are 

given in 2.1 and 3.1  

3.4 Crossover Operator 

A criterion is set up to judge whether the algorithm falls into 

the local optimum: 

1

1

( ) ( )
0.1

( )

t t

i i

t

i

f X f X

f X

−

−

−
< .                       (10) 

When the criterion is satisfied, the crossover operator (Wang 

and Cao, 2002) will be applied to the th
i artificial 

fish ( 1, , )
i

X i N= K : 

'

1 2 1
( )

i r r r
x x x xα= + × − ,                       (11) 

where 
2 1
,

r r
x x are two individuals selected randomly, 

1 2
,r r are two integers, which are generated randomly in the 

interval of [1,N] and 
1 2

.r r i≠ ≠ α is random number 

uniformly distributed in interval of [ ,1 ]d d− + , and d  is 

chosen as 0.25. Evaluate the child '

i
x , and replace the 

individual 
i

x with the child, if '

i
x performs better. 

In summary, the basic procedure of our CAFAC algorithm 

can be described as: 

(1). Set all the values for the parameters, and initialize the 

N artificial fish in the search ranges with random positions. 

(2)Evaluate all the artificial fishes using the fitness function 

y, and initialize the belief space. 

(3). For each th
i artificial fish, simulate the preying pattern, 

swarming, and chasing patterns separately, and select the 

best child fish. If the child is better, replace the th
i artificial 

fish with the child. 

(4). Update the belief space. 

(5). If the crossover criterion is satisfied, apply the crossover 

operator to the th
i artificial fish from Step 3. 

(6). Return back to Step 3 until the termination criterion is 

satisfied. 
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4. SIMULATIONS 

In this section, a total of 15 nonlinear functions are used to 

investigate the optimization capability of our CAFAC. All 

these functions are multi-modal functions, as given in Table 

5, and they have a lot of local optima around the global 

optima. As mentioned above, there are a total of four 

versions of our CAFAC: CAFAC(Ns), CAFAC(Sd), 

CAFAC(NsSd) and CAFAC(NsNd). The parameters of the 

four CAFAC variants are chosen as: N=40, D=30, 

visual=250, step=225, 24δ = , and try_num=10.  

Table 5. Test Functions 

30 30
1 2

Ackley

1 1

1 1
( ) 20exp( 0.2 ) exp( cos2 ) 20

30 30
i i

i i

f x x x eπ
= =

= − − − + +∑ ∑  

2 2

CM

1 1

( )=-0.1 cos(5 )
n n

i i

i i

f x x xπ
= =

+∑ ∑  

30
3 4

DeJongF4

1

( )
i

i

f x i x
=

= ⋅∑  

4 2

Expfun

1

( ) exp( 0.5 )
n

i

i

f x x
=

= − ∑  

3030
5 2

Griewank

1 1

1
( ) cos( ) 1

4000

i
i

i i

x
f x x

i= =

= − +∑ ∏  

20
6 2 2

Hyperelliptic

1

( ) i

i

f x i x
=

=∑  

7 2

LM1 1

1
2 2 2

1

1

( ) ( / )(10sin ( )

( 1) [1 sin ( )] ( 1) )
n

i i n

i

f x n y

y y y

π π

π
−

+

=

=

+ − + + −∑
 

8 2 2 2

LM2 1 1

1

2 2

( ) 0.1(sin (3 ) ( 1) [1 sin (3 )]

( 1) [1 sin (2 )])

n

i i

i

n n

f x x x x

x x

π π

π

+
=

= + − +

+ − +

∑
 

n n
9 2

Neumaier3 1

1 2

( )= ( 1)i i i

i i

f x x x x −
= =

− −∑ ∑  

30
10 2

Rastrigrin

1

( ) ( 10cos(2 ) 10)
i i

i

f x x xπ
=

= − +∑  

29
11 2 2

Rosenbrock 1

1

( ) (100( ) ( 1) )i i i

i

f x x x x+
=

= − + −∑  

30 30
12 2 2

1 1

( )=1 cos(2 ) 0.1
Sal i i

i i

f x x xπ
= =

− +∑ ∑  

1013

Schwefel 1
( ) 418.9829 10 ( sin( ))i ii

f x x x
=

= ⋅ + −∑  

{ }
30

2
14 2 2 0.25 2 2 0.1

Schaffer 1 1

1

( ) ( ) sin 50( ) 1i i i i

i

f x x x x x+ +
=

 = + + + ∑  

30
15 2

Sphere

1

( ) i

i

f x x
=

=∑  

The four versions of our CAFAC are compared with the 

original AFA, and the comparison results are provided in 

Table 6. It shows that the proposed CAFAC behaves much 

better than the AFA for almost all the functions except for 

the Sal function and Schwefel function. For the DeJongf4 

function, Expfun function, Griewank function, Sphere 

function and Neumaier3 function, the CAFAC (NsSd) can 

find the global optimum successfully. For the other 

functions, the four versions of CAFAC yield significant 

performance improvement in optimization compared with 

AFA. Moreover, we can observe from Table 6 that the 

CAFAC (NsSd) is superior to the other three CAFAC 

variants. From Table 6 we can see that, in most cases, the 

best optimization performance can be achieved by using the 

knowledge in the belief space to determine both the step size 

and direction of the evolution in the AFA.  
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Fig. 2. Optimization results of Rosenbrock function 
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 Fig. 3. Optimization results of Rastrigin function 

Figures 2-3 illustrate the comparison of convergence 

performance among the four versions of the CAFAC. In 

order to obtain a clear picture, e.g., in Fig. 2, a logarithmic 

(base 10) scale is used for the vertical axis and we draw the 

points every 50 iterations. The mean best value is the 

average over 10 separate trials for each of these algorithms. 

From the above figures, it can be discovered that the original 

AFA has a fast convergence speed at the beginning, but after 

that it is trapped into a local optimum, and cannot jump out 

of that. 

                                 5. CONCLUSIONS 

As we know that the AFA is good at the global search at the 

beginning of its optimization stage. However, when dealing 

with high dimension problems, the artificial fish can be 
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easily stuck into the blindness hunting. In order to improve 

the performance of the regular AFA, the cultural framework 

is introduced and utilized in this paper. The knowledge, 

namely situational knowledge and normative knowledge, is 

stored in the belief space to guide the evolution of the AFA. 

In addition, the crossover operator is utilized to increase the 

diversity of the fish population. From the simulation results, 

we can find out that the knowledge-based AFA does 

perform much better than the original algorithm. Therefore, 

the knowledge in the cultural framework can be viewed as a 

effective and directive term in the evolution of the AFA.     
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Table 6. Function Optimization Performance Comparison 
 

Functions Global 

optimum 

CAFAC 

(NsSd) 

CAFAC 

(NsNd) 

CAFAC 

(Sd) 

CAFAC  

(Ns) 

AFA 

Ackley 0 7.9936×10
-15

 1.0027×10
-8

 2.2365 1.6214×10
-8

 1.1898 

CM -3 -2.3497 -2.6453 -0.8500 -2.7488 -0.5258 

DeJongf4 0 0 3.1247×10
-22

 8.6335×10
-4

 2.0326×10
-19

 0.2141 

Expfun 1 1.000000 1.0000000 1.000062 1.000004 1.411369 

Griewank 0 0 1.5588×10
-14

 3.4002×10
-5

 2.2271×10
-14

 0.0236 

Hyperelliptic 0 2.4506×10
-98

 1.5812×10
-8

 0.0972 2.0207×10
-7

 74.0210 

LM1 0 1.7771×10
-32

 2.6380×10
-12

 0.0105 1.5996×10
-11

 0.3498 

LM2 0 1.3498×10
-32

 1.1150×10
-12

 0.4738 3.4690×10
-11

 0.1593 

Neumaier3 -4930 -4930.0000 -4929.8467 -4929.4759 -4929.9993 -1143.6718 

Rastrigin 0 39.8072 25.7239 62.1831 30.8390 96.2181 

Rosenbrock 0 5.7642×10
-11

 9.5057 46.6662 16.3719 96.7020 

Sal 0 0.2099 0.1899 0.3799 0.1999 0.1199 

Schwefel 0 4.8565×10
3
 1.4793×10

3
 3.4749×10

3
 1.3070×10

3
 0.3500 

Schaffer 0 12.7555 14.9599 27.7994 14.5671 18.1480 

Sphere 0 0 2.8001×10
-13

 6.9378×10
-4

 1.0066×10
-12

 0.6160 
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