
A Knowledge-Based Expert Systems PrImer and Catalog

Abstract

Bruce K. Hillyer

Department of Computer Science

Columbia University

October 1985
CUCS-195-85

For more than 20 years, artificial intelligence techniques have been applied to the

development of computer programs that solve difficult problems. Although several

expert systems are well known, it is all too easy to circumscribe the field based on

these few examples. The purpose of this paper is to present the fundamentals of

the field (the Primer), and to give a broad overview via concise descriptions of

many rule-based expert systems and knowledge engineering frameworks (the

Catalog).

1 Introduction

This paper is offered to persons who have some awareness of artificial intelligence

techniques, and who would like to gain an overview of the rule-based expert

systems field. The fundamental terminology and concepts are presented here,

together with numerous concise descriptions of individual expert systems and tools

for expert system constructlOn. AttentlOn is gIven to the manner in which

knowledge is represented, and the ways inferencing is performed.

Previously published articles have described seminal expert systems, elucidated

general principles, and have presented techniques for constructing expert systems.

Among these are [Davis and King, 1976; Feigenbaum, 1977; Hayes-Roth, \Vaterman,

and Lenat, 1978; \Vaterman and Hayes-Roth, 1978; Buchanan, 1982; Ennis, 1982;

Stefik et al., 1982; Buchanan and Duda, 1983; Duda and Shortliffe, 1983; Minker,

1983; Nau, 1983; Hayes-Roth, Waterman, and Lenat, 1983; Kobler, 1984; Hayes­

Roth, 1985]. The present paper differs from these in that it covers a greater

number of systems, rather than treating a smaller number in depth.

The next section presents the basic terminology and concepts of the field, and

section three describes several tools, languages, and environments for building expert·

systems. Section four gives concise reviews of many expert systems, indicating the

variety of domains, approaches, and alms. Concluding remarks are in section five,

followed by references and an index.

2 PreliminarIes

Two fundamental definitions are offered here.

- An expert system is a comfuter program to solve the difficult problems

that a human expert solves.

- A knowledge-based expert system is an expert system that has the ability

to solve its problems by virtue of explicit, declaratively represented

knowledge of the problem domain, not just clever algorithms.

Thus expert refers to the quality of the problem solving, and knowledge-based to

the means of solution. These definitions are broad. The hrst admits all techniques

that work well in practice, rather than focusing on approaches necessarily considered

"AI-like" . The second states a defining characteristic without explicitly requiring

subsystems such as knowledge acquisition and explanation, or specifying a strategy

such as heuristically guided search space exploration. The given dehnitions are

intended to connote a weak Turing test2 quality: an expert system should behave as

if it understands the problem area at the level of a human expert; it should not

appear to perform a simple task, or to compute by rote formulae.

lWe appeal to the reader's understanding of "human expert".

2The Turing test of artificial intelligence [Turing, 19631 may be formulated as follows. A
human tester holds conversations vIa two terminals, one of which is connected to a
computer, and the other to another human. rr the tester is unable to determine from the
conversatIons which terminal is connected to the computer, the computer system has passed
the Turing test.

3

Duda and Shortliffe [1983] gave somewhat similar definitions, but pointed out the

problematic nature of such terminology:

The· phrase "knowledge-based systems" is often preferred to "expert
systems," since there are no uniquely qualified human experts for a large
number of AI applications; however, both phrases are sufficiently vague
that the latter can be applied to almost any program that works well and
the former to almost any program at all.

The term performa.nce as applied to expert systems, refers not to the speed of

inferencing, but rather, to the quality of the conclusions drawn by the system.

The structure most used for implementing the reasoning portion of high-performance

expert systems is the production system, although there is interest in applying logic

programming languages such as Prolog to the construction of expert systems [Fuchi,

1982; Treleaven and Lima, 1982; Genesereth and Ginsberg, 1985J. As a formal

mathematical construct, the production system was proposed by Post [1943] as a

general computational mechanism, and has power equivalent to a Turing machine.

Many variations on this formalism have been devised for computer implementation,

so despite the common ancestry, there is no single definition or nomenclature for

production systems today. There is, however, a widespread emphasis on the explicit

declarative representation of knowledge and factual data.

The basic components of an artificial intelligence production system,3 as illustrated

in figure 1 are:

1. A body of knowledge represented by rules having an antecedent­
consequent structure.

2. A collection of facts represented as constants (either simple or
structured).

3. A mechanism for applying rules to facts to deduce new facts.

In.ert figure 1 (Ba.ic co.ponent. of an AI production '12t8~) here.

The first component is called the production memory or the knowledge base or rule

3See [Hayes*Roth, 1985], p. 928 for a diagram of a complex rule-based system.

base. The minimal components of a rule are the antecedent and the consequent

Other names for the antecedent are the left-hand side (LHS), the condition, or the

pattern. The consequent is also known as the right-hand side (RHS) or the action.

In small-rule production systems, rules consist of a few text lines stating the

antecedent and consequent. The term pure refers to small-rule systems in which

the rules are purely declarative, as opposed to systems in which rule portions

represent executable procedures. Small rules are illustrated in figure 2.

In large-rule models, a rule may consist of a pair of very large functions expressed

in a programming language such as Lisp. In this case, the rules are commonly

called knowledge sources to emphasize the fact that they encapsulate large

independent "chunks" of domain knowledge. One common data structure for

representing a knowledge source is a frame4 [Fikes and Kehler, 1985]' with

slots representing antecedent tests, consequent actions, screening and triggering tests

that quickly determine the potential applicability of the knowledge source, values

such as heuristic estimates of the quality or certainty associated with conclusions

asserted by the rule consequent, hierarchical relationships with other knowledge

sources, and data structures to maintain private state information for the knowledge

source. A large rule is illustrated in figure 3.

The essential characteristic of a rule, whether In a small or large model, is that it

represents a discrete portion of knowledge concerning the problem domain. This IS

quite different from a routine in a procedural programming language, which may

simply support other computational units without having meaning external to the

program. The collection of rules in a. production system may be one global pool,

or may form structured taxonomies or partitioned sub-collections of knowledge about

portions of the domain.

4An AI (rame is an aggregate data object similar to a record in languages such as Pascal.
The components of a. frame are called slots. Each slot representing an attribute of the
object modeled by the frame, holds a. value or list of va\ues, or refers to a computational
procedure that produces a value for the slot when invoked. Frames, linked via pointers in
slots, form larger structures such as semantic networks or generaltzation hierarchies that
represent relationships such as "is-a..-member-of". The traversal of links in such a structure
is a comJlUtational method for obtaining deductions. For example, an individual member of
a class Inherits" a default characteristIC of a prot<>typical class member, in the absence of
an explicit value stored for that individual, by traversing the class membership link.

--
In.ert figure 2 (Small-rule production.) here.

--

--
In •• rt figure 3 (Fraae-ba.ed knowledge .ource) her •.

--

The second component of a production system is commonly called the data base or

the working memory. This normally represents the temporary state of the world

modeled by the problem-solving process, although some artificial intelligence

production systems also store certain long-term knowledge iI) the data base.

~fem bers of the data base are commonly called facts or working memory elemen ts.

As with the rule base, the data base may be structured or partitioned to obtain

efficient execution or to form a more natural model of the problem domain.

The third portion of a production system is the mechanism that applies the

knowledge base to the data base to obtain inferences. This mechanism is often

called the interpreter, even though it may be implemented by compiling the

knowledge base to a procedural program in the native instruction set of a

computer.

Two basic classes of production system interpreters are distinguished by the manner

in which deductions are made. The first class is known by the names

forward-cbaining, antecedent, data-driven, or event-driven. The term forward­

chaining refers to sequential chains of rule activations, in which the state of

working memory causes the selection of a rule, which executes to change the state,

leadmg to the selection of another rule. Antecedent refers to the selection of rules

by examination of their left-hand sides; the terms data-driven and event-driven

sugg,:st that the modification of working memory leads to the selection of the next

rule This pattern of execution, as illustrated in figure 4, may be obtained by

iterating the following three step cycle.

1. MATCH: The interpreter compares the facts in working memory with

the rule antecedents to find those rules that are satisfied. A minimal set

of facts that jointly satisfy the tests of one rule is called an

instan tiation of that rule. The collection of instantiations of all rules is

known as the conmct set.

2. SELECT: One or more instantiations are chosen for execution. This

selection is important: it must prevent infinite inferencing loops, and

should focus the system's attention on the most important and promising

subproblems. One common approach chooses an instantiation by a

conflict resolution strategy based on static properties such as the recency

of data in the instantiations and the specificity of the instantiated rules.

Another scheme selects an instantiation from a dynamically prioritized
a.genda maintained by reasoning processes.

3. ACT: The selected instantiation(s) are executed (fIred), performing the

actions specified by the consequents of the instantiated rules. These

actions typically add new facts to working memory, delete or modify old
facts, and perform I/O.

6

,
--

Insert figure 4 (Forward-chaining rule execution) here.

The other principal class of production system interpretation IS known as

backward-chaining, consequent, or goal-driven. In this pattern, inferencing begins

with a goal for the system to achieve. The rule consequents are examined to

determine which rules could achieve the goal, then the antecedents of those rules

become new sub-goals. Thus the reasoning proceeds backwards from a desired goal

state to facts in the current working memory, as illustrated in figure 5. The term

"goal-directed" has been criticized by Clancey [1984], who states:

In fact, "goal directed" characterizes any rational system and says very

little about how knowledge is used to solve a problem.

Nevertheless, the backward-chaining, goal-driven style of inferencing IS a common

and effective computational mechanism for systems that perform classification,

diagnosis, and analysis.

In.ert figure 6 (Backward-chaining rule execution) here.

It is to be noted that production systems have been employed in AI research for

two distinct purposes. In "cognitive AI", at the juncture of computer science,

psychology, and philosophy, production systems have served as a tool for modeling

and simulating theories concerning human thought processes. In expert systems

research, production systems have served as a programming language for

implementing high performance systems that solve difficult problems effectively,

7

without necessarily imitating human reasoning. The distinctlOn is easIly seen In the

answer to the following question: "Is it desirable for the system to commIt the

same types of errors that humans do?"

The previous discussion has given a general overVIew that touches on several Issues

of interest to expert systems researchers. These matters, as described in more

detail below, fall into three categories.

1. The computational mechanisms of production systems.

2. The implementation and continuing development of an expert system

throughout its lifespan.

3. The utility of an expert system.

,

2.1 Computational Mechanisms

Fundamentally, an expert system is a computer program. It differs from procedural

programs 10 that the computation is viewed as the application of knowledge to a

collection of facts, rather than the execution of algorithms on data structures. As

such, there are issues of how to represent the knowledge, how to apply the

knowledge to the facts, and how to focus the attention of the reasoning

mechanisms.

Typically, the knowledge is captured tn rule form as a production system. Several

varieties of production systems have been identified, based on whether the rule set

is global or clustered into "subroutines", whether there is an tmplicit global

reasoning mechanism or explicit control structures for subsets of rules, and the

granularity: the amount of knowledge captured by each rule. Rules with fine

granularity consist of a few simple conditions and actions, while coarse-grain rules

may comprise complex frame structures as descnbed earlier. In addition, rules may

be purely declarative, or may contain procedural code. Furthermore, the rules may

be organized in a hierarchy of reasoning levels, with abstract meta-rules controlling

the application of the concrete problem-domain rules [Davis, 1980]. The structure

of the data base is also subject to wide variations. Factual knowledge may be

represented by tuples, frames, linked-lists, or graph structures, and facts may be

global, or may be clustered into sabsets representing different portions of the

8

abstract problem solving space. It is beyond the scope of this paper to discuss the

implications and applicability of all these variations; books such as Pattern-directed

Inference Systems (Waterman and Hayes-Roth, 1978J and Building Expert Systems

[Hayes-Roth et al., 1983] discuss these issues at length.

The direction of inferencing of a production system is a major characteristic. For

diagnosis and classification problems, which tend to have a small number of solution

states, backward-chaining systems are frequently chosen, since straightforward and

reasonably efficient techniques exist for searching from a potential solution back to

data that confirm or refute it. Forward-chaining is more natural for systems WIth

a large number of ending states, as well as systems that must be responsive to

external input, and systems that process endlessly with no final goal state. In

addition, forward-chaining systems can implement demons: modules that observe

the data pase, automatically activating to perform specific tasks when necessary. A

number of existing expert systems include elements of both backward-chaining and

forward-chaining; the former to control the overall process of solution, and the

latter to make immediate deductions when new facts are asserted into the data

base. Clancey [1984J points out the distinction between the processing mode of the

production system interpreter, which may be forward- or backward-chaining, and

the abstract searching technique in the problem space, which may be data- or

hypothesis-directed. The expert system named R1 [McDermott, 1980J is cited as an

example of a system performing hypothesis-directed search via a forward-chaining

implementation.

Another issue pertaining to the interpretation of production systems involves the

means for deciding, in case multiple rules are applicable, which to pursue. One

common technique is static conflict resolution, in which the conflict set is ordered

by factors such as the recency of the data matching the rules' antecedents, and the

specificity oC the rules' conditions. The former criterion tends to focus the system's

attention on one matter at a time, and the latter applies special-case knowledge in

preference to general defaults. A second technique is agenda/refinement. In this

method, the rule instantiations are screened for applicability, and the collection of

applicable instantiations is refined (i.e., made smaller) by a reasoning or evaluation

process. The refined set is then prioritized, with the result recorded in a data

9

structure known as the agenda. The agenda/refinement process is performed either

by selection and scheduling procedures built into the interpreter, or by meta-rules

or knowledge sources written for this purpose. Appropriate control of the order of

rule execution can cause production systems to implement typical artifIcial

intelligence search techniques such as means-ends analysis, heuristic search, and

problem reduction. Forgy and McDermott [1977] describe a static conflict resolution

strategy, and Davis [1980] discusses agenda/refinement by meta-rules. An example

of a frame-based production system with agenda control is given in [Smith and

Clayton, 1980]. Georgeff [1982] describes a technique for the control of a

production system by a finite automaton, stack machine, or Turing machine.

An important class of coarse-grain systems utilize the bJa.ckboa.rd model of

computation. This model consists of a global data structure called the blackboard, a

number of specialist knowledge sources, and a scheduler. The blackboard contains

data orga!lized into "areas" on each of several ('levels", representing the state of the

problem-solving process at several levels of abstraction. Knowledge sources serve as

specialists attentive to' changes in the blackboard, acting to refine hypotheses,

integrate information from multiple areas, and map between differing levels of

abstraction. A typical knowledge source consists of a declarative trigger indicating

which regions of the blackboard are of interest, together with a pair of functions

forming an antecedent-consequent pair. The scheduler coordinates the actions of the

domain knowledge sources, granting processing resources to those that seem most

likely to make significant progress. To do this, the scheduler first examines the

triggers to determine which knowledge sources are applicable to the current

situation. Then it gives control to the antecedent of each relevant knowledge

source ID turn. The execution of an antecedent determines whether the associated

consequent is currently applicable, and if so, extracts and preprocesses relevant

blackboard data. After the antecedents finish, the scheduler selects a consequent to

execute, based on measures of credibility of competing potential conclusions, the

probable effects of running each consequent, and the global significance of those

effects. The selected consequent performs a computation on the extracted facts

(together with private data), modifies the blackboard as a means of communicating

its conclusions to the other knowledge sources, and returns control to the scheduler.

10

The scheduler is frequently implemented by sp~cial knowledge sources that operate

on a. separate scheduling blackboard. Erman et al. [19811 describe Hearsay-II,

which introduced the blackboard model.

2.2 Implementation and Development

Software engineering concepts such as rapid prototyping, modularity, modifiabihty,

and reusability apply to expert systems just as they do to more traditional

programmlDg forms. This becomes increasingly evident as larger expert systems are

constructed.

Early experiences In developing expert systems showed that knowledge acquisition,

i.e., obtaining the knowledge of human experts, is difficult and time-consuming.

Human experts do not seem to maintain their knowledge 10 the form of explicit,

consciously accessible rules. Consequently, knowledge engineers cannot first

interview a human expert and then write a competent expert system. An approach

similar to rapid-prototyping has proven effective. A small trial system is

constructed from information obtained in initial interviews, and then the knowledge

base is r~fined, corrected, and extended to increase the quality and breadth of the

system's expertise. This process of incremental growth is best performed by having

the human expert modify the rule base in the context of erroneous deductions

obtained via the initial rule set. Computer support for this process has been

developed, including programs to facilitate the editing of the rule base, programs

that compare a proposed rule with the knowledge base in an attempt to find

inconsistencies, and programs that inductively form rules from collections of

statistical data [Davis and Buchanan, 1977; Davis, 1981; Boose, 19841. Although

research dealing with automated machine learning may hold promise, it has not

matured sufficiently to supplant the knowledge engineer.

Since incremental growth of an expert system's knowledge IS a practical necessity,

the rule base is designed to have properties such as modularity and additivity. The

term modularity applies to a knowledge base in which each rule captures a portion

of domain knowledge relatively independently of all other rules. Additivity is the

property according to which additional rules augment the breadth or depth of

knowledge of an expert system without disturbing the operation of previously

11

installed rules. Present to varying degrees, additivity can be elusive in expert

systems based on many carefully choreographed rule interactions.

The development of early expert systems required years of effort, providing a large

motivation for identifying reusable components. Naturally, the designers observed

that portions of the expert systems were functionally independent of the particular

domain knowledge encoded in the rules. These portions were abstracted,

generalized, and augmented with support tools such as rule editors, rule consistency

checkers, and automa~ed testing subsystems. The resulting expert system skeletons,

known as knowledge engineering frameworks, are the topic of section three of this

paper.

2.3 Uttlity

An expert system must obtain correct results to be useful, but this alone does not

suffice. Another desirable property, perhaps a requirement, is that an expert system

be able to produce explanations of its deductions. In a practical sense, explanations

are useful during the development of a knowledge base for examining erroneous

lines of reasoning. During normal operation, proper explanations increase the

credibility of the conclusions presented by an expert system. This is particularly

important for such critical tasks as medical diagnosis, or nuclear reactor monitoring.

The usu~l technique for producing explanations is to maintain a history of

deductions during the reasoning process, and then to print a list of stored phrases

that render into English the sequence of rule activations leading to the conclusion.

McKeown et 301. [1985J are investigating the application of natural language

processing techniques to generate explanations tailored to the particular user and

situation.

In many domains, both the problem data and the conclusions of human experts are

associated with uncertainty or imprecision. Consequently, in some expert systems it

is necessary to quantify the likelihood or strength of belief of input data, as well as

the inferential strength of rules in the knowledge base. During execution, the

evaluation of a rule includes a calculation of the degree of certainty with which the

rule asserts its conclusion, as a function of the strength of the rule and the

certainty of its antecedents. Some systems also have techniques for aggregating the

12

assertions of multiple rules that independently obtain similar conclusions. The

methods by which existing expert systems combine evidence are drawn from a

variety of ad hoc and formal mathematical techniques. Notable among these are

the uncertainty calculus [Shortiiffe, 1981], Bayesian inferencing [Duda, Hart, and

Nilsson, 1981; Lemmer and Barth, 1982; Pearl, 1982], the Dempster-Shafer theory

(Barnett, 1981; Strat, 1984], fuzzy logic and possibility theory [Zadeh, 19831 and

other techniques [Quinlan, 1983]. Even the methods derived from formal

mathematics seem to require human "tuning" of the confidence measures until the

expert system produces reasonable results. No technique for reasoning With

uncertainty has been widely accepted as "best". An example to illustrate reasoning

with uncertainty is given in figure 6.

Insert figure e (Realoning with uncertainty) here.

Another matter related to the utility of expert systems is the speed of inferencing.

The naive approach of matching all rules with all data elements on every

inferencing cycle is impractically slow for all but the smallest systems. In most

implementations, the matching of rules with working memory is the dominant cost.

Some software techniques for higher speed of matching and inferencing are reported

in [Hayes-Roth and Mostow, 1975; Lenat and McDermott, 1977; Cohen, 1978; Lenat,

Hayes-Roth, and Klahr, 1979; Challab, 1981; Forgy, 1982; deKleer, 1984]. In

addition, ~echniques utilizing parallel hardware have been examined, including [Stolfo

and Shaw, 1982; Deering; 1984; Forgy et al., 1984; Hillyer and Shaw, 1984; Oflazer,

1984; Stolfo and rvfiranker, 1984].

3 Tools for Building Expert Systems

The creation of an expert system can be a major undertaking. In view of the

resources required, several languages and knowledge engineering frameworks have

been introduced to facilitate expert system development. By providing generally

applicable support software such as knowledge acquisition subsystems, explanation

subsystems, and rule interpreters, these facilities seek to allow the builders of expert

systems to concentrate on capturing and utilizing problem-specific knowledge. This

section presents brief descriptions of a number of such tools. Several of these, as

noted, are generalizations of specific expert systems described in section four.

AGE [Nii and Aiello, 1979] is a collection of tools and partial frameworks for

building expert systems, based on the model originally developed for the

HEARSAY-II expert system, together with an intelligent front-end that assists the

user in constructing knowledge-based programs. The principal portions of an expert

system'-rinplementation in AGE are domain-specific knowledge sources, and modules

that schedule the execution of the knowledge sources. An AGE knowledge source

has several components, including a collection of production rules, lists of events

that may trigger other knowledge sources, levels in the hypothesis space to which

each knowledge source is applicable, a choice of single or multiple hit strategy

(either one or all of the triggers need to be satisfied), and facilities for binding

variables. Uncertainty is modeled by a technique similar to that of the ~fYCIN

expert system. Components written by the user select and schedule knowledge

sources for execution, but standard modules are furnished for common control

regimes such as event-driven and goal-driven inferencing.

ARBY [McDermott, 1982] is a special-purpose environment for writing expert systems

that diagnose faults in electronic equipment. This problem domain permits

reasoning with shallow models of electronic subsystems connected by signal flows,

but is complicated by the fact that most diagnostic information is not readlly

available, and has considerable cost to obtain (cutting wires, replacing subsystems)

ARBY is partly rule-based, and utilizes mechanisms similar to those of the

CADUCEUS expert system to refine and combine hypotheses. The system has two

main mod,ules, written in Franz Lisp. The first module reasons about the electronic

system, generating hypotheses and sifting evidence by performing deductions on a

set of predicate-calculus rules. The second component handles interaction with the

user. Question asking is ordered ba.sed on the importance of the evidence for

confirming or denying the leading candidate hypotheses, balanced with costs of

getting the information, and subject to precedence constraints supplied by the

expert system designer.

ARS [Stallman and Sussman, 1977] is a. rule language for domains in which problem

solving may proceed by the symbolic relaxation of loca.l constraints. Rules are

implemented as pattern-directed invoca.tion demons monitoring an associative data

base, performing single-step forward-chaining deductions. Demons having satisfied

14

trigger conditions are placed on queues at vanous priority levels, and operate on

facts stored in a data base. To facilitate matching, the data base is hash-indexed

on the atoms contained by facts. ARS also maintains records linking premises to

deductions, to provide a basis for explanation and to support dependency-directed

backtracking when a contradiction is obtained. ARS also has routines for algebraic

manipui'a;tion. Some limitations of ARS include difficulty modeling time-dependent

behavior, a single level of detail (burying "explanations" in minutiae), and a lack of

goal-directed and attention-focusing control facilities.

CENTAUR [Aikins, '1979; 1980; 19831 is a framework for developing expert systems

that use a hypothesize and match approach to problem solving. Patterns of

knowledge in the domain are organized into frame structures called prototypes.

Slots in the prototypes represent information such as values, plausible ranges,

importance, control knowledge, and production rules that infer missing values. The

development of CENTAUR was motivated in part by an observed deficiency in

certain of the early backward-chaining expert systems. In these systems, the order

of the clauses in a rule determines the order of the backward-chaining search, and

also the order in which questions a:'e asked of the user. This means that rules

have significant non-modular interactions, since there is no clear separation between

control knowledge and domain knowledge. A generated explanation of the system's

behavior that treats control rules the same as rules containing domain knowledge

can be confusing, and implicit control knowledge is not readily explained at all

The CENTAtj'R prototypes explicitly organize and focus the searching and question

asking, to diminish the amount of hidden control knowledge in 3. system.

E~fYCIN [van Melle, 19791 is an em"ironment for implementing knowledge-based

consultation programs, developed by generalizing the basic framework of the MYCIN

expert system. E~fYCIN provides a goal-directed, backward-chaining interpreter for

production rules grouped by contexts, an editor for the data base, an explanation

facility that paraphrases rules in either English or an Algol-like language, and a

knowledge acquisition subsystem. The data base is in the form of attribu~e-object­

value triples with associated certainty factors. Although normal execution is goal­

driven, there is a limited ability for data-driven deductions to be made upon the

assertion of new facts into the data base. Inverted indices on the goals are

IS

maintained to increase the speed of backward-chaining, and techniques are employed

to avoid redundant testing of facts in the data base, and redundant testing of

patterns [Stefik et al., 19821· Shortliffe et al. [19811 point out several aspects of

E~fYCIN that potentially limit its range of application. EMYCIN has been

extended by Teknowledge to become the commercial product named KS-300.

EXPERT [Weiss and Kulikowski, 19i91 is a system for designing and building

models for consultation, developed by generalizing the CASNET expert system. In

an EXP.~RT model, input attributes termed rmdings take on numerical or boolean

values that, once determined, remain constant. Support for conclusions called

hypotheses, which may be structured into taxonomic-causal networks, is derived

from findings and other hypotheses by three classes of decision rules. The rules

executed first make "common-sense" forward deductions from existing findings to

new findings, and evaluate correlated findings to generate modifiers. There is no

automatic mechanism for aggregating the evidence of multiple findings, which leads

to predictable system behavior since rules only interact in ways specified by the

designer. The rules executed second reason from findings to hypotheses. If

multiple rules suggest differing confidence ratings for a hypothesis, the largest rating

is accepted (this is the fuzzy logic technique). The rules executed third are

examined in the order listed by the designer, to perform backward-chaining searches

through the taxonomic-causal network. Data collection induced by this search is via

prepackaged sets of questions that are to be asked of the user, which organizes the

interaction in ways deemed reasonable by the system builders. Questions already

satisfied by previous deductions are automatically suppressed. An EXPERT model

is complIed into an intermediate form that is interpreted by a runtime package

WrItten in FORTRAN for speed and portability. SEEK is the knowledge acquisition

subsystem, of EXPERT.

HAPS [Sauers and Walsh; 19831 is a hierarchical, augmentable production system

environment directed towards future expert systems that require large rule and fact

bases, and speed sufficient to meet real-time constraints. HAPS uses goal-directed

execution to focus system efforts, and a hierarchical working memory structure

parallel to the goal structure to reduce matching and to facilitate garbage collection

when a goal is achieved. This structure also permits the storage of rule sets in

16

secondary memory, to be fetched only when needed. One may VIew this as a

"library of production rule sets". To achieve real-time execution, the system IS

designed to make approximations and ignore inessential tasks when overloaded. A

suggested approach is to identify, by the collection of statistics, rules that derive

useful conclusions quickly, or are likely to result in genuine progress, and restrict

execution to those rules when the system is overloaded. Real-time external events

may well occur faster than the system's rule firing rate. This would render

unusable any organization in which, each time any fact is updated, all production

instantiations depending on that fact 'must be removed or tagged invalid, and the

new fact must be matched to form an up-to-date conflict set. One potential

solution to this problem is to store real-time input in efficient data structures that

are examined at conflict resolution time to narrow the set of applicable rules. The

authors note that logical deduction, needed to support frame hierarchies with

attribute inheritance, may interfere with speedup techniques based on discrimination

nets.

HEARSAY-III [Balzer et al., 1980J is a framework for building expert systems with

multiple knowledge sources and multiple levels of representation, reasoning, and

control. A knowledge source in HEARSAY-III consists of a declarative trigger

pattern together with Interlisp procedures serving as antecedent and consequent. At

appropriate times, trigger patterns are matched with the configuration of data in a

structured data base called the blackboard (as described in section 2.1 on p. 9)

Successful matches cause the corresponding antecedents to calculate a scheduling­

blackboard class (a priority level) on which an activation record will be created,

and to collect data for the activation record. Scheduling knowledge sources

examine the activation records and choose one. The selected consequent runs to

completion, typically aggregating interpretations at one blackboard level to

composite interpretations at more abstract levels, manipulating alternative competing

interpretations, and criticizing alternatives. U constraint violations are detected

(say, up0!l attempting to aggregate incompatible interpretations), the blackboard

context containing them is considered ((poisoned", and only special knowledge

sources (((poison-handlers") are permitted to run in that context until it is

unpoisoned. A typical poison handler might split the context into two competing

Ii

ones, each self-consistent. HEARSAY-Ill was designed for power and flexlbility, not

speed. It is an extension of the AP3 relational database system, which in turn is

written in Interlisp. AP3 has strong typing, and implements contexts, demons, and

constraints.

HPRL [Rosenberg, 1983], an extension of the artificial intelligence language FRL, is

a heuristic programming and representation language. Data, rules, and the rule

interpreter are all represented by frames. A supplied set of Lisp functions execute

rules by strategies such as forward- or backward-chaining, and manipulate agendas,

build and traverse decision trees, and record information for backtrackIng

Additional functions may be added by the user. In particular, "rule. domains" may

be created to partition rules into subsets relevant to restricted subproblems, with

different methods for evaluating the rules in various domains. Since rules and data

have the same form, meta-level reasoning is easily accommodated. Since rules are

frames,_J.hey are not restricted to condition-action form, and may have additional

information such as caveats and suggested uses.

KEE [Fikes and Kehler, 1985; Kehler and Clemenson, 19841. a commercial product

of IntelliCorp, is a framework for developing knowledge-based systems. It combines

a frame data language and inheritance mechanism with rule-based reasoning. The

system uses frames to represent both mdividual entitles and classes. A class frame

contains prototypical characteristics of class members as well as attributes of the

class as a whole. Inheritance hierarchies are supported through automatic

inferencing on is-a-member-of and is-a-subclass-of links. The slots in KEE frames

are flexible and powerful, having the ability to represent partial descriptlons and

constraints on unknown values. The attachment of Lisp procedures to slots permits

production rules to be represented, with rules structured by class membership links,

and having access to the database of inheritance hierarchies. Both backward­

chainmg and forward-chaining rule interpretation disciplines are supported.

LOOPS [Stefik, Bell, and Bobrow, 19831 is an artificial intelligence programming

language designed in the belief that some tasks are best accomplished by rules, and

others by procedures, demons, or object-oriented programs. LOOPS integrates

modules written in any of these styles into a hierarchical subroutine organization,

18

transferring control by message passing, or automatic activation as a side-effect of

fetching or storing values, or by procedure call. For instance, the execution of a

rule can set up procedural demons. Rules are grouped into small ordered sets

embedded in control frameworks that concisely represent how the rules are to

interact. Given that clustering and control are needed, LOOPS implements

carefully chosen explicit structures, rather than forcing the programmer to include

extra clauses in all domain rules, and extra rules to assert and retract control tags

that direct a static conflict resolution strategy. Rules in a LOOPS rule set are

tested in the order of appearance, with an option for starting over at the top when

a rule fires. Rule prefixes may specify "execute only once" or "test only once",

and rules may be embedded in standard iteration constructs, with automatic history

gathering to support explanation or belief revision, and built-in certainty factor

calculations. Rule antecedents and consequents may call other entities in any of the

four programmIng styles, and rule sets may be called from entities of any of the

four types. Multi-tasking and c~routining are supported, facilitating agenda-based

control. There is a compiler that translates rule sets to Interlisp.

OPS [F9rgy and McDermott, 1977; Forgy, 1979; 1981; 19831 is an evolving language

and execution system for forward-chaining rule-based programming. OPS systems

have a global production memory of rules and a global working memory of facts In

the form of lists of literal attribute-value pairs. In each recognize-act cycle a

complete match of rules with working memory is effectively made, and one rule

instantiation is chosen for execution by a static conflict resolution scheme. OPS

was designed under the principle that knowledgeable rules may undertake

substantial actions, but conditions should be simple. The ratIOnale is that powerful

patterns would cause overhead during matching, retarding processing. but complex

actions consume resources only when executed. Consequently, OPS actions may call

user-written Lisp functions. Normally, OPS rules are simple so that the ratio of

matching to acting remalDS large, which is considered the appropriate uhlization of

rule-based systems. Consistent with these ideas. OPS does not provide structures

for rule sUbsetting, partitioned working memory, conflict resolution by executing all

instantiations or by meta-rule reasoDlng, or automatic backtracking. Rules may

modify the production memory, however, and both partitioned working memory and

19

backtracking schemes may be simulated by the explicit inclusion of grouping tags In

working memory elements. The Rete algorithm [Forgy, 1982] provides an efficient

discrimination network technique for executing OPS. The most recent member of

the OPS family, OPS83, allows user-written predicates in rule antecedents, and has

strong typing and com posite data structures so that rules can be com piled into

efficient native code for execution, rather than being interpreted. [Ennis, 19821

reports an experience in developing an expert system in OPS5. System development

proceeded quite rapidly, but the primitive control of OPSS was seen as a drawback:

control and domain knowledge become interspersed in almost every production.

RITA [Anderson and Gillogly, 1976; Waterman, 19791 is a language for implementing

rule-directed agents that insulate users from low-level details of a computer system.

To facilitate this, RITA programs have the ability to exert low-level control of a

computer, including starting and monitoring multiple subprocesses. RITA rules,

expressed in an English-like syntax, are executed both by forward-chaining and by

goal-driven deduction. Rules are examined in their textual order, the first

applicable one is executed, then matching starts over at the beginning. All objects

and rules are global, and require processing on each cycle, impairing execution

speed ... ferformance is acceptable for the intended tasks, but is insufficient for large

expert systems. In addition, hierarchical and inheritance data structures are difficult

to represent.

ROSIE [Fain et aI., 1981; Waterman, 19791 is a language for building expert

systems. The fundamental building blocks are production rules, expressed in an

English-like syntax, with both forward- and backward-chaining execution. There are

two types of rules. II-then rules are existence-driven, firing as long as the

conditIOns are true, even repeatedly on the same data, With the actions performed

once during each production system cycle. When-then rules fire Just once for each

knowledge element matching their conditions, giVing event-driven, demon-like

execution. Rule matching is organized for efficiency by recognition nets. The data

may be structured hierarchically via instance-of and member-of relations tc support

abstraction and inheritance. Additonally, rules and data may be grouped for

separate access and execution, in which case rule and datol sets are examined only

when deemed relevant by the user or the ROSIE monitor. This provides the

20

potential of maintaining only currently active and relevant modules in primary

memory. The event-driven monitor also is said to simplify the programming,

permitting the user to create rule sets that act as collections of independent

demons.

YAPS [Allen, 1983]' a language for the implementation of rule-based systems, may

be viewed as an extension and generalization of OPSS. Yaps generalizes rule

antecedents to include user predicates, comparison of arithmetic expressions, and

nested lists of constants and variables to be matched with the Lisp lists in working

memory. A rule is represented by a Lisp function, which may be compiled, whose

arguments are the antecedent variables and whose body is composed of unrestricted

Lisp code (including calls to the usual OPS actions). Discrimination net techniques

similar to Rete match evaluate rule antecedents. YAPS may be used in conjunction

with object-oriented programming, and a YAPS program may be subordinate to

other Lisp code. The form (fact xxxx) asserts a new fact into the working memory,

and (goa.l xxxx) adds a goal element to the working memory. Whenever a goal is

added, whether by the production system or by another Lisp program runnIng In

the same environment, the production system begins execution, continuing until all

goals are removed from the system or no satisfied productions remain. Similarly, if

there are outstanding goals and a fact is asserted, production system execution IS

initiated. Thus YAPS implements demons. YAPS supports multiple working

memOrIes and multiple production memories, as well as a global working memory.

InsertIOns into the global working memory cause duplicate copies to be inserted into

all local working memories.

4 Des~rlptions or Expert Systems

The expert systems briefly described in this section are organized into four clusters

to facilitate browsing. The first consists of fine granularity rule-based systems

systems that represent domain knowledge In numerous small rules. The second

comprises coarse granularity systems that utilize large knowledge sources, and the

third contains systems designed to reason WIth uncertainty. These categories do not

represent a disjoint partition of the possibilities, they simply gather systems that

have overt similarities in features and emphases. A fourth subsection mentions

21

interesting systems that do not fall naturally into one of the three preceding groups

The description of each system ends with a list (in braces) of index terms tha.t

identify significant properties and issues. Within each cluster the seminal systems

a.re mentioned first, and others follow in alphabetical order, except that related

systems are mentioned together.

4.1 Small Rules: The OPS Group

Most of the systems in this group have their roots in early work at Carnegie-Mellon

University. The rules in these systems typically have a small number of conditions

in the antecedent, and few actions in the consequent. These systems generally

maintain a model of the problem state in the form of lists of constant attri bute-

value pairs stored in a global working

by a static conflict resolution strategy.

of this style.

memory, and rules are chosen for execution

The Rl expert system is a premier example

Rl [McDermott, 1980; 1982] IS an expert system that configures mainframe

comput_~!S manufactured by Digital Equipment Corp. Rl is distinguished from

many other expert systems in that the problem it solves is one of synthesis, not

analysis or classification. The original experimental system of 500 forward-chaining

OPS rules has been expanded ten-fold as of mid 1985; the rule-based knowledge

representation greatly simplified this growth. The system has sufficiently strong

knowledge that it performs little search. With few exceptions, it follows the match

method: subproblems are investigated in an order having the property that Lhere is

suffIcient knowledge at each step to make a correct choice. Consequently,

backtracking is largely unnecessary, a.nd approximately 2000 rule executions suffice

to confIgure a V ~X-ll/780. During a run, factual knowledge about needed

components is retrieved from a separate database and deposited into working

memory. The search is guided by the OPS static conflict-resolution mechanism,

together with a. control strategy implemented by the assertion of context elements

into working memory. A context element serves to restrict execution to a single

rule cluster (about 10 rules). Each cluster has rules that recognize when the

subtask is complete, and alter the context elements to pass control elsewhere.

{V ~X configuration, small rules, OPSS, forward-chaining}

22

XSEL [~icDermott, 1982] is an expert salespersons' assistant for Digital Equipment

Corp. It assesses the customer's wishes as expressed in a partial order. explains the

various additional items necessary to support those wishes, provides the ability to

query the component database, and communicates the final component selections to

R1, which configures them into a system. XSEL comprises approximately 3000

rules in small clusters similar in nature to those of R1, and executes 50 rules per

customer interaction. {V A-X ordering, small rules, OPS5, forward-chaining}

PTRANS [Haley et al., 1983; McDermott, 1983] IS a manufacturing management

assistant for Digital Equipment Corp. It suggests when and where on the assembly

floor to build each VAX, ensuring that the necessary parts are on hand when

needed, and tracking progress as problems arise. The system has approximately

1400 rules, but these are not organized as in Rl and XSEL. Approximately 700

rules are particular to 175 subtasks, but the other 700 are applicable to more than

one subtask. On the average, there are 34 demon rules applicable to a given

subtask, but the clustering of demons is not parallel to the subtask rule clusters.

Indeed, the designers have discovered no general characterization of the demon

interrelationships. {V A-X assembly, small rules. OPS5, forward-chaining7

ACE [Stolfo and Vesonder, 19821 is an expert system designed to provide timely

trouble-shooting analyses for the management of telephone cable systems. It

automates the search through trouble reports for patterns of faults, and suggests

likely causes, appropriate repairs, and preventive maintenance. When plausible

patterns are discovered, ACE formulates queries to a database management system

that contains trouble reports and maintenance information, to collect other data

that may confirm or further illuminate a pattern. Reports are generated and sent

via electronic mail to appropriate personnel. ACE deals with wide variations in

input; one of its subproblems is to recognize when different trouble reports discuss

the same location or problem. Incipient patterns are hypothesized, and the

hypotheses are carried forward for future examination with respect to new trouble

reports~- The inferencing knowledge of ACE is contained in a forward-chaining

production system expressed in the OPS4 language [Forgy. 1979]. Rules are selected

for execution based on a static conflict-resolution strategy that considers recency of

data and specificity of production rules. The «state of the world" is maintained in

23

a single working memory of consta.nt lists. The initial system reported in 1982

comprised approximately 100 rules, together with 50 lisp functions to interact with

the database management and electronic mail systems. ACE is now a commercial

product of AT&T. {telephone cable maintenance, OPS4, forward-chaining, external

data base, expert user}

DAA [Kowalski and Thomas, 1983; Thomas et al., 1983] is an expert system that

designs VLSI chips. It is written in approximately 300 rules in the OPS5 language .

..\. typical snapshot during a DAA execution would show 700 objects and

relationships in the working memory, with many instantiations of just a few rules

ready to be selected for execution. The system is notable for the amount of work

it does: 50,000 rule executions may be required to complete a chip design. {VLSI

design, OPS5, forward-chaining}

LDS [Waterman and Peterson, 1980] is a rule-based system with expertise 10 product

liability law. The rules are partitioned into five rule sets (formal doctrine, informal

principles, strategies, subjective considerations, and secondary effects) that can be

called as subroutines, but only 90 rules for the first two sets were implemented as

of the time of writing of the referenced work. The anticipated number of basic

concepts in a full implementation is in the hundreds, and the number of rules to

adequately represent legal doctrine and strategies is in the thousands. The rules are

executed by forward-chaining. Facts (which are also in antecedent-consequent form)

are used for backward-chaining: the informatIon that can be inferred from the

hierarchy of facts by inheritance and abstraction is a "virtual data base". LDS IS

implemented in the ROSIE expert system development envIronment. {legal advice,

partitioned rules, ROSIE, forward-chaining}

REACTOR [Nelson, 1982] is an expert system to assist the operators of a nuclear

reactor by detecting deviations from normal operating conditIons, determining the

significance of events, and recommending appropriate responses. It normally reasons

forward from known facts, but if insufficient information is available to reach a

conclusion, the system reasons backward to determine what information it needs to

know. It then queries plant instruments or operators as necessary. Its knowledge

is stored in rules and response trees. Rules, which are event-driven, aggregate

24

observations into known accident classes. Response trees for each safety function

represent all possible ways to achieve or maintain the safe condition. If faIlures

disrupt some paths in a response tree, the least-cost remaining path indicates the

proper actions. Speed of inferencing has been observed to be a problem. {nuclear

reactor monitoring, forward-chaining}

YES/MVS [Griesmer et al., 1984] is a continuous real-time expert system that

monitors the complex and dynamic environment of a computer system, taking

operator-like actions. Implemented by three communicating processes, it is built

upon OPS5, with extensions to allow priority-levels of rules, functions that facilitate

communication with the computer under control and operator interface software.

Rule consequents are compiled for speed. For this system, OPS5 has also been

extended to deal with temporal actions and relations, such as ((Assert fact X at

future time Y" An additional extension permits the transmission of facts from

working memory to jobs running on other virtual machines. YES/MVS comprises

500 rules, including some that are driven from tables stored in working memory.

{computer system monitoring, OPSS, forward-chaining, table-driven rules, compiled

rules}

4.2 Large Knowledge Sources: The Hearsay-ll Group

The systems described here stem from the efforts of the Heuristic Programming

Project at Stanford, and from work at Carnegie-Mellon University. The seminal

expert systems in this group are DENDRAL and HEARSAY-II, respectively.

Common features of these systems include large procedural codes that serve as

knowledge sources invoked at appropriate points in the problem-solving process, and

large private data structures maintained by these procedures. Sophisticated

algorithms schedule the executions of the knowledge sources, and integrate the

partial solutions they produce. Many of these systems are based on the blackboard

model of computation, described in section 2.1 on p. 9.

CONGEN, DENDRAL, and META-DENDRAL [Buchanan and FeigenbaUl.l, 1981]

are portions of an early expert systemS that seeks to determine the structure of a

5The Dendral project commenced in 1965.

chemical from a few hundred points of mass spectroscopy data. CONGEN, written

in the Fortran and Sail languages, generates all structures that fit the data, subject

to specified constraints. The authors of DENDRAL, which originally was an

Interlisp program, were among the first to recognize that a declarative rule base

could solve the problems of maintaining the knowledge of a system during

substantial evolution and growth. The rules encode heuristics that confine the

space of possible solutions. It is a forward-chaining front-end to CONGEN,

supplying constraints, handling bookkeeping, and dealing with the combinatorics of

placing substitutents (i.e., DENDRAL enumerates gross structures, and CONGEN

fills in the details in all possible wa.ys). Thus the ability to generate all possible

candidate structures is combined with powerful knowledge to confine the search

space, so that the potential examination of millions of structures is reduced to the

generation and testing of several of the best. META-DE~TIRAL is designed to

infer, by induction on empirical data, heuristic rules for DEI\1)RAL to use. In

particular, it seeks patterns of correlation between molecular fragmentations

observed in a mass spectroscope a.nd the substructural features of the source

molecules. Aggregated correlations reveal processes such as the breaking of bonds

and the migration of atoms between fragments. {chemistry, generate and test,

knowledge acquisition}

HEARSAY-II [Erman et 301., 19811 is an expert system for speech understanding. It

receives the output of a microphone, and determines the sentence that was spoken,

given sentences that are well-formed in a restrictive grammar with a 1000 word

vocabulary. The blackboard model of computatIOn was introduced by this system

to deal with several characteristics of this problem. In particular, the problem

search space is very large, there are many diverse sources of knowledge that may

be brought to bear on the problem, and both the input data and the knowledge

sources are subject to error and inaccuracy Additionally, the system was highly

experimental, so modularity and independence of knowledge sources was importa.nt,

and a severe processing resource constraint required that processing power be

applied judiciously. The knowledge sources In Hearsay-II consist of declarative

triggers and pairs of antecedent-consequent procedures written in Sail6 They

5S., '11' I . h ... IS 3 30nguage 10 t e Algol fa.mily.

26

perform aggregation operations such as converting digitized input data to segment

hypotheses, segment hypotheses to syllables, syllables to words, and words to

phrases. Other knowledge sources feed information back to lower levels by

predicting words adjacent to phrases, or syllables that would form predicted words.

Additional tasks include the evaluation of competing hypotheses for promotion or

disqualification, and scheduling. Processing stops when only one hypothesis remains

on the blackboard, or when a time limit is exceeded (in which case the highest

rated hypothesis is returned as the solution). The HEARSA Y-II source code consists

of several hundred pages of Sail instructions. {speech understanding, blackboard,

large rules, uncertainty}

CRYSALIS [Engelmore and Terry, 19791. also known as SUIP, is an expert system

to determine 3-dimensional protein structure from x-ray crystallography data. The

matching of electron density maps with other information to deduce protein

structures is ((a black art". Consequently, each new protein requires different ad

hoc techniques, so the system is designed for change. The system organization is

derived from that of HEARSAY-II. Although most knowledge is represented in rule

form, knowledge sources that do heavy computation are expressed in procedural

code. Knowledge sources are organized into three conceptual levels, known as the

domain, task, and strategy levels. Domain knowledge sources post their conjectures,

with confidence ratings, on the blackboard. Task knowledge sources organize the

work of the domain sources, based on the state of the computation as recorded on

the blackboard. Strategy rules select tasks for execution based on a heuristic

estimate for each task of the expected progress towards a global solution

("opportunistic scheduling"). {chemistry blackboard, large rules, multiple levels,

uncertainty}

MOLGEN [Stefik, 1980] IS an expert system to plan gene-cloning experiments In

molecular genetics. The technique employed performs the planning task by defiDing

and integrating abstract subplans, which are progressively refined to approximate a

solution by the method called difference reduction (find a difference between the

current state and goal, and develop a plan to eliminate the difference). This

planning occurs at three decreasing levels of abstraction, in the strategy, design, and

laboratory problem spaces. The interactions between subplans are posted as

constraints to be satisfied In the next more concrete space; corresponding partial

solutions are integrated by heuristics under the principle of lea.st commitment (delay

making arbitrary decisions; wait until circumstances force a choice). An interpreter

applies operators to the current configuration of the spaces to (1) generate and test

partial solutions subject to constraints, (2) find and reduce differences between goals

and the current state, and (3) map from one space to another. The operators are

procedural, and state is maintained in frame structures. {planning, large rules,

frames, multiple levels, difference reduction, least commitment}

SPEX [Iwasaki and Friedland, 19821 is an extension of MOLGEN that integrates the

idea of stepwise refinement of skeletal plans with MOLGEN's layered control

structure. In this system, all the domain-specific knowledge is contained in the

knowledge base of frames; the procedures that operate in the planning spaces are

claimed to be general. Agendas of tasks are managed in the strategy space by

simple disciplines such as queue, stack, or priority queue. {planning, frames,

agenda, multiple levels}

SUfX [Nii and Feigenbaum, 19771 is a classified military system that, given spectral

lines from multiple sources, recognizes and tracks objects through a physical space.

For this problem, the HEARSAY-II architecture was extended to implement multiple

layers of control structure, and the blackboard was partitioned into distinct areas.

The control layers are named hypothesis-formation, hypothesis-activation, and

strategy. HASP and SIAP [Nii et aI., 19821 are related systems that perform

intelligent signal processing for ocean surveillance. {military, blackboard, multiple

levels, uncertainty}

4.3 Inrerence Nets and Uncertainty: The Prospector/Mycin Group

The systems in this group are characterized by two principal ideas. The first IS to

model the domain by an inference network that reflects some underlying structure

in the application domain. Rather than an unstructured collection of production

rules, these systems have rules that link the nodes in the network. The second

idea is to implement mechanisms for inexact inferencing, either because the input

data are approximate or because the knowledge that human experts have in the

domain is too weak to obtain definitive conclusions. One common means for

28

dealing with uncertainty, adopted by the expert system called Prospector, is based

on Bayesian probability. Another is the "calculus of uncertainty" developed for the

expert system named Mycin.

PROSPECTOR [Duda, Gaschnig, and Hart, 1981; Gaschnig, 1982J is an expert

consultant system to aid geologists in evaluating regions for potential ore deposits.

Knowledge is represented by production rules indicating how a change in the

probability of the antecedent condition influences the probability of the consequent

condition. The rules form an inference net that is tuned by ad hoc methods until

correct results are produced; probability updating is by an approximate form of

Ba.yes' Rule. Rigor is diluted by assumptions that the set of outcomes are

exhaustive and mutually exclusive, and that the input observations are independent

[Szolovits and Pauker, 19781. Also, there is no mechanism for the system to

discard wildly wrong observations, or to allow evidence to imply composite

propositions [Quinlan, 19831. In practice, however, the results are insensitive to

small perturbations of the input data, which is important since geologists will

disagree somewhat about a set of observations. Since the productions neither bind

variables nor form inference loops (a- > b; b- > c; c- > a) [Konolige, 1979]' the rules

forming the inference net can be compiled into straight-line code. This code

propagates probabilities from observations to results in one sweep, with no control

strategy overhead and no recomputation of intermediate nodes. One

PROSPECTOR model for evaluating copper deposits has 94 nodes and lOS

productions; compiling reduced the runnmg time from 30 seconds to 3.1

milliseconds. Knowledge acquisition and intelligent consultation assistance have been

addressed by Reboh [19801. {resource exploration, Bayesian inferencing, domain

network, knowledge acquisition, uncertainty, compiled rules}

!\-fYCIN [Davis, Buchanan, and Shortliffe, 1977; Clancey, 1983al is an expert system

to diagnose bacteremia and meningitis, and to suggest treatments. The system

comprises six components: the patient data base, the knowledge data base, and

programs for consultation, explanation, question answenng, and knowledge

acquisition. The patient data base consists of associative triples of the form object­

attribute-value, with 80 attnbutes and 11 entities pre-defined. An example of such

a triple is (identity. organism, bacteroides). The knowledge base is a collection of

29

production rules (600 in 1981) forming an Ai'IDjOR tree; rule antecedents are

conjunctions of tests on triples, and rule consequents produce conclusions about

triples. In addition, a context hierarchy defines the universe of discourse and the

ways objects are related. The rules are applied in an exhaustive backward-chaining

search,7 but reasoning is complicated by the uncertainty of medical knowledge and

the imprecision of diagnostic signs. Hence the certainty of an antecedent, calculated

by the fuzzy set rule on the triples examined, is multiplied by the certainty factor

of the rule itself to obtain a measure of belief of the conclusion. A combimng

formula increases the belief measure of a conclusion supported by mUltiple rules,

rather-than taking the maximal certainty factor imputed by any single rule.

{medicine, calculus of uncertainty, fuzzy logic, explanation, backward-chaining,

uncertainty}

TEIRESIAS [Davis and Buchanan, 1977; Davis, 19811. originally a portion of the

MYCIN system, assists in knowledge acquisition. It is a large Interlisp program

designed to Cacilitate the interactive transfer of expertise from a human to an

expert system. In the context of a particular erroneous consultation, it

systematically leads a human through the expert system's line oC reasolllng to

discover the point of error. Then it prompts for and monitors the modificatlOn or

addition of rules, notIcing inconsistencies between new knowledge and patterns

established by previous knowledge. This latter behavior is made possible by meta­

rules that give TEIRESIAS a model of what the expert system knows and does not

know. Finally, it performs certain bookkeeping functions, and automatically re-runs

consultations to verify the correctness of the changes. {knowledge acquisition,

m eta- rules}

NEO~fYCIN [Clancey, 19831 is a revIsIon of ~fYCIN In which the search control

knowledge is represented explicitly, rather than being implicit in the domain rules

and interpreter, so that this knowledge is accessible Cor computer-aided instruction.

A top-down diagnostic strategy is represented in a set of domain-independent meta­

rules. Domain rules represent causal relationships, trigger the addition of hi potheses

7In the June 19i8 version of MYCIN, the I:l.rgest number of rules relevant to a particular
goa.l was about 50.

30

to the set under consideration, notice and combine circumstantial eVIdence (wIth

associated certainty measures), and make deductions, when possIble, to determme

data without asking the user. Knowledge about disease processes is stored in

frames keyed to a disease taxonomy, together with lists of follow-up questions. The

system may be viewed as a general procedure that searches a network containing

advice at each node suggesting which branch to examine next. One consequence is

that there is no backward-chaining present in the domain-level rules; the top-down

refinement and screening activities are performed by the meta-rules. {teaching,

medicine, frames, domain network, backward-chaining, meta-rules}

GlJIDOl'{ [Clancey and Letsinger, 19811; later GUIDON2 [London and Clancey, 1982]

is a system designed to teach the information in the NEOMYCIN database.

GUIDON2 has three components: a domain expert (NEOtvIYCIN), a student modeler

(l1viAGE), and an instructional manager. During a consultation, the system

simulates NEOMYCIN to form multiple sets of predictions of student behavior.

Then it obtains descriptions of actual behavior. If these are consistent, the student

is following a correct approach, reflecting a reasonable set of active hypotheses. If

not, forward-chaining rules seek to rationalize the student's behavior, giving a basis

for guidance and evaluation. {teaching, forward-chaining}

ONCOCIN [Shortliffe et aL, 1981] is an expert system to manage oncology protocols,

which are the patterns of treatment and data collection for cancer patients. The

system was designed to be acceptable to doctors. It is implemented in two

concurrent processes: the reasoner, a forward-chaining rule-based system m

Interilsp, and the interviewer, a Sail program for high speed full-screen display

interaction. Control blocks contain scripts of steps to accomplish the tasks of a

protocol, which separates control knowledge from the domain rules. Rules, grouped

by the contexts to which they apply, are executed by forward-chaining to draw

conclusions from new data, and by backward-chaining to deduce needed values.

The control blocks cause system behavior to be focused and responsive to the user,

. avoiding a potential weakness of backward-chaining systems. The design of

ONCOCIN facilitates storing and reasoning about temporal patterns of data as well

as current values. {medicine, control knowledge, forward- and backward chaining,

temporal reasoning}

ABEL [Patil, Szolovits, Schwartz, 19821 is a medical expert system to diagnose acid­

base and electrolyte disturbances. It is designed to utilize both shallow and deep

causal models of disease to plan the diagnostic questioning. By decomposing the

tree of all potential diagnoses before asking the first question, the system can order

the set of necessary questions for efficiency and coherency. In particular,

implausible responses from the user can be recognized and challenged, invoking an

"excuse-finding mechanism". The system plans the diagnostic questioning in a goal­

directed manner, but the actual question asking process is performed in a forward­

chaining environment so that the system is responsive to the answers gIven.

{medicine, deep models, forward- and backward-chaining, uncertainty}

CASl'.TET [\Veiss, Kulikowski, Amarel, Safir, 19781 is an expert system for the

diagnosis of glaucoma. The principal idea is to store a network of causal

connec~i.Qns among dysfunctional states, and test whether a patient has those

dysfunctions. Relationships between nodes are stored as production rules, and

results of tests for specific states are combined by fuzzy logic applied to causal links

from other confirmed or disconfirmed states. Diagnostic question generation is

guided by paths in the network; the initial node of a path represents a probable

cause (disease), and the terminal node indicates the extent of disease progression. A

causal model is attractive because "people seem happier if they understand why

something happens than if they merely know that, under the circumstances, it

does." Casnet has 100 states, 75 classification tables, and 200 diagnostic and

treatment statements [Nau, 19831. {medicine, domain network, fuzzy logic,

uncertainty}

DART [Bennett and Hollander, 1981] is an expert system for fault diagnosis 10

computer teleprocessing systems. It is seen as the first step in the development of

an automated diagnostician for an entire computer system. Its main task is to

implement reasoning that bridges the gap between the very fine level of device

diagnostics and coarse observations of system-level failure. Implemented under the

E~f'{CL'\l framework, DART consists of 190 rules and 300 E}Vf'{CIN' parameters.

{electronics diagnosis, E~fYCIN}

DIGITALIS ADVISOR [Silverman, 1975; Gorry et al., 19781 is an expert consulting

32

program that advises a physician on the proper dose of a heart drug called digitalis.

The dosage calculation is subtle and complex, involving many facts about the

patient's condition and treatment. Inferencing is goal-directed, and the domain is

sufficiently narrow that solutions are developed rapidly. {medicine, backward

chaining, uncertainty}

XPLAIN [Swartout, 1981; 19831 is a system that generates explanations for the

advice given by the DIGITALIS ADVISOR. It is notable in that it does not merely

produce explanations from the text of the rules that were executed, it has much

deeper knowledge. Indeed, XPLAIN contains an automatic programming subsystem

that generates the DIGITALIS ADVISOR: it can explain the advice because it built

the advisor. {medicine, explanation, deep models, automatic programming}

The DIPMETER ADVISOR [Davis et al., 19811 is a system to assist in geological

exploration. It infers subsurface structures based on data from an instrument

known as a dip meter. This task is difficult because the data are very sparse and

noisy, with few mutual. constraints. However, the search space is small, and there

is less ambiguity than in domains such as speech understanding. Since the data

features must be evaluated in isolation, deep knowledge of the underlying geological

processes are needed. This knowledge is captured in production rule form. The

productions are organized into five groups, corresponding to the major steps in the

reasoning algonthm. Rule antecedents consist of simple constant comparisons, and

working memory elements representing data and intermediate results are flat lists of

constants. The developers estimate that a few hundred rules would be required for

a complete version of the system. {resource exploration, deep models, uncerta.inty}

ELAS [Weiss et al., 19821 is an expert system to assist in oil exploration.

Implemented in the EXPERT rule-based system framework, it interacts with the

user to control Amoco proprietary software for well-log analysis a.nd display. EL'\s

extends ideas of the classification systems such as CASNET, MYCIN, and

PROSPECTOR, but it operates in real-time, keeps a model of the user, and is

closely integrated with the Amoco programs. This integration is facilitated by

having a common underlying language, Fortran. {resource exploration, expert user,

EXPERT, Fortran}

3J

GA.\0tlA [Barstow, 1980] is an expert system that determines the composltlon of

unknown substances by examining the gamma ray activation spectra resulting from

neutron bombardment. Reasoning proceeds by backward-chaining from gamma ray

detections to emissions, to unstable isotopes, to isotopes after bombardment, to

isotopes in the original sample, to elements in the original sample. Form ulae,

tables, and rules at each level form a deep model capable of predicting hypotheses

at the next lower level, eventually reaching predictions that can be compared with

the observed spectra. Data are triples (o,e,c), where 0 represents an object such as

an isotope at one of the 6 deductive levels, e is an estimate of concentration, and c

is a chain encoding a path from an element in the original sample to the triple.

An ad hoc hill-climbing algorithm is applied to an "interpretation measure" that

tells how well a set of constituent (element,concentration) pairs accounts for the

spectral peaks. {chemistry, backward chaining, deep models}

INTERNIST [pople, 1977] is an expert system intended to cover the entire field of

internal medicine. Disease knowledge is stored in an organ-based hierarchy, with

relatio~~_ between disease nodes denoted by four classes of weighted links: causal,

associative, manifestation of, and invoked by. The search space is viewed as an

AND/OR graph, with constrictors suggesting regions of the graph to whlch

attention is confined ("jaundice means there is trouble with the liver"), and a multi­

problem generator suggesting constellations of problems that can account for the

observed symptoms. Processing evaluates competing hypotheses by calculatIng

numerical scores that measure such qualities as goodness of fit and explanatory

power. The highest scoring hypothesis is pursued, wlth new data (such as test

results) causing a recomputation of all scores (possibly resulting in a shift of focus).

Thus the quality of the scoring function is crucial to the performance of the system,

and the hidden intelligence in this function is inaccessIble for the generation of

explanations. Although breadth of knowledge does not imply accurate diagnoses,

certainly it is prerequisite. Thus it is interesting to note the growth of the

I.. L"lTERNIST knowledge base. INTERNIST-I contains information concerning 400

disease entities and 2000 manifestations, and executes in 3 to 7 cpu minutes in a

PDP-IO/lnterlisp environment. INTERNIST-II covers about 80% of the diagnoses of

internal medicine, and requires from 20 seconds to 2 minutes to perform a

34

diagnosis. CADUCEUS (pople, 1981] is the successor of I~TER!'ilST. As of 198~

it possessed 100,000 associations in a semantic network that includes 500 diseases

and 350 manifestations, which represents nearly 85% of the potential diagnoses of

internal medicine. {medicine, domain network, uncertainty}

:\IDX [Chandrasekaran et al., 1979; Chandrasekaran and Mittal, 1982] is a system to

diagnose liver problems in the cholestasis syndrome. The syst.em's expertise is

derived from diagnostic structures that form a hierarchy reflecting the deep

structure of knowledge in the field. In this organization, the representation of a

concept calls on subconcepts much as a physician calls on specialists. Each concept

has attached code that, given a diagnostic problem, first decides whether the

problem lies within the scope of expertise of this subtree, and if so, decides which

subconcepts to call on as specialists. If the problem is outside the scope of the

subtree, the calling super-concept is advised where else to look. The authors assert

that these diagnostic structures contain compiled knowledge that is intermediate

between the extremes of a data base of patterns on one hand, and representations

of deep knowledge (in whatever form) on the other, and that all the diagnostic

probleI1]..~ that could be solved by deep knowledge can still be solved, but more

efficiently.

expertise}

{medicine, domain network, uncertainty, deep models, scope of

PIP [Szolovits and Pauker, 19781 is an expert system to diagnose renal disease. The

medical knowledge is stored in frame structures that represent possible disorders.

The structure of a frame is as follows. The trigger slot has tests to be compared

with observations about the patient to see if the frame's hypothesis should be

considered. The findings slot accumulates additional evidence for a hypothesis

already under consideration. Slots named is-sufficient, must-have, and must-not-have

contain categorical tests to determine whether the hypothesis applies to the patient.

The differential-diagnosis slot contains a list of tests to check alternatives to this

hypothesis, while complementary hypotheses are linked through the caused-by, cause­

of, complicated-by, complication-of, and associated-with slots. The sc.ore slot

contains a complex numerical likelihood estimation function specialized to the

hypothesis. One observation concerning PIP is that the scores are sensitive, so

question-asking by the system tends to flitter from hypothesis to hypothesis as the

odds fluctuate, which IS not reassuring to the user. Also, PIP doesn't know when

to stop, It continues exploring additional less and less reasonable hypotheses, until

none remain or every finding has already been examined.

domain network, large rules, uncertainty}

{medicine, frames,

PLAi"iT IDS [Uhrik, 1982J IS an expert system for the diagnosis of soybean diseases,

using a combination of rules derived from human experts and from machine­

induction on exemplary cases. The system operates In a domain in which the

discriminations are very subtle, and in which diagnoses must be made from

constellations of many weakly suggestive observations, The concomitant difficulty IS

that several weakly believed inferences may aggregate to indicate with near

certainty an incorrect result. {plant disease, uncertainty, knowledge acquisition}

PUFF [Osborn et al., 1979] is an expert system for diagnosing pulmonary disease.

\Vritten in E~fYCIN, it has 55 rules, and required fewer than 50 hours of human

expert interaction and fewer than ten weeks of knowledge engineering time to

construct [Feigenbaum, 1977]. It has a fixed order for exploring the diagnostic

space (by simple backward-chaining), so it occasionally asks unreasonable questions

in the context of previous answers, Nevertheless, it produces high quality diagnoses,

and the system IS In routine clinical use. {medicine, uncertaInty,

backward-chaining}

SACON [Bennett and Engelmore, 1979] is an expert system written in EIvfYCIN to

advise on the operation of a large structural analysis program named ~L\RC

\L-\RC applies finite-element analysis techniques to the simulation of propertIes of

structures such as aircraft WIngs, reactor pressure vessels, rocket motor casIngs,

bridges, and buildings. The properties of interest include fattgue, responses under

varying load, stability, and deflection, t-.L-\RC is sufficiently rich in options that a

year of experience is typically required to become a proficient user SACON

provides this experience on behalf of a less-seasoned user. First, it obtains from the

user a description of the geometry, materials, loadings, and required accuracy for

the structure to be analyzed. It then determines the analysis class into which the

object falls, and recommends an appropriate analysis strategy to be used in Ivl-illC

A typical consultation to prepare for the analysis of an object with two

.36

substructures, three loadings. and three load components requires about 25 minutes

at an interactive terminal. SACON's knowledge resides in approximately 170 rules

and 140 EMYCIN parameters, which were obtained in two months of a human

expert's time, with two additional months for implementation and testing. The

marginal time cost of new rules was found to be two hours, although the first 170

rules required four hours each. EMYCIN had previously only been used for medical

systems; it proved to be effective in this domain as well. {structural analYSIS,

expert user, E}"fYCIN}

4.4 Other Expert Systems

EL [Stallman and Sussman, 1977J is an expert system, written In the ARS language.

to analyze the behavior of analog electronic circuits. Knowledge about circuits is

represented by rules that act as demons, monitoring an associative relational

database that models the circuit under analysis. The medium-priority demons apply

electrical laws to make deductions. When no further deductions are possible, low­

priority demons make. or retract device-state assumptions (CCmethod of assumed

states"), which are checked by high-priority demons for consistency with the

remainder of the circuit ("propagation of constraints"). If the state is found to be

inconsistent, backtracking is taken at a point chosen to remove the conflict

CCdependency-directed backtracking»). The device-state dependencies thus obtained.

stored in an inheritance hierarchy, prevent the generation of circuit states

containing previously discovered conflicts. \Vhen a new state is asserted. a decision

tree of patterns selects demons to be enqueued for execution at appropriate

pnorities: For speed, there are separate databases to hold facts, demons, and

dependencies. It is noted that although rules give local modularity, the overall

structure of a rule-based system is quite rigid. {electronics diagnosis, demon.

assumed states, propagation of constraints, dependency-directed backtracking, frames.

partitioned rules}

HARPY [Lowerre and Reddy, 19801 is an expert system for speech understanding,

solving the same problem as Hearsay-II. In HARPY, the syntax, lexical, and word

juncture knowledge IS compiled from context free production rules into a

discrimination network representing all legal utterances in the domain. During

37

execution, a relatively simple interpreter then compares speech with this structure

by beam search to find the best matching interpretation. This approach gives high

speed, which permits search space pruning decisions to be postponed until larger

partial solutions are developed and evaluated, which in turn leads to accuracy. For

a 1000-word vocabulary, the discrimination network has 15,000 nodes and requires

13 hours on a DEC-I0 (KL) to compile. {speech understanding, uncertainty,

com piled rules}

PARillISE [\Vilkins, 19811 is a chess-playing expert system that uses deep strategies

rather than rapid iteration of brute-force search techniques. A production system

organization was chosen to facilitate modification and extension of the knowledge

base, despite the penalty in execution speed. In PARADISE, a knowledge source is

a group of rules about some abstract concept, together with variables whose joint

instantiation represent a specific instance of the abstract concept. Some productions

participate in more than one knowledge source, and some concepts are not

contained in any knowledge source. The rules discover patterns in chess positions,

and post ideas to the database for consideration by other rules, ultimately

generating chess plans that are then verified by a small tree search process. This

problem domain is quite unlike that of systems such as MYCIN: the solution is not

implicit in a codification of the current situation or in the knowledge base; rules

must deal with higher concepts, linking them to create plans. However, this process

is unlike robot planning, in that details must not be suppressed. Details are of the

essence. Also, firing a production does not add a new fact to the system, because

the rules do not make deductions. They produce ideas that mayor may not be

correct. ___ There are no clear facts WIth probabilities that can be reasoned about, so

productions must record their reasoning, not just their result, for inspectIOn by

subsequent rules. An example of the exceptionally well focused search performed by

PARADISE is given by a chess problem that was solved through a search 19 ply

deep. This search tree had only 109 nodes. {chess, deep knowledge, planmng}

ROSS [Klahr and Faught, 1980J is a rule-oriented system for SImulating military aIr

battles. A rule representation was chosen because procedurally coded simulators

have proven to be unintelligible, unmodifiable, not credible, and slow. Rules In

ROSS specify object behaviors, and an underlying object-oriented message-passing

38

system conducts the activity. Each major event has a descriptor; these are hnked

to form scenarios. Trees of event descriptor chains represent «activities". These

structures can be browsed, and serve as the basis for explanations of the

occurrences during a simulation. The system has approximately 75 behavioral rules

and 10 object types, and has simulated battles containing 250 objects. The authors

feel the current system will not scale up without improvements in speed of

execution, perhaps derived from parallel processing, abstraction, sampling, and

focusing on user queries to avoid irrelevant processing. A reimplementation in

ROSIE or a hybrid ROSIE/object-oriented language IS under consideration so that

the rule-based language will be more English-like. {military, domain network,

ROSIE}

SAINT, SIN, [Moses, 1971] and ~1ACSYMA [Martin and Fateman, 1971] form a

progression of systems with expertise in symbolic mathematics. SAINT was viewed

as an AI approach to symbolic integration. Further development led to SIN, which

runs two orders of magnitude faster as a consequence of explicit tables of integrals,

and special-purpose solution strategies for standard problem types. t-.1ACSThfA is

an extension with broad expertise in differential and integral calculus and algebraic

simplification. It is in routine use, and is more highly skilled than humans.

{ mathematics}

5 Conclusion

Numerous domains have proven fruitful for the development of expert systems. One

principal area is medical diagnosis, and more generally, the diagnosis of systems,

whether the human body, a nuclear reactor, a telephone system, or an electronic

circuit. Other prominent areas include the ordering, configuration, and assembly of

computer systems, evaluating geographical regions for oil and mineral depOSits, and

the elucidation of molecular structures.

A variety of effective approaches to the design of expert systems are known.

Among these are the OPS systems of hundreds or thousands of small rules with a

global working memory, the Hearsay-II style of systems having tens of knowledge

sources observing and communicating through a blackboard, and the systems such

as LOOPS that integrate rules with other programing paradigms.

39

From the work in this field, several issues are understood to a degree. It is known

that large systems should assist in the process of knowledge acquisition. Means for

accomplishing this include automatic checking to determine whether new information

is consistent with the old (to the degree possible), and debugging of the knowledge

in the context of erroneous deductions by the system. Successful knowledge

representations have been found, including production rules for inferencing, frames

to capture characteristics of entities, and networks for the representation of

relationships. Guiding the process of deduction has been effected by static conflict

resolution and by agendas under the control of meta-level knowledge sources.

Efficient inferencing techniques have been developed for certain programming

techniques, such as those employed by Rl and Prospector.

Many challenges remain. Among these are what might be t,=rmed the "software

engineering" of expert systems, involving techniques for the design, implementation,

and maintenance of large systems. Another open question is the appropriate

granularity of knowledge representation. Effective applications of large knowledge

sources and very small rules have been seen, but we lack general principles. In

particular, current expert systems are individually hand-crafted (possibly within

knowledge engineering frameworks); we lack general principles applicable to classes

of problems, which would permit the construction of "generic experts".8 Also, the

means for capturing broad knowledge are not yet known; current expert systems are

unaware of their limits, and draw incorrect conclusions when working outside the

scope of their narrow expertise. Another area in infancy is the application of

parallel hardware to obtain large increases in inferencing speed

6 Acknowledgments

Thanks for insightful comments and helpful suggestions are due Richard Korf,

Michael Lebowitz, and Salvatore Stolfo. This work was supported in part by an

IBM Fellowship.

8Tbis was pointed out by S. Stolfo in a priva.te communica.tion.

40

REFERENCES

Janice S. Aikins, "Prototypes and production rules: an approach to knowledge

representation for hypothesis formation", IJCAl-79, Proceedings of the sixth
international joint conference on artificial intelligence, August 20-23, pp. 1-3

Janice S. Aikins, ''Representation of control knowledge in expert systems", AAA1-BO,
Proceedings of the first annual national conference on artificial intelligence, August
18-21, pp. 121-123.

Janice S. Aikins, "Prototypical knowledge for expert systems", Artificial In telligence,
vol. 20, no. 2, February 1983, pp. 163-210.

Elizabeth Allen, cry APS: a production rule system meets objects", AAAl-83,
Proceedings of the national conference on artificial intelligence, pp. 5-7.

R. H. Anderson and 1. 1. Gillogly, ''Rand intelligent terminal agent (RITA): design

philosophy", Rand Corporation Technical Ueport R-1809-ARPA, Santa Monica,

California, 1976.

Robert Balzer, Lee Erman, Philip London, Chuck Williams, "HEARSAY-III: a

domain-independent framework for expert systems", AAAl-BO, Proceedings of the
first annual national conference on artificial intelligence, August 18-21, pp. 108-110.

David R. Barstow, "Exploiting a domain model in an expert spectral analysis

program", AAAl-BO, Proceedings of the first annual national conference on artificial
intelligence, August 18-21, pp. 276-279.

Jeffrey A. Barnett, "Computational methods for a mathematical theory of evidence",

IJCAl-Bl, Proceedings of tbe seventb international joint conference on artificial
intelligence, August 24-28, pp. 868-875.

James S. Bennett and Robert S. Engelmore, "SACON: a knowledge-based consultant

for structural analysis", IJCAl-79, Proceedings of the shtb international joint

conference on artificial intelligence, August 20-23, pp. 47-49.

James S. Bennett and Clifford R. Hollander, ''DART: an expert system for computer

fa.ult diagnosis", IJCAl-Bl, Proceedings of tbe seventb international joint conference

on artificial intelligence, August 24-28, pp. 843-845.

John H. Boose, "Personal construct theory and the transfer of human expertise",

A.AA.l-B4, Proceedings of tbe national conference on artificial intelligence, August

6-10, 1984, pp. 27-33.

Bruce G. Buchanan, "New research on expert systems", Machine Intelligence 10,

1. E. Hayes, Donald Michie, YaH Pao (eds.), Halsted Press, New York, 1982, pp

269-299.

41

Bruce G. Buchanan, Richard O. Duda, ''Principles of rule-based expert systems",

Advances in computers, vol. 22, Academic Press, 1983, pp. 163-216.

Bruce G. Buchanan and Edward A. Feigenbaum, 'TIendral and Meta-Dendral: their

applications dimension", Readings in Artificial Intelligence, Bonnie Lynn Webber and

Nils J. Nilsson (eds.), Tioga, Palo Alto, 1981, pp. 313-322. Also Artificial

Intelligence, vol. 11, no. 1-2, August 1978, pp. 5-24.

B. Chandrasekaran, F. Gomez, S. Mittal, and 1. Smith, "An approach to medical

diagnosis based on conceptual structures", IJCAI-i9, Proceedings of the sixth

international joint conference on artificial intelligence, August 20-23, pp. 134-142.

B. Chandrasekaran and Sanjay Mittal, "Deep versus compiled knowledge approaches

to diagnostic problem-solving", AAAI-82, Proceedings of the national conference on

artificial intelligence, August 18-20, pp. 349-354.

William J. Clancey, "The advantages of abstract control knowledge in expert system

design", AAAl-83, Proceedings of the national conference on artificial intelligence,

pp. 74-78.

\Villiam J. Clancey, "The epistemology of a rule-based expert system-a framework

for explanation", Artificial Intelligence, vol. 20, no. 3, May 1983a, pp. 215-251.

\Villiam J. Clancey, "Classification problem solving", AAAl-84, Proceedings of the

national conference on artificial intelligence, August 6-10, 1984, pp. 49-55.

\Villiam 1. Clancey and Reed Letsinger, "NEOMYCIN: reconfiguring a rule-based

expert system for application to teaching", IJCAI-8I, Proceedings of the seventh

international joint conference on artificial intelligence, August 24-28, pp. 829-836.

Brian L. Cohen, "A powerful and efficient structural pattern recognition system",

Artificial Intelligence, vol. 9, no. 3, December 1977, pp. 223-255.

Randall Davis, "Meta-rules: reasoning about control", Artificial Intelligence, vol. 15,
no. 3, December 1980, pp. 179-222.

Randall Davis, "Interactive transfer of expertise: acquisition of new inference rules"

Readings in Artificial Intelligence, Bonnie Lynn \Vebber and Nils J Nilsson (eds)',
Tioga, Palo Alto, 1981, pp. 410-428.

Ran?all Davis, Howard Austin, Ingrid Carlbom, Bud Frawley, Paul Pruchnik, RIch

Snelderman, 1. A. Gilreath, "The DIPMETER ADVISOR: interpretation of geologic
signals", IJCAl-81 , Proceedings of the seventh international joint conference on
artificial intelligence, August 24-28, pp. 846-849.

Randall . D~;is and Bruce G. ~uchanan, "\of eta-level knowledge: overVIew and
applicatIOns, IJCAI-ii, Proceedmgs of the fifth international joint conference on
artificial intelligence, pp. 920-927.

·12

Randall Davis and Bruce Buchanan, Edward Shortliffe, "Production rules as a

representation for a knowledge-based consultation program", Artificial In telligence,
vol. 8, no. 1, February 1977, pp. 15-45.

Randall Davis and Jonathan King, "An overview of production systems", in Machine

Intelligence 8, E. W. Elcock & D. Michie (eds.), Wiley, New York, 1976, pp.

300-332.

Johan de Kleer, "Choices without backtracking", AAAI-84, Proceedings of the

national conference on artificial intelligence, August 6-10, pp. 79-85.

Richard Duda, John Gaschnig and Peter Hart, "Model design in the Prospector

consultant system for mineral exploration", Readings in Artificial Intelligence, Bonnie

Lynn Webber and Nils J. Nilsson (eds.), Tioga, Pa.lo Alto, 1981, pp. 334-348. Also

in Donald Michie (ed.), Expert Systems in the A1icro-electronic Age, Edinburgh

University Press, Edinburgh, Great Britain, 1979, pp. 153-167.

Richard O. Duda, Peter E. Hart and Nils J. Nilsson, "Subjective Bayesian methods

for rule-based inference systems", Readings in Artificial Intelligence, Bonnie Lynn

\Vebber and Nils J. Nilsson (eds.), Tioga, Palo Alto, 1981, pp. 192-199.

Richard O. Duda and Edward H. ShortIiffe, "Expert systems research", Science, vol.

220, no. 4594, April IS, 1983, pp. 261-268.

Robert Engelmore, Allan Terry, "Structure and function of the CRYSALIS system",

/JGAl-79, Proceedings of the sixth in ternational join t conference on artificial

intelligence, August 20-23, pp. 250-256.

Susan P. Ennis, ((Expert systems: a user's perspective of some current tools",

AAAI-82, Proceedings of the national conference on artificial intelligence, August

18-20, pp. 319-321.

Lee D. Erman, Frederick Hayes-Roth, Victor R. Lesser, D. Raj Reddy, "The

Hearsa.y-II speech-understanding system: integrating knowledge to resolve

uncertainty", Readings in Artificial Intelligence, Bonnie Lynn Webber and Nils

J. Nilsson (eds.), Tioga, Palo Alto, 1981, pp. 349-389.

J. Fain, D. Gorlin, F. Hayes-Roth, S. J. Rosenschein, H. Sowlzral, and

D. \Vaterman, "The ROSIE language reference manual, Rand Corporation Technical

Report N-1647-ARPA, Santa ~10nica, California, 1981.

Edward A. Feigenbaum, ((The art of artificial intelligence: 1. themes and case studies

of knowledge engineering", /JGAl-77, Proceedings of the fIfth international joint

conference on artificial intelligence, pp. 1014-1029. Also in Proceedings of the NGG,

1978. Also in Donald Michie (ed.), Expert Systems in the Micro-electronic Age,

Edinburgh University Press, Edinburgh, Great Britain, 1979, pp. 3-25.

43

Richard Fikes and Tom Kehler, "The role of frame-based representation in

reasoning", Communications of the ACA{ vol. 28, no. 9, September 1985, pp.

904-920.

Charles L. Forgy, "OPS4 user's manual", Carnegie-Mellon Computer Science

Technical report CMU-CS-79-132, 1979.

Charles L. Forgy, "OPS5 user's manual", Carnegie-Mellon Computer Science

Technical Report, C1vfU-CS-81-135, July 198!.

Charles L. Forgy, "Rete: a fast algorithm for the many pattern/many object pattern

match problem", Artificial Intelligence, vol. 19, no. I, September 1982, pp 17-37

Charles L. Forgy, "Overview of OPS83", Carnegie-Mellon Computer Science

Technical Report, June 19, 1983.

Charles L. Forgy and John McDermott, "OPS, a domain-independent production

system language", IJCAl-77, Proceedings of the ruth international joint conference

on artificial in telligence, pp. 933-939.

Kazuhiro Fuchi, "Aiming for knowledge information processing systems", in Fifth

Generation Computer Systems, Tohru Moto-oka (ed.), North-Holland, Amsterdam­

New York-Oxford, 1982, pp. 107-120. (This is the proceedings of the international

conference on fifth generation computer systems, Tokyo, October 1981.)

John Gaschnig, "Application of the PROSPECTOR system to geological exploration

problems", Machine Intelligence 10, 1. E. Hayes, Donald Michie, Y-H Pao (eds.),
Halsted Press, New York, 1982, pp. 301-323.

Michael R. Genesereth and Matthew 1. Ginsberg, "Logic Programming",

Communications of the AC.\f, vol. 28, no. 9, September 1985, pp. 933-941.

Michael P. Georgeff, ('Procedural control in production systems", .Artificial
Intelligence, vol. 18, no. 2, March 1982, pp. 175-20l.

Malik Ghallab, ('Decision trees for optimizing pattern-matching algorithms in

production systems", IJCAl-81, Proceedings of the seventh international joint

conference on artificial intelligence, August 24-28, pp. 310-312.

G. A. Gorry, H. Silverman, and S. G. Pauker, ((Capturing clinical expertise: a

computer program that considers clinical responses to digitalis", American Journal of
Medicine, vol. 64, March 1978, pp. 452-460.

1. H. Griesmer, S. H. Hong, M. Karnaugh, 1. K. Kastner, M. 1. Schor, R. 1. Ennis,

D. A. Klein, K. R. Milliken, H. M. Van\Voerkom, ''YESjrvrvS. a continuous real

time expert system", AAAl-84, Proceedings of the national conference on artificial
intelligence, August 6-10, pp. 130-136.

44

P. Haley, 1. Kowalski, 1. McDermott, R. Mc\Vhorter, ''PTRANS: a rule-based

management assistant", Carnegie.Mellon Computer Science Technical Report, 1983.

Frederick Hayes-Roth, "Rule.based Systems", Communications of the ACM, vol. 28,

no. 9, September 1985, pp. 921-932.

Frederick Hayes-Roth and David 1. Mostow, "An automatically compilable
recognition network for structured patterns", IJCAl-75, Proceedings of the fourth

international joint conference on artificial intelligence, September 3-8, pp. 246-251.

Frederick Hayes-Roth and D. A. Waterman, Douglas B. Lenat, "Principles of

pattern-directed inference systems", in Pattern-directed inference systems, Waterman

and Hayes-Roth (eds.), Academic Press, New York, 1978.

Frederick Hayes-Roth and D. A. Waterman, Douglas B. Lenat (eds.), "An overVIew

of expert systems", in Building expert systems, Addison \Vesley, Reading,

Massachusetts, 1983, pp. 3-29.

Bruce K. Hillyer, David Elliot Shaw, "Execution of OPSS production systems on a

massively parallel machine", Journal of parallel and distributed computing, (accepted
for publication).

Yumi Iwasaki and Peter Friedland, "SPEX: a second-generation experiment design

system", AAAl·B2, Proceedings of the national conference on artificial intelligence,

August 18-20, pp. 341-344.

T. P. Kehler and G. D. Clemenson, "An application development system for expert

systems", Syst. Softw., vol. 3, no. 1, January 1984, pp. 212-224.

Philip Klahr and \Villiam S. Faught, "Knowledge-based simulation", AAAJ-BO,

Proceedings of the first ann ual national conference on artificial in telligence, August

18-21, pp. 181-183.

Kurt Konolige, "An inference net compiler Cor the PROSPECTOR rule-based

consultation system", IJCAl-79, Proceedings of the si..yth international joint

conference on artificial intelligence, August 20-23, pp. 487-489.

T. 1. Kowalski and D. E. Thomas, "The VLSI design automation assistant:

prototype system", Proceedings of the 20th design automation conference, June

1983.

John F. Lemmer and Stephen W. Barth, "Efficient mInImUm inCormation updating

for Bayesian inferencing in expert systems", AAAl-B2, Proceedings of the national

conference on artificial intelligence, August 18-20, pp. 424-427.

Douglas B. Lenat, Frederick Hayes-Roth, Philip Klahr, "Cognitive economy in

artificial intelligence systems", IJCAl-79, Proceedings of the si..'<th international joint

45

conference on artificial intelligence, August 20-23, pp. 531-536. (Condensed from

"Cognitive Economy", Memo HPP-79-15, Stanford, also issued as Ra.nd Report

N-1185.)

Douglas B. Lenat and John McDermott, ''Less than general production system

architectures", IJCAl-77, Proceedings of the fifth international joint conference on

artificia.l in telligence, pp. 928-932.

Bob London and William 1. Clancey, "Plan recognition strategies lD student

modeling: prediction and description" , AAAl-B2, Proceedings of the national

conference on artificial intelligence, August 18-20, pp. 335-338.

B. T. Lowerre, and R. Reddy, "The HARPY speech understanding system", in

Trends in speech recognition, W. A. Lea ed., Prentice-Hall, Englewood Cliffs N J,
1980, Chapter 15.

W. A. Martin and R. 1. Fateman, "The MACS)"MA system", Proceedings of the

second symposium on symbolic and algebraic manipulation, Los Angeles, 1971, pp.

59-75.

Drew McDermott, "ARBY: diagnosis with shallow causal models", AAAl-B2,

Proceedings of the national conference on artificial intelligence, August 18-20, pp.

370-372.

John McDermott, ''R1: an expert in the computer systems domain", AAAI-BO,

Proceedings of the first annual national conference on artificial intelligence, August

18-21, pp. 269-27l.

John McDermott, "R1: a rule-based configurer of computer systems", Artificial

Intelligence, vol. 19, no. I, September 1982, pp. 39-88.

John McDermott, ''XSEL: a computer sales person's assistant", Machine Intelligence

10, 1. E. Hayes, Dona.ld Michie, Y-H Pac (eds.), Halsted Press, New York, 1982, pp.
325-337.

John ~lcDermott, ''Extracting knowledge from expert systems", IJCAl-B3,
Proceedings of the eighth international joint conference on artificial intelligence, pp.

100-107.

Kathy R. McKeown, Michael Wish, and Kevin ~htthews, "Tailoring exrhnations for

the user", in IJCAl-Bl, Proceedings of the ninth international joint conference on

artificial intelligence, August 1985, pp. 794-798.

\Villiam van Melle, "A domain-independent production-rule system for consultation

programs", IJCAI-7fJ, Proceedings of the sixth international joint conference on
a.rtificial intelligence, August 20-23, pp. 92~92S.

45

Jack Minker, "Issues in developir.g expert systems", Proceedings of Logic

Programming Workshop 1983, June 26 - July 1, pp. 204-215.

Joel Moses, "Symbolic integration: the stormy decade", Communications of the

ACM, vol. 14, no. 8, 1971, pp. 548-560.

Dana S. Nau, ''Expert computer systems", IEEE Computer Magazine, vol. 16, no 2,
February 1983.

William R. Nelson, "REACTOR: an expert system for diagnosis and treatment of

nuclear reactor accidents", AAAI-8Z, Proceedings of the national conference on

artificial intelligence, August 18-20, pp. 296-301.

H. Penny Nii et al., AI Magazine vol. 3, no. 23, 1982.

H. Penny Nii and Nelleke Aiello, "AGE (attempt to generalize): a knowledge-based

program for building knowledge-based programs", IJCAI-79, Proceedings of the sixth

international joint conference on artificial intelligence, August 20-23, pp. 645-655.

H. Penny Nii and Edward A. Feigenbaum, ''Rule based understanding of signals",
Proceedings of the conference on pattern-directed inference systems, 1977, also in

Pattern-directed inference systems, D. A. Waterman and F. Hayes-Roth, eds.,

Academic Press, New York, pp. 483-501.

1. Osborn et aI., ''Managing the data from respiratory measurements", !..,fedical

Instrumentation, vol. 13, no. 6, November 1979.

Ramesh S. Patil, Peter Szolovits, William B. Schwartz, "Information acqUlsltlon in

diagnosis", AAAI-82, Proceedings of the national conference on artificial intelligence,

August 18-20, pp. 345-348.

Judea Pearl, "Reverend Bayes on inference engines: a distributed hierarchical

approach", AAAI-82, Proceedings of the national conference on artificial intelligence,

August 18-20, pp. 133-136.

Harry E. Pople, Jr., "The formation of composite hypotheses in diagnostic problem

solving an exercise in synthetic reasoning", IJCAI-77, Proceedings of the fifth

international joint conference on artificial intelligence, pp. 1030-1037

Harry E. Pople, Jr., "Heuristic methods for imposing structure on ill-structured

problems: The structuring of medical diagnostics" in Artificial intelligence in
medicine, P. Szolovits, ed., Westview Press, Boulder Colorado, 1981, pp. 119-185.

E. Post, ''Formal reductions of the general combinatorial problem", American

Journal of Mathematics, vol. 65, 1943, pp. 197-268.

J. R. Quinlan, "Consistency and plausible reasoning", IJCAI-83, Proceedings of the

eighth international joint conference on artificial intelligence, pp. 138-144.

Rene Reboh, "Using a matcher to make an expert consultation system behave

intelligently", AAAl-80, Proceedings of the first annual national conference on

artificial intelligence, August 18-'21, pp. 231-'234.

Steven Rosenberg, "HPRL: A language for building expert systems", [JCAl-83,

Proceedings of the eighth international joint conference on artificial intelligence, pp.

215-217.

Ron Sauers and Rick Walsh, "On the requirements of future expert systems",

[JCAl-83, Proceedings of the eighth interna.tional joint conference on artificial

intelligence, pp. 110-115.

H. Silverman, "A digitalis therapy advisor", rvrrT Project MAC technical report

TR-143, 1975.

Edward H. Shortliffe, "Consultation systems for physicians: the role of artificial

intelligence techniques", Readings in Artificial Intelligence, Bonnie Lynn \Vebber and

Nils J. Nilsson (eds.), Tioga, Palo Alto, 1981.

Edward H. Shortliffe, A. Carlisle Scott, Miriam B. Bischoff, A. Bruce Campbell,

William Van Melle, Charlotte D. Jacobs, "ONCOCIN: an expert system for oncology

protocol management", [JCAl-81 , Proceedings of the seventh international joint

conference on artificial intelligence, August 24-28, pp. 876-881.

David E. Smith and Jan E. Clayton, "A frame-based production system

architecture", AAAl-BO, Proceedings of the first annual national conference on

artificial intelligence, August 18-21, pp. 154-156.

Richard M. Stallman and Gerald 1. Sussman, "Forward reasoning and dependency­

directed backtracking in a system for computer-aided circuit analysis", Artificial

Intelligence, vol. 9, no. 2, October 1977, pp. 135-196.

Mark Stefik, "Planning with Constraints (MOLGEN: Part 1)", "Planning and meta­

planning (MOLGEN: Part '2)", Artificial Intelligence, vol. 14, no. 2, September 1980.

~1ark Stefik, Jan Aikins, Robert Balzer, John Benoit, Lawrence Birnbaum, Frederick

Hayes-Roth, Earl Sacerdoti, "The organization of expert systems, a tutOrial" ,

Artificial Intelligence, vol. 18, no. 2, March 198'2, pp. 135-173.

Mark Stefik, Alan G. Bell, Daniel G. Bobrow, "Rule-Oriented programmmg m loops",

Xerox PARC Memo KB-VLSI-8'2-'2'2, June 12, 1983.

Salvatore 1. Stolfo and Daniel P. Miranker, "DADO: a parallel processor for expert

systems", Proceedings of the 1984 internationa.l conference on parallel processing,
August 21-24, 1984.

Salvatore 1. Stolfo and David Elliot Shaw, "DADO: a tree-structured machme

48

architecture for production systems", AAAI-B2, Proceedings of the national

conference on artificial intelligence, August 18-20, piJ. 242-246.

Salvatore 1. Stolfo and Gregg T. Vesonder, "ACE: an expert system supporting

analysis and management decision making", Columbia Computer Science, October

1982.

Thomas M. Strat, "Continuous belief functions for evidential reasoning", A..AAl-B4,

Proceedings of the national conference on artificial intelligence, August 6-10, pp.

308-313.

William R. Swartout, ''Explaining and justifying expert consulting programs",
IJCAI-Bl, Proceedings of the seventh international joint conference on artificial

intelligence, August 24-28, pp. 815-823.

William R. Swartout, ''XPLAIN: a system for creating and explaining expert

consulting programs", Artificial Intelligence, vol. 21, no. 3, September 1983, pp.

285-325.

Peter Szolovits and Stephen G. Pauker, "Categorical and probabilistic reasoning in

medical diagnosis", Artificial Intelligence, vol. 11, no. 1-2, August 1978, pp.

115-144.

Donald E. Thomas, Charles Y. Hitchcock III, Thaddeus 1. Kowalski, Jayanth

V. Rajan, and Robert A. Walker, "Automatic data path synthesis", IEEE Computer

Afagazine, vol. 16, no. 12, December 1983, pp. 59-69.

Philip C. Treleaven and Isabel Gouveila Lima, «Japan's fifth-generation computer

systems", Computer, vol. IS, no. 8, August 1982, pp. 79-88.

Alan Turing, "Computing machinery a.nd intelligence", in Edward A. Feigenbaum

and 1. Feldman (eds.), Computers and Thought, McGraw-Hill, New York, 1963.

Carl T. Uhrik, "PLANT Ids revisited: non-homogeneous evaluation schema in expert

systems", AAAl-B2, Proceedings of the nation3.l conference on artificial intelligence,

August 18-20, pp. 217-220.

D. A. Waterman, "User-oriented systems for capturing expertise: a rule-based

approach", in Donald Michie (ed.), Expert Systems in the lvlicro-electronic Age,

Edinburgh University Press, Edinburgh, Great Britain, 1979, pp. 26-34.

D. A. Waterman and F. Hayes-Roth (eds.), Pattern-directed inference systems,

Academic Press, New York, 1978.

D. A. \Vaterman and Mark Peterson, "Rule-based models of legal expertise",

A-\"4.1-BO, Proceedings of the first a.nnual na.tional conference on artificial

intelligence, August 18-21, pp. 272-275.

49

Sholom }'1. Weiss and Casimir A. Kulikowski, "EXPERT: a system for developing

consultation models" , IJCAl-79, Proceedings of the si.."(th in ternational join t
conference on artificial intelligence, August 20-23, pp. 942-947.

Sholom Weiss, Casimir Kulikowski, S. Arnarel, A. Safir, cCA model-based method for

computer-aided medical decision-making", Artificial Intelligence, vol. 11, pp.

145-172, 1978.

Sholom M. Weiss, Casimir A. Kulikowski, Chidanand Apte', Michael Uschold, Jay

Patchett, Robert Brigham, Belynda Spitzer, «Building expert systems for controlling

complex programs", AAAl-82, Proceedings of the national conference on artificial

intelligence, August 18-20, pp. 322-326.

David Wilkins, "Using patterns and plans in chess", Readings in Artificial

Intelligence, Bonnie Lynn \Vebber and Nils 1. Nilsson (eds.), Tioga, Palo Alto, 1981,

pp. 390-409.

Lotfi A. Zadeh, (CCommonsense knowledge representation based on fuzzy logic",

IEEE Computer Magazine, vol. 16, no. 10, October 1983, pp. 61-65.

I Rul., B& .. I--------> I.fere.co Engi.. (--------> r D&t& B ... I

The rule base contains the system's reasoning knowledge for the problem

domain. Its contents are usually obtained from human experts by knowledge

engIneers.

The data base contains facts modeling the problem state under solution.

Facts specifying ·the initial state are obtained from the uSer of the expert

system.

The inference engIne is a program that applies the knowledge expressed in the

rule base to the facts stored in the database in order to make deductions.

The inference engine reads both the rule base and the knowledge base, and

writes updated information into the data base as problem solution progresses.

Figure 1: Basic components of an AI production system.

so

(p .ort-York

)

(ta.k fta.knaa. SORT)
(numb.r fTalU' <x>
(number fTalu. < <x>
(counter tTalue <n»

fUlld HO)

fused HO)

-->
(nite <x»
(.odify 2 fused YES)
(.edify 3 fTalU' (co.put. <n> + 1»

(p .ort-done

)

(ta.k fta.knaa. SORT)
- (nu.ber tu •• d 10)

(counter fTalne <total»
-->
(nit. <total> ite ••• orted)
(reIiOTI 1)

Production naaed .ort-York
If current ta.k i. to .ort

a.nd there is a.n unused number x
but no smaller unused number
a.nd the output counter i. n

Then
nite nu.ber to output
.ark x a. used. a.nd
incre.ent the output counter.

Production naaed .ort-done
If current ta.k i. to .ort

but no unu •• d nu.ber re.ain.
a.nd the output counter i. total

Then
write the total nu.ber of ite ••
a.nd t.r2inat. the .orting talk

This is a pair of rules written in the OPS5 language. The first rule 1S a

complete description of a sort. It operates by repeatedly finding the

smallest number, printing it, and discarding it. In addition, the first rule

counts the number of items sorted. The second rule notices when the sort has

finished, prints the total number of items sorted, and also removes from the

working memory the context element that establishes the sorting task.

Figure 2: Exa.mple small-rule productions.

51

This example illustrates the slots of a frame-based knowledge source.

Knowledge-source name: Downshift control

Description:
The downshift control knowledge source examines information from sensors on
an automobile and decides whether to shift the transmission to a lower gear.

Trigger Condition:
is a declarative indication that the antecedent should be executed every 1/10
second, and whenever the accelerator pedal is depressed further.

Screen Test:
is a small procedure that checks prerequisite conditions to determine whether
the antecedent should be executed. An example of such a condition would be
that the driver has not selected Neutral or Park for the transmission.

Antecedent:
is a procedure that collects sensor data such as the current gear,
combustion chamber peak pressure\ engine output torque, vehicle velocity,
vehicle acceleration, accelerator peaal position, carburettor throttle
position, and carburettor choke valve position. These data are added to
the Private State History slot. The procedure also performs a simple
calculation on the velocity, acceleration, and pedal position to obtalD a
prediction of whether the consequent would try to shift gears. The result
of this calculation is stored in the Potential Action slot.

Potential Action:
is a simple declarative indication of the likely result of executing the
consequent. The value of this slot is set by the antecedent, and is
examined by the scheduler to assist in determining whether to allocate
execution time to the consequent during this inferencing cycle.

Consequent:
is a procedure that performs a calculation based on the current sensor data
collected by the antecedent, together with the private state information,
to maximize an objective function such as: Maximize fuel economy subject
to (1) a minimum accepta.ble acceleration depending on the difference
between accelerator pedal ~osition and current velocity, (2) suppression of
oscillation between gears, 3) pJotection of the engine and drive train
from overload or overspee. The result of the computation is an updating
of the private state information, together with the possible activation of
a servo mechanism to change gear.

Private State History:
is a data structure to store the activity of the gear selection servo, and
the history of sensor data over the past several time intervals. The
antecedent and consequent store data. here, and the consequent examines it.

Development History:
is notes indicating the development history for this knowledge source, the
rationa.le for implementation conditions, and warnings concerning
modification or use.

Ftgure 3: Example frame-based knowledge source.

This is an example of forward-chaining rule execution, showing a rule base

and iniml database, with a trace of six cycles of (match, select, act), and

the final state of working memory.

Rule ba .. :
1. A and B and C -) P
2. 0 and E -) P
3 . F and G and H -) Q
". P and Q -) X

Initial data base:
Al A2 A3 Cl 01 02 El Fl Cl 81

Cycle 1.

Cycle 2.

Match rule. with data, obtain rule in.tantiation.:
rule 2: (01, El)

(02, El)
rule 3: (Fl. Cl, Hl)

Select •• ay, (Fl. Gl. 81).
Execute. a •• ert Q(Fl+Gl+Hl) into the data ba ••.

Match. (note that executed inltantiation. are not rau.ad) .
rule 2: (01, El)

(02, El)
Select, uy. (02, El).
Execute. alsert P(02+El).

Cycle 3. Watch.
rule 2: (01. El)
rule 4: (P(02+El), Q(Fl+Cl+Hl».

,Select. uy. (P(D2+El), Q(Fl+Gl+Hl».
Execute, a •• ert X(02+El+Fl+Cl+Hl).

Cycle 4. Watch.
rule 2: (01. El)

Select (01. El).
Execute, a •• ert P(Dl+El).

Cycle 5. Watch.
rule 4: (P(Ol+El), Q(Fl+Cl+Hl».

Select (P(Ol+El), Q(Fl+Cl+Hl».
Execute. a •• ert X(Dl+E1+F1+C1+H1).

Cycle 8. Watch. no new in.tantiation •.
Selection full.
Execution halt •.

Final working ••• ory:
A1 A2 A3 Cl 01 02 E1 F1 Gl 81 Q(F1+C1+81) P(D2+E1)
X(D2+E1+Fl+Cl+81) P(Dl+El) X(01+E1+F1+C1+81)

FIgure 4: Example forward-chaining rule ex~cution.

53

This example shows a backward-chaining execution of the same rule base 2S the

previous figure. Given an initial goal, the example shows cycles of

backchaining to subgoals, and backtracking when a subgoal fails.

Rule ba .. :
1 . A and B and C -) P
2. D and E -) P
3 . F and G and H -) Q
•. P and Q -) X

Initial goal .tack: X

Cycle 1':- Backchain rule •• new subgoala P. Q.
Goal .tack (P. Q. X(.».

Cycle 2.

Cycle 3.

Cycle •.

Cycle 6.

Cycle 8.

Cycle 7.

Cycle 8.

Cycle 9.

Backchain rule 1. new lubgoal. A. B. C.
Goal .tack (A. B. c. P(1). Q. XC.».

10 rul •• for A; a.k u.er. U.er proTide. A1.
Goal A .ati.fied.
Goal .tack (B. C. P(1). Q. X(.».

10 rule. for B. uler doesn't proTide a Talue.
Goal P(1) fail.; back up to preTiou •• tat •.
Goal .tack (P, Q, X(.».

Backchain rule 2. new lubgoal. D. E.
Goal .tack (D, E. P(2). Q. X(.».

10 rul •• for D; a.k u.er. User provide. D1.
Goal D .atisfied.
Goal .tack (E. P(2). Q. XC.».

Ho rule. for E; a.k u.er. User proTide. E1.
Goal E .ati.fied.
Goal P(2) .atisfied.
Goal .tack (Q. X(4».

Backchain rul. 3. new subgoals F. G. H.
Goal .tack (F, G. H. Q(3). X(.».

10 rule. for F; a.k u.er. U.er proTide. F1.
Goal F .ati.fied.
Goal .tack (G. H. Q(3). XC,».

Cycle 10. 10 rule. for G; a.k u.er. U.er provide. G1.
Goal G .ati.tied.

Cycle 11.

, Goal .tack (H. Q(3). X(4».

10 rule. for H; a.k u.er. U.er proTide. H1.
Goal H .ati.fied.
Goal Q(3) .at1.fied.
Goal X(4) .ati.fied.
Goal .tack •• pty; execution t.rainate •.

Figure 6: Example backward-chaining rule execution.

54

This example shows two rules and two input observations, with associated

confidence figures. Techniques for combining uncertain evidence are

described and the evaluation of the rules is performed.
I

Rule 1: transportation ~ype .leigh
power .ource re1naeer
cargo container .ack
cargo tne tOYI
--> dr1Ter Santa Claus (0.8)

Rule 2: weight clal' obe.e
beard color white
beard length long
eye emotion twinile
.uit color red
--) name Santa Claus (0.6)

OblerTation:
tranlportation ~ype .leigh
power .ourc. re1naeer 0.9
cargo container .ack 0.9
cargo._type toys 0.7

1.0 weight clall obese 0.7
beard color white 0.8
beard length long 0.6
ey •• aotion twinil. o.e
.uit color red 1.0

Th. following e%&apl. of the calculation of a aealure of belief for the
conclulion tliat the indiTidual i. Santa Claul, il baled on the following
three .taple technique. for coabiDing .Tidence.

1. The .ealurl of belief of an antecedent (a conjunction of clauses) ia
the .inimua of the .ealure. of belief of the clausel. Thil is the
fuzzy let rule for conjunction.. CIA chain i. al weak al its weLXelt
link.') Hote that thil i. 'ymmetric with respect to the cl~uael.

:n

2. The .ealure of belief of a rule conaequent il defined to be the product
of the .ealure of belief of the antecedent and the belief factor of the
rule.

3. ETidence froa conlequentl X and Y il coabined al followi.
Let P = beliefCX), Q = belief(Y).
Define aggregate belief A = P + (l-P)Q.

That ii, the belief relulting fro. P i. augsented br & fraction
proportional to the belief of Q. Thil can allo be 1nterpretad al 'A il
true becaul' P i. true, or (if P il falae) Q il true. 1

Hote that A i. lyaaetric in P and Q: A = P + Q - PQ.

ET&luation for rule 1:
Wealure of antecedent = 0.7
Wealur. of con.equent = 0.66

ETaluation for rule 2:
Wealure of antecedent = 0.6
Wealure of conlequent = 0.36

Agxregate belief that t~e indiTidual il Santa Clau.:
-0.66 + (0.") % 0.36 - 0.66 + 0.16 = 0.72

Figure 6: Example reasoning with uncertainty.

Index

ABEL 31
ACE 22
Action 4
Additivity 10
AGE 13
Agenda 6, 8, 27
Antecedent 4, 5
ARBY 13
ARS 13
Assumed states 36
Automatic programming 32

Backward chaining 32, 33
Backward-chaining 6, 8, 30, 35
Bayesian inferencmg 28
Blackboard 9, 26, 27

CADUCEUS 34
Calculus of uncertainty 29
CASNET 31
CENTAUR 14
Chemistry 25, 26, 33
Chess 37
Compiled rules 24, 28, 37
Computer system monitoring
Condition 4

24

Conflict resolution 6, 8
Conflict set 5
CONGEN 24
Conseq,.uent 4 6
Control knowledge 30
CRYSALIS 26

DAA 23
DART 31

-.- Data base 5
Data-driven 5
Deep knowledge 37
Deep models 31, 32, 33, 34
Demon 8, 36
DENDRAL 24
Dependency-directed backtracking 36
Difference reduction 27
DIGITALIS ADVISOR 31
DIPMETER ADVISOR 32
Direction of inferencing 8
Domain network 28, 30, 31, 34, 35, 38

EL 36
ELAS 32
Electronics diagnosis 31, 36
EMYCIN 14, 31, 36
Event-driven 5
EXPERT 15, 32
Expert system 2
Expert system, knowledge-based
Expert user 23, 32, 36
Explanation 11, 29, 32
External data base 23

2

56

5i

Fact 5
Fire 6
Fortran 32
Forward- and backward-chaining 30, 31
Forward-chaining 5, 8, 21, 22, 23, 24, 30
Frame 4
Frames 27, 30, 35, 36
Fuzzy logic 29, 31

GA.\i~fA 33
Generate and test 25
Goal-driven 6
Granularity 7
GUIDON 30

HAPS 15
HARPY 36
HASP 27
HEARSAY-II 25
HEARSAY-III 16
HPRL 17

Incremental growth 10
Instantiation 5
INTERNIST 33
Interpreter 5

KEE 17
Knowledge acquisition 10, 25, 28, 29, 35
Knowledge base 3
Knowledge engineer 10
Knowledge engineering framework 11, 12
Knowledge source 4

Large rules 26, 27, 35
LDS 23
Least commitment 27
L~gal advice 23
LHS 4
LOOPS 17

MACSYMA 38
Mathematics 38
MDX 34
Medicine 29,l,. 30, 31, 32, 34, 35
META-DENDtlAL 24
Meta-rule 7
Meta-rules 29, 30
Military 27, 38
Modularity 10
MOLGEN 26

___ Multiple levels 26, 27
MYCIN 28

NEOMYCIN 29
Nuclear reactor monitoring 24

ONCOCIN 30
OPS 18
OPS4 23
OPS5 21, 22, 23, 24

PARADISE 37
Partitioned rules 23, 36
Pattern 4
Performance 3
PIP 34
Planning 27, 37
Plant disease 35
PLANT/DS 35
ProductIOn memory 3
Production system 3, 7
Production system, pure
Propagation of constraints
PROSPECTOR 28
PTRANS 22
PUFF 35

Rl 21
REACTOR 23
Refinement 8

4
36

Resource exploration 28, 32
RHS 4
RITA 19
ROSIE 19, 23, 38
ROSS 37
Rule base 4

SACON 35
SAINT 38
Satisfied 5
Sco~e of expertise 34
SlAP 27
SIN 38
Slot 4
Small rules 21, 22
Speech understanding 26, 37
S2eed of inferencing 12
SPEX 27
Structural analysis 36
SU 27

Table-driven rules 24
Teaching 30
TElRESlAS 29
Telephone cable maintenance 23
Temporal reasoning 30

Uncertainty 11, 28, 27, 28, 29, 31, 32, 34, 35, 37

VAX assembly 22
VAX configuration 21
VAX order 109 22
VLSI design 23

Working memory 5
Working memory element 5

XPLAIN 32
XSEL 22

YAPS 20
YES 24

58

