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For more than 20 years, artificial intelligence techniques have been applied to the 

development of computer programs that solve difficult problems. Although several 

expert systems are well known, it is all too easy to circumscribe the field based on 

these few examples. The purpose of this paper is to present the fundamentals of 

the field (the Primer), and to give a broad overview via concise descriptions of 

many rule-based expert systems and knowledge engineering frameworks (the 

Catalog). 

1 Introduction 

This paper is offered to persons who have some awareness of artificial intelligence 

techniques, and who would like to gain an overview of the rule-based expert 

systems field. The fundamental terminology and concepts are presented here, 

together with numerous concise descriptions of individual expert systems and tools 

for expert system constructlOn. AttentlOn is gIven to the manner in which 

knowledge is represented, and the ways inferencing is performed. 

Previously published articles have described seminal expert systems, elucidated 

general principles, and have presented techniques for constructing expert systems. 

Among these are [Davis and King, 1976; Feigenbaum, 1977; Hayes-Roth, \Vaterman, 



and Lenat, 1978; \Vaterman and Hayes-Roth, 1978; Buchanan, 1982; Ennis, 1982; 

Stefik et al., 1982; Buchanan and Duda, 1983; Duda and Shortliffe, 1983; Minker, 

1983; Nau, 1983; Hayes-Roth, Waterman, and Lenat, 1983; Kobler, 1984; Hayes­

Roth, 1985]. The present paper differs from these in that it covers a greater 

number of systems, rather than treating a smaller number in depth. 

The next section presents the basic terminology and concepts of the field, and 

section three describes several tools, languages, and environments for building expert· 

systems. Section four gives concise reviews of many expert systems, indicating the 

variety of domains, approaches, and alms. Concluding remarks are in section five, 

followed by references and an index. 

2 PreliminarIes 

Two fundamental definitions are offered here. 

- An expert system is a comfuter program to solve the difficult problems 

that a human expert solves. 

- A knowledge-based expert system is an expert system that has the ability 

to solve its problems by virtue of explicit, declaratively represented 

knowledge of the problem domain, not just clever algorithms. 

Thus expert refers to the quality of the problem solving, and knowledge-based to 

the means of solution. These definitions are broad. The hrst admits all techniques 

that work well in practice, rather than focusing on approaches necessarily considered 

"AI-like" . The second states a defining characteristic without explicitly requiring 

subsystems such as knowledge acquisition and explanation, or specifying a strategy 

such as heuristically guided search space exploration. The given dehnitions are 

intended to connote a weak Turing test2 quality: an expert system should behave as 

if it understands the problem area at the level of a human expert; it should not 

appear to perform a simple task, or to compute by rote formulae. 

lWe appeal to the reader's understanding of "human expert". 

2The Turing test of artificial intelligence [Turing, 19631 may be formulated as follows. A 
human tester holds conversations vIa two terminals, one of which is connected to a 
computer, and the other to another human. rr the tester is unable to determine from the 
conversatIons which terminal is connected to the computer, the computer system has passed 
the Turing test. 
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Duda and Shortliffe [1983] gave somewhat similar definitions, but pointed out the 

problematic nature of such terminology: 

The· phrase "knowledge-based systems" is often preferred to "expert 
systems," since there are no uniquely qualified human experts for a large 
number of AI applications; however, both phrases are sufficiently vague 
that the latter can be applied to almost any program that works well and 
the former to almost any program at all. 

The term performa.nce as applied to expert systems, refers not to the speed of 

inferencing, but rather, to the quality of the conclusions drawn by the system. 

The structure most used for implementing the reasoning portion of high-performance 

expert systems is the production system, although there is interest in applying logic 

programming languages such as Prolog to the construction of expert systems [Fuchi, 

1982; Treleaven and Lima, 1982; Genesereth and Ginsberg, 1985J. As a formal 

mathematical construct, the production system was proposed by Post [1943] as a 

general computational mechanism, and has power equivalent to a Turing machine. 

Many variations on this formalism have been devised for computer implementation, 

so despite the common ancestry, there is no single definition or nomenclature for 

production systems today. There is, however, a widespread emphasis on the explicit 

declarative representation of knowledge and factual data. 

The basic components of an artificial intelligence production system,3 as illustrated 

in figure 1 are: 

1. A body of knowledge represented by rules having an antecedent­
consequent structure. 

2. A collection of facts represented as constants (either simple or 
structured). 

3. A mechanism for applying rules to facts to deduce new facts. 

In.ert figure 1 (Ba.ic co.ponent. of an AI production '12t8~) here. 

The first component is called the production memory or the knowledge base or rule 

3See [Hayes*Roth, 1985], p. 928 for a diagram of a complex rule-based system. 



base. The minimal components of a rule are the antecedent and the consequent 

Other names for the antecedent are the left-hand side (LHS), the condition, or the 

pattern. The consequent is also known as the right-hand side (RHS) or the action. 

In small-rule production systems, rules consist of a few text lines stating the 

antecedent and consequent. The term pure refers to small-rule systems in which 

the rules are purely declarative, as opposed to systems in which rule portions 

represent executable procedures. Small rules are illustrated in figure 2. 

In large-rule models, a rule may consist of a pair of very large functions expressed 

in a programming language such as Lisp. In this case, the rules are commonly 

called knowledge sources to emphasize the fact that they encapsulate large 

independent "chunks" of domain knowledge. One common data structure for 

representing a knowledge source is a frame4 [Fikes and Kehler, 1985]' with 

slots representing antecedent tests, consequent actions, screening and triggering tests 

that quickly determine the potential applicability of the knowledge source, values 

such as heuristic estimates of the quality or certainty associated with conclusions 

asserted by the rule consequent, hierarchical relationships with other knowledge 

sources, and data structures to maintain private state information for the knowledge 

source. A large rule is illustrated in figure 3. 

The essential characteristic of a rule, whether In a small or large model, is that it 

represents a discrete portion of knowledge concerning the problem domain. This IS 

quite different from a routine in a procedural programming language, which may 

simply support other computational units without having meaning external to the 

program. The collection of rules in a. production system may be one global pool, 

or may form structured taxonomies or partitioned sub-collections of knowledge about 

portions of the domain. 

4An AI (rame is an aggregate data object similar to a record in languages such as Pascal. 
The components of a. frame are called slots. Each slot representing an attribute of the 
object modeled by the frame, holds a. value or list of va\ues, or refers to a computational 
procedure that produces a value for the slot when invoked. Frames, linked via pointers in 
slots, form larger structures such as semantic networks or generaltzation hierarchies that 
represent relationships such as "is-a..-member-of". The traversal of links in such a structure 
is a comJlUtational method for obtaining deductions. For example, an individual member of 
a class Inherits" a default characteristIC of a prot<>typical class member, in the absence of 
an explicit value stored for that individual, by traversing the class membership link. 



------------------------------------------------------------------------------
In.ert figure 2 (Small-rule production.) here. 

------------------------------------------------------------------------------

------------------------------------------------------------------------------
In •• rt figure 3 (Fraae-ba.ed knowledge .ource) her •. 

------------------------------------------------------------------------------

The second component of a production system is commonly called the data base or 

the working memory. This normally represents the temporary state of the world 

modeled by the problem-solving process, although some artificial intelligence 

production systems also store certain long-term knowledge iI) the data base. 

~fem bers of the data base are commonly called facts or working memory elemen ts. 

As with the rule base, the data base may be structured or partitioned to obtain 

efficient execution or to form a more natural model of the problem domain. 

The third portion of a production system is the mechanism that applies the 

knowledge base to the data base to obtain inferences. This mechanism is often 

called the interpreter, even though it may be implemented by compiling the 

knowledge base to a procedural program in the native instruction set of a 

computer. 

Two basic classes of production system interpreters are distinguished by the manner 

in which deductions are made. The first class is known by the names 

forward-cbaining, antecedent, data-driven, or event-driven. The term forward­

chaining refers to sequential chains of rule activations, in which the state of 

working memory causes the selection of a rule, which executes to change the state, 

leadmg to the selection of another rule. Antecedent refers to the selection of rules 

by examination of their left-hand sides; the terms data-driven and event-driven 

sugg,:st that the modification of working memory leads to the selection of the next 

rule This pattern of execution, as illustrated in figure 4, may be obtained by 

iterating the following three step cycle. 

1. MATCH: The interpreter compares the facts in working memory with 

the rule antecedents to find those rules that are satisfied. A minimal set 

of facts that jointly satisfy the tests of one rule is called an 

instan tiation of that rule. The collection of instantiations of all rules is 

known as the conmct set. 

2. SELECT: One or more instantiations are chosen for execution. This 



selection is important: it must prevent infinite inferencing loops, and 

should focus the system's attention on the most important and promising 

subproblems. One common approach chooses an instantiation by a 

conflict resolution strategy based on static properties such as the recency 

of data in the instantiations and the specificity of the instantiated rules. 

Another scheme selects an instantiation from a dynamically prioritized 
a.genda maintained by reasoning processes. 

3. ACT: The selected instantiation(s) are executed (fIred), performing the 

actions specified by the consequents of the instantiated rules. These 

actions typically add new facts to working memory, delete or modify old 
facts, and perform I/O. 

6 

, 
------------------------------------------------------------------------------

Insert figure 4 (Forward-chaining rule execution) here. 

The other principal class of production system interpretation IS known as 

backward-chaining, consequent, or goal-driven. In this pattern, inferencing begins 

with a goal for the system to achieve. The rule consequents are examined to 

determine which rules could achieve the goal, then the antecedents of those rules 

become new sub-goals. Thus the reasoning proceeds backwards from a desired goal 

state to facts in the current working memory, as illustrated in figure 5. The term 

"goal-directed" has been criticized by Clancey [1984], who states: 

In fact, "goal directed" characterizes any rational system and says very 

little about how knowledge is used to solve a problem. 

Nevertheless, the backward-chaining, goal-driven style of inferencing IS a common 

and effective computational mechanism for systems that perform classification, 

diagnosis, and analysis. 

In.ert figure 6 (Backward-chaining rule execution) here. 

It is to be noted that production systems have been employed in AI research for 

two distinct purposes. In "cognitive AI", at the juncture of computer science, 

psychology, and philosophy, production systems have served as a tool for modeling 

and simulating theories concerning human thought processes. In expert systems 

research, production systems have served as a programming language for 

implementing high performance systems that solve difficult problems effectively, 
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without necessarily imitating human reasoning. The distinctlOn is easIly seen In the 

answer to the following question: "Is it desirable for the system to commIt the 

same types of errors that humans do?" 

The previous discussion has given a general overVIew that touches on several Issues 

of interest to expert systems researchers. These matters, as described in more 

detail below, fall into three categories. 

1. The computational mechanisms of production systems. 

2. The implementation and continuing development of an expert system 

throughout its lifespan. 

3. The utility of an expert system. 

, 

2.1 Computational Mechanisms 

Fundamentally, an expert system is a computer program. It differs from procedural 

programs 10 that the computation is viewed as the application of knowledge to a 

collection of facts, rather than the execution of algorithms on data structures. As 

such, there are issues of how to represent the knowledge, how to apply the 

knowledge to the facts, and how to focus the attention of the reasoning 

mechanisms. 

Typically, the knowledge is captured tn rule form as a production system. Several 

varieties of production systems have been identified, based on whether the rule set 

is global or clustered into "subroutines", whether there is an tmplicit global 

reasoning mechanism or explicit control structures for subsets of rules, and the 

granularity: the amount of knowledge captured by each rule. Rules with fine 

granularity consist of a few simple conditions and actions, while coarse-grain rules 

may comprise complex frame structures as descnbed earlier. In addition, rules may 

be purely declarative, or may contain procedural code. Furthermore, the rules may 

be organized in a hierarchy of reasoning levels, with abstract meta-rules controlling 

the application of the concrete problem-domain rules [Davis, 1980]. The structure 

of the data base is also subject to wide variations. Factual knowledge may be 

represented by tuples, frames, linked-lists, or graph structures, and facts may be 

global, or may be clustered into sabsets representing different portions of the 
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abstract problem solving space. It is beyond the scope of this paper to discuss the 

implications and applicability of all these variations; books such as Pattern-directed 

Inference Systems (Waterman and Hayes-Roth, 1978J and Building Expert Systems 

[Hayes-Roth et al., 1983] discuss these issues at length. 

The direction of inferencing of a production system is a major characteristic. For 

diagnosis and classification problems, which tend to have a small number of solution 

states, backward-chaining systems are frequently chosen, since straightforward and 

reasonably efficient techniques exist for searching from a potential solution back to 

data that confirm or refute it. Forward-chaining is more natural for systems WIth 

a large number of ending states, as well as systems that must be responsive to 

external input, and systems that process endlessly with no final goal state. In 

addition, forward-chaining systems can implement demons: modules that observe 

the data pase, automatically activating to perform specific tasks when necessary. A 

number of existing expert systems include elements of both backward-chaining and 

forward-chaining; the former to control the overall process of solution, and the 

latter to make immediate deductions when new facts are asserted into the data 

base. Clancey [1984J points out the distinction between the processing mode of the 

production system interpreter, which may be forward- or backward-chaining, and 

the abstract searching technique in the problem space, which may be data- or 

hypothesis-directed. The expert system named R1 [McDermott, 1980J is cited as an 

example of a system performing hypothesis-directed search via a forward-chaining 

implementation. 

Another issue pertaining to the interpretation of production systems involves the 

means for deciding, in case multiple rules are applicable, which to pursue. One 

common technique is static conflict resolution, in which the conflict set is ordered 

by factors such as the recency of the data matching the rules' antecedents, and the 

specificity oC the rules' conditions. The former criterion tends to focus the system's 

attention on one matter at a time, and the latter applies special-case knowledge in 

preference to general defaults. A second technique is agenda/refinement. In this 

method, the rule instantiations are screened for applicability, and the collection of 

applicable instantiations is refined (i.e., made smaller) by a reasoning or evaluation 

process. The refined set is then prioritized, with the result recorded in a data 
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structure known as the agenda. The agenda/refinement process is performed either 

by selection and scheduling procedures built into the interpreter, or by meta-rules 

or knowledge sources written for this purpose. Appropriate control of the order of 

rule execution can cause production systems to implement typical artifIcial 

intelligence search techniques such as means-ends analysis, heuristic search, and 

problem reduction. Forgy and McDermott [1977] describe a static conflict resolution 

strategy, and Davis [1980] discusses agenda/refinement by meta-rules. An example 

of a frame-based production system with agenda control is given in [Smith and 

Clayton, 1980]. Georgeff [1982] describes a technique for the control of a 

production system by a finite automaton, stack machine, or Turing machine. 

An important class of coarse-grain systems utilize the bJa.ckboa.rd model of 

computation. This model consists of a global data structure called the blackboard, a 

number of specialist knowledge sources, and a scheduler. The blackboard contains 

data orga!lized into "areas" on each of several ('levels", representing the state of the 

problem-solving process at several levels of abstraction. Knowledge sources serve as 

specialists attentive to' changes in the blackboard, acting to refine hypotheses, 

integrate information from multiple areas, and map between differing levels of 

abstraction. A typical knowledge source consists of a declarative trigger indicating 

which regions of the blackboard are of interest, together with a pair of functions 

forming an antecedent-consequent pair. The scheduler coordinates the actions of the 

domain knowledge sources, granting processing resources to those that seem most 

likely to make significant progress. To do this, the scheduler first examines the 

triggers to determine which knowledge sources are applicable to the current 

situation. Then it gives control to the antecedent of each relevant knowledge 

source ID turn. The execution of an antecedent determines whether the associated 

consequent is currently applicable, and if so, extracts and preprocesses relevant 

blackboard data. After the antecedents finish, the scheduler selects a consequent to 

execute, based on measures of credibility of competing potential conclusions, the 

probable effects of running each consequent, and the global significance of those 

effects. The selected consequent performs a computation on the extracted facts 

(together with private data), modifies the blackboard as a means of communicating 

its conclusions to the other knowledge sources, and returns control to the scheduler. 
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The scheduler is frequently implemented by sp~cial knowledge sources that operate 

on a. separate scheduling blackboard. Erman et al. [19811 describe Hearsay-II, 

which introduced the blackboard model. 

2.2 Implementation and Development 

Software engineering concepts such as rapid prototyping, modularity, modifiabihty, 

and reusability apply to expert systems just as they do to more traditional 

programmlDg forms. This becomes increasingly evident as larger expert systems are 

constructed. 

Early experiences In developing expert systems showed that knowledge acquisition, 

i.e., obtaining the knowledge of human experts, is difficult and time-consuming. 

Human experts do not seem to maintain their knowledge 10 the form of explicit, 

consciously accessible rules. Consequently, knowledge engineers cannot first 

interview a human expert and then write a competent expert system. An approach 

similar to rapid-prototyping has proven effective. A small trial system is 

constructed from information obtained in initial interviews, and then the knowledge 

base is r~fined, corrected, and extended to increase the quality and breadth of the 

system's expertise. This process of incremental growth is best performed by having 

the human expert modify the rule base in the context of erroneous deductions 

obtained via the initial rule set. Computer support for this process has been 

developed, including programs to facilitate the editing of the rule base, programs 

that compare a proposed rule with the knowledge base in an attempt to find 

inconsistencies, and programs that inductively form rules from collections of 

statistical data [Davis and Buchanan, 1977; Davis, 1981; Boose, 19841. Although 

research dealing with automated machine learning may hold promise, it has not 

matured sufficiently to supplant the knowledge engineer. 

Since incremental growth of an expert system's knowledge IS a practical necessity, 

the rule base is designed to have properties such as modularity and additivity. The 

term modularity applies to a knowledge base in which each rule captures a portion 

of domain knowledge relatively independently of all other rules. Additivity is the 

property according to which additional rules augment the breadth or depth of 

knowledge of an expert system without disturbing the operation of previously 
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installed rules. Present to varying degrees, additivity can be elusive in expert 

systems based on many carefully choreographed rule interactions. 

The development of early expert systems required years of effort, providing a large 

motivation for identifying reusable components. Naturally, the designers observed 

that portions of the expert systems were functionally independent of the particular 

domain knowledge encoded in the rules. These portions were abstracted, 

generalized, and augmented with support tools such as rule editors, rule consistency 

checkers, and automa~ed testing subsystems. The resulting expert system skeletons, 

known as knowledge engineering frameworks, are the topic of section three of this 

paper. 

2.3 Uttlity 

An expert system must obtain correct results to be useful, but this alone does not 

suffice. Another desirable property, perhaps a requirement, is that an expert system 

be able to produce explanations of its deductions. In a practical sense, explanations 

are useful during the development of a knowledge base for examining erroneous 

lines of reasoning. During normal operation, proper explanations increase the 

credibility of the conclusions presented by an expert system. This is particularly 

important for such critical tasks as medical diagnosis, or nuclear reactor monitoring. 

The usu~l technique for producing explanations is to maintain a history of 

deductions during the reasoning process, and then to print a list of stored phrases 

that render into English the sequence of rule activations leading to the conclusion. 

McKeown et 301. [1985J are investigating the application of natural language 

processing techniques to generate explanations tailored to the particular user and 

situation. 

In many domains, both the problem data and the conclusions of human experts are 

associated with uncertainty or imprecision. Consequently, in some expert systems it 

is necessary to quantify the likelihood or strength of belief of input data, as well as 

the inferential strength of rules in the knowledge base. During execution, the 

evaluation of a rule includes a calculation of the degree of certainty with which the 

rule asserts its conclusion, as a function of the strength of the rule and the 

certainty of its antecedents. Some systems also have techniques for aggregating the 
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assertions of multiple rules that independently obtain similar conclusions. The 

methods by which existing expert systems combine evidence are drawn from a 

variety of ad hoc and formal mathematical techniques. Notable among these are 

the uncertainty calculus [Shortiiffe, 1981], Bayesian inferencing [Duda, Hart, and 

Nilsson, 1981; Lemmer and Barth, 1982; Pearl, 1982], the Dempster-Shafer theory 

(Barnett, 1981; Strat, 1984], fuzzy logic and possibility theory [Zadeh, 19831 and 

other techniques [Quinlan, 1983]. Even the methods derived from formal 

mathematics seem to require human "tuning" of the confidence measures until the 

expert system produces reasonable results. No technique for reasoning With 

uncertainty has been widely accepted as "best". An example to illustrate reasoning 

with uncertainty is given in figure 6. 

Insert figure e (Realoning with uncertainty) here. 

Another matter related to the utility of expert systems is the speed of inferencing. 

The naive approach of matching all rules with all data elements on every 

inferencing cycle is impractically slow for all but the smallest systems. In most 

implementations, the matching of rules with working memory is the dominant cost. 

Some software techniques for higher speed of matching and inferencing are reported 

in [Hayes-Roth and Mostow, 1975; Lenat and McDermott, 1977; Cohen, 1978; Lenat, 

Hayes-Roth, and Klahr, 1979; Challab, 1981; Forgy, 1982; deKleer, 1984]. In 

addition, ~echniques utilizing parallel hardware have been examined, including [Stolfo 

and Shaw, 1982; Deering; 1984; Forgy et al., 1984; Hillyer and Shaw, 1984; Oflazer, 

1984; Stolfo and rvfiranker, 1984]. 

3 Tools for Building Expert Systems 

The creation of an expert system can be a major undertaking. In view of the 

resources required, several languages and knowledge engineering frameworks have 

been introduced to facilitate expert system development. By providing generally 

applicable support software such as knowledge acquisition subsystems, explanation 

subsystems, and rule interpreters, these facilities seek to allow the builders of expert 

systems to concentrate on capturing and utilizing problem-specific knowledge. This 

section presents brief descriptions of a number of such tools. Several of these, as 

noted, are generalizations of specific expert systems described in section four. 



AGE [Nii and Aiello, 1979] is a collection of tools and partial frameworks for 

building expert systems, based on the model originally developed for the 

HEARSAY-II expert system, together with an intelligent front-end that assists the 

user in constructing knowledge-based programs. The principal portions of an expert 

system'-rinplementation in AGE are domain-specific knowledge sources, and modules 

that schedule the execution of the knowledge sources. An AGE knowledge source 

has several components, including a collection of production rules, lists of events 

that may trigger other knowledge sources, levels in the hypothesis space to which 

each knowledge source is applicable, a choice of single or multiple hit strategy 

(either one or all of the triggers need to be satisfied), and facilities for binding 

variables. Uncertainty is modeled by a technique similar to that of the ~fYCIN 

expert system. Components written by the user select and schedule knowledge 

sources for execution, but standard modules are furnished for common control 

regimes such as event-driven and goal-driven inferencing. 

ARBY [McDermott, 1982] is a special-purpose environment for writing expert systems 

that diagnose faults in electronic equipment. This problem domain permits 

reasoning with shallow models of electronic subsystems connected by signal flows, 

but is complicated by the fact that most diagnostic information is not readlly 

available, and has considerable cost to obtain (cutting wires, replacing subsystems .... ) 

ARBY is partly rule-based, and utilizes mechanisms similar to those of the 

CADUCEUS expert system to refine and combine hypotheses. The system has two 

main mod,ules, written in Franz Lisp. The first module reasons about the electronic 

system, generating hypotheses and sifting evidence by performing deductions on a 

set of predicate-calculus rules. The second component handles interaction with the 

user. Question asking is ordered ba.sed on the importance of the evidence for 

confirming or denying the leading candidate hypotheses, balanced with costs of 

getting the information, and subject to precedence constraints supplied by the 

expert system designer. 

ARS [Stallman and Sussman, 1977] is a. rule language for domains in which problem 

solving may proceed by the symbolic relaxation of loca.l constraints. Rules are 

implemented as pattern-directed invoca.tion demons monitoring an associative data 

base, performing single-step forward-chaining deductions. Demons having satisfied 
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trigger conditions are placed on queues at vanous priority levels, and operate on 

facts stored in a data base. To facilitate matching, the data base is hash-indexed 

on the atoms contained by facts. ARS also maintains records linking premises to 

deductions, to provide a basis for explanation and to support dependency-directed 

backtracking when a contradiction is obtained. ARS also has routines for algebraic 

manipui'a;tion. Some limitations of ARS include difficulty modeling time-dependent 

behavior, a single level of detail (burying "explanations" in minutiae), and a lack of 

goal-directed and attention-focusing control facilities. 

CENTAUR [Aikins, '1979; 1980; 19831 is a framework for developing expert systems 

that use a hypothesize and match approach to problem solving. Patterns of 

knowledge in the domain are organized into frame structures called prototypes. 

Slots in the prototypes represent information such as values, plausible ranges, 

importance, control knowledge, and production rules that infer missing values. The 

development of CENTAUR was motivated in part by an observed deficiency in 

certain of the early backward-chaining expert systems. In these systems, the order 

of the clauses in a rule determines the order of the backward-chaining search, and 

also the order in which questions a:'e asked of the user. This means that rules 

have significant non-modular interactions, since there is no clear separation between 

control knowledge and domain knowledge. A generated explanation of the system's 

behavior that treats control rules the same as rules containing domain knowledge 

can be confusing, and implicit control knowledge is not readily explained at all 

The CENTAtj'R prototypes explicitly organize and focus the searching and question 

asking, to diminish the amount of hidden control knowledge in 3. system. 

E~fYCIN [van Melle, 19791 is an em"ironment for implementing knowledge-based 

consultation programs, developed by generalizing the basic framework of the MYCIN 

expert system. E~fYCIN provides a goal-directed, backward-chaining interpreter for 

production rules grouped by contexts, an editor for the data base, an explanation 

facility that paraphrases rules in either English or an Algol-like language, and a 

knowledge acquisition subsystem. The data base is in the form of attribu~e-object­

value triples with associated certainty factors. Although normal execution is goal­

driven, there is a limited ability for data-driven deductions to be made upon the 

assertion of new facts into the data base. Inverted indices on the goals are 
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maintained to increase the speed of backward-chaining, and techniques are employed 

to avoid redundant testing of facts in the data base, and redundant testing of 

patterns [Stefik et al., 19821· Shortliffe et al. [19811 point out several aspects of 

E~fYCIN that potentially limit its range of application. EMYCIN has been 

extended by Teknowledge to become the commercial product named KS-300. 

EXPERT [Weiss and Kulikowski, 19i91 is a system for designing and building 

models for consultation, developed by generalizing the CASNET expert system. In 

an EXP.~RT model, input attributes termed rmdings take on numerical or boolean 

values that, once determined, remain constant. Support for conclusions called 

hypotheses, which may be structured into taxonomic-causal networks, is derived 

from findings and other hypotheses by three classes of decision rules. The rules 

executed first make "common-sense" forward deductions from existing findings to 

new findings, and evaluate correlated findings to generate modifiers. There is no 

automatic mechanism for aggregating the evidence of multiple findings, which leads 

to predictable system behavior since rules only interact in ways specified by the 

designer. The rules executed second reason from findings to hypotheses. If 

multiple rules suggest differing confidence ratings for a hypothesis, the largest rating 

is accepted (this is the fuzzy logic technique). The rules executed third are 

examined in the order listed by the designer, to perform backward-chaining searches 

through the taxonomic-causal network. Data collection induced by this search is via 

prepackaged sets of questions that are to be asked of the user, which organizes the 

interaction in ways deemed reasonable by the system builders. Questions already 

satisfied by previous deductions are automatically suppressed. An EXPERT model 

is complIed into an intermediate form that is interpreted by a runtime package 

WrItten in FORTRAN for speed and portability. SEEK is the knowledge acquisition 

subsystem, of EXPERT. 

HAPS [Sauers and Walsh; 19831 is a hierarchical, augmentable production system 

environment directed towards future expert systems that require large rule and fact 

bases, and speed sufficient to meet real-time constraints. HAPS uses goal-directed 

execution to focus system efforts, and a hierarchical working memory structure 

parallel to the goal structure to reduce matching and to facilitate garbage collection 

when a goal is achieved. This structure also permits the storage of rule sets in 
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secondary memory, to be fetched only when needed. One may VIew this as a 

"library of production rule sets". To achieve real-time execution, the system IS 

designed to make approximations and ignore inessential tasks when overloaded. A 

suggested approach is to identify, by the collection of statistics, rules that derive 

useful conclusions quickly, or are likely to result in genuine progress, and restrict 

execution to those rules when the system is overloaded. Real-time external events 

may well occur faster than the system's rule firing rate. This would render 

unusable any organization in which, each time any fact is updated, all production 

instantiations depending on that fact 'must be removed or tagged invalid, and the 

new fact must be matched to form an up-to-date conflict set. One potential 

solution to this problem is to store real-time input in efficient data structures that 

are examined at conflict resolution time to narrow the set of applicable rules. The 

authors note that logical deduction, needed to support frame hierarchies with 

attribute inheritance, may interfere with speedup techniques based on discrimination 

nets. 

HEARSAY-III [Balzer et al., 1980J is a framework for building expert systems with 

multiple knowledge sources and multiple levels of representation, reasoning, and 

control. A knowledge source in HEARSAY-III consists of a declarative trigger 

pattern together with Interlisp procedures serving as antecedent and consequent. At 

appropriate times, trigger patterns are matched with the configuration of data in a 

structured data base called the blackboard (as described in section 2.1 on p. 9) 

Successful matches cause the corresponding antecedents to calculate a scheduling­

blackboard class (a priority level) on which an activation record will be created, 

and to collect data for the activation record. Scheduling knowledge sources 

examine the activation records and choose one. The selected consequent runs to 

completion, typically aggregating interpretations at one blackboard level to 

composite interpretations at more abstract levels, manipulating alternative competing 

interpretations, and criticizing alternatives. U constraint violations are detected 

(say, up0!l attempting to aggregate incompatible interpretations), the blackboard 

context containing them is considered ((poisoned", and only special knowledge 

sources (((poison-handlers") are permitted to run in that context until it is 

unpoisoned. A typical poison handler might split the context into two competing 
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ones, each self-consistent. HEARSAY-Ill was designed for power and flexlbility, not 

speed. It is an extension of the AP3 relational database system, which in turn is 

written in Interlisp. AP3 has strong typing, and implements contexts, demons, and 

constraints. 

HPRL [Rosenberg, 1983], an extension of the artificial intelligence language FRL, is 

a heuristic programming and representation language. Data, rules, and the rule 

interpreter are all represented by frames. A supplied set of Lisp functions execute 

rules by strategies such as forward- or backward-chaining, and manipulate agendas, 

build and traverse decision trees, and record information for backtrackIng 

Additional functions may be added by the user. In particular, "rule. domains" may 

be created to partition rules into subsets relevant to restricted subproblems, with 

different methods for evaluating the rules in various domains. Since rules and data 

have the same form, meta-level reasoning is easily accommodated. Since rules are 

frames,_J.hey are not restricted to condition-action form, and may have additional 

information such as caveats and suggested uses. 

KEE [Fikes and Kehler, 1985; Kehler and Clemenson, 19841. a commercial product 

of IntelliCorp, is a framework for developing knowledge-based systems. It combines 

a frame data language and inheritance mechanism with rule-based reasoning. The 

system uses frames to represent both mdividual entitles and classes. A class frame 

contains prototypical characteristics of class members as well as attributes of the 

class as a whole. Inheritance hierarchies are supported through automatic 

inferencing on is-a-member-of and is-a-subclass-of links. The slots in KEE frames 

are flexible and powerful, having the ability to represent partial descriptlons and 

constraints on unknown values. The attachment of Lisp procedures to slots permits 

production rules to be represented, with rules structured by class membership links, 

and having access to the database of inheritance hierarchies. Both backward­

chainmg and forward-chaining rule interpretation disciplines are supported. 

LOOPS [Stefik, Bell, and Bobrow, 19831 is an artificial intelligence programming 

language designed in the belief that some tasks are best accomplished by rules, and 

others by procedures, demons, or object-oriented programs. LOOPS integrates 

modules written in any of these styles into a hierarchical subroutine organization, 
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transferring control by message passing, or automatic activation as a side-effect of 

fetching or storing values, or by procedure call. For instance, the execution of a 

rule can set up procedural demons. Rules are grouped into small ordered sets 

embedded in control frameworks that concisely represent how the rules are to 

interact. Given that clustering and control are needed, LOOPS implements 

carefully chosen explicit structures, rather than forcing the programmer to include 

extra clauses in all domain rules, and extra rules to assert and retract control tags 

that direct a static conflict resolution strategy. Rules in a LOOPS rule set are 

tested in the order of appearance, with an option for starting over at the top when 

a rule fires. Rule prefixes may specify "execute only once" or "test only once", 

and rules may be embedded in standard iteration constructs, with automatic history 

gathering to support explanation or belief revision, and built-in certainty factor 

calculations. Rule antecedents and consequents may call other entities in any of the 

four programmIng styles, and rule sets may be called from entities of any of the 

four types. Multi-tasking and c~routining are supported, facilitating agenda-based 

control. There is a compiler that translates rule sets to Interlisp. 

OPS [F9rgy and McDermott, 1977; Forgy, 1979; 1981; 19831 is an evolving language 

and execution system for forward-chaining rule-based programming. OPS systems 

have a global production memory of rules and a global working memory of facts In 

the form of lists of literal attribute-value pairs. In each recognize-act cycle a 

complete match of rules with working memory is effectively made, and one rule 

instantiation is chosen for execution by a static conflict resolution scheme. OPS 

was designed under the principle that knowledgeable rules may undertake 

substantial actions, but conditions should be simple. The ratIOnale is that powerful 

patterns would cause overhead during matching, retarding processing. but complex 

actions consume resources only when executed. Consequently, OPS actions may call 

user-written Lisp functions. Normally, OPS rules are simple so that the ratio of 

matching to acting remalDS large, which is considered the appropriate uhlization of 

rule-based systems. Consistent with these ideas. OPS does not provide structures 

for rule sUbsetting, partitioned working memory, conflict resolution by executing all 

instantiations or by meta-rule reasoDlng, or automatic backtracking. Rules may 

modify the production memory, however, and both partitioned working memory and 
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backtracking schemes may be simulated by the explicit inclusion of grouping tags In 

working memory elements. The Rete algorithm [Forgy, 1982] provides an efficient 

discrimination network technique for executing OPS. The most recent member of 

the OPS family, OPS83, allows user-written predicates in rule antecedents, and has 

strong typing and com posite data structures so that rules can be com piled into 

efficient native code for execution, rather than being interpreted. [Ennis, 19821 

reports an experience in developing an expert system in OPS5. System development 

proceeded quite rapidly, but the primitive control of OPSS was seen as a drawback: 

control and domain knowledge become interspersed in almost every production. 

RITA [Anderson and Gillogly, 1976; Waterman, 19791 is a language for implementing 

rule-directed agents that insulate users from low-level details of a computer system. 

To facilitate this, RITA programs have the ability to exert low-level control of a 

computer, including starting and monitoring multiple subprocesses. RITA rules, 

expressed in an English-like syntax, are executed both by forward-chaining and by 

goal-driven deduction. Rules are examined in their textual order, the first 

applicable one is executed, then matching starts over at the beginning. All objects 

and rules are global, and require processing on each cycle, impairing execution 

speed ... ferformance is acceptable for the intended tasks, but is insufficient for large 

expert systems. In addition, hierarchical and inheritance data structures are difficult 

to represent. 

ROSIE [Fain et aI., 1981; Waterman, 19791 is a language for building expert 

systems. The fundamental building blocks are production rules, expressed in an 

English-like syntax, with both forward- and backward-chaining execution. There are 

two types of rules. II-then rules are existence-driven, firing as long as the 

conditIOns are true, even repeatedly on the same data, With the actions performed 

once during each production system cycle. When-then rules fire Just once for each 

knowledge element matching their conditions, giVing event-driven, demon-like 

execution. Rule matching is organized for efficiency by recognition nets. The data 

may be structured hierarchically via instance-of and member-of relations tc support 

abstraction and inheritance. Additonally, rules and data may be grouped for 

separate access and execution, in which case rule and datol sets are examined only 

when deemed relevant by the user or the ROSIE monitor. This provides the 
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potential of maintaining only currently active and relevant modules in primary 

memory. The event-driven monitor also is said to simplify the programming, 

permitting the user to create rule sets that act as collections of independent 

demons. 

YAPS [Allen, 1983]' a language for the implementation of rule-based systems, may 

be viewed as an extension and generalization of OPSS. Yaps generalizes rule 

antecedents to include user predicates, comparison of arithmetic expressions, and 

nested lists of constants and variables to be matched with the Lisp lists in working 

memory. A rule is represented by a Lisp function, which may be compiled, whose 

arguments are the antecedent variables and whose body is composed of unrestricted 

Lisp code (including calls to the usual OPS actions). Discrimination net techniques 

similar to Rete match evaluate rule antecedents. YAPS may be used in conjunction 

with object-oriented programming, and a YAPS program may be subordinate to 

other Lisp code. The form (fact xxxx) asserts a new fact into the working memory, 

and (goa.l xxxx) adds a goal element to the working memory. Whenever a goal is 

added, whether by the production system or by another Lisp program runnIng In 

the same environment, the production system begins execution, continuing until all 

goals are removed from the system or no satisfied productions remain. Similarly, if 

there are outstanding goals and a fact is asserted, production system execution IS 

initiated. Thus YAPS implements demons. YAPS supports multiple working 

memOrIes and multiple production memories, as well as a global working memory. 

InsertIOns into the global working memory cause duplicate copies to be inserted into 

all local working memories. 

4 Des~rlptions or Expert Systems 

The expert systems briefly described in this section are organized into four clusters 

to facilitate browsing. The first consists of fine granularity rule-based systems 

systems that represent domain knowledge In numerous small rules. The second 

comprises coarse granularity systems that utilize large knowledge sources, and the 

third contains systems designed to reason WIth uncertainty. These categories do not 

represent a disjoint partition of the possibilities, they simply gather systems that 

have overt similarities in features and emphases. A fourth subsection mentions 
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interesting systems that do not fall naturally into one of the three preceding groups 

The description of each system ends with a list (in braces) of index terms tha.t 

identify significant properties and issues. Within each cluster the seminal systems 

a.re mentioned first, and others follow in alphabetical order, except that related 

systems are mentioned together. 

4.1 Small Rules: The OPS Group 

Most of the systems in this group have their roots in early work at Carnegie-Mellon 

University. The rules in these systems typically have a small number of conditions 

in the antecedent, and few actions in the consequent. These systems generally 

maintain a model of the problem state in the form of lists of constant attri bute-

value pairs stored in a global working 

by a static conflict resolution strategy. 

of this style. 

memory, and rules are chosen for execution 

The Rl expert system is a premier example 

Rl [McDermott, 1980; 1982] IS an expert system that configures mainframe 

comput_~!S manufactured by Digital Equipment Corp. Rl is distinguished from 

many other expert systems in that the problem it solves is one of synthesis, not 

analysis or classification. The original experimental system of 500 forward-chaining 

OPS rules has been expanded ten-fold as of mid 1985; the rule-based knowledge 

representation greatly simplified this growth. The system has sufficiently strong 

knowledge that it performs little search. With few exceptions, it follows the match 

method: subproblems are investigated in an order having the property that Lhere is 

suffIcient knowledge at each step to make a correct choice. Consequently, 

backtracking is largely unnecessary, a.nd approximately 2000 rule executions suffice 

to confIgure a V ~X-ll/780. During a run, factual knowledge about needed 

components is retrieved from a separate database and deposited into working 

memory. The search is guided by the OPS static conflict-resolution mechanism, 

together with a. control strategy implemented by the assertion of context elements 

into working memory. A context element serves to restrict execution to a single 

rule cluster (about 10 rules). Each cluster has rules that recognize when the 

subtask is complete, and alter the context elements to pass control elsewhere. 

{V ~X configuration, small rules, OPSS, forward-chaining} 
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XSEL [~icDermott, 1982] is an expert salespersons' assistant for Digital Equipment 

Corp. It assesses the customer's wishes as expressed in a partial order. explains the 

various additional items necessary to support those wishes, provides the ability to 

query the component database, and communicates the final component selections to 

R1, which configures them into a system. XSEL comprises approximately 3000 

rules in small clusters similar in nature to those of R1, and executes 50 rules per 

customer interaction. {V A-X ordering, small rules, OPS5, forward-chaining} 

PTRANS [Haley et al., 1983; McDermott, 1983] IS a manufacturing management 

assistant for Digital Equipment Corp. It suggests when and where on the assembly 

floor to build each VAX, ensuring that the necessary parts are on hand when 

needed, and tracking progress as problems arise. The system has approximately 

1400 rules, but these are not organized as in Rl and XSEL. Approximately 700 

rules are particular to 175 subtasks, but the other 700 are applicable to more than 

one subtask. On the average, there are 34 demon rules applicable to a given 

subtask, but the clustering of demons is not parallel to the subtask rule clusters. 

Indeed, the designers have discovered no general characterization of the demon 

interrelationships. {V A-X assembly, small rules. OPS5, forward-chaining7 

ACE [Stolfo and Vesonder, 19821 is an expert system designed to provide timely 

trouble-shooting analyses for the management of telephone cable systems. It 

automates the search through trouble reports for patterns of faults, and suggests 

likely causes, appropriate repairs, and preventive maintenance. When plausible 

patterns are discovered, ACE formulates queries to a database management system 

that contains trouble reports and maintenance information, to collect other data 

that may confirm or further illuminate a pattern. Reports are generated and sent 

via electronic mail to appropriate personnel. ACE deals with wide variations in 

input; one of its subproblems is to recognize when different trouble reports discuss 

the same location or problem. Incipient patterns are hypothesized, and the 

hypotheses are carried forward for future examination with respect to new trouble 

reports~- The inferencing knowledge of ACE is contained in a forward-chaining 

production system expressed in the OPS4 language [Forgy. 1979]. Rules are selected 

for execution based on a static conflict-resolution strategy that considers recency of 

data and specificity of production rules. The «state of the world" is maintained in 
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a single working memory of consta.nt lists. The initial system reported in 1982 

comprised approximately 100 rules, together with 50 lisp functions to interact with 

the database management and electronic mail systems. ACE is now a commercial 

product of AT&T. {telephone cable maintenance, OPS4, forward-chaining, external 

data base, expert user} 

DAA [Kowalski and Thomas, 1983; Thomas et al., 1983] is an expert system that 

designs VLSI chips. It is written in approximately 300 rules in the OPS5 language . 

..\. typical snapshot during a DAA execution would show 700 objects and 

relationships in the working memory, with many instantiations of just a few rules 

ready to be selected for execution. The system is notable for the amount of work 

it does: 50,000 rule executions may be required to complete a chip design. {VLSI 

design, OPS5, forward-chaining} 

LDS [Waterman and Peterson, 1980] is a rule-based system with expertise 10 product 

liability law. The rules are partitioned into five rule sets (formal doctrine, informal 

principles, strategies, subjective considerations, and secondary effects) that can be 

called as subroutines, but only 90 rules for the first two sets were implemented as 

of the time of writing of the referenced work. The anticipated number of basic 

concepts in a full implementation is in the hundreds, and the number of rules to 

adequately represent legal doctrine and strategies is in the thousands. The rules are 

executed by forward-chaining. Facts (which are also in antecedent-consequent form) 

are used for backward-chaining: the informatIon that can be inferred from the 

hierarchy of facts by inheritance and abstraction is a "virtual data base". LDS IS 

implemented in the ROSIE expert system development envIronment. {legal advice, 

partitioned rules, ROSIE, forward-chaining} 

REACTOR [Nelson, 1982] is an expert system to assist the operators of a nuclear 

reactor by detecting deviations from normal operating conditIons, determining the 

significance of events, and recommending appropriate responses. It normally reasons 

forward from known facts, but if insufficient information is available to reach a 

conclusion, the system reasons backward to determine what information it needs to 

know. It then queries plant instruments or operators as necessary. Its knowledge 

is stored in rules and response trees. Rules, which are event-driven, aggregate 
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observations into known accident classes. Response trees for each safety function 

represent all possible ways to achieve or maintain the safe condition. If faIlures 

disrupt some paths in a response tree, the least-cost remaining path indicates the 

proper actions. Speed of inferencing has been observed to be a problem. {nuclear 

reactor monitoring, forward-chaining} 

YES/MVS [Griesmer et al., 1984] is a continuous real-time expert system that 

monitors the complex and dynamic environment of a computer system, taking 

operator-like actions. Implemented by three communicating processes, it is built 

upon OPS5, with extensions to allow priority-levels of rules, functions that facilitate 

communication with the computer under control and operator interface software. 

Rule consequents are compiled for speed. For this system, OPS5 has also been 

extended to deal with temporal actions and relations, such as ((Assert fact X at 

future time Y" An additional extension permits the transmission of facts from 

working memory to jobs running on other virtual machines. YES/MVS comprises 

500 rules, including some that are driven from tables stored in working memory. 

{computer system monitoring, OPSS, forward-chaining, table-driven rules, compiled 

rules} 

4.2 Large Knowledge Sources: The Hearsay-ll Group 

The systems described here stem from the efforts of the Heuristic Programming 

Project at Stanford, and from work at Carnegie-Mellon University. The seminal 

expert systems in this group are DENDRAL and HEARSAY-II, respectively. 

Common features of these systems include large procedural codes that serve as 

knowledge sources invoked at appropriate points in the problem-solving process, and 

large private data structures maintained by these procedures. Sophisticated 

algorithms schedule the executions of the knowledge sources, and integrate the 

partial solutions they produce. Many of these systems are based on the blackboard 

model of computation, described in section 2.1 on p. 9. 

CONGEN, DENDRAL, and META-DENDRAL [Buchanan and FeigenbaUl.l, 1981] 

are portions of an early expert systemS that seeks to determine the structure of a 

5The Dendral project commenced in 1965. 



chemical from a few hundred points of mass spectroscopy data. CONGEN, written 

in the Fortran and Sail languages, generates all structures that fit the data, subject 

to specified constraints. The authors of DENDRAL, which originally was an 

Interlisp program, were among the first to recognize that a declarative rule base 

could solve the problems of maintaining the knowledge of a system during 

substantial evolution and growth. The rules encode heuristics that confine the 

space of possible solutions. It is a forward-chaining front-end to CONGEN, 

supplying constraints, handling bookkeeping, and dealing with the combinatorics of 

placing substitutents (i.e., DENDRAL enumerates gross structures, and CONGEN 

fills in the details in all possible wa.ys). Thus the ability to generate all possible 

candidate structures is combined with powerful knowledge to confine the search 

space, so that the potential examination of millions of structures is reduced to the 

generation and testing of several of the best. META-DE~TIRAL is designed to 

infer, by induction on empirical data, heuristic rules for DEI\1)RAL to use. In 

particular, it seeks patterns of correlation between molecular fragmentations 

observed in a mass spectroscope a.nd the substructural features of the source 

molecules. Aggregated correlations reveal processes such as the breaking of bonds 

and the migration of atoms between fragments. {chemistry, generate and test, 

knowledge acquisition} 

HEARSAY-II [Erman et 301., 19811 is an expert system for speech understanding. It 

receives the output of a microphone, and determines the sentence that was spoken, 

given sentences that are well-formed in a restrictive grammar with a 1000 word 

vocabulary. The blackboard model of computatIOn was introduced by this system 

to deal with several characteristics of this problem. In particular, the problem 

search space is very large, there are many diverse sources of knowledge that may 

be brought to bear on the problem, and both the input data and the knowledge 

sources are subject to error and inaccuracy Additionally, the system was highly 

experimental, so modularity and independence of knowledge sources was importa.nt, 

and a severe processing resource constraint required that processing power be 

applied judiciously. The knowledge sources In Hearsay-II consist of declarative 

triggers and pairs of antecedent-consequent procedures written in Sail6 They 

5S., '11' I . h ... IS 3 30nguage 10 t e Algol fa.mily. 
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perform aggregation operations such as converting digitized input data to segment 

hypotheses, segment hypotheses to syllables, syllables to words, and words to 

phrases. Other knowledge sources feed information back to lower levels by 

predicting words adjacent to phrases, or syllables that would form predicted words. 

Additional tasks include the evaluation of competing hypotheses for promotion or 

disqualification, and scheduling. Processing stops when only one hypothesis remains 

on the blackboard, or when a time limit is exceeded (in which case the highest 

rated hypothesis is returned as the solution). The HEARSA Y-II source code consists 

of several hundred pages of Sail instructions. {speech understanding, blackboard, 

large rules, uncertainty} 

CRYSALIS [Engelmore and Terry, 19791. also known as SUIP, is an expert system 

to determine 3-dimensional protein structure from x-ray crystallography data. The 

matching of electron density maps with other information to deduce protein 

structures is ((a black art". Consequently, each new protein requires different ad 

hoc techniques, so the system is designed for change. The system organization is 

derived from that of HEARSAY-II. Although most knowledge is represented in rule 

form, knowledge sources that do heavy computation are expressed in procedural 

code. Knowledge sources are organized into three conceptual levels, known as the 

domain, task, and strategy levels. Domain knowledge sources post their conjectures, 

with confidence ratings, on the blackboard. Task knowledge sources organize the 

work of the domain sources, based on the state of the computation as recorded on 

the blackboard. Strategy rules select tasks for execution based on a heuristic 

estimate for each task of the expected progress towards a global solution 

("opportunistic scheduling"). {chemistry blackboard, large rules, multiple levels, 

uncertainty} 

MOLGEN [Stefik, 1980] IS an expert system to plan gene-cloning experiments In 

molecular genetics. The technique employed performs the planning task by defiDing 

and integrating abstract subplans, which are progressively refined to approximate a 

solution by the method called difference reduction (find a difference between the 

current state and goal, and develop a plan to eliminate the difference). This 

planning occurs at three decreasing levels of abstraction, in the strategy, design, and 

laboratory problem spaces. The interactions between subplans are posted as 



constraints to be satisfied In the next more concrete space; corresponding partial 

solutions are integrated by heuristics under the principle of lea.st commitment (delay 

making arbitrary decisions; wait until circumstances force a choice). An interpreter 

applies operators to the current configuration of the spaces to (1) generate and test 

partial solutions subject to constraints, (2) find and reduce differences between goals 

and the current state, and (3) map from one space to another. The operators are 

procedural, and state is maintained in frame structures. {planning, large rules, 

frames, multiple levels, difference reduction, least commitment} 

SPEX [Iwasaki and Friedland, 19821 is an extension of MOLGEN that integrates the 

idea of stepwise refinement of skeletal plans with MOLGEN's layered control 

structure. In this system, all the domain-specific knowledge is contained in the 

knowledge base of frames; the procedures that operate in the planning spaces are 

claimed to be general. Agendas of tasks are managed in the strategy space by 

simple disciplines such as queue, stack, or priority queue. {planning, frames, 

agenda, multiple levels} 

SUfX [Nii and Feigenbaum, 19771 is a classified military system that, given spectral 

lines from multiple sources, recognizes and tracks objects through a physical space. 

For this problem, the HEARSAY-II architecture was extended to implement multiple 

layers of control structure, and the blackboard was partitioned into distinct areas. 

The control layers are named hypothesis-formation, hypothesis-activation, and 

strategy. HASP and SIAP [Nii et aI., 19821 are related systems that perform 

intelligent signal processing for ocean surveillance. {military, blackboard, multiple 

levels, uncertainty} 

4.3 Inrerence Nets and Uncertainty: The Prospector/Mycin Group 

The systems in this group are characterized by two principal ideas. The first IS to 

model the domain by an inference network that reflects some underlying structure 

in the application domain. Rather than an unstructured collection of production 

rules, these systems have rules that link the nodes in the network. The second 

idea is to implement mechanisms for inexact inferencing, either because the input 

data are approximate or because the knowledge that human experts have in the 

domain is too weak to obtain definitive conclusions. One common means for 
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dealing with uncertainty, adopted by the expert system called Prospector, is based 

on Bayesian probability. Another is the "calculus of uncertainty" developed for the 

expert system named Mycin. 

PROSPECTOR [Duda, Gaschnig, and Hart, 1981; Gaschnig, 1982J is an expert 

consultant system to aid geologists in evaluating regions for potential ore deposits. 

Knowledge is represented by production rules indicating how a change in the 

probability of the antecedent condition influences the probability of the consequent 

condition. The rules form an inference net that is tuned by ad hoc methods until 

correct results are produced; probability updating is by an approximate form of 

Ba.yes' Rule. Rigor is diluted by assumptions that the set of outcomes are 

exhaustive and mutually exclusive, and that the input observations are independent 

[Szolovits and Pauker, 19781. Also, there is no mechanism for the system to 

discard wildly wrong observations, or to allow evidence to imply composite 

propositions [Quinlan, 19831. In practice, however, the results are insensitive to 

small perturbations of the input data, which is important since geologists will 

disagree somewhat about a set of observations. Since the productions neither bind 

variables nor form inference loops (a- > b; b- > c; c- > a) [Konolige, 1979]' the rules 

forming the inference net can be compiled into straight-line code. This code 

propagates probabilities from observations to results in one sweep, with no control 

strategy overhead and no recomputation of intermediate nodes. One 

PROSPECTOR model for evaluating copper deposits has 94 nodes and lOS 

productions; compiling reduced the runnmg time from 30 seconds to 3.1 

milliseconds. Knowledge acquisition and intelligent consultation assistance have been 

addressed by Reboh [19801. {resource exploration, Bayesian inferencing, domain 

network, knowledge acquisition, uncertainty, compiled rules} 

!\-fYCIN [Davis, Buchanan, and Shortliffe, 1977; Clancey, 1983al is an expert system 

to diagnose bacteremia and meningitis, and to suggest treatments. The system 

comprises six components: the patient data base, the knowledge data base, and 

programs for consultation, explanation, question answenng, and knowledge 

acquisition. The patient data base consists of associative triples of the form object­

attribute-value, with 80 attnbutes and 11 entities pre-defined. An example of such 

a triple is (identity. organism, bacteroides). The knowledge base is a collection of 
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production rules (600 in 1981) forming an Ai'IDjOR tree; rule antecedents are 

conjunctions of tests on triples, and rule consequents produce conclusions about 

triples. In addition, a context hierarchy defines the universe of discourse and the 

ways objects are related. The rules are applied in an exhaustive backward-chaining 

search,7 but reasoning is complicated by the uncertainty of medical knowledge and 

the imprecision of diagnostic signs. Hence the certainty of an antecedent, calculated 

by the fuzzy set rule on the triples examined, is multiplied by the certainty factor 

of the rule itself to obtain a measure of belief of the conclusion. A combimng 

formula increases the belief measure of a conclusion supported by mUltiple rules, 

rather-than taking the maximal certainty factor imputed by any single rule. 

{medicine, calculus of uncertainty, fuzzy logic, explanation, backward-chaining, 

uncertainty} 

TEIRESIAS [Davis and Buchanan, 1977; Davis, 19811. originally a portion of the 

MYCIN system, assists in knowledge acquisition. It is a large Interlisp program 

designed to Cacilitate the interactive transfer of expertise from a human to an 

expert system. In the context of a particular erroneous consultation, it 

systematically leads a human through the expert system's line oC reasolllng to 

discover the point of error. Then it prompts for and monitors the modificatlOn or 

addition of rules, notIcing inconsistencies between new knowledge and patterns 

established by previous knowledge. This latter behavior is made possible by meta­

rules that give TEIRESIAS a model of what the expert system knows and does not 

know. Finally, it performs certain bookkeeping functions, and automatically re-runs 

consultations to verify the correctness of the changes. {knowledge acquisition, 

m eta- rules} 

NEO~fYCIN [Clancey, 19831 is a revIsIon of ~fYCIN In which the search control 

knowledge is represented explicitly, rather than being implicit in the domain rules 

and interpreter, so that this knowledge is accessible Cor computer-aided instruction. 

A top-down diagnostic strategy is represented in a set of domain-independent meta­

rules. Domain rules represent causal relationships, trigger the addition of hi potheses 

7In the June 19i8 version of MYCIN, the I:l.rgest number of rules relevant to a particular 
goa.l was about 50. 
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to the set under consideration, notice and combine circumstantial eVIdence (wIth 

associated certainty measures), and make deductions, when possIble, to determme 

data without asking the user. Knowledge about disease processes is stored in 

frames keyed to a disease taxonomy, together with lists of follow-up questions. The 

system may be viewed as a general procedure that searches a network containing 

advice at each node suggesting which branch to examine next. One consequence is 

that there is no backward-chaining present in the domain-level rules; the top-down 

refinement and screening activities are performed by the meta-rules. {teaching, 

medicine, frames, domain network, backward-chaining, meta-rules} 

GlJIDOl'{ [Clancey and Letsinger, 19811; later GUIDON2 [London and Clancey, 1982] 

is a system designed to teach the information in the NEOMYCIN database. 

GUIDON2 has three components: a domain expert (NEOtvIYCIN), a student modeler 

(l1viAGE), and an instructional manager. During a consultation, the system 

simulates NEOMYCIN to form multiple sets of predictions of student behavior. 

Then it obtains descriptions of actual behavior. If these are consistent, the student 

is following a correct approach, reflecting a reasonable set of active hypotheses. If 

not, forward-chaining rules seek to rationalize the student's behavior, giving a basis 

for guidance and evaluation. {teaching, forward-chaining} 

ONCOCIN [Shortliffe et aL, 1981] is an expert system to manage oncology protocols, 

which are the patterns of treatment and data collection for cancer patients. The 

system was designed to be acceptable to doctors. It is implemented in two 

concurrent processes: the reasoner, a forward-chaining rule-based system m 

Interilsp, and the interviewer, a Sail program for high speed full-screen display 

interaction. Control blocks contain scripts of steps to accomplish the tasks of a 

protocol, which separates control knowledge from the domain rules. Rules, grouped 

by the contexts to which they apply, are executed by forward-chaining to draw 

conclusions from new data, and by backward-chaining to deduce needed values. 

The control blocks cause system behavior to be focused and responsive to the user, 

. avoiding a potential weakness of backward-chaining systems. The design of 

ONCOCIN facilitates storing and reasoning about temporal patterns of data as well 

as current values. {medicine, control knowledge, forward- and backward chaining, 

temporal reasoning} 



ABEL [Patil, Szolovits, Schwartz, 19821 is a medical expert system to diagnose acid­

base and electrolyte disturbances. It is designed to utilize both shallow and deep 

causal models of disease to plan the diagnostic questioning. By decomposing the 

tree of all potential diagnoses before asking the first question, the system can order 

the set of necessary questions for efficiency and coherency. In particular, 

implausible responses from the user can be recognized and challenged, invoking an 

"excuse-finding mechanism". The system plans the diagnostic questioning in a goal­

directed manner, but the actual question asking process is performed in a forward­

chaining environment so that the system is responsive to the answers gIven. 

{medicine, deep models, forward- and backward-chaining, uncertainty} 

CASl'.TET [\Veiss, Kulikowski, Amarel, Safir, 19781 is an expert system for the 

diagnosis of glaucoma. The principal idea is to store a network of causal 

connec~i.Qns among dysfunctional states, and test whether a patient has those 

dysfunctions. Relationships between nodes are stored as production rules, and 

results of tests for specific states are combined by fuzzy logic applied to causal links 

from other confirmed or disconfirmed states. Diagnostic question generation is 

guided by paths in the network; the initial node of a path represents a probable 

cause (disease), and the terminal node indicates the extent of disease progression. A 

causal model is attractive because "people seem happier if they understand why 

something happens than if they merely know that, under the circumstances, it 

does." Casnet has 100 states, 75 classification tables, and 200 diagnostic and 

treatment statements [Nau, 19831. {medicine, domain network, fuzzy logic, 

uncertainty} 

DART [Bennett and Hollander, 1981] is an expert system for fault diagnosis 10 

computer teleprocessing systems. It is seen as the first step in the development of 

an automated diagnostician for an entire computer system. Its main task is to 

implement reasoning that bridges the gap between the very fine level of device 

diagnostics and coarse observations of system-level failure. Implemented under the 

E~f'{CL'\l framework, DART consists of 190 rules and 300 E}Vf'{CIN' parameters. 

{electronics diagnosis, E~fYCIN} 

DIGITALIS ADVISOR [Silverman, 1975; Gorry et al., 19781 is an expert consulting 
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program that advises a physician on the proper dose of a heart drug called digitalis. 

The dosage calculation is subtle and complex, involving many facts about the 

patient's condition and treatment. Inferencing is goal-directed, and the domain is 

sufficiently narrow that solutions are developed rapidly. {medicine, backward 

chaining, uncertainty} 

XPLAIN [Swartout, 1981; 19831 is a system that generates explanations for the 

advice given by the DIGITALIS ADVISOR. It is notable in that it does not merely 

produce explanations from the text of the rules that were executed, it has much 

deeper knowledge. Indeed, XPLAIN contains an automatic programming subsystem 

that generates the DIGITALIS ADVISOR: it can explain the advice because it built 

the advisor. {medicine, explanation, deep models, automatic programming} 

The DIPMETER ADVISOR [Davis et al., 19811 is a system to assist in geological 

exploration. It infers subsurface structures based on data from an instrument 

known as a dip meter. This task is difficult because the data are very sparse and 

noisy, with few mutual. constraints. However, the search space is small, and there 

is less ambiguity than in domains such as speech understanding. Since the data 

features must be evaluated in isolation, deep knowledge of the underlying geological 

processes are needed. This knowledge is captured in production rule form. The 

productions are organized into five groups, corresponding to the major steps in the 

reasoning algonthm. Rule antecedents consist of simple constant comparisons, and 

working memory elements representing data and intermediate results are flat lists of 

constants. The developers estimate that a few hundred rules would be required for 

a complete version of the system. {resource exploration, deep models, uncerta.inty} 

ELAS [Weiss et al., 19821 is an expert system to assist in oil exploration. 

Implemented in the EXPERT rule-based system framework, it interacts with the 

user to control Amoco proprietary software for well-log analysis a.nd display. EL'\s 

extends ideas of the classification systems such as CASNET, MYCIN, and 

PROSPECTOR, but it operates in real-time, keeps a model of the user, and is 

closely integrated with the Amoco programs. This integration is facilitated by 

having a common underlying language, Fortran. {resource exploration, expert user, 

EXPERT, Fortran} 



3J 

GA.\0tlA [Barstow, 1980] is an expert system that determines the composltlon of 

unknown substances by examining the gamma ray activation spectra resulting from 

neutron bombardment. Reasoning proceeds by backward-chaining from gamma ray 

detections to emissions, to unstable isotopes, to isotopes after bombardment, to 

isotopes in the original sample, to elements in the original sample. Form ulae, 

tables, and rules at each level form a deep model capable of predicting hypotheses 

at the next lower level, eventually reaching predictions that can be compared with 

the observed spectra. Data are triples (o,e,c), where 0 represents an object such as 

an isotope at one of the 6 deductive levels, e is an estimate of concentration, and c 

is a chain encoding a path from an element in the original sample to the triple. 

An ad hoc hill-climbing algorithm is applied to an "interpretation measure" that 

tells how well a set of constituent (element,concentration) pairs accounts for the 

spectral peaks. {chemistry, backward chaining, deep models} 

INTERNIST [pople, 1977] is an expert system intended to cover the entire field of 

internal medicine. Disease knowledge is stored in an organ-based hierarchy, with 

relatio~~_ between disease nodes denoted by four classes of weighted links: causal, 

associative, manifestation of, and invoked by. The search space is viewed as an 

AND/OR graph, with constrictors suggesting regions of the graph to whlch 

attention is confined ("jaundice means there is trouble with the liver"), and a multi­

problem generator suggesting constellations of problems that can account for the 

observed symptoms. Processing evaluates competing hypotheses by calculatIng 

numerical scores that measure such qualities as goodness of fit and explanatory 

power. The highest scoring hypothesis is pursued, wlth new data (such as test 

results) causing a recomputation of all scores (possibly resulting in a shift of focus). 

Thus the quality of the scoring function is crucial to the performance of the system, 

and the hidden intelligence in this function is inaccessIble for the generation of 

explanations. Although breadth of knowledge does not imply accurate diagnoses, 

certainly it is prerequisite. Thus it is interesting to note the growth of the 

I.. L"lTERNIST knowledge base. INTERNIST-I contains information concerning 400 

disease entities and 2000 manifestations, and executes in 3 to 7 cpu minutes in a 

PDP-IO/lnterlisp environment. INTERNIST-II covers about 80% of the diagnoses of 

internal medicine, and requires from 20 seconds to 2 minutes to perform a 
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diagnosis. CADUCEUS (pople, 1981] is the successor of I~TER!'ilST. As of 198~ 

it possessed 100,000 associations in a semantic network that includes 500 diseases 

and 350 manifestations, which represents nearly 85% of the potential diagnoses of 

internal medicine. {medicine, domain network, uncertainty} 

:\IDX [Chandrasekaran et al., 1979; Chandrasekaran and Mittal, 1982] is a system to 

diagnose liver problems in the cholestasis syndrome. The syst.em's expertise is 

derived from diagnostic structures that form a hierarchy reflecting the deep 

structure of knowledge in the field. In this organization, the representation of a 

concept calls on subconcepts much as a physician calls on specialists. Each concept 

has attached code that, given a diagnostic problem, first decides whether the 

problem lies within the scope of expertise of this subtree, and if so, decides which 

subconcepts to call on as specialists. If the problem is outside the scope of the 

subtree, the calling super-concept is advised where else to look. The authors assert 

that these diagnostic structures contain compiled knowledge that is intermediate 

between the extremes of a data base of patterns on one hand, and representations 

of deep knowledge (in whatever form) on the other, and that all the diagnostic 

probleI1]..~ that could be solved by deep knowledge can still be solved, but more 

efficiently. 

expertise} 

{medicine, domain network, uncertainty, deep models, scope of 

PIP [Szolovits and Pauker, 19781 is an expert system to diagnose renal disease. The 

medical knowledge is stored in frame structures that represent possible disorders. 

The structure of a frame is as follows. The trigger slot has tests to be compared 

with observations about the patient to see if the frame's hypothesis should be 

considered. The findings slot accumulates additional evidence for a hypothesis 

already under consideration. Slots named is-sufficient, must-have, and must-not-have 

contain categorical tests to determine whether the hypothesis applies to the patient. 

The differential-diagnosis slot contains a list of tests to check alternatives to this 

hypothesis, while complementary hypotheses are linked through the caused-by, cause­

of, complicated-by, complication-of, and associated-with slots. The sc.ore slot 

contains a complex numerical likelihood estimation function specialized to the 

hypothesis. One observation concerning PIP is that the scores are sensitive, so 

question-asking by the system tends to flitter from hypothesis to hypothesis as the 



odds fluctuate, which IS not reassuring to the user. Also, PIP doesn't know when 

to stop, It continues exploring additional less and less reasonable hypotheses, until 

none remain or every finding has already been examined. 

domain network, large rules, uncertainty} 

{medicine, frames, 

PLAi"iT IDS [Uhrik, 1982J IS an expert system for the diagnosis of soybean diseases, 

using a combination of rules derived from human experts and from machine­

induction on exemplary cases. The system operates In a domain in which the 

discriminations are very subtle, and in which diagnoses must be made from 

constellations of many weakly suggestive observations, The concomitant difficulty IS 

that several weakly believed inferences may aggregate to indicate with near 

certainty an incorrect result. {plant disease, uncertainty, knowledge acquisition} 

PUFF [Osborn et al., 1979] is an expert system for diagnosing pulmonary disease. 

\Vritten in E~fYCIN, it has 55 rules, and required fewer than 50 hours of human 

expert interaction and fewer than ten weeks of knowledge engineering time to 

construct [Feigenbaum, 1977]. It has a fixed order for exploring the diagnostic 

space (by simple backward-chaining), so it occasionally asks unreasonable questions 

in the context of previous answers, Nevertheless, it produces high quality diagnoses, 

and the system IS In routine clinical use. {medicine, uncertaInty, 

backward-chaining} 

SACON [Bennett and Engelmore, 1979] is an expert system written in EIvfYCIN to 

advise on the operation of a large structural analysis program named ~L\RC 

\L-\RC applies finite-element analysis techniques to the simulation of propertIes of 

structures such as aircraft WIngs, reactor pressure vessels, rocket motor casIngs, 

bridges, and buildings. The properties of interest include fattgue, responses under 

varying load, stability, and deflection, t-.L-\RC is sufficiently rich in options that a 

year of experience is typically required to become a proficient user SACON 

provides this experience on behalf of a less-seasoned user. First, it obtains from the 

user a description of the geometry, materials, loadings, and required accuracy for 

the structure to be analyzed. It then determines the analysis class into which the 

object falls, and recommends an appropriate analysis strategy to be used in Ivl-illC 

A typical consultation to prepare for the analysis of an object with two 
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substructures, three loadings. and three load components requires about 25 minutes 

at an interactive terminal. SACON's knowledge resides in approximately 170 rules 

and 140 EMYCIN parameters, which were obtained in two months of a human 

expert's time, with two additional months for implementation and testing. The 

marginal time cost of new rules was found to be two hours, although the first 170 

rules required four hours each. EMYCIN had previously only been used for medical 

systems; it proved to be effective in this domain as well. {structural analYSIS, 

expert user, E}"fYCIN} 

4.4 Other Expert Systems 

EL [Stallman and Sussman, 1977J is an expert system, written In the ARS language. 

to analyze the behavior of analog electronic circuits. Knowledge about circuits is 

represented by rules that act as demons, monitoring an associative relational 

database that models the circuit under analysis. The medium-priority demons apply 

electrical laws to make deductions. When no further deductions are possible, low­

priority demons make. or retract device-state assumptions (CCmethod of assumed 

states"), which are checked by high-priority demons for consistency with the 

remainder of the circuit ("propagation of constraints"). If the state is found to be 

inconsistent, backtracking is taken at a point chosen to remove the conflict 

CCdependency-directed backtracking»). The device-state dependencies thus obtained. 

stored in an inheritance hierarchy, prevent the generation of circuit states 

containing previously discovered conflicts. \Vhen a new state is asserted. a decision 

tree of patterns selects demons to be enqueued for execution at appropriate 

pnorities: For speed, there are separate databases to hold facts, demons, and 

dependencies. It is noted that although rules give local modularity, the overall 

structure of a rule-based system is quite rigid. {electronics diagnosis, demon. 

assumed states, propagation of constraints, dependency-directed backtracking, frames. 

partitioned rules} 

HARPY [Lowerre and Reddy, 19801 is an expert system for speech understanding, 

solving the same problem as Hearsay-II. In HARPY, the syntax, lexical, and word 

juncture knowledge IS compiled from context free production rules into a 

discrimination network representing all legal utterances in the domain. During 
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execution, a relatively simple interpreter then compares speech with this structure 

by beam search to find the best matching interpretation. This approach gives high 

speed, which permits search space pruning decisions to be postponed until larger 

partial solutions are developed and evaluated, which in turn leads to accuracy. For 

a 1000-word vocabulary, the discrimination network has 15,000 nodes and requires 

13 hours on a DEC-I0 (KL) to compile. {speech understanding, uncertainty, 

com piled rules} 

PARillISE [\Vilkins, 19811 is a chess-playing expert system that uses deep strategies 

rather than rapid iteration of brute-force search techniques. A production system 

organization was chosen to facilitate modification and extension of the knowledge 

base, despite the penalty in execution speed. In PARADISE, a knowledge source is 

a group of rules about some abstract concept, together with variables whose joint 

instantiation represent a specific instance of the abstract concept. Some productions 

participate in more than one knowledge source, and some concepts are not 

contained in any knowledge source. The rules discover patterns in chess positions, 

and post ideas to the database for consideration by other rules, ultimately 

generating chess plans that are then verified by a small tree search process. This 

problem domain is quite unlike that of systems such as MYCIN: the solution is not 

implicit in a codification of the current situation or in the knowledge base; rules 

must deal with higher concepts, linking them to create plans. However, this process 

is unlike robot planning, in that details must not be suppressed. Details are of the 

essence. Also, firing a production does not add a new fact to the system, because 

the rules do not make deductions. They produce ideas that mayor may not be 

correct. ___ There are no clear facts WIth probabilities that can be reasoned about, so 

productions must record their reasoning, not just their result, for inspectIOn by 

subsequent rules. An example of the exceptionally well focused search performed by 

PARADISE is given by a chess problem that was solved through a search 19 ply 

deep. This search tree had only 109 nodes. {chess, deep knowledge, planmng} 

ROSS [Klahr and Faught, 1980J is a rule-oriented system for SImulating military aIr 

battles. A rule representation was chosen because procedurally coded simulators 

have proven to be unintelligible, unmodifiable, not credible, and slow. Rules In 

ROSS specify object behaviors, and an underlying object-oriented message-passing 
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system conducts the activity. Each major event has a descriptor; these are hnked 

to form scenarios. Trees of event descriptor chains represent «activities". These 

structures can be browsed, and serve as the basis for explanations of the 

occurrences during a simulation. The system has approximately 75 behavioral rules 

and 10 object types, and has simulated battles containing 250 objects. The authors 

feel the current system will not scale up without improvements in speed of 

execution, perhaps derived from parallel processing, abstraction, sampling, and 

focusing on user queries to avoid irrelevant processing. A reimplementation in 

ROSIE or a hybrid ROSIE/object-oriented language IS under consideration so that 

the rule-based language will be more English-like. {military, domain network, 

ROSIE} 

SAINT, SIN, [Moses, 1971] and ~1ACSYMA [Martin and Fateman, 1971] form a 

progression of systems with expertise in symbolic mathematics. SAINT was viewed 

as an AI approach to symbolic integration. Further development led to SIN, which 

runs two orders of magnitude faster as a consequence of explicit tables of integrals, 

and special-purpose solution strategies for standard problem types. t-.1ACSThfA is 

an extension with broad expertise in differential and integral calculus and algebraic 

simplification. It is in routine use, and is more highly skilled than humans. 

{ mathematics} 

5 Conclusion 

Numerous domains have proven fruitful for the development of expert systems. One 

principal area is medical diagnosis, and more generally, the diagnosis of systems, 

whether the human body, a nuclear reactor, a telephone system, or an electronic 

circuit. Other prominent areas include the ordering, configuration, and assembly of 

computer systems, evaluating geographical regions for oil and mineral depOSits, and 

the elucidation of molecular structures. 

A variety of effective approaches to the design of expert systems are known. 

Among these are the OPS systems of hundreds or thousands of small rules with a 

global working memory, the Hearsay-II style of systems having tens of knowledge 

sources observing and communicating through a blackboard, and the systems such 

as LOOPS that integrate rules with other programing paradigms. 
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From the work in this field, several issues are understood to a degree. It is known 

that large systems should assist in the process of knowledge acquisition. Means for 

accomplishing this include automatic checking to determine whether new information 

is consistent with the old (to the degree possible), and debugging of the knowledge 

in the context of erroneous deductions by the system. Successful knowledge 

representations have been found, including production rules for inferencing, frames 

to capture characteristics of entities, and networks for the representation of 

relationships. Guiding the process of deduction has been effected by static conflict 

resolution and by agendas under the control of meta-level knowledge sources. 

Efficient inferencing techniques have been developed for certain programming 

techniques, such as those employed by Rl and Prospector. 

Many challenges remain. Among these are what might be t,=rmed the "software 

engineering" of expert systems, involving techniques for the design, implementation, 

and maintenance of large systems. Another open question is the appropriate 

granularity of knowledge representation. Effective applications of large knowledge 

sources and very small rules have been seen, but we lack general principles. In 

particular, current expert systems are individually hand-crafted (possibly within 

knowledge engineering frameworks); we lack general principles applicable to classes 

of problems, which would permit the construction of "generic experts".8 Also, the 

means for capturing broad knowledge are not yet known; current expert systems are 

unaware of their limits, and draw incorrect conclusions when working outside the 

scope of their narrow expertise. Another area in infancy is the application of 

parallel hardware to obtain large increases in inferencing speed 
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I Rul., B& .. I--------> I.fere.co Engi.. (--------> r D&t& B ... I 

The rule base contains the system's reasoning knowledge for the problem 

domain. Its contents are usually obtained from human experts by knowledge 

engIneers. 

The data base contains facts modeling the problem state under solution. 

Facts specifying ·the initial state are obtained from the uSer of the expert 

system. 

The inference engIne is a program that applies the knowledge expressed in the 

rule base to the facts stored in the database in order to make deductions. 

The inference engine reads both the rule base and the knowledge base, and 

writes updated information into the data base as problem solution progresses. 

Figure 1: Basic components of an AI production system. 
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(p .ort-York 

) 

(ta.k fta.knaa. SORT) 
(numb.r fTalU' <x> 
(number fTalu. < <x> 
(counter tTalue <n» 

fUlld HO) 

fused HO) 

--> 
(nite <x» 
(.odify 2 fused YES) 
(.edify 3 fTalU' (co.put. <n> + 1» 

(p .ort-done 

) 

(ta.k fta.knaa. SORT) 
- (nu.ber tu •• d 10) 

(counter fTalne <total» 
--> 
(nit. <total> ite ••• orted) 
(reIiOTI 1) 

Production naaed .ort-York 
If current ta.k i. to .ort 

a.nd there is a.n unused number x 
but no smaller unused number 
a.nd the output counter i. n 

Then 
nite nu.ber to output 
.ark x a. used. a.nd 
incre.ent the output counter. 

Production naaed .ort-done 
If current ta.k i. to .ort 

but no unu •• d nu.ber re.ain. 
a.nd the output counter i. total 

Then 
write the total nu.ber of ite •• 
a.nd t.r2inat. the .orting talk 

This is a pair of rules written in the OPS5 language. The first rule 1S a 

complete description of a sort. It operates by repeatedly finding the 

smallest number, printing it, and discarding it. In addition, the first rule 

counts the number of items sorted. The second rule notices when the sort has 

finished, prints the total number of items sorted, and also removes from the 

working memory the context element that establishes the sorting task. 

Figure 2: Exa.mple small-rule productions. 
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This example illustrates the slots of a frame-based knowledge source. 

Knowledge-source name: Downshift control 

Description: 
The downshift control knowledge source examines information from sensors on 
an automobile and decides whether to shift the transmission to a lower gear. 

Trigger Condition: 
is a declarative indication that the antecedent should be executed every 1/10 
second, and whenever the accelerator pedal is depressed further. 

Screen Test: 
is a small procedure that checks prerequisite conditions to determine whether 
the antecedent should be executed. An example of such a condition would be 
that the driver has not selected Neutral or Park for the transmission. 

Antecedent: 
is a procedure that collects sensor data such as the current gear, 
combustion chamber peak pressure\ engine output torque, vehicle velocity, 
vehicle acceleration, accelerator peaal position, carburettor throttle 
position, and carburettor choke valve position. These data are added to 
the Private State History slot. The procedure also performs a simple 
calculation on the velocity, acceleration, and pedal position to obtalD a 
prediction of whether the consequent would try to shift gears. The result 
of this calculation is stored in the Potential Action slot. 

Potential Action: 
is a simple declarative indication of the likely result of executing the 
consequent. The value of this slot is set by the antecedent, and is 
examined by the scheduler to assist in determining whether to allocate 
execution time to the consequent during this inferencing cycle. 

Consequent: 
is a procedure that performs a calculation based on the current sensor data 
collected by the antecedent, together with the private state information, 
to maximize an objective function such as: Maximize fuel economy subject 
to (1) a minimum accepta.ble acceleration depending on the difference 
between accelerator pedal ~osition and current velocity, (2) suppression of 
oscillation between gears, 3) pJotection of the engine and drive train 
from overload or overspee. The result of the computation is an updating 
of the private state information, together with the possible activation of 
a servo mechanism to change gear. 

Private State History: 
is a data structure to store the activity of the gear selection servo, and 
the history of sensor data over the past several time intervals. The 
antecedent and consequent store data. here, and the consequent examines it. 

Development History: 
is notes indicating the development history for this knowledge source, the 
rationa.le for implementation conditions, and warnings concerning 
modification or use. 

Ftgure 3: Example frame-based knowledge source. 



This is an example of forward-chaining rule execution, showing a rule base 

and iniml database, with a trace of six cycles of (match, select, act), and 

the final state of working memory. 

Rule ba .. : 
1. A and B and C -) P 
2. 0 and E -) P 
3 . F and G and H -) Q 
". P and Q -) X 

Initial data base: 
Al A2 A3 Cl 01 02 El Fl Cl 81 

Cycle 1. 

Cycle 2. 

Match rule. with data, obtain rule in.tantiation.: 
rule 2: (01, El) 

(02, El) 
rule 3: (Fl. Cl, Hl) 

Select •• ay, (Fl. Gl. 81). 
Execute. a •• ert Q(Fl+Gl+Hl) into the data ba ••. 

Match. (note that executed inltantiation. are not rau.ad) . 
rule 2: (01, El) 

(02, El) 
Select, uy. (02, El). 
Execute. alsert P(02+El). 

Cycle 3. Watch. 
rule 2: (01. El) 
rule 4: (P(02+El), Q(Fl+Cl+Hl». 

,Select. uy. (P(D2+El), Q(Fl+Gl+Hl». 
Execute, a •• ert X(02+El+Fl+Cl+Hl). 

Cycle 4. Watch. 
rule 2: (01. El) 

Select (01. El). 
Execute, a •• ert P(Dl+El). 

Cycle 5. Watch. 
rule 4: (P(Ol+El), Q(Fl+Cl+Hl». 

Select (P(Ol+El), Q(Fl+Cl+Hl». 
Execute. a •• ert X(Dl+E1+F1+C1+H1). 

Cycle 8. Watch. no new in.tantiation •. 
Selection full. 
Execution halt •. 

Final working ••• ory: 
A1 A2 A3 Cl 01 02 E1 F1 Gl 81 Q(F1+C1+81) P(D2+E1) 
X(D2+E1+Fl+Cl+81) P(Dl+El) X(01+E1+F1+C1+81) 

FIgure 4: Example forward-chaining rule ex~cution. 
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This example shows a backward-chaining execution of the same rule base 2S the 

previous figure. Given an initial goal, the example shows cycles of 

backchaining to subgoals, and backtracking when a subgoal fails. 

Rule ba .. : 
1 . A and B and C -) P 
2. D and E -) P 
3 . F and G and H -) Q 
•. P and Q -) X 

Initial goal .tack: X 

Cycle 1':- Backchain rule •• new subgoala P. Q. 
Goal .tack (P. Q. X(.». 

Cycle 2. 

Cycle 3. 

Cycle •. 

Cycle 6. 

Cycle 8. 

Cycle 7. 

Cycle 8. 

Cycle 9. 

Backchain rule 1. new lubgoal. A. B. C. 
Goal .tack (A. B. c. P(1). Q. XC.». 

10 rul •• for A; a.k u.er. U.er proTide. A1. 
Goal A .ati.fied. 
Goal .tack (B. C. P(1). Q. X(.». 

10 rule. for B. uler doesn't proTide a Talue. 
Goal P(1) fail.; back up to preTiou •• tat •. 
Goal .tack (P, Q, X(.». 

Backchain rule 2. new lubgoal. D. E. 
Goal .tack (D, E. P(2). Q. X(.». 

10 rul •• for D; a.k u.er. User provide. D1. 
Goal D .atisfied. 
Goal .tack (E. P(2). Q. XC.». 

Ho rule. for E; a.k u.er. User proTide. E1. 
Goal E .ati.fied. 
Goal P(2) .atisfied. 
Goal .tack (Q. X(4». 

Backchain rul. 3. new subgoals F. G. H. 
Goal .tack (F, G. H. Q(3). X(.». 

10 rule. for F; a.k u.er. U.er proTide. F1. 
Goal F .ati.fied. 
Goal .tack (G. H. Q(3). XC,». 

Cycle 10. 10 rule. for G; a.k u.er. U.er provide. G1. 
Goal G .ati.tied. 

Cycle 11. 

, Goal .tack (H. Q(3). X(4». 

10 rule. for H; a.k u.er. U.er proTide. H1. 
Goal H .ati.fied. 
Goal Q(3) .at1.fied. 
Goal X(4) .ati.fied. 
Goal .tack •• pty; execution t.rainate •. 

Figure 6: Example backward-chaining rule execution. 
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This example shows two rules and two input observations, with associated 

confidence figures. Techniques for combining uncertain evidence are 

described and the evaluation of the rules is performed. 
I 

Rule 1: transportation ~ype .leigh 
power .ource re1naeer 
cargo container .ack 
cargo tne tOYI 
--> dr1Ter Santa Claus (0.8) 

Rule 2: weight clal' obe.e 
beard color white 
beard length long 
eye emotion twinile 
.uit color red 
--) name Santa Claus (0.6) 

OblerTation: 
tranlportation ~ype .leigh 
power .ourc. re1naeer 0.9 
cargo container .ack 0.9 
cargo._type toys 0.7 

1.0 weight clall obese 0.7 
beard color white 0.8 
beard length long 0.6 
ey •• aotion twinil. o.e 
.uit color red 1.0 

Th. following e%&apl. of the calculation of a aealure of belief for the 
conclulion tliat the indiTidual i. Santa Claul, il baled on the following 
three .taple technique. for coabiDing .Tidence. 

1. The .ealurl of belief of an antecedent (a conjunction of clauses) ia 
the .inimua of the .ealure. of belief of the clausel. Thil is the 
fuzzy let rule for conjunction.. CIA chain i. al weak al its weLXelt 
link.') Hote that thil i. 'ymmetric with respect to the cl~uael. 

:n 

2. The .ealure of belief of a rule conaequent il defined to be the product 
of the .ealure of belief of the antecedent and the belief factor of the 
rule. 

3. ETidence froa conlequentl X and Y il coabined al followi. 
Let P = beliefCX), Q = belief(Y). 
Define aggregate belief A = P + (l-P)Q. 

That ii, the belief relulting fro. P i. augsented br & fraction 
proportional to the belief of Q. Thil can allo be 1nterpretad al 'A il 
true becaul' P i. true, or (if P il falae) Q il true. 1 

Hote that A i. lyaaetric in P and Q: A = P + Q - PQ. 

ET&luation for rule 1: 
Wealure of antecedent = 0.7 
Wealur. of con.equent = 0.66 

ETaluation for rule 2: 
Wealure of antecedent = 0.6 
Wealure of conlequent = 0.36 

Agxregate belief that t~e indiTidual il Santa Clau.: 
-0.66 + (0.") % 0.36 - 0.66 + 0.16 = 0.72 

Figure 6: Example reasoning with uncertainty. 
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Frames 27, 30, 35, 36 
Fuzzy logic 29, 31 

GA.\i~fA 33 
Generate and test 25 
Goal-driven 6 
Granularity 7 
GUIDON 30 

HAPS 15 
HARPY 36 
HASP 27 
HEARSAY-II 25 
HEARSAY-III 16 
HPRL 17 

Incremental growth 10 
Instantiation 5 
INTERNIST 33 
Interpreter 5 

KEE 17 
Knowledge acquisition 10, 25, 28, 29, 35 
Knowledge base 3 
Knowledge engineer 10 
Knowledge engineering framework 11, 12 
Knowledge source 4 

Large rules 26, 27, 35 
LDS 23 
Least commitment 27 
L~gal advice 23 
LHS 4 
LOOPS 17 

MACSYMA 38 
Mathematics 38 
MDX 34 
Medicine 29,l,. 30, 31, 32, 34, 35 
META-DENDtlAL 24 
Meta-rule 7 
Meta-rules 29, 30 
Military 27, 38 
Modularity 10 
MOLGEN 26 

___ Multiple levels 26, 27 
MYCIN 28 

NEOMYCIN 29 
Nuclear reactor monitoring 24 

ONCOCIN 30 
OPS 18 
OPS4 23 
OPS5 21, 22, 23, 24 



PARADISE 37 
Partitioned rules 23, 36 
Pattern 4 
Performance 3 
PIP 34 
Planning 27, 37 
Plant disease 35 
PLANT/DS 35 
ProductIOn memory 3 
Production system 3, 7 
Production system, pure 
Propagation of constraints 
PROSPECTOR 28 
PTRANS 22 
PUFF 35 

Rl 21 
REACTOR 23 
Refinement 8 
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Resource exploration 28, 32 
RHS 4 
RITA 19 
ROSIE 19, 23, 38 
ROSS 37 
Rule base 4 

SACON 35 
SAINT 38 
Satisfied 5 
Sco~e of expertise 34 
SlAP 27 
SIN 38 
Slot 4 
Small rules 21, 22 
Speech understanding 26, 37 
S2eed of inferencing 12 
SPEX 27 
Structural analysis 36 
SU 27 

Table-driven rules 24 
Teaching 30 
TElRESlAS 29 
Telephone cable maintenance 23 
Temporal reasoning 30 

Uncertainty 11, 28, 27, 28, 29, 31, 32, 34, 35, 37 

VAX assembly 22 
VAX configuration 21 
VAX order 109 22 
VLSI design 23 

Working memory 5 
Working memory element 5 

XPLAIN 32 
XSEL 22 

YAPS 20 
YES 24 
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