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Abstract—When performing primary reading on a newly taken I. INTRODUCTION
radiological examination, a radiologist often needs to reference L . o
relevant prior images of the same patient for confirmation or com- DVANCED medical imaging technology has significantly
parison purposes. Support of such image references is of clinical expanded the role of radiology in clinical medicine, as

importance and may have significant effects on radiologists’ exam- manifested by increasing dependence of physicians and spe-
ination reading efficiency, service quality, and work satisfaction. ¢jgjists on information obtained from radiological examinations

To effectively support such image reference needs, we proposed . . . .
and developed a knowledge-based patient image pre-fetchingfor clinical decision making and patient management. At the

system, addressing several challenging requirements of the S@Me time, concurrent information technology (IT) advance-
application that include representation and learning of image ments have initiated and greatly facilitated a progressive trans-
reference heuristics and management of data-intensive knowledge formation of radiology from the traditional film-based practice

inferencing. Moreover, the system demands an extensible andntg g digital practice where radiologists can perform exami-

maintainable architecture design capable of effectively adapting . . . : .
to a dynamic environment characterized by heterogeneous and nation reading and consultation services beyond organizational

autonomous data source systems. In this paper, we developed@nd geographical constraints. Jointly, the growing role of radi-
a synthesized object-oriented entity- relationship model, a con- ology and the observed trend toward a digital radiology practice
ceptual model appropriate for representing radiologists’ prior have made patient image management a growing concern for
image reference heuristics that are heuristic oriented and data many healthcare organizations. One critical image management

intensive. We detailed the system architecture and design of the . . . . . . ot
knowledge-based patient image pre-fetching system. Our archi- issue is prior patient image reference support for radiologists

tecture design is based on a client-mediator—server framework, €xa@mination reading. S o
capable of coping with a dynamic environment characterized by A fundamental role of radiologists in clinical medicine

distributed, heterogeneous, and highly autonomous data source is to provide physicians or specialists reports containing
systems. To adapt to changes in radiologists’ patient prior image tjmely patient information obtained from image interpretation,

reference heuristics, ID3-based multidecision-tree induction and . . .
CN2-based multidecision induction learning techniques were together with appropriate recommendations for subsequent

developed and evaluated. Experimentally, we examined effects ofradiolpgiqal inveSFigations [3], [9]. Typically, a radiolpgist's .
the pre-fetching system we created on radiologists’ examination €xamination reading proceeds as follows. The reading radi-

readings. Preliminary results show that the knowledge-based ologist first orients himself or herself to the case using the
patient image pre-fetching system more accurately suppors patient and examination information provided, including the

radiologists’ patient prior image reference needs than the current . N . ;
practice adopted at the study site and that radiologists may referring physician’s clinical questions, and then scans the

become more efficient, consultatively effective, and better satisfied CUrrent examination images to generate a set of hypotheses,
when supported by the pre-fetching system than when relying on based on suspicious or interesting radiographic signs detected
the study site’s pre-fetching practice. during the image scan. Subsequently, the reading radiologist
Index Terms—bata/knowledge modeling, knowledge-based validates these hypotheses by making reference to relevant
system, patient image pre-fetching, patient image retrieval, prior images of the same patient and other referential infor-
synthesized object-oriented entity-relationship model. mation and revises the preliminary hypotheses accordingly. A
radiologist has specific patient prior image reference patterns
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Support of patient prior image references is critical to a radsion is presented in Section VI, inclusive of a summary and
ologist’s examination reading, providing a baseline essential feome future research directions.
confirmation, comparison, and/or evaluation of the suspicious
radiographic signs detected on the current examination images.
Such support is of clinical importance and may have significant
effects on radiologists’ examination reading efficiency, work
satisfaction, and service quality [5]. To alleviate time and phys- In a typical examination reading process, the reading radiolo-
ical demands on radiologists and support their patient imagist applies his or her heuristic knowledge to determine the rele-
reference needs, many healthcare organizations have adopte@nee of each prior image of the same patient with respect to the
pre-fetching strategy that selects a set of patient images presgnrent examination. Such heuristics may vary with individual
ably relevant to a current examination reading task and makesliologists and can dynamically evolve over time. Moreover,
them available to the radiologist in advance of an examinatigatient prior image reference heuristics usually require such in-
reading. formation as patient demographics and clinical history, exami-

To a large extent, the heuristic nature of radiologists’ prigration information, and the requesting physician’s clinical ques-
image reference knowledge makes a knowledge-based apprdawmts, stored in various data repositories that include the HIS and
intuitively sound and appropriate for patient image referen€dS. These characteristics represent challenging requirements
support. Several knowledge-based approaches to supportimaf need to be properly addressed in the design of a knowl-
patient image retrieval and pre-fetching have been exploredge-based patient image pre-fetching system.
[71-[11], [20]. However, most prior research focused on Such a system needs to support efficient and effective cus-
knowledge acquisition and knowledge base (KB) constructiotomization. Largely determined by pertinent medical and radio-
Although a KB is essential to knowledge-based pre-fetchinlpgical knowledge, patient image reference heuristics, to some
the resulting system needs to address several challenging desixient, is also dependent on individual practice styles and pref-
issues. For instance, patient image reference heuristics refleances. For example, while a post-heart-transplant patient’s re-
not only pertinent medical and radiological knowledge, but alsmvery and potential complications largely follow some defined
individual practice styles and preferences. Thus, patient imaged documented physiological processes, radiologists neverthe-
reference heuristics may vary with individual radiologists. Sudhss develop individual heuristics that determine their specific
heuristics may dynamically evolve over time as a radiologighage reference patterns. Conceivably, one radiologist may con-
accumulates additional knowledge, training, and clinical expsider a patient’s age an important factor and, when a patient be-
rience. In combination, inter- and intra-radiologist variation®ngs to a specific age group, will reference prior images taken
make the construction, customization, and maintenance ofitea particular time interval, say, 24 h. Another radiologist may
patient image reference KB challenging. Furthermore, patiezdansider the age factor irrelevant and use one interval across
image reference heuristics are highly data intensive, encodifferent age groups. Thus, efficient and effective customiza-
passing a sizable set of essential attributes (decision factot®)n of the patient prior image reference KB is essential for
Such important data attributes as patient’s gender and conditamequate patient image reference support. In addition, radiolo-
need to be extracted from various data sources, including thists’ patient image reference heuristics may subtly evolve over
Hospital Information System (HIS) and Radiology Informatiotime, necessitating continual knowledge updates or replenish-
System (RIS). Considerable data intensity makes knowledgents. Inductive learning techniques appear to be an appropriate
representation challenging. Data referenced by image refereapproach to the needed KB customization and maintenance.
heuristics are stored in multiple database systems that are offgrecifically, an adequate learning system can automatically ex-
heterogeneous in schema representation, data model, and qtrest significant patient image reference knowledge from logged
language. As a result, a patient image pre-fetching systexamination-reading cases, including both input attributes (de-
needs to access information from multiple heterogeneous amsion factors) and actual image reference behaviors (decision
autonomous data sources during its knowledge inferenciagtcomes), and update the existing KB without intervention of
process. Thus, an effective mechanism for coping with systé&mowledge engineers or radiologists.
heterogeneity and autonomy is necessary and essential. To be effective, an inductive learning technique needs to en-

The organization of the remainder of this paper is as fotompass the required tolerance for inconsistent decision out-
lows. Section Il analyzes and discusses the requirements andhes, immunity to missing data, and flexibility in managing
challenges unique to radiologists’ patient prior image retrievaisultiple decision outcomes. An effective learning system needs
and pre-fetching support. Section Il describes our conceptaalcope with inconsistent image references resulting from the
modeling of the target application, as well as the represeniater- and intra-radiologist variations already discussed. Values
tion of image reference heuristics and their underlying semantitinput attributes are not always guaranteed and may be incom-
knowledge, with appropriate illustrations. Section IV details oyplete. Some attributes are applicable to some, but not all exam-
overall system architecture, including description of specifioation reading cases. The value of a specific input attribute in
designs for the respective components of the proposed pati@ntexamination reading case may be unavailable or difficult to
image pre-fetching system. Section V highlights some intederive from the patient and examination information provided.
esting preliminary system evaluation results and discusses thWinen interpreting a current examination, a reading radiologist
implications for both radiologists’ examination reading and pawnay reference patientimages from multiple prior examinations.
tient image management in healthcare organizations. A condn-effect, the tendency to reference patientimages from multiple

Il. APPLICATION CHARACTERISTICS AND SYSTEM
DESIGN REQUIREMENTS
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prior examinations is prevalent and often observed in radioleeference heuristics, and management of data-intensive knowl-

gists at work. Jointly, these challenging characteristics demagdge inferencing. Together, these challenges and other applica-

an inductive learning technique capable of managing missitign requirements demand an extensible and maintainable ar-

or incomplete input data, as well as potentially inconsistent antitecture design capable of effectively adapting to a dynamic

multiple decision outcomes [9], [10], [19]. environment characterized by heterogeneous and autonomous
From the system design perspective, an effective knowdata source systems. The following section describes our con-

edge-based patient image pre-fetching system needs céptual model for representing the complex heuristics and data

encompass a seamless integration of knowledge inferencinggnsive knowledge of the target application.

and data access. Radiologists’ patient image reference heuris-

tics are highly data intensive. For example, when following

up on a patient who has a benign tumor and is in satisfactory |/l CONCEPTUAL DATA/KNOWLEDGE MODELING

condition, a reading radiologist may reference images from the AND REPRESENTATION

most recgnt prlor.exa.tmmauon, the last normal ex":m"n":lt'on'Modeling of the data-intensive image reference heuristics of
and all prior examinations taken between them at three-monthyio o gists requires proper representation of the heuristics as
intervals. To identify which patient prior images are appropriaife| a5 the underlying semantic knowledge concerning struc-
to be pre-fetched for a scheduled current examination, g, and behavioral aspects of the relevant data. The heuris-
patient image reference heuristics maintained by the KB negds mimic the high-level problem-solving expertise of radiol-

to be l,Jt'“Z_ed' and relevant mformqnon, including Fhe reaso.n.f%rgists and are formulated using pertinent semantic knowledge.
examination for the current examination a.nd patient condmop\s such, an effective conceptual model for the target application
needs to be extracted from the respective data repositorigse s to support the extrapolation of high-level heuristics using
Hence, a knowledge-based patient image pre-fetching Systeff) jeyel semantic knowledge and, at the same time, provide
must be capable of supporting knowledge inferencing and dgi@ necessary access paths to relevant semantic knowledge.

access |r1_tergct|on. Furthermore, modell_ng of a radiologist'S\ye therefore developed a synthesized object-oriented entity-
patient prior image reference knoyvledge IS qeeded to Ioroloerrgfationship (SOOER) model [18], which is appropriate for rep-

represent his or her problem-solving heuristics and the u”dF'é'senting the required knowledge, including patient image ref-

lying data semantics. erence heuristics and the underlying semantic knowledge. This

Ideally, aknowledge-based patientimage pre-fetching system,ge| synthesizes and extends relevant concepts from object-
should shield knowledge inferencing from the underlying systegianted and entity-relationship modeling techniques, two dom-

.het_erogeneny and, at the same tlme, preserve the autonom.ynaf.lt and potentially complementary modeling paradigms. To
individual systems where data reside. During the knowledge ke the model more communicative, we retain the conven-
ferencing process, the pre-fetching system needs to access gl notations for the respective models when possible. In
from multiple sources, which often are different in schema rep- gooER model, semantic knowledge is represented by ob-
resentation, data model, or query language. Such heterogengily |asses, whereas heuristic knowledge is represented with
needs to be transparent to the knowledge inferencing. AutonofpY production rules encapsulated within pertinent object

of local data sources is also an issue of concern. The implemepsses. The following describes the modeling constructs essen-
tation of a knowledge-based patient image pre-fetching systeq) ¢, representing semantic and heuristic knowledge.
should not change the database systems involved or their existing

applications. To achieve the desired heterogeneity transparenc .
agg autonomy preservation, an integrated s%hemgensurri)ng ggonstructs for Semantic Knowledge
quate integration of the schemata of the related data sources nee@&&mantic knowledge describes the structural and behavioral
to be maintained and made available to the pre-fetching systexapects of data, including entities, attributes, relationships, and
Furthermore, during the knowledge inferencing process, the pbehaviors. The primary constructs of a SOOER model include
fetching system needs a mechanism for decomposing a dataeattity and relationship classes. Encapsulated in an entity or rela-
cess request into an equivalent set of sub-queries and translatiogship class are attributes describing the properties of the class
each oftheminto alanguage understandable to the respectiveemg methods defining its behavior. The graphical notations to
tonomous database system where the resulting sub-query wiltbpresent semantic knowledge in a SOOER model are summa-
executed. rized in Fig. 1.

A desirable knowledge-based patient image pre-fetchingEntity Class: An entity class is an abstraction of a group of
system needs to be extensible. Each underlying data sousbg@cts that share common characteristics (i.e., attributes), be-
is by no means static and may unilaterally change its schehavior (i.e., methods), and relationships with other objects. The
or implementation, including data model and query languagdentity of an entity class is implemented using a subset of its
in response to local operations requirements. Effects of suattributes.
changes in local data sources on the pre-fetching system shoulRelationship Class:A relationship class is a structural
be eliminated or minimized by making the management of tifer logical) connection between or among entity classes. In
discussed dynamics in data sources and local changes extenstbhBOOER model, three types of relationship classes are sup-

In sum, a knowledge-based patientimage pre-fetching systported: specialization, aggregation, and association. Each type
supporting radiologists’ examination reading must address sef-relationship classes has distinctive purpose and semantics,
eral challenges, including representation and learning of imagescribed as follows.
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Modeling Construct Graphical Notation

Entity Class

Specialization Relationship <2
Igubclass-l | e |Subclass—n |
Assembly ...............................
Aggregation Relationship (mmin, max) ’! (min, max)
Component-1| ... | Component-1

Fig. 1. Graphical notations of a SOOER model constructs for representing semantic knowledge.

Specialization Relationship Clas#\ specialization relation- nality specifies the minimum number of objects from an associ-
ship class categorizes a general entity class (i.e., superclass) atéal entity class that must participate in association relationship
two or more specialized entity classes (i.e., subclasses). Oneiestances. On the other hand, maximal cardinality defines the
sential mechanism in specialization relationship classes is inhparticipation ceiling, restricting the maximum number of ob-
itance, through which a subclass inherits properties, includifgrts from the entity class that are allowed to take part in asso-
attributes, methods, and relationships from its superclass. ciation relationship instances.

Aggregation Relationship ClassAn aggregation relation-  Attribute: An attribute describes a property of a class, en-
ship class can be described as an entity class that is a compotigntor relationship. An attribute can be atomic or composite.
of another entity class (assembly entity class); i.e., it shar&scomposite attribute can be further decomposed into a set of
an a-part-of relationship. An aggregation relationship classub-attributes, each of which is atomic or composite. An at-
usually encompasses thexistence dependendyetween the tribute can be single-valued or multivalued. A single-valued at-
assembly entity class and its component entity classes. Ttribute can assume at most one value for the attribute, whereas
dependency dictates deletions of the component objects wizemultivalued attribute can take multiple values simultaneously.
the object in which they participate is removed from the a#ttributes uniquely identify individual objects of an entity or
sembly entity class. Another important property of aggregatiagalationship class. Specifically, one or a combination of several
relationship classes isperation propagation enforcing an attributes of a class serves as a unique identifier for individual in-
operation performed on an assembly object to be propagastances of the class when the attribute value or values are unique
to all of its component objects. Participation of a componeatross all the objects contained in the class.
entity class in an aggregation relationship is jointly described Method: Collectively, methods describe the behavior of a
by minimal and maximal cardinalities. Minimal cardinalityclass and, consequently, define the behavior of all the objects
specifies the minimum number of objects from a componeintthe class. A method can be applied at two different levels, ob-
class that must take part in an assembly object (contained in jbet and class, and, therefore, can be classified accordingly. An
assembly entity class). Similarly, maximal cardinality definesbject method applies to individual objects of a class, whereas
the upper bound of such participation. a class method is applied for the class as a whole.

Association Relationship ClassAn association relationship  The following illustrates partial modeling of the target
class can be unary, binary, e@ary, wheren otherwise indepen- application, as a result of integrating the schemata of multiple
dent entity classes are related to one another. Each entity cladevant data sources, including the HIS, RIS, and picture
participating in an association relationship class assumes a dischiving and communication system (PACS). The specific
tinctive role in the relationship. The role name can be omitted ggmantic knowledge needed by a knowledge-based patient
situations where the role of a participating entity class is unaimage pre-fetching system includes data about the patient,
biguous. Similarly to aggregation relationship classes, partieixamination, image, anatomical portion, and modality. A
pation of an entity class in an association relationship classpatient may have many prior radiological examinations, each
confined by minimal and maximal cardinalities. Minimal cardief which belongs to one and only one patient. A patient has
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Fig. 2. Conceptual modeling of semantic knowledge in a knowledge-based patient image pre-fetching system.

a unique patient identification (ID), name, gender, date of 4) If A; is an association relationship class, then there must

birth, and patient source (e.g., intensive-care unit or outpatient
clinics). A method is needed to calculate patient age and

exist A, that is an attribute ofi;, a method of4,, or
an entity class participating if;.

can be defined within patient entity class. An examination 5) If A; is a specialization or aggregation relationship class,

usually contains such information such as examination ID,

then there must exist;; that is an entity class partici-

completion time, reason-for-examination, procedure code, and  pating inA;.

diagnosis report. An examination consists of one or multiple Jointly, these constraints suggest the following.

images, each of which has a specific anatomical portion (part)1) A path starts from an instance variable.

examined and is taken using a particular imaging modality. 2) The terminal of a path is either an attribute or a method,
Based on their reasons, examinations can be classified into  put cannot be a class, entity, or relationship.

different subclasses that include pre-operation, post-operationd) When the terminal of a path is a method, the path may

and injuries. Fig. 2 graphically depicts conceptual modeling of
the described semantic knowledge in SOOER model.

B. Constructs for Heuristic Knowledge

Due to their simplicity, communicability, and expressiveness,
IF-THEN production rules were chosen to represent heuristic
knowledge. Each class has a set of rules that describe the specific
heuristics pertaining to the class. These rules are constructed

return a single value or a set of values. Similarly, a path
may return a single value or a set of values when it is
terminated with an attribute and the specific number of
values returned depends on the maximal cardinality of
the respective entity classes, as well as the multiplicity
of the attributes on the path. If the maximal cardinality
of concern is one and all of the attributes involved in the
path are single valued, the path will return a single value;

with relevant semantic knowledge and, therefore, require the es-  otherwise it will return a set of values.
tablishment of a reference mechanisminthe schemarepresentag effect, the path expressioty;.A,,..., A, is an ab-
with a SOOER model. breviated form in which the role name of each entity class

Definition: Instance Variable:An instance variable provides participating in the subsequent association relationship class
a means of referencing an object in a class, entity, or relatiqg-omitted. To fully express an association relationship class
ship. Instance variablenis is a special instance variable, depn a path, the preceding and subsequent entity classes of the
noting the particular object that is currently being processed.association relationship need to be specified with the respective

Definition: Path Expression:Let £ be an instance variablergle names, singling out how the path traverses through this
that references an object in the cldfs A path expression association relationship class. That is,Af_;.4;.4,4; is a
t.A1. Az, ..., An, Wheret denotes the origin of the path ard  part of the path wheret; is an association relationship class
is the terminal of the path, refers to a path in a SOOER schemaq A;_; and A;,, are entity classes, the full expression
and satisfies the following constraints for egch {1, , n}. becomesA;_; .role;_; Ajrole; 1. A1, where the preceding

1) If A; is an attribute, therl; is the terminal of the path or entity classA;_; takes the rolecole;_; and the subsequent

Aj+1 is a sub-attribute ofi;. entity classA;; takes the roleole,,;. However, role names
2) If A; is a method, thenl; is the terminal of the path.  need not be signified in a relationship class where all the

3) If A; is an entity class, then there must exist,; that is
either an attribute ofi ;, a method of4;, an entity class (if
there exists only one relationship betweg¢nandA, ),
or a relationship in whicki; participates.

participating entity classes are distinct.

Definition: Function ExpressionPath expressions can be
manipulated by proper functions to derive aggregate informa-
tion of interest. Each function follows a particular format, func-
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tion-name(path). Examples of common functions include( ) FROM Examination e
that returns the minimal value of a value satx() that returns WHERE e.Patient.Patient-ID = this.Patient.Patient-ID
the maximal value of a value setym() that returns the summa-

tion of a numeric value setivg() that returns the average of & Example 2: To continue with our illustration, we further as-
numeric value setount() that returns the number of elementgyme that the radiologist has the following additional image
in a set, and first() that returns the first elements in a set. reference heuristics specifically related to examinations taken
Based on the discussed reference mechanism, heuristics {gftollow up patient recovery from a surgery: if the current ex-
mulated with intensive data can be formally defined using thgnination is for “urgent” post-operation follow-up, retrieve pa-

following language. tient's images from the two most recent prior examinations in
which anatomical portion examined and imaging modality used
rule := IF  path rel-op [constartconstant-seft path] were identical to those of the current examination. As described
((AND path rel-op [constantconstant-seft path] ) in Fig. 2, this heuristic is encapsulated in the entity class named
THEN [var-assignmentdata-retrievall “post-operation examination” and can be represented as fol-
{(AND [var-assignment data-retrieval]) lows.

var-assignment := var = [constgntonstant-set]

data-retrieval := IF this.Type = “Urgent”

SELECT [path| func-exp]((, [path| func-exp]) THEN SELECT  First-2(e.Exam-ID)
FROM class-name instance-variable FROM Examination e
((, class-name instance-variafle) WHERE e.Patient.Patient-ID = this.Patient.Patient-ID

(WHERE path rel-op [constafnttonstant-seft path] AND

(ORIg(ég DB%atE;‘frll'o[%[chTSg‘gtscgﬁt("’mgzterf psig]()?' e.Anatomical-Portion.Name = this.Anatomical-Portion
J AND

DESCI)) e.Modality.Name = this.Modality.Name
relop:=(|<[=]2[#]el¢[C[S|D[2]F ORDERBY e.Completion-Date DESC
constant-set := {constan, constant)}
Annotations:
= is defined as IV. ARCHITECTURAL DESIGN
[a | b] denotes either a or b We designed and developed a knowledge-based patient
() denotes the enclosed item repeats one or more times image pre-fetching system based on the requirements described
( ) denotes the enclosed item is optional in Section Il. As shown in Fig. 3, the system retrieves relevant
Comments: information from multiple distributed and heterogeneous
func-exp: the function expression on a path database systems and performs data-intensive knowledge de-
var: an intermediary variable derived during the knowledgguction essential to supporting radiologists’ patient prior image
inferencing reference needs. To address the challenges of heterogeneity,
ASC or DESC: ascending or descending order dynamics, and local autonomy preservation of the underlying

database systems, we adopted a client—-mediator—server system

In the proposed representation, thelause specifies the con-architecture, in which the knowledge-based patient image
dition to be evaluated and theiEN clause defines the actionpre-fetching system is the client and the underlying database
to be performed when the associated condition is satisfied. Ts¥stems assume the role of servers. A mediator creates a desir-
THEN clause can be used to represent the derivation of an intable appearance of single data source and presents a uniform
mediary result, as well as a data retrieval operation expres#ei@rface to the client, shielding the underlying data source dis-
in structural query language (SQL) with an appropriate path ekibution and heterogeneity from the patient image pre-fetching
pression extension. In the latter case, $geECTsub-clause in System and, at the same time, resulting in desired transparency
the THEN clause lists the data to be retrieved, #om sub- and necessary local autonomy preservation. The adopted
clause specifies the data source(s),wh&ERE sub-clause qual- three-tier architecture also provides desirable independence to
ifies the data to be retrieved, and theDER BY sub-clause de- the patient image pre-fetching system, making it immune, or
termines the presentation sequence of the retrieved data.  at least less susceptible to problems resulting from data source

Example 1: The following hypothetical example illustratesdynamics. The following describes our system architecture and
the proposed heuristic knowledge representation. A radiologi8e design of the mediator and the knowledge-based patient
scheduled to read images from a radiological examination offaage pre-fetching system, as shown in Fig. 3.
seven-year-old patient (or younger) needs to compare current
images with those from all prior examinations of the same pﬁ‘-‘
tient. Based on the SOOER schema shown in Fig. 2, this imagerhe mediator provides distribution and heterogeneity trans-
reference heuristic can be encapsulated in examination enfigrency to the knowledge-based patient image pre-fetching

Mediator

class and represented the following. system by maintaining the semantic knowledge (i.e., global
database schema) through integrating schemata of the partic-
IF this.Patient.Age(K 7 ipating local sources. We used a SOOER model to represent

THEN SELECT e.Exam-ID the semantic knowledge (stored in a catalogue) and the
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Fig. 3. Architecture of mediator and knowledge-based patient image pre-fetching system.

problem-solving heuristic knowledge (maintained in a knowlecal database statistics in selecting the most efficient execution
edge repository). The representation of choice facilitates thtategy [3], [6], [14]. At the same time, the knowledge-based
construction of radiologists’ patient image reference heuristipatient image pre-fetching system needs semantic knowledge
without worrying about the representations and retrieval opéo- perform the necessary reasoning about radiologists’ patient
ations of the underlying data sources. During the subsequenbr image reference heuristics, as discussed in the following
knowledge inferencing session performed by the pre-fetchisgbsection.
system, the mediator uses the semantic knowledge to formulate
a query submission and expresses it in a SQL-like Iangualge
with a path expression extension. At this time, a query decom-
poser/optimizer decomposes a submitted query into a set offo facilitate KB customization and maintenance, the knowl-
sub-queries intended for the respective data sources, generatigge- based patient image pre-fetching system needs to mon-
and evaluates alternative execution strategies, and selectsititreand adapt to radiologists’ patient image reference behaviors
most efficient one [3], [6], [14]. The resulting sub-queries arproactively. Furthermore, the pre-fetching system also needs
then submitted to a query translator, which translates eachmonitor the accuracy of its image reference heuristics con-
sub-query into a language understandable by the target infomuously because radiologists’ image needs may evolve over
mation system or database system where the sub-query witie. In situations where the existing heuristics cannot effec-
be executed [14]. Furthermore, a global transaction manageely support radiologists’ examination reading tasks, the pre-
communicates with the respective local transaction manag&®hing system has to relearn and induce emerging or additional
to oversee and maintain the necessary consistency during hieeristics from the newly observed image reference patterns. In
execution of the set of sub-queries over different participatiragldition, for a scheduled radiological examination reading ses-
systems and databases [4], [12], [13]. sion, the pre-fetching system must have the deductive capability
The catalogue is essential to the operations of the mediatort@select and deliver potentially useful patient prior images that
well as the knowledge-based patient image pre-fetching systeare based on the current heuristics of the system. The following
Typical information maintained by the catalogue includes ttdescribes the essential capabilities of the pre-fetching system
semantic knowledge (i.e., global database schema), local dateyether with their respective enabling system components, as
base schemata, mappings between the global and the local da¢gicted in Fig. 3.
base schema, and important statistics on local databases. Faearning Capability: Learning or relearning is activated
example, the query decomposer/optimizer needs relevant infehen the pre-fetching system fails to support an individual
mation about the global database schema and its mappings wattliologist's image needs effectively. The desired learning
related local database schemata to perform query decompeapability of our pre-fetching system is jointly provided by
tion. Moreover, the query decomposer/optimizer depends several system components.

Knowledge-Based Patient Image Pre-Fetching System
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Case Repository:The case repository maintains a collectiowific learning technique applied (i.e., MDTI or CN2-MD). The
of historical cases, each of which consists of the radiologicadsulting learning outcomes then are validated using the testing
examination read and the associated patient prior image refemses. However, the KB pertinent to a specific radiologist is up-
ence pattern of the reading radiologist. Using the case repdsated only when the validated learning results are significantly
itory, the learning system induces individual radiologists’ pauperior to those achieved by the existing heuristics.
tient prior image reference heuristics. Annotated by its readingknowledge TransformerThe knowledge induced by the
radiologist, a historical case contained in the repository is cofearning system is represented using either multiple decision
prised of two parts: decision factors instrumental in explainirtgees or multiple sets of decision rules, neither of which is
and predicting the radiologist’s prior image reference pattercpmpatible with the SOOER-based representation of radiol-
and decision outcomes specifying the actual patient prior iragists’ heuristic knowledge. Thus, knowledge representation
ages referenced by the radiologist. Collecting historical cageansformation becomes necessary and is performed by the
is accomplished by collaboration between the inference engkmowledge transformer, which transforms the knowledge from
and access monitor agent. When performing knowledge inféine representation scheme used by the learning system to
encing for a newly scheduled examination, the inference engithe appropriate SOOER model representation. Separation of
processes the scheduled examination as a case subsequentlydeviedge transformation from learning provides desirable
posited in the case repository. As the reading of the schedufexibility in the development of the learning system, which, as
examination proceeds, the access monitor agent monitors gheesult, is not confined by the representation scheme adopted
reading radiologist’s actual patient prior image reference by the underlying KBs. In addition, this separation also allows
havior that is documented as the decision outcome for this ptlre learning system not to be concerned with data operation
ticular examination reading task (case) to be stored in the calails when representing learning results.
repository. The complexity of a knowledge transformation algorithm

Learning System:The learning system induces a radiologreatly depends on the similarity between the source and target
gist’s patient prior image reference heuristics from his or hegpresentation. Knowledge constructed by MDTI or CN2-MD
image reference patterns documented in the case repositoan easily be converted to predicate-based production rules,
That is, the learning system uses individual historical casessimilarly to the heuristic rule representation used in a SOOER
perform desirable generalization of the respective documentaddel. Thus, the knowledge transformation is straightforward.
decision factors and outcomes. Three different approactgassed on the semantic knowledge maintained in the mediator’s
from the inductive learning paradigm have been adoptethtalogue, knowledge transformation requires modifying each
backpropagation neural network [10], [17], ID3-based multpredicate in thar clause to a path expression, changing the
decision-tree induction (MDTI) [9], [15], [16], and CN2-based'HEN clause to correspondin§ELECTFROM-WHERE-ORDER
multidecision-outcome induction (CN2-MD) [1], [2], [19]. BY clauses with appropriate path expressions in each sub-clause,
These learning techniques were adopted primarily becauseanfl determining the entity class in which each transformed rule
their capabilities in managing the challenging characteristics stiould be encapsulated.
radiologists’ image references, including incomplete decisionKnowledge RepositoryThe knowledge repository main-
factors, as well as multiple and potentially inconsistent decisitains a set of KBs, each of which is tailored to a particular
outcomes. Results from our previously conducted experimeniadividual radiologist and represents his or her patient prior
evaluations suggested that the MDTI and CN2-MD techniquasage reference heuristics. Upon completing transformation
may outperform the backpropagation neural network in accof the learning results constructed by the learning system into
racy (as measured by precision and/or recall rates), learnittie heuristic rule representation used in a SOOER model, the
and execution efficiency, and, most importantly, explanatorgsulting heuristics are deposited into the KB pertaining to the
utility [9], [19]. Due to their superiority in these essentiatarget radiologist.
learning evaluation dimensions, both MDTI and CN2-MD Monitoring Capability: The pre-fetching system monitors
techniques appear to be appropriate learning algorithms for tlagiologists’ image reference behaviors and its pre-fetching ac-
learning system. Learning evaluation criteria and comparatigaracy. The monitoring capabilities are provided jointly by the
results of these two candidate techniques will be discussedaiccess monitor agent and performance monitor agent in the fol-
the following section. Interested readers are referred to [9] almving manner.
[19] for detailed discussion of their theoretical foundations, Access Monitor AgentThe access monitor agent monitors
algorithms, and comparative evaluation results. a radiologist’s patient prior image reference behavior within an

A learning system learning session is triggered by the paxamination reading task. The actual image reference pattern
formance monitor agent when it detects unsatisfactory imaigestored in the case repository to support future learning. The
selection and pre-fetching by the pre-fetching system that fasipecific patient prior images referenced by the reading radiol-
to support individual radiologists’ examination reading tasksgist can reside in local or remote image archives (i.e., PACS).
In a learning session, the cases read by an individual radibbcal retrievals refer to those images needed by the reading ra-
ogist are retrieved from the case repository and randomly aelogist that have been correctly identified and selected by the
signed for training or testing purposes. Using the documentpre-fetching system and transmitted to local archives before the
decision factors and corresponding decision outcomes of #amination reading takes place. On the other hand, remote re-
training cases, the learning system constructs multiple decisinievals are patient images retrieved by the radiologist from re-
trees or multiple sets of decision rules, depending on the speste archives as the examination reading proceeds. Thus, re-
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mote retrievals are necessitated by failures of the pre-fetchiSgLECT m.Patient.Age()
system to support radiologists’ patient prior image referenE&ROM Examination m

needs effectively. Both local and remote retrievals are necess@ffiAERE m.Exam-ID = “1123"
for the performance monitor agent’s decision making when ini-

tiating a relearning session to update image reference heuristics.

Performance Monitor AgentThe performance monitor When theF clause of a rule is satisfied by the query result(s),
agent keeps track of the accuracy of the pre-fetching systéime inference engine subsequently executes the corresponding
with respect to the actual image reference behavior of @HEN clause of the rule. Depending on the spedifieN clause,
individual radiologist. Pre-fetching accuracy is measured ltlge inference engine may simply update its working memory
both recall and precision rates. The recall rate measures With the query result(s) or submit to the mediator data retrieval
effectiveness of the induced image reference heuristics andaguest(s). In the latter case, the data retrieval request(s) is the
defined as “the percentage of the patient prior examinatiosadme as tha@HEN clause, except that all of the instance vari-
referenced by the reading radiologist that have been correalgles ‘this’ need to be replaced by a specific data object in data
suggested and pre-fetched by the pre-fetching system.” On gmirces, according to the semantic knowledge maintained in the
other hand, the precision rate is concerned with the efficiencgtalogue. To continue with our example, when the above rule
of the induced image reference heuristics and is defined iasatisfied, the corresponding data retrieval submitted by the in-
“the percentage of patient prior examinations suggested by fieeence engine is as follows:
pre-fetching system that are actually referenced by the reading
radiologist during the examination reading.”

Relearning becomes necessary when the average accura®y@fECT e.Exam-ID
the pre-fetching system in supporting an individual radiologistisRoM Examination e, Examination m
examination reading is lower than a pre-specified threshold, @8HERE m.Exam-ID = “1123” AND
measured by the recall rate, precision rate, or both. When thiss patient.Patient-1D = m.Patient.Patient-1D
happens, the performance monitor agent activates the learning
system, which, in turn, performs relearning of prior image ref-
erence heuristics for the particular radiologist. Once the inference engine completes the knowledge infer-

Deduction Capability: The knowledge-based patient imagencing session for a newly scheduled examination and the medi-
pre-fetching system has a built-in deduction capability to detejtor returns the query results in response to the fired rules, the in-
mine and pre-fetch the patient prior images presumably needefknce engine identifies the specific patient prior examinations
by a radiologist during reading of a newly scheduled radiologresumably relevant to the reading radiologist’'s reading of the
ical examination. The following discusses the important systesamination under consideration. Information about the iden-
components that jointly provide the pre-fetching system’s dgfied patient prior examinations is then passed to pre-fetcher,
duction capability. which literally executes the actual image pre-fetching.

Inference Engine:The inference engine performs forward- pre-Fetcher: The pre-fetcher receives from the inference
chaining knowledge inferencing to identify the particular patiegingine the information on the relevant patient prior examina-
prior images to be pre-fetched for a newly scheduled examingns, retrieves the corresponding images from the archives
tion. Depending on the reading radiologist, a specific KB from.e., PACS), and delivers these images to the local archive of
the knowledge repository will be applied forimage pre-fetchinghe designated reading site. The pre-fetcher submits queries
During a knowledge inferencing session, theclauses of the to the mediator, requesting the images from some identified
heuristic rules contained in the chosen KB need to be instaiatient prior examinations. Furthermore, when the local archive
tiated from local databases or the inference engine’s workiRgs insufficient space to accommodate all pre-fetched images,
memory to decide whether or not a rule has been satisfied. WRRE pre-fetcher needs to make image replacement decisions to
involved in rule instantiation, a local database receives a quhihimize “image faults” that would unnecessarily prolong an
(queries) from the inference engine through the mediator. R&¢amination reading.
example, to determine whether or not the following rule can Prototype mediator and know|edge-based patient image
be applied on the newly scheduled examination with Exam-Igte-fetching systems have been implemented. Sybase, a
being “1123,” relational database management system (DBMS), is used to

develop the catalogue, knowledge repository, case repository,
and local archive. The software modules of both the mediator

IF this.Patient.Age() < 7 and knowledge-based patient image pre-fetching system were
THEN SELECT e.Exam-ID developed in C/G-+, except for the MDTI technique, which
FROM Examination e was implemented in Pascal. On the local data source side,

WHERE e.Patient.Patient-ID = this.Patient.Patient-IBxperiments with the HIS, RIS, and PACS have been under-
taken using Sybase and Versant, an object-oriented DBMS.
The implementation will continue to include other DBMS's
The inference engine formulates a query based on the pregtinployed by different local data sources. Accordingly, the
cate of thaF clause to obtain the patient’s age and submits it tquery translator and global transaction manager will need to be
the appropriate local database system(s) through the mediatextended to manage the additional heterogeneity.
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V. SYSTEM EVALUATION TABLE |
COMPARATIVE AGGREGATE ACCURACY OF PATIENT PRIOR IMAGE
The fundamental objective of the developed patient image REFERENCEHEURISTICS
pre-fetching system is to effectively adapt to and accurately su =
. . ) . . Source Recall | Precision | # of Prior Examinations
port radiologists’ image reference needs. In this connection, pi of Knowledge Rate Rate Suggested*
dictive utility is of critical importance in evaluating the system’s UMC Practice 3439% | 91.06% 0.87
effectiveness. Image pre-fetching accuracy, in turn, may affec K“°W‘°dg°1;45]§;‘:eef“3f“’e“ %gz"j zé’gi; ;Zé
. . . ) « . . . . . . B 0 . 0 N
reading radiologist’s decision making in his or her examinatio CNZMD c6.19% | 8533% 5

reading. Thus, impacts of the pre-fetching system on radiolu:, . - o
i , A A ) i R *: Average number of prior examinations referenced by radiologists is 2.33.
gists’ examination reading are also an essential evaluation dRa pre-pruning approach was taken with the MDTI technique to manage the noise in
i i  decision factors and outcomes. The specific method adopted was critical value pruning
mensmr!. Pra}gm’atlcallyl, th? SyStem, has been deve]oped to %@@P) with which the expansion of a decision tree halts at a node where the ratio of the
port radiologists’ examination reading thus as to increase eﬁminant class is greater than a prespecified threshold value (i.e., the critical value) [9]. In
ficiency, enhance service quality, and improve work satisfalls experiment, the critical value was set to 0.55.

tion. The following discusses some encouraging results from

our preliminary evaluative studies conducted at the Universifig|ly from an under-provision tendency of the UMC practice.
Medical Center (UMC), University of Arizona, Tucson, a modon average, a radiologist needed to reference 2.33 prior exami-
erate-sized teaching/tertiary hospital that serves the populatigftions in each examination reading, but the current UMC prac-
of southern Arizona. Choice of the evaluation site was magge pre-fetched only a 0.87 examination. On the other hand,
primarily based on accessibility and considerable needs for &f5T| and CN2-MD, on the average, delivered 2.83 and 1.84
fective patient image pre-fetching support. Accordingly, we irprior examinations, respectively, close to the average number of
cluded the current patient image pre-fetching practice at tbﬁor examinations referenced by radiologists.

UMC to provide a desired benchmark again in which the per- The recall and precision rates achieved by the knowledge-en-
formance achieved by the respective learning techniques caryfifeer-driven approaches were higher than that accomplished

evaluated. by the MDTI technique. On the other hand, the CN2-MD tech-
nique appeared to outperform the knowledge-engineer-driven
A. Evaluation of Learning Accuracy approach in the precision rate, but had a lower recall rate. The

A study was conducted to evaluate the learning accuragtter performgnce yielded by, the kngw!edge-engin.eer-driven
of the knowledge-based patient image pre-fetching systerf? proach can, in part, _be exp_lalned_by |t§|nh§rentwh|te-box_na-
learning system implemented using either the MDTI or thtélre._Thro_ugh interactions \_Nl_th radiologists, it can capture rich

CN2-MD technique. Two hundred historical cases, radiologic%qlat'ons,h'gs petvx:een .deCISIC;:] .factors and outcomes. In con-
examinations for which clinical reading had been completdffSt: as inductive learning techniques, MDTI, or CN2-MD may

by radiologists at the UMC, were included in this study. Thes'séJffer fro.m t.he!r data-dr.lven ngturg. Thatis, a small data seF, to-
cases covered several radiology subspecialty areas, incluo‘ﬁ’?gerw'th its inherent inductive bias, may put either technique
chest X-ray, computed tomography/magnetic resonare distinct disadvantage. However, with a relatively small data

imaging (CT/MRI) body, CT/MRI neural, and musculoskeletalt (i.e., 200 cgses), the respective accuracy of the MDTI and
X-ray. CN2-MD techniques were largely reasonable, as manifested by
Each case included was stored in the case repository and \;vrgsrespective 79.65% and 66.19% recall rates and 66.64% and
jointly described by 14 decision factors identified by previou§5'33% precision rates. The resulting learning accuracy of both

studies [9], [10], [19]. These decision factors can be cIassifié%Chn'q;J_ﬁs IS te;xphecte(rj]t(_) |mpr0\|/e a;s tze slzé ofdatg fﬁr I_earnl?g
into three broad categories: current-examination related (e: ows. Thus, both techniques clearly demonstrated their appli-

examined anatomical portion, modality used and reason for bility and desirability for the learning of radiologists’ patient

amination), patient related (e.g., patient’s gender, clinical statlf?é',or image reference heuristics.

and source), and disease/abnormality related (e.g., disease/ab- ) . )

normality type, nature, and phase). The decision outcomes For Evaluation of Effects on Decision Making

each case were the reading radiologist’s actual image referencl patient prior images are to support radiologists’ examina-

behavior monitored by the access monitor agent. tion reading, the pre-fetching system’s impacts on radiologists’
Table | summarizes the aggregate accuracy of several pdgecision making need to be evaluated. Toward this end, we per-

posed techniques for the learning system (more detailed emjparmed a field experiment investigating such impacts, including

ical evaluations can be found in [9] and [19]). The accuracy tfiose on decision time requirements (i.e., examination reading

the UMC current pre-fetching practice and that of the patietitne), decision quality (i.e., accuracy in diagnosis), and satisfac-

prior image reference heuristics acquired through an intensiven with the decision making process (i.e., examination reading

knowledge acquisition process (knowledge-engineer-driven gpecess) [5].

proach) were used to provide desirable benchmarks. As showni nested-within experimental design was used in this study

the recall rates of both MDTI and CN2-MD techniques weresing the UMC's current pre-fetching practice as a bench-

significantly higher than that of the UMC current pre-fetchingnark. The KBs acquired by the knowledge-engineer-driven

practice, which, nevertheless, was superior in precision ratgproach were adopted, primarily because of their superiority

showing a 24.42% or 5.37% advance. The observed low in- pre-fetching accuracy over those currently achieved by

call and high precision rate combination may have resulted p&B’s induced by either MDTI or CN2-MD, as measured
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TABLE I
EXPERIMENTAL RESULTS—MUSCULOSKELETAL EXAMINATIONS

Residents Junior Radiologists | Senior Radiologists
KB UMC A | KB UMC A KB UMC A

Examination Reading
Time (in second)

Mean 452 570 21%| 261 305 14% | 92 137 33%
Standard Deviation | 147 170 111 73 46 91
Objective Report
Quality Score
Mean 68 39 74%| 81 64 26% | 83 73 12%
Standard Deviation | 22 49 22 37 20 33

Satisfaction with

Examination Reading®
Mean 6.9 3.7 86%]| 9.0 7.0 29% | 9.2 55 6™
Standard Deviation | 3.2 2.3 1.2 3.1 0.8 3.9

ba (Rate of improvement)

= (UMC — KB)/UMC for examination reading time.

= (KB — UMC)/UMC for objective report quality score and satisfaction with examination reading.
CBased on a ten-point Likert scale with “1" being unsatisfied and “10” being very satisfied.

TABLE Il
EXPERIMENTAL RESULTS—CHEST EXAMINATIONS

Residents Junior Radiologists | Senior Radiologists
KB UMC A |KB UMC A KB UMC A

Examination Reading
Time (in second)

Mean 284 371 23%| 278 132 (111%)] 212 196 (8%)
Standard Deviation | 172 405 120 34 116 115
Objective Report
Quality Score
Mean 932 70.0 33%|87.5 73.0 20% | 652 69.1 (6%)
Standard Deviation | 13.0 36.6 250 18.2 354 435

Satisfaction with

Examination Reading
Mean 84 6.5 40%| 85 100 (15%) | 9.1 5.1 78%
Standard Deviation 1.9 3.7 1.0 0.0 1.0 33

by a combination of the recall and precision rates achievadgs on all of the included cases in the same way they would
Two radiology sub-specialties were investigated: chest ahdve done for clinical purposes. At the end of each examination
musculoskeletal diagnostic radiology. These sub-specialtieading, each subject was asked to produce a verbal report for a
were chosen because they were the most common examinasiohsequent report quality analysis. In addition, the total amount
types at the UMC. Jointly, they accounted for approximatelyf time a subject spent reading an examination was also doc-
70% of the radiological examinations performed there at thenented. Also, when completing an examination, each subject
time of the study. In both sub-specialties, radiologist subjeatsas asked to assess his or her satisfaction with the examina-
were classified into three experience levels: senior, junior, atidn reading process. To analyze the diagnosis accuracy of indi-
resident. The decision to control for clinical experience levelddual radiologist subjects, a gold-standard report was produced
was made based on results from some previously conductedeach included examination, using a majority-based method
studies, suggesting that clinical experience differences mfay consolidating individual examination reports rendered by a
contribute to variations in individual radiologists’ patient prioreview panel consisting of three radiologists who did not par-
image reference needs [5]. Specifically, senior radiologidisipate in the experiments as subjects. These reports were then
were those who had more than ten years of post-residenused to evaluate the quality of diagnosis reports generated by
practice in a specified (or certified) radiology subspecialty aresybjects.
whereas junior radiologists had 3-7 years of post-residencyTables Il and Ill summarize experimental results obtained
practice. from the musculoskeletal and chest examinations, respectively.
Two experimental sessions were conducted, one for each@werall, it appeared that use of the pre-fetching system to sup-
vestigated subspecialty. Randomly drawn from a previously gmrt radiologists’ examination reading may have resulted in in-
tablished historical case pool consisting of examinations calreased reading efficiency, enhanced service quality, and im-
lected from clinical settings, eight cases were included in eaploved satisfaction when compared with the UMC’s current
experimental session. Each radiologist subject performed readactice. However, the effects seemed stronger with the mus-
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culo-skeletal than with the chest examinations. The differential Continued theoretical and applied investigations along
effects may, in part, have resulted from the relative complexithis line of research are necessary. Several specific topics
of interpreting chest versus musculo-skeletal images. As sev-issues demand our immediate research attention. For in-
eral radiologists commented, the radiographic signs on a ms$ance, the identification of related or similar applications
culo-skeletal image may be more subtle and complex than thaseexpand our research results is desirable. Case selection
commonly detected on a chest image. Consequently, increaB®dclinical education and training appears to be a promising
complexity or difficulty may have made radiologists increagotential application. Intelligent Intranet-based applications
ingly dependent on prior image pre-fetching support in thethat distribute information to users within an organization
examination reading. In this connection, effects of the knowbffer another interesting future research direction. Additional
edge-based patient image pre-fetching system may appeaevaluations of MDTI and CN2-MD learning techniques are
have been stronger with musculo-skeletal than with chest etso important. Large-scale case collection and evaluation
aminations. studies in different radiology environments are appealing.
Judging from the experimental results, use of the knowledgeerforming a longitudinal empirical evaluation of the effects
based patient image pre-fetching system would result in desifcthe knowledge-based patient image pre-fetching system on
improvements in radiologists’ efficiency, service quality, andadiologists’ examination reading efficiency, diagnosis quality,
satisfaction. On average, the knowledge-based patient image work satisfaction is essential as well. In addition, extending
pre-fetching system might be able to reduce radiologists’ exathe proposed architecture to incorporate advanced functionality,
ination reading time for musculo-skeletal examinations by apicluding image prioritization, is also interesting and would
proximately 20%, while its effect on chest examinations mighiave considerable theoretical and pragmatic impacts.
be experience dependent. Use of the knowledge-based patient
image pre-fetching system was also shown to be likely to re-
sult in better examination report quality, leading to 35% and
15% improvement for the musculo-skeletal and chest exam-The authors wish to thank radiologists at the UMC, Univer-
inations, respectively. Furthermore, radiologists may becorsgy of Arizona, Tucson, for their cooperation during our re-
better satisfied with their examination readings supported by thgirement analysis and case collection.
pre-fetching system than by the UMC's pre-fetching practice.
A 60% improvement for musculo-skeletal examinations and a
30% improvement for chest examinations were observed.
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