
A Knowledge-Based Perspective of the

Distributed Design of Object Oriented

Databases

Fernanda Baiao, Marta Mattoso & Gerson Zaverucha

baiao, marta, gerson@cos.ufrj.br

Department of Computer Science - COPPE/UFRJ

POBox: 68511 Rio de Janeiro, RJ, Brazil 21945-970

Fox; +JJ+27 +290-6626

Abstract

The performance of applications on Object Oriented Database Management
Systems (OODBMSs) is strongly affected by Distributed Design, which reduces
irrelevant data accessed by applications and data exchange among sites. In an
OO environment, the Distributed Design is a very complex task, and an open
research problem. In this work we propose a knowledge based approach to the
fragmentation phase of the distributed design of object oriented databases. In this
approach, we will show a rule-based implementation of an analysis algorithm
from our previous work and propose some ideas towards the use of Inductive
Logic Programming (ILP) to perform a knowledge discovery/revision process
using our set of rules as background knowledge. The objective of the work is to
uncover some previously unknown issues to be considered in the distributed
design process. Our main objective here is to show the viability of performing a
revision process in order to obtain better and better fragmentation algorithms.
We do not intend to propose the best fragmentation algorithm ever possible. We
concentrate here on the process of revising a DDOODB algorithm through
Knowledge Discovery techniques, rather than only obtaining a final optimal
algorithm.

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

1 Introduction

Distributed and parallel processing on OODBMS may improve
performance for non-conventional applications that manipulate large
volumes of data. This is addressed by removing irrelevant data accessed
by queries and transactions and by reducing the data exchange among
sites [10], which are the two main goals of the Distributed Design of
Databases.

Distributed Design involves making decisions on the fragmentation
and placement of data across the sites of a computer network [16]. The
first phase of the Distributed Design task in a top-down approach is the
fragmentation phase. The fragmentation phase is the process of clustering
in fragments the information accessed simultaneously by applications. In
an object-oriented environment, the distributed design is a very complex
task. First, because the semantic differences between relational and OO
models inhibit a straightforward migration from existing relational
distributed design algorithms to OO algorithms. Second, because it has to
consider the existence of class methods and complex relationships (such
as the "is-a" relationship), in addition to access from applications to
complex objects and multiple relationships between classes. Third,
because of OO operations access patterns: while relational operations are
only set oriented, OO operations are pointer based, and therefore may
have a dual nature involving both set operations (search over class
extensions) and navigation (traversals) [12].

In our previous work [1,2], we have presented an analysis algorithm
for assisting distributed designers in fragmenting object oriented
databases. The algorithm performs an analysis on some useful
information about the database schema and application frequencies in
order to indicate the most adequate fragmentation technique (horizontal,
vertical or mixed) for each class in the database schema.

In this paper, we show a rule-based implementation of our developed
analysis algorithm that will be used as background knowledge when
trying to discover a new revised algorithm through the use of a machine
learning technique: Inductive Logic Programming (ILP) [14]. We intend
to obtain a revised algorithm that may reflect important issues to the
Distributed Design of Object Oriented Databases (DDOODB) that may
be implicit, that is, not yet discovered by any of the proposed distributed
design algorithms in the literature. In the present knowledge-based
approach, we will represent the initial algorithm as a set of rules and
perform a fine-tuning of it, thus discovering a new set of rules that will
represent the revised algorithm. This new set of rules will represent a

384

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

revised analysis algorithm that will propose optimal (or near to optimal)
fragmentation schema with improved performance. In other words, we
intend to perform Data Mining considering available database schema
information as a test bed to produce optimal distributed database schema
as an output.

The organization of this work is as follows: the next Section presents
some definitions from the literature regarding the Distributed Design task
and identifies some difficulties which motivated the use of a knowledge
based approach for this problem. Section 3 shows the state of the art in
the Distributed Design research area and in the ILP field. The analysis
algorithm is described in Section 4. Section 5 discusses the use of ILP to
revise the analysis algorithm. Finally, Section 6 concludes this paper.

2 Background

Distributed Design involves making decisions on the fragmentation and
placement of data across the sites of a computer network [16]. In a top
down approach, the distributed design has two phases: fragmentation and
allocation. The fragmentation phase is the process of clustering in
fragments the information accessed simultaneously by applications, and
the allocation phase is the process of distributing the generated fragments
over the database system sites. To fragment a class, it is possible to use
two basic techniques: vertical fragmentation and horizontal
fragmentation. In an object oriented (OO) environment, horizontal
fragmentation distributes class instances across the fragments, which will
have exactly the same structure but different contents. Thus, a horizontal
fragment of a class contains a subset of the whole class extension. On the
other hand, vertical fragmentation breaks the class logical structure (its
attributes and methods) and distributes them across the fragments, which
will logically contain the same objects, but with different structures. It is
also possible to perform mixed fragmentation on a class, combining these
two techniques. Horizontal fragmentation is usually subdivided in
primary and derived fragmentation to address the relationship between
entities: the primary horizontal fragmentation is applied on owner entities
[9,16], while the derived fragmentation is applied on member entities
according to the owner fragmentation.

The DDOODB is a very complex task. First, because the semantic
differences between relational and OO models inhibit a straightforward
migration from existing relational distributed design algorithms to OO
algorithms. Second, because it has to consider the existence of class
methods and complex relationships (such as the "is-a" relationship), in

385

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

addition to application access to complex objects and multiple
relationships between classes. Third, because of OO operations access
patterns: while relational operations are only set oriented, OO operations
are pointer based, and therefore may have a dual nature involving both
set operations (search over class extensions) and navigation (traversals)
[4,7,12].

This dual nature of access patterns has made object clustering a hard
task to the OO distributed database designer. Usually, the components of
a complex object are physically clustered together in the disk, while in
the other hand a class with a large extension groups its own objects
together. This may generate some conflicts to the OODBMS object
clustering policy, and we believe that this object clustering policy is
strongly related to the fragmentation process. While derived horizontal
fragmentation privileges navigational access (from a complex object to its
components), vertical fragmentation favors the class extension access and
the use of class attributes and methods, by removing irrelevant data
accessed by operations. Therefore, both fragmentation techniques should
coexist for different classes in the distributed design. Also, there are some
cases in which the best option is to perform horizontal and vertical
fragmentation in a class simultaneously. We believe that algorithms that
force all classes to have the same fragmentation policy (either horizontal
or vertical), like the ones proposed in the literature, will end up having
unsuitable fragmentation for classes having different access patterns,
incurring in bad performance.

3 Related Work

Many researchers have worked on distributed design in the relational
model, including OZSU and VALDURIEZ [16], and NAVATHE et
al [15]. In the same way, there are many works demonstrating the
importance of the Distributed Design of Object Oriented Databases
(DDOODB) to improve performance of non-conventional applications
that manipulate large volumes of data [3,9,10,11,17]. However, despite
the recent proposals for the DDOODB in the literature, a consensus is far
from reachable about what is the best fragmentation technique (vertical,
horizontal or mixed) to be applied in each class of the database schema.
KARLAPALEM et al [10] describe different aspects of a distributed
object oriented database system that are critical to the distributed design
process. The works from EZEIFE and BARKER [9] and SAVONNET et
al [17] propose algorithms for horizontal fragmentation of all classes in
an OODB, while BELLATRECHE et al [3], EZEIFE and BARKER [8]

386

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

and MALINOWSKI [13] address only vertical class fragmentation for all
classes in an OODB.

In our previous work [1,2], we have identified the need of an Analysis

Phase in the class fragmentation process of object oriented databases. We
have presented an algorithm for this Analysis Phase that was responsible
for assisting distributed designers in choosing the best fragmentation
schema, considering horizontal, vertical and mixed (horizontal and/or
vertical) fragmentation of classes. The algorithm performs an analysis on
some useful information about the database schema and application
frequencies in order to indicate the most adequate fragmentation
technique for each class in the database schema. By using it, the
distributed designer will know, a priori, the most adequate fragmentation
technique for each class, and will be able to choose his/her preferable
algorithm to actually perform vertical and horizontal fragmentation in the
corresponding classes to define fragments.

4 The algorithm for the Analysis Phase of the

Class Fragmentation Process

This Section presents an overview of the whole fragmentation process of
Object Oriented Databases (OODBs) illustrated in Figure 1, and
describes the algorithm for the Analysis Phase of the Class Fragmentation
Process that was proposed in our previous work [2].

The Analysis Phase algorithm considers issues about the database
structure and user operations (obtained from the database designer or
from the Global Conceptual Schema) to decide on the most adequate
fragmentation strategy (horizontal and/or vertical) for each class in the
schema. Information considered in this phase include class and operation
characteristics:
For each class in the schema, the system needs to know:
4 its relationships, their cardinalities and the referred classes of each;
4 the existence or not of a collection of objects representing the class

extension;

+ the estimated size of the class extension (small, medium or large),
compared to other classes in the schema;

For each operation running over the database, the system needs to know:
$ the accessed class path, in order to classify it (extension or navigation

operation);
$ its estimated execution frequency, to determine its priority on the

fragmentation process;

387

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

User Information/
Global Conceptual
Design Information
(Interface Module)
J L

Class Information

I

Operation Information

I

Analysis Phase

set of lists of classes to be
horizontally fragmented

set of classes
not to be fragmented

set of classes to be
vertically fragmented

Vertical
Fragmentation

set of vertical
class fragments

Primary
Horizontal

Fragmentation

T

set of horizontal
class fragments

set of mixed
class fragments

Figure 1. A framework for class fragmentation in Distributed Design of OODBs

The Analysis Phase algorithm proceeds as follows: operations are
sorted in a descending way according to their execution frequency, thus
priority is given to the most frequent operations. Operations are then
considered one at a time, and for each operation the system chooses the
best fragmentation technique to be assigned to the classes accessed by it
(C(O)) according to its classification:
4 if it is an extension operation, this class is included in the set of

classes for vertical fragmentation Cv
+ if it is a navigation operation, the list of classes C(O)) is included in

the set of list of classes for horizontal fragmentation Ch

388

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

To help the decision between primary and derived fragmentation, the
analysis algorithm includes in the horizontal set lists of related classes,

instead of isolated ones. Those lists reflect the structure of the navigation
paths accessed by the most frequent operations. However, when
considering a navigation operation, there is the possibility of one of the
classes in the list be already in Q. To address this conflicting situation,
the algorithm ensures that the lists inserted in the horizontal set do not
contain any intersection among its non-root classes. When the algorithm
tries to include in the horizontal set a non-root class C that already
belongs to another list, then it proceeds to what we call conflict analysis.
The conflict is solved based on the class clustering dependency
classification, in the following way:

Given two navigational paths that conflicts at class C, (that is, when
the classes before C in the paths are different), conflict analysis will

decide which path will guide the fragmentation of class C. This decision
is made according to the clustering dependency (as defined in [2])
between C and the classes of the two paths. Let NI and N] be two
conflicting navigational paths accessed by two operations with a very

close execution frequency:
NI = (Cj, Cj, X, Y, Cp) e N2 = (Cp, Cq, Z, Y, Cm)

For NI and Ng to conflict, we have X # Z. The system decides if Y
will be derived fragmented according to X or Z considering clustering
dependencies from Y to X and from Y to Z. The priority of clustering
dependencies is the following:

+ non-shared dependent (high priority)
4 shared dependent (medium priority)
4 independent (low priority)

If clustering dependencies from Y to X and from Y to Z are the same,
choose the navigational path of the most frequent operation.

Once the system has chosen for one of the paths (N,, for example), Ng
will be broken, that is, Y and its following classes will be removed from
it. The final navigational paths will be:

NI = (Cj, Cj, X, Y, Cn) e N2 = (Cp, Cq, ..., Z)
Those classes on the intersection of the horizontal and vertical sets

(notice that only root classes in the horizontal set may be included in the
vertical set) will eventually proceed to mixed fragmentation. In this case,
the algorithm chosen for horizontal fragmentation will be performed on
the vertical fragments of those classes.

389

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

5 Using Machine Learning Techniques for

Theory Revision in the DDOODBs

Although the analysis algorithm has produced very good results when
applied to some examples, as it will be shown in Section 5.2, some of its
conjectures are only intuitive, since it is based on a set of heuristics
obtained from experimental results, rather than from a formal theory.
Examples of that are the arbitrary decisions made by the conflict analysis
module to resolve conflicting situations as defined in the previous
Section. Therefore, in order to obtain more reliable results, this work
contributes by discussing a novel approach for revising our analysis
algorithm through the use of a machine learning method - Inductive
Logic Programming (ILP) [18]. This revision process is called Inductive
Distributed Design of OODBs, and it will perform a fine tuning of our
initial set of rules, thus discovering a new set of rules that will represent
the revised algorithm. Some researchers have worked on proposals for
inductive database design, but not in the same context. For example,
BLOCKEEL and DE RAEDT [19] presented an approach for the
inductive design of deductive databases, based on the database instances
to define some intentional predicates. However, as far as we are
concerned, performing theory revision in algorithms for Distributed
Database Design is a novel approach in the area.

The idea of using knowledge-based neural networks (NN) to revise
our background knowledge was first considered. There are in the
literature many approaches for using NN in a theory revision process
using prepositional rules, such as KB ANN [20] and CIL̂ P [21].
However, due to the existence of function symbols in our analysis
algorithm (such as lists) that could not be expressed through propositional
rules, we needed a more expressive language, such as first-order Horn
clauses. Since the representation of a more expressive language (such as
first-order Horn clauses) in NN is still an open research problem, we
decided to work with another machine learning technique - Inductive

Logic Programming (ILP) [18].
According to MITCHEL [14], the process of ILP can be viewed as

automatically inferring PROLOG programs from examples and, possibly,
from background knowledge. In [14], it has been pointed out that
machine learning algorithms that use background knowledge, thus
combining inductive with analytical mechanisms, obtain the benefits of
both approaches: better generalization accuracy, smaller number of
required training examples and explanation capability.

390

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

Our main objective here is to show the viability ot performing a
revision process in order to obtain a better fragmentation algorithm. We
do not intend to propose the best fragmentation algorithm ever possible.

We concentrate here on the process of revising a DDOODB algorithm
through Knowledge Discovery techniques, rather than on a final product.
As a matter of fact, we could apply this knowledge-based approach to the
DDOODB problem in any of the available fragmentation algorithms from

the literature.
The resulting algorithm performance will depend not only on the

quality of the background knowledge, but also on the quality of the
examples considered in the training phase, as in conventional Machine
Learning algorithms. Therefore, we needed a set of validated
fragmentation schema with good performance when applied on a
distributed database. However, such a set of optimal fragmentation
schema is not available in the literature, since it is a current research
topic. We decided to work on some scenarios already used as examples in

the literature.

5.1 A Rule-Based implementation of the Analysis Phase

algorithm

In our DDOODB problem, we used our analysis algorithm from [2] as
our background knowledge. The overall structure of our set of rules is on
Figure 2. We have implemented our algorithm as a set of first-order Horn

clauses. Some of these clauses are illustrated in Figures 3 and 4. This set
of rules constitutes a very good starting point for the ILP process to
obtain the revised algorithm. The predicate chooseFragmentationMethod
will represent the target predicate in our revision process. But we still
needed the set of training examples to proceed a theory revision of our

background knowledge.
Our set of training examples is being derived from several works in

the literature. We are extracting from each selected work two sets of
facts, one representing the initial database schema and another
representing the desired fragmentation schema. It is important to notice
that, as we did not have as many available examples in the literature as it
would be desired, the background knowledge will play a major role in the

ILP learning process.

391

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

Database Schema

/classes/
operations

Analysis Phase

i

Analyze Operations

Choose
Fragmentation Method

j T

Vertical Fragmentat on 'dentify all conflicts for
Horizontal Fragmentation

Conflict Analysis

Solve Conflict

Figure 2. The overall structure of our set of rules for the class fragmentation

% analysisPhase (DataFile+, NewCh-, NewCv-)
% This will load input data from the file "DataFile"
% (such as the schema classes, the operations and their
% accessed classes) and build two sets of classes (NewCh,
% NewCv) representing respectively the classes to be
% horizontally and vertically fragmented._

analysisPhase(DataFile, Ch, Cv) :-
write(*************** BEGIN ******************), nl,
consult(DataFile),
findall(X, operation(X, _), Operations),
bubbleSortDescending(Operations, OrderedOperations),
analyzeOperations(OrderedOperations, [], [],

TempCh, TempCv),
list_to_set(TempCh, Ch),
list_to_set(TempCv, Cv) ,
abolish(class/1) ,
abolish(cardinality/2) ,
abolish(relationship/4),
abolish(operation/2) ,
abolish(accessedClasses/2) ,
abolish(accessFrequency/2).

Figure 3. The starting point of our analysis algorithm as a set of rules

392

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

chooseFragmentationMethod(Oi+, Ch+, Cv+,
NewCh-, NewCv-)

NewCh and NewCv will receive modified versions of Ch
and Cv (actually, only one of them will be modified) to
reflect the chosen fragmentation method for the accessed

% classes of operation Oi.
"0 ~~ ~~ ~ — — — — — —
chooseFragmentationMethod(Oi, Ch, Cv,

Ch, [RootClasslCv]) :-
classification(Oi, extension),
accessedClasses(Oi, [RootClass|_]),
write ('accessed classes ' : [RootClass|_]), nl,
cardinality(RootClass, large),
\+ isln(RootClass, Cv),
write(RootClass:'will be vertically fragmented'), nl.

:hooseFragmentationMethod(Oi, Ch, Cv,
NewCh, Cv) :-

classification(Oi, navigation),
accessedClasses(Oi, ClassPath),
write('accessed classes ' : ClassPath), nl,
write(ClassPath:'will be horizontally fragmented,

if possible'), nl,
operation(Oi, F),
assert(accessFrequency([ClassPath], F)),
write('removing All Conflicts...'), nl,
removeAHConf licts (Ch, Cv, ClassPath, NewCh).

chooseFragmentationMethod(_, Ch, Cv, Ch, Cv).

Figure 4. A rule to choose the most adequate fragmentation technique for the

classes accessed by an operation

5.2 An Example

In this Section, our proposed algorithms for the distributed design of
OODBs are applied on an example extracted from [22]. This example
illustrates a very common scenario in current organizations. We present
the output of the application of our algorithm in this example, and
evaluate the indicated fragmentation techniques for each class against
some performance comments from the original work.

5.2.1 The Company Database Schema

Figure 5 shows a rule representation for the Company database schema as
originally described in [22]. The original relations were adapted to
address the object oriented data model. All the necessary information for
the Analysis Phase of the Fragmentation Process is available in this
representation, which will be used to build an example for our revision

process.

393

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

DDOODBMS Example
Extracted from: Elmasri, R., Navathe, S., "Fundamentals of

Database Systems", The Benjamin/Cummings
Publishing Company, Inc., 1989, pp.619-622

**/
class(employee).
class(department).
class(project).
class(location).
class (dependent) .

cardinality(employee, large).
cardinality(department, small).
cardinality(project, large).
cardinality(location, small).
cardinality(dependent, large) .

relationship(employee, department, worksln, '1').
relationship(department, employee, holds, 'N').
relationship(employee, project, worksOn, 'N').
relationship(project, employee, isCarriedOutBy , 'N').
relationship(employee, employee, isManagedBy, '!').
relationship(employee, dependent, has, ' 0, N').
relationship(dependent, employee, dependsOn, '1').
relationship(department, location, isLocatedAt, '!').
relationship(location, department, holds, 'N').
relationship(project, location, isLocatedAt, '!').

operation(employeesWhoWorklnDepartmentAtLocation, 100).
operation(projectsControlledByDepartmentAtLocation, 100)
operation(mainEmployeeInformation, 85).
operation(insurancelnformation, 85) .

accessedClasses(employeesWhoWorkInDepartmentAtLocation,
[location, department, employee]).

accessedClasses(projectsControlledByDepartmentAtLocation,
[location, department, project]).

accessedClasses(mainEmployeeInformation, [employee]).
accessedClasses(insuranceInformation,[employee, dependent]

Figure 5. A rule representation for the Company database schema: input for the
Analysis Algorithm

5.2.2 Applying the algorithm

Figure 6 presents the output of the application of our Analysis algorithm
in the Company Database Schema. The final lists of classes Ch and Cv
are, respectively, [[location, department, project],[location, department,
employee]] and [employee].

394

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

?- analysisPhase('navathe.pl',Ch,Cv).
************ BEGIN **+**+*++++*++**+

navathe.pl compiled, 0.00 sec, 2,652 bytes.
h =[]
v =[]
Analyzing Operation :

projectsControlledByDepartmentAtLocation
oing to Choose Fragmentation Method for classes accessed

by
:proj ectsControlledByDepartmentAtLocation
accessed classes : [location, department, project]
[location, department, project]:will be horizontally

fragmented, if possible
removing All Conflicts...
Ch =[[location, department, project]]
Cv =[]
Analyzing Operation
:employeesWhoWorklnDepartmentAtLocation
Going to Choose Fragmentation Method for classes accessed

by :employeesWhoWorklnDepartmentAtLocation
accessed classes : [location, department, employee]
[location, department, employee]:will be horizontally

fragmented, if possible
removing All Conflicts...
Ch =[[location, department, project],

[location, department, employee]]
Cv =[]
Analyzing Operation :insurancelnformation
Going to Choose Fragmentation Method for classes accessed

by :insurancelnformation
accessed classes :[employee, dependent]
[employee, dependent]:will be horizontally fragmented, if
possible
removing All Conflicts...
Ch =[[location, department, project],

[location, department, employee],
[employee, dependent]]

Cv =[]
Analyzing Operation :mainEmployeeInformation
Going to Choose Fragmentation Method for classes accessed

by :mainEmployeeInformation
accessed classes : [employee I_G882]
employee:will be vertically fragmented

Ch = [[location, department, project],
[location, department, employee],
[employee, dependent]]

Cv = [employee]

Yes
9-

Figure 6. Applying our Analysis algorithm in the Company Database Schema

395

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

5.2.3 Evaluating the Resulted Distributed Database

Considering performance comments from [22], we may affirm that our
analysis algorithm has produced a fragmentation schema that improves
performance. By applying the results from our algorithm, the distributed
designer will perform primary horizontal fragmentation on class
Location, and derived fragmentation of classes Department (according to
class Location), Project (according to class Department), Employee
(according to class Department) and Dependent (according to class
Employee). Also, class Employee will be vertically fragmented (thus
resulting in mixed fragmentation).

Intuitively, the reader may see that the first three traversals (the one
that takes information for the Employees who work in a Department
located at a specific Location; the one that takes information for the
Projects controlled by a Department located at a specific Location; and
the one that takes dependent information from Employees for insurance
purposes) will have their performance improved, since they will perform
a direct access to only one fragment each, and this will reduce
communication overhead during their execution. Also, the last query, that
will access main employee information (such as the attributes name,
security number and salary) will benefit from vertical fragmentation that
will probably be performed in this class in the vertical fragmentation
phase of the DDOODB. This benefit will result from the elimination of
irrelevant data accessed by it.

6 Conclusions

Distributed and parallel processing on OODBMS may improve
performance for non-conventional applications that manipulate large
volumes of data. This is addressed by removing irrelevant data accessed
by queries and transactions and by reducing the data exchange among
sites [10], which are the two main goals of the Distributed Design of
Databases.

Distributed Design involves making decisions on the fragmentation
and placement of data across the sites of a computer network [16]. Since
Distributed Design is a very complex task in the context of the OO data
model, we have developed an analysis algorithm to assist distributed
designers in the fragmentation phase of OO databases. The analysis
algorithm decides the most adequate fragmentation technique to be
applied in each class of the database schema, based on some heuristics.

396

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

In this paper, we have presented a knowledge-based approach to the
DDOODB problem. Our developed analysis algorithm is implemented as

a set of rules and will be used as background knowledge when trying to

discover a new revised algorithm through the use of ILP [18]. In our
approach, we will perform a fine-tuning of our initial algorithm
(represented as a set of rules), thus discovering a new set of rules that will
represent the revised algorithm. This new set of rules will represent a
revised analysis algorithm that will propose optimal (or near to optimal)
fragmentation schema with improved performance. In other words, we
intend to perform Data Mining considering available database schema
information as a test bed to produce optimal distributed database schema

as an output.
We have presented an example of applying the proposed set of rules

using a Company Database Schema from [22], and the fragmentation
schema obtained. The resulted fragmentation schema offers a high degree
of parallelism together with an important reduction of irrelevant data.

We have presented the main ideas embedded in a novel approach for
refining the analysis algorithm through the use of a machine learning
method - Inductive Logic Programming (ILP). This approach (called
Inductive Distributed Design of OODBs) performs a knowledge
discovery/revision process using our set of rules as background
knowledge. The objective of the work is to uncover some previously
unknown issues to be considered in the distributed design process.

Our main objective was to show the viability of performing a revision
process in order to obtain better and better fragmentation algorithms. We
do not intend to propose the best fragmentation algorithm ever possible.
We concentrate here on the process of revising a DDOODB algorithm
through Knowledge Discovery techniques, rather than on a final product.

Although we have addressed the problem of class fragmentation in the
DDOODB context, an important future work is the use of the same
inductive learning approach in other phases of the Distributed Design
(such as the allocation phase), as well as in the Database Design itself,
possibly using another data models (relational or deductive). Also, the
resulting fragmentation schema obtained from our revised algorithm may
be applied to fragment the database that will be used in the work of
PROVOST and HENNESSY [23], which proposes the use of distributed
databases in order to scale-up data mining algorithms.

397

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

References

[1] Baiao, F., Mattoso, M, 1997, "A Mixed Fragmentation Strategy for
Distributed OO Databases", In: Proc. of The Second Workshop on CSCW
in Design, Bangkok, Thailand, November, pp. 42-48

[2] Baiao, F., Mattoso, M., 1998, "A Mixed Fragmentation Algorithm for
Distributed Object Oriented Databases", to appear in: Proceedings of the
9th International Conference on Computing and Information, Winnipeg,
Canada, June

[3] Bellatreche, L., Simonet, A., Simonet, M., 1996, "Vertical Fragmentation
in Distributed Object Database Systems with Complex Attributes and
Methods". 7th International Workshop on Database and Expert Systems
Applications (DEXA'96), Zurich, Switzerland

[4] Carey, M., De Witt, D., Naughton, J., 1993, "The 007 Benchmark". In:
Proc of 1993 acm sigmod Int. Conf. on Management of Data, vol 22, n° 2,
Washington DC, pp. 12-21

[5] Chakravarthy, S., 1997, Panel on: Bridging the Gap between Cooperative
Information Systems and Database Systems, Second IFCIS International
Conference on Cooperative Information Systems (CoopIS'97), South
Caroline, USA

[6] Chen, Y., Su, S., 1996, "Implementation and Evaluation of Parallel Query
Processing Algorithms and Data Partitioning Heuristics in Object Oriented
Databases", Distributed and Parallel Databases, v. 4(2), pp. 107-142

[7] Cluet, S., Delobel, C., 1992, "A General Framework for the Optimization
of Object-Oriented Queries". In: Proceedings of the 1992 ACM SIGMOD,
vol. 21, issue 2, San Diego, California, pp. 383-391

[8] Ezeife, C., Barker, K., 1994, Vertical Class Fragmentation in a Distributed
Object Based System, Technical Report 94-03, Department of Computer
Science, University of Manitoba

[9] Ezeife, C., Barker, K., 1995, "A Comprehensive Approach to Horizontal
Class Fragmentation in a Distributed Object Based System", Distributed
and Parallel Databases, vol. 3, n° 3, pp. 247-272

[10] Karlapalem, K., Navathe, S., Morsi, M., 1994, "Issues in Distribution
Design of Object-Oriented Databases". In: Ozsu, M. et. al (eds),
Distributed Object Management, Morgan Kaufman Publishers

[11] Lima, F. Mattoso, M., 1996, "Performance Evaluation of Distribution in
OODBMS: a Case Study with O2" In: Proc IX Int. Conf on Parallel &
Distributed Computing Systems, France, pp.720-726

[12] Maier, D., Graefe, G., Shapiro, L. et al., 1994, "Issues in Distributed Object
Assembly". In: Ozsu, M., Dayal, U., Valduriez, P. (eds), Distributed Object
Management, Morgan Kaufmann Publishers

398

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

[13] Malinowski, E., 1996, Fragmentation Techniques for Distributed Object-
Oriented Databases, MSc. Thesis, University of Florida

[14] Mitchell, T., 1997, Machine Learning, McGraw-Hill Companies, Inc

[15] Navathe, S., Karlapalem, K., Ra, M., 1995, "A Mixed Fragmentation
Methodology for Initial Distributed Database Design", Journal of
Computer and Software Engineering, vol. 3, n° 4

[16] Ozsu, M., Valduriez, P., 1991, Principles of Distributed Database Systems,
New Jersey, Prentice-Hall

[17] Savonnet, M., Terrasse, M., Yetongnon, K., 1996, "Using Structural
Schema Information as Heuristics for Horizontal Fragmentation of Object
Classes in Distributed OODB", In: Proc IX Int. Conf on Parallel &
Distributed Computing Systems, France, pp. 732-737

[18] Lavrac, N. and Dzreroski, S., 1994, Inductive Logic Programming:
Techniques and Applications, Ellis Horwood.

[19] Blockeel, H, de Raedt, L., 1996, "Inductive Database Design" In: Proc of
the Int. Symposium on Methodologies for Intelligent Systems (ISMIS'96)

[20] Towell, G., Shavlik, J., 1994, Knowledge-Based Artificial Neural
Networks, Artificial Intelligence, 70 (1-2), pp. 119-165.

[21] Garcez, A, Zaverucha, G. and Silva, V. N., 1997, "Applying the
Connectionist Inductive Learning and Logic Programming System to
Power System Diagnosis," In: Proceedings of the IEEE International
Conference on Neural Networks (ICNN-97), Houston, Texas, USA, Vol.1,

pp.121-126.

[22] Elmasri, R., Navathe, S., 1989, Fundamentals of Database Systems, The
Benjamin/Cummings Publishing Company, Inc.

[23] Provost, F., Hennessy, D., 1996, "Scaling-Up: Distributed Machine
Learning with Cooperation", In: Proceedings of the Thirteenth National
Conference on Artificial Intelligence (AAAI '96), Portland, Oregon

399

 Transactions on Information and Communications Technologies vol 19 © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

