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Abstract—When performing primary reading on a newly taken
radiological examination, a radiologist often needs to reference
relevant prior images of the same patient for confirmation or com-
parison purposes. Support of such image references is of clinical
importance and may have significant effects on radiologists’ exam-
ination reading efficiency, service quality, and work satisfaction.
To effectively support such image reference needs, we proposed
and developed a knowledge-based patient image pre-fetching
system, addressing several challenging requirements of the
application that include representation and learning of image
reference heuristics and management of data-intensive knowledge
inferencing. Moreover, the system demands an extensible and
maintainable architecture design capable of effectively adapting
to a dynamic environment characterized by heterogeneous and
autonomous data source systems. In this paper, we developed
a synthesized object-oriented entity- relationship model, a con-
ceptual model appropriate for representing radiologists’ prior
image reference heuristics that are heuristic oriented and data
intensive. We detailed the system architecture and design of the
knowledge-based patient image pre-fetching system. Our archi-
tecture design is based on a client–mediator–server framework,
capable of coping with a dynamic environment characterized by
distributed, heterogeneous, and highly autonomous data source
systems. To adapt to changes in radiologists’ patient prior image
reference heuristics, ID3-based multidecision-tree induction and
CN2-based multidecision induction learning techniques were
developed and evaluated. Experimentally, we examined effects of
the pre-fetching system we created on radiologists’ examination
readings. Preliminary results show that the knowledge-based
patient image pre-fetching system more accurately supports
radiologists’ patient prior image reference needs than the current
practice adopted at the study site and that radiologists may
become more efficient, consultatively effective, and better satisfied
when supported by the pre-fetching system than when relying on
the study site’s pre-fetching practice.

Index Terms—Data/knowledge modeling, knowledge-based
system, patient image pre-fetching, patient image retrieval,
synthesized object-oriented entity-relationship model.
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I. INTRODUCTION

A DVANCED medical imaging technology has significantly
expanded the role of radiology in clinical medicine, as

manifested by increasing dependence of physicians and spe-
cialists on information obtained from radiological examinations
for clinical decision making and patient management. At the
same time, concurrent information technology (IT) advance-
ments have initiated and greatly facilitated a progressive trans-
formation of radiology from the traditional film-based practice
into a digital practice where radiologists can perform exami-
nation reading and consultation services beyond organizational
and geographical constraints. Jointly, the growing role of radi-
ology and the observed trend toward a digital radiology practice
have made patient image management a growing concern for
many healthcare organizations. One critical image management
issue is prior patient image reference support for radiologists’
examination reading.

A fundamental role of radiologists in clinical medicine
is to provide physicians or specialists reports containing
timely patient information obtained from image interpretation,
together with appropriate recommendations for subsequent
radiological investigations [5], [9]. Typically, a radiologist’s
examination reading proceeds as follows. The reading radi-
ologist first orients himself or herself to the case using the
patient and examination information provided, including the
referring physician’s clinical questions, and then scans the
current examination images to generate a set of hypotheses,
based on suspicious or interesting radiographic signs detected
during the image scan. Subsequently, the reading radiologist
validates these hypotheses by making reference to relevant
prior images of the same patient and other referential infor-
mation and revises the preliminary hypotheses accordingly. A
radiologist has specific patient prior image reference patterns
and often uses his or her heuristic knowledge to determine
the relevance of each prior patient image with respect to the
current examination. This hypothesis-generation–validation
process usually proceeds by iteration, terminated when the
validated hypotheses have reached a subjectively determined
certainty threshold. As such, the hypotheses then become
examination reading findings, which will be compiled as a
formal report, summarizing the radiologist’s impression of
and diagnostic opinion about the examination with appropriate
follow-up-examination recommendations.
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Support of patient prior image references is critical to a radi-
ologist’s examination reading, providing a baseline essential for
confirmation, comparison, and/or evaluation of the suspicious
radiographic signs detected on the current examination images.
Such support is of clinical importance and may have significant
effects on radiologists’ examination reading efficiency, work
satisfaction, and service quality [5]. To alleviate time and phys-
ical demands on radiologists and support their patient image
reference needs, many healthcare organizations have adopted a
pre-fetching strategy that selects a set of patient images presum-
ably relevant to a current examination reading task and makes
them available to the radiologist in advance of an examination
reading.

To a large extent, the heuristic nature of radiologists’ prior
image reference knowledge makes a knowledge-based approach
intuitively sound and appropriate for patient image reference
support. Several knowledge-based approaches to supporting
patient image retrieval and pre-fetching have been explored
[7]–[11], [20]. However, most prior research focused on
knowledge acquisition and knowledge base (KB) construction.
Although a KB is essential to knowledge-based pre-fetching,
the resulting system needs to address several challenging design
issues. For instance, patient image reference heuristics reflect
not only pertinent medical and radiological knowledge, but also
individual practice styles and preferences. Thus, patient image
reference heuristics may vary with individual radiologists. Such
heuristics may dynamically evolve over time as a radiologist
accumulates additional knowledge, training, and clinical expe-
rience. In combination, inter- and intra-radiologist variations
make the construction, customization, and maintenance of a
patient image reference KB challenging. Furthermore, patient
image reference heuristics are highly data intensive, encom-
passing a sizable set of essential attributes (decision factors).
Such important data attributes as patient’s gender and condition
need to be extracted from various data sources, including the
Hospital Information System (HIS) and Radiology Information
System (RIS). Considerable data intensity makes knowledge
representation challenging. Data referenced by image reference
heuristics are stored in multiple database systems that are often
heterogeneous in schema representation, data model, and query
language. As a result, a patient image pre-fetching system
needs to access information from multiple heterogeneous and
autonomous data sources during its knowledge inferencing
process. Thus, an effective mechanism for coping with system
heterogeneity and autonomy is necessary and essential.

The organization of the remainder of this paper is as fol-
lows. Section II analyzes and discusses the requirements and
challenges unique to radiologists’ patient prior image retrievals
and pre-fetching support. Section III describes our conceptual
modeling of the target application, as well as the representa-
tion of image reference heuristics and their underlying semantic
knowledge, with appropriate illustrations. Section IV details our
overall system architecture, including description of specific
designs for the respective components of the proposed patient
image pre-fetching system. Section V highlights some inter-
esting preliminary system evaluation results and discusses their
implications for both radiologists’ examination reading and pa-
tient image management in healthcare organizations. A conclu-

sion is presented in Section VI, inclusive of a summary and
some future research directions.

II. A PPLICATION CHARACTERISTICS AND SYSTEM

DESIGN REQUIREMENTS

In a typical examination reading process, the reading radiolo-
gist applies his or her heuristic knowledge to determine the rele-
vance of each prior image of the same patient with respect to the
current examination. Such heuristics may vary with individual
radiologists and can dynamically evolve over time. Moreover,
patient prior image reference heuristics usually require such in-
formation as patient demographics and clinical history, exami-
nation information, and the requesting physician’s clinical ques-
tions, stored in various data repositories that include the HIS and
RIS. These characteristics represent challenging requirements
that need to be properly addressed in the design of a knowl-
edge-based patient image pre-fetching system.

Such a system needs to support efficient and effective cus-
tomization. Largely determined by pertinent medical and radio-
logical knowledge, patient image reference heuristics, to some
extent, is also dependent on individual practice styles and pref-
erences. For example, while a post-heart-transplant patient’s re-
covery and potential complications largely follow some defined
and documented physiological processes, radiologists neverthe-
less develop individual heuristics that determine their specific
image reference patterns. Conceivably, one radiologist may con-
sider a patient’s age an important factor and, when a patient be-
longs to a specific age group, will reference prior images taken
at a particular time interval, say, 24 h. Another radiologist may
consider the age factor irrelevant and use one interval across
different age groups. Thus, efficient and effective customiza-
tion of the patient prior image reference KB is essential for
adequate patient image reference support. In addition, radiolo-
gists’ patient image reference heuristics may subtly evolve over
time, necessitating continual knowledge updates or replenish-
ments. Inductive learning techniques appear to be an appropriate
approach to the needed KB customization and maintenance.
Specifically, an adequate learning system can automatically ex-
tract significant patient image reference knowledge from logged
examination-reading cases, including both input attributes (de-
cision factors) and actual image reference behaviors (decision
outcomes), and update the existing KB without intervention of
knowledge engineers or radiologists.

To be effective, an inductive learning technique needs to en-
compass the required tolerance for inconsistent decision out-
comes, immunity to missing data, and flexibility in managing
multiple decision outcomes. An effective learning system needs
to cope with inconsistent image references resulting from the
inter- and intra-radiologist variations already discussed. Values
of input attributes are not always guaranteed and may be incom-
plete. Some attributes are applicable to some, but not all exam-
ination reading cases. The value of a specific input attribute in
an examination reading case may be unavailable or difficult to
derive from the patient and examination information provided.
When interpreting a current examination, a reading radiologist
may reference patient images from multiple prior examinations.
In effect, the tendency to reference patient images from multiple
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prior examinations is prevalent and often observed in radiolo-
gists at work. Jointly, these challenging characteristics demand
an inductive learning technique capable of managing missing
or incomplete input data, as well as potentially inconsistent and
multiple decision outcomes [9], [10], [19].

From the system design perspective, an effective knowl-
edge-based patient image pre-fetching system needs to
encompass a seamless integration of knowledge inferencing
and data access. Radiologists’ patient image reference heuris-
tics are highly data intensive. For example, when following
up on a patient who has a benign tumor and is in satisfactory
condition, a reading radiologist may reference images from the
most recent prior examination, the last normal examination,
and all prior examinations taken between them at three-month
intervals. To identify which patient prior images are appropriate
to be pre-fetched for a scheduled current examination, the
patient image reference heuristics maintained by the KB need
to be utilized, and relevant information, including the reason for
examination for the current examination and patient condition,
needs to be extracted from the respective data repositories.
Hence, a knowledge-based patient image pre-fetching system
must be capable of supporting knowledge inferencing and data
access interaction. Furthermore, modeling of a radiologist’s
patient prior image reference knowledge is needed to properly
represent his or her problem-solving heuristics and the under-
lying data semantics.

Ideally, a knowledge-based patient image pre-fetching system
should shieldknowledge inferencing fromthe underlying system
heterogeneity and, at the same time, preserve the autonomy of
individual systems where data reside. During the knowledge in-
ferencing process, the pre-fetching system needs to access data
from multiple sources, which often are different in schema rep-
resentation, data model, or query language. Such heterogeneity
needs to be transparent to the knowledge inferencing. Autonomy
of local data sources is also an issue of concern. The implemen-
tation of a knowledge-based patient image pre-fetching system
should not change the database systems involved or their existing
applications. To achieve the desired heterogeneity transparency
and autonomy preservation, an integrated schema ensuring ade-
quate integrationof theschemataof therelateddatasourcesneeds
to be maintained and made available to the pre-fetching system.
Furthermore, during the knowledge inferencing process, the pre-
fetching system needs a mechanism for decomposing a data ac-
cess request into an equivalent set of sub-queries and translating
each of them into a language understandable to the respective au-
tonomous database system where the resulting sub-query will be
executed.

A desirable knowledge-based patient image pre-fetching
system needs to be extensible. Each underlying data source
is by no means static and may unilaterally change its schema
or implementation, including data model and query language,
in response to local operations requirements. Effects of such
changes in local data sources on the pre-fetching system should
be eliminated or minimized by making the management of the
discussed dynamics in data sources and local changes extensible.

In sum, a knowledge-based patient image pre-fetching system
supporting radiologists’ examination reading must address sev-
eral challenges, including representation and learning of image

reference heuristics, and management of data-intensive knowl-
edge inferencing. Together, these challenges and other applica-
tion requirements demand an extensible and maintainable ar-
chitecture design capable of effectively adapting to a dynamic
environment characterized by heterogeneous and autonomous
data source systems. The following section describes our con-
ceptual model for representing the complex heuristics and data
intensive knowledge of the target application.

III. CONCEPTUAL DATA/KNOWLEDGE MODELING

AND REPRESENTATION

Modeling of the data-intensive image reference heuristics of
radiologists requires proper representation of the heuristics as
well as the underlying semantic knowledge concerning struc-
tural and behavioral aspects of the relevant data. The heuris-
tics mimic the high-level problem-solving expertise of radiol-
ogists and are formulated using pertinent semantic knowledge.
As such, an effective conceptual model for the target application
needs to support the extrapolation of high-level heuristics using
low-level semantic knowledge and, at the same time, provide
the necessary access paths to relevant semantic knowledge.

We therefore developed a synthesized object-oriented entity-
relationship (SOOER) model [18], which is appropriate for rep-
resenting the required knowledge, including patient image ref-
erence heuristics and the underlying semantic knowledge. This
model synthesizes and extends relevant concepts from object-
oriented and entity-relationship modeling techniques, two dom-
inant and potentially complementary modeling paradigms. To
make the model more communicative, we retain the conven-
tional notations for the respective models when possible. In
a SOOER model, semantic knowledge is represented by ob-
ject classes, whereas heuristic knowledge is represented with
IF–THEN production rules encapsulated within pertinent object
classes. The following describes the modeling constructs essen-
tial for representing semantic and heuristic knowledge.

A. Constructs for Semantic Knowledge

Semantic knowledge describes the structural and behavioral
aspects of data, including entities, attributes, relationships, and
behaviors. The primary constructs of a SOOER model include
entity and relationship classes. Encapsulated in an entity or rela-
tionship class are attributes describing the properties of the class
and methods defining its behavior. The graphical notations to
represent semantic knowledge in a SOOER model are summa-
rized in Fig. 1.

Entity Class: An entity class is an abstraction of a group of
objects that share common characteristics (i.e., attributes), be-
havior (i.e., methods), and relationships with other objects. The
identity of an entity class is implemented using a subset of its
attributes.

Relationship Class:A relationship class is a structural
(or logical) connection between or among entity classes. In
a SOOER model, three types of relationship classes are sup-
ported: specialization, aggregation, and association. Each type
of relationship classes has distinctive purpose and semantics,
described as follows.
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Fig. 1. Graphical notations of a SOOER model constructs for representing semantic knowledge.

Specialization Relationship Class:A specialization relation-
ship class categorizes a general entity class (i.e., superclass) into
two or more specialized entity classes (i.e., subclasses). One es-
sential mechanism in specialization relationship classes is inher-
itance, through which a subclass inherits properties, including
attributes, methods, and relationships from its superclass.

Aggregation Relationship Class:An aggregation relation-
ship class can be described as an entity class that is a component
of another entity class (assembly entity class); i.e., it shares
an a-part-of relationship. An aggregation relationship class
usually encompasses theexistence dependencybetween the
assembly entity class and its component entity classes. This
dependency dictates deletions of the component objects when
the object in which they participate is removed from the as-
sembly entity class. Another important property of aggregation
relationship classes isoperation propagation, enforcing an
operation performed on an assembly object to be propagated
to all of its component objects. Participation of a component
entity class in an aggregation relationship is jointly described
by minimal and maximal cardinalities. Minimal cardinality
specifies the minimum number of objects from a component
class that must take part in an assembly object (contained in the
assembly entity class). Similarly, maximal cardinality defines
the upper bound of such participation.

Association Relationship Class:An association relationship
class can be unary, binary, orary, where otherwise indepen-
dent entity classes are related to one another. Each entity class
participating in an association relationship class assumes a dis-
tinctive role in the relationship. The role name can be omitted in
situations where the role of a participating entity class is unam-
biguous. Similarly to aggregation relationship classes, partici-
pation of an entity class in an association relationship class is
confined by minimal and maximal cardinalities. Minimal cardi-

nality specifies the minimum number of objects from an associ-
ated entity class that must participate in association relationship
instances. On the other hand, maximal cardinality defines the
participation ceiling, restricting the maximum number of ob-
jects from the entity class that are allowed to take part in asso-
ciation relationship instances.

Attribute: An attribute describes a property of a class, en-
tity, or relationship. An attribute can be atomic or composite.
A composite attribute can be further decomposed into a set of
sub-attributes, each of which is atomic or composite. An at-
tribute can be single-valued or multivalued. A single-valued at-
tribute can assume at most one value for the attribute, whereas
a multivalued attribute can take multiple values simultaneously.
Attributes uniquely identify individual objects of an entity or
relationship class. Specifically, one or a combination of several
attributes of a class serves as a unique identifier for individual in-
stances of the class when the attribute value or values are unique
across all the objects contained in the class.

Method: Collectively, methods describe the behavior of a
class and, consequently, define the behavior of all the objects
in the class. A method can be applied at two different levels, ob-
ject and class, and, therefore, can be classified accordingly. An
object method applies to individual objects of a class, whereas
a class method is applied for the class as a whole.

The following illustrates partial modeling of the target
application, as a result of integrating the schemata of multiple
relevant data sources, including the HIS, RIS, and picture
archiving and communication system (PACS). The specific
semantic knowledge needed by a knowledge-based patient
image pre-fetching system includes data about the patient,
examination, image, anatomical portion, and modality. A
patient may have many prior radiological examinations, each
of which belongs to one and only one patient. A patient has
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Fig. 2. Conceptual modeling of semantic knowledge in a knowledge-based patient image pre-fetching system.

a unique patient identification (ID), name, gender, date of
birth, and patient source (e.g., intensive-care unit or outpatient
clinics). A method is needed to calculate patient age and
can be defined within patient entity class. An examination
usually contains such information such as examination ID,
completion time, reason-for-examination, procedure code, and
diagnosis report. An examination consists of one or multiple
images, each of which has a specific anatomical portion (part)
examined and is taken using a particular imaging modality.
Based on their reasons, examinations can be classified into
different subclasses that include pre-operation, post-operation,
and injuries. Fig. 2 graphically depicts conceptual modeling of
the described semantic knowledge in SOOER model.

B. Constructs for Heuristic Knowledge

Due to their simplicity, communicability, and expressiveness,
IF–THEN production rules were chosen to represent heuristic
knowledge. Each class has a set of rules that describe the specific
heuristics pertaining to the class. These rules are constructed
with relevant semantic knowledge and, therefore, require the es-
tablishment of a reference mechanism in the schema represented
with a SOOER model.

Definition: Instance Variable:An instance variable provides
a means of referencing an object in a class, entity, or relation-
ship. Instance variablethis is a special instance variable, de-
noting the particular object that is currently being processed.

Definition: Path Expression:Let be an instance variable
that references an object in the class. A path expression

, where denotes the origin of the path and
is the terminal of the path, refers to a path in a SOOER schema
and satisfies the following constraints for each .

1) If is an attribute, then is the terminal of the path or
is a sub-attribute of .

2) If is a method, then is the terminal of the path.
3) If is an entity class, then there must exist that is

either an attribute of , a method of , an entity class (if
there exists only one relationship betweenand ),
or a relationship in which participates.

4) If is an association relationship class, then there must
exist that is an attribute of , a method of , or
an entity class participating in .

5) If is a specialization or aggregation relationship class,
then there must exist that is an entity class partici-
pating in .

Jointly, these constraints suggest the following.

1) A path starts from an instance variable.
2) The terminal of a path is either an attribute or a method,

but cannot be a class, entity, or relationship.
3) When the terminal of a path is a method, the path may

return a single value or a set of values. Similarly, a path
may return a single value or a set of values when it is
terminated with an attribute and the specific number of
values returned depends on the maximal cardinality of
the respective entity classes, as well as the multiplicity
of the attributes on the path. If the maximal cardinality
of concern is one and all of the attributes involved in the
path are single valued, the path will return a single value;
otherwise it will return a set of values.

In effect, the path expression is an ab-
breviated form in which the role name of each entity class
participating in the subsequent association relationship class
is omitted. To fully express an association relationship class
on a path, the preceding and subsequent entity classes of the
association relationship need to be specified with the respective
role names, singling out how the path traverses through this
association relationship class. That is, if is a
part of the path where is an association relationship class
and and are entity classes, the full expression
becomes , where the preceding
entity class takes the role and the subsequent
entity class takes the role . However, role names
need not be signified in a relationship class where all the
participating entity classes are distinct.

Definition: Function Expression:Path expressions can be
manipulated by proper functions to derive aggregate informa-
tion of interest. Each function follows a particular format, func-
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tion-name(path). Examples of common functions include
that returns the minimal value of a value set, that returns
the maximal value of a value set, that returns the summa-
tion of a numeric value set, that returns the average of a
numeric value set, that returns the number of elements
in a set, and first- that returns the first elements in a set.

Based on the discussed reference mechanism, heuristics for-
mulated with intensive data can be formally defined using the
following language.

rule := IF path rel-op [constantconstant-setpath]
(AND path rel-op [constantconstant-setpath] )

THEN [var-assignmentdata-retrieval]
(AND [var-assignment data-retrieval])

var-assignment := var = [constantconstant-set]
data-retrieval :=

SELECT [path func-exp] (, [path func-exp])
FROM class-name instance-variable

(, class-name instance-variable)
WHERE path rel-op [constantconstant-setpath]

(AND path rel-op [constantconstant-setpath])
ORDER BY path [ASC DESC] (, path [ASC

DESC])
rel-op :=
constant-set := {constant(, constant)}
Annotations:

:= is defined as
[a b] denotes either a or b
( ) denotes the enclosed item repeats one or more times

denotes the enclosed item is optional
Comments:

func-exp: the function expression on a path
var: an intermediary variable derived during the knowledge
inferencing
ASC or DESC: ascending or descending order

In the proposed representation, theIF clause specifies the con-
dition to be evaluated and theTHEN clause defines the action
to be performed when the associated condition is satisfied. The
THEN clause can be used to represent the derivation of an inter-
mediary result, as well as a data retrieval operation expressed
in structural query language (SQL) with an appropriate path ex-
pression extension. In the latter case, theSELECTsub-clause in
the THEN clause lists the data to be retrieved, theFROM sub-
clause specifies the data source(s), theWHEREsub-clause qual-
ifies the data to be retrieved, and theORDER BY sub-clause de-
termines the presentation sequence of the retrieved data.

Example 1: The following hypothetical example illustrates
the proposed heuristic knowledge representation. A radiologist
scheduled to read images from a radiological examination of a
seven-year-old patient (or younger) needs to compare current
images with those from all prior examinations of the same pa-
tient. Based on the SOOER schema shown in Fig. 2, this image
reference heuristic can be encapsulated in examination entity
class and represented the following.

IF this.Patient.Age() 7
THEN SELECT e.Exam-ID

FROM Examination e
WHERE e.Patient.Patient-ID = this.Patient.Patient-ID

Example 2: To continue with our illustration, we further as-
sume that the radiologist has the following additional image
reference heuristics specifically related to examinations taken
to follow up patient recovery from a surgery: if the current ex-
amination is for “urgent” post-operation follow-up, retrieve pa-
tient’s images from the two most recent prior examinations in
which anatomical portion examined and imaging modality used
were identical to those of the current examination. As described
in Fig. 2, this heuristic is encapsulated in the entity class named
“post-operation examination” and can be represented as fol-
lows.

IF this.Type = “Urgent”
THEN SELECT First-2(e.Exam-ID)

FROM Examination e
WHERE e.Patient.Patient-ID = this.Patient.Patient-ID
AND

e.Anatomical-Portion.Name = this.Anatomical-Portion
AND

e.Modality.Name = this.Modality.Name
ORDER BY e.Completion-Date DESC

IV. A RCHITECTURAL DESIGN

We designed and developed a knowledge-based patient
image pre-fetching system based on the requirements described
in Section II. As shown in Fig. 3, the system retrieves relevant
information from multiple distributed and heterogeneous
database systems and performs data-intensive knowledge de-
duction essential to supporting radiologists’ patient prior image
reference needs. To address the challenges of heterogeneity,
dynamics, and local autonomy preservation of the underlying
database systems, we adopted a client–mediator–server system
architecture, in which the knowledge-based patient image
pre-fetching system is the client and the underlying database
systems assume the role of servers. A mediator creates a desir-
able appearance of single data source and presents a uniform
interface to the client, shielding the underlying data source dis-
tribution and heterogeneity from the patient image pre-fetching
system and, at the same time, resulting in desired transparency
and necessary local autonomy preservation. The adopted
three-tier architecture also provides desirable independence to
the patient image pre-fetching system, making it immune, or
at least less susceptible to problems resulting from data source
dynamics. The following describes our system architecture and
the design of the mediator and the knowledge-based patient
image pre-fetching system, as shown in Fig. 3.

A. Mediator

The mediator provides distribution and heterogeneity trans-
parency to the knowledge-based patient image pre-fetching
system by maintaining the semantic knowledge (i.e., global
database schema) through integrating schemata of the partic-
ipating local sources. We used a SOOER model to represent
the semantic knowledge (stored in a catalogue) and the
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Fig. 3. Architecture of mediator and knowledge-based patient image pre-fetching system.

problem-solving heuristic knowledge (maintained in a knowl-
edge repository). The representation of choice facilitates the
construction of radiologists’ patient image reference heuristics
without worrying about the representations and retrieval oper-
ations of the underlying data sources. During the subsequent
knowledge inferencing session performed by the pre-fetching
system, the mediator uses the semantic knowledge to formulate
a query submission and expresses it in a SQL-like language
with a path expression extension. At this time, a query decom-
poser/optimizer decomposes a submitted query into a set of
sub-queries intended for the respective data sources, generates
and evaluates alternative execution strategies, and selects the
most efficient one [3], [6], [14]. The resulting sub-queries are
then submitted to a query translator, which translates each
sub-query into a language understandable by the target infor-
mation system or database system where the sub-query will
be executed [14]. Furthermore, a global transaction manager
communicates with the respective local transaction managers
to oversee and maintain the necessary consistency during the
execution of the set of sub-queries over different participating
systems and databases [4], [12], [13].

The catalogue is essential to the operations of the mediator, as
well as the knowledge-based patient image pre-fetching system.
Typical information maintained by the catalogue includes the
semantic knowledge (i.e., global database schema), local data-
base schemata, mappings between the global and the local data-
base schema, and important statistics on local databases. For
example, the query decomposer/optimizer needs relevant infor-
mation about the global database schema and its mappings with
related local database schemata to perform query decomposi-
tion. Moreover, the query decomposer/optimizer depends on

local database statistics in selecting the most efficient execution
strategy [3], [6], [14]. At the same time, the knowledge-based
patient image pre-fetching system needs semantic knowledge
to perform the necessary reasoning about radiologists’ patient
prior image reference heuristics, as discussed in the following
subsection.

B. Knowledge-Based Patient Image Pre-Fetching System

To facilitate KB customization and maintenance, the knowl-
edge- based patient image pre-fetching system needs to mon-
itor and adapt to radiologists’ patient image reference behaviors
proactively. Furthermore, the pre-fetching system also needs
to monitor the accuracy of its image reference heuristics con-
tinuously because radiologists’ image needs may evolve over
time. In situations where the existing heuristics cannot effec-
tively support radiologists’ examination reading tasks, the pre-
fetching system has to relearn and induce emerging or additional
heuristics from the newly observed image reference patterns. In
addition, for a scheduled radiological examination reading ses-
sion, the pre-fetching system must have the deductive capability
to select and deliver potentially useful patient prior images that
are based on the current heuristics of the system. The following
describes the essential capabilities of the pre-fetching system
together with their respective enabling system components, as
depicted in Fig. 3.

Learning Capability: Learning or relearning is activated
when the pre-fetching system fails to support an individual
radiologist’s image needs effectively. The desired learning
capability of our pre-fetching system is jointly provided by
several system components.
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Case Repository:The case repository maintains a collection
of historical cases, each of which consists of the radiological
examination read and the associated patient prior image refer-
ence pattern of the reading radiologist. Using the case repos-
itory, the learning system induces individual radiologists’ pa-
tient prior image reference heuristics. Annotated by its reading
radiologist, a historical case contained in the repository is com-
prised of two parts: decision factors instrumental in explaining
and predicting the radiologist’s prior image reference pattern,
and decision outcomes specifying the actual patient prior im-
ages referenced by the radiologist. Collecting historical cases
is accomplished by collaboration between the inference engine
and access monitor agent. When performing knowledge infer-
encing for a newly scheduled examination, the inference engine
processes the scheduled examination as a case subsequently de-
posited in the case repository. As the reading of the scheduled
examination proceeds, the access monitor agent monitors the
reading radiologist’s actual patient prior image reference be-
havior that is documented as the decision outcome for this par-
ticular examination reading task (case) to be stored in the case
repository.

Learning System:The learning system induces a radiolo-
gist’s patient prior image reference heuristics from his or her
image reference patterns documented in the case repository.
That is, the learning system uses individual historical cases to
perform desirable generalization of the respective documented
decision factors and outcomes. Three different approaches
from the inductive learning paradigm have been adopted:
backpropagation neural network [10], [17], ID3-based multi-
decision-tree induction (MDTI) [9], [15], [16], and CN2-based
multidecision-outcome induction (CN2-MD) [1], [2], [19].
These learning techniques were adopted primarily because of
their capabilities in managing the challenging characteristics of
radiologists’ image references, including incomplete decision
factors, as well as multiple and potentially inconsistent decision
outcomes. Results from our previously conducted experimental
evaluations suggested that the MDTI and CN2-MD techniques
may outperform the backpropagation neural network in accu-
racy (as measured by precision and/or recall rates), learning,
and execution efficiency, and, most importantly, explanatory
utility [9], [19]. Due to their superiority in these essential
learning evaluation dimensions, both MDTI and CN2-MD
techniques appear to be appropriate learning algorithms for the
learning system. Learning evaluation criteria and comparative
results of these two candidate techniques will be discussed in
the following section. Interested readers are referred to [9] and
[19] for detailed discussion of their theoretical foundations,
algorithms, and comparative evaluation results.

A learning system learning session is triggered by the per-
formance monitor agent when it detects unsatisfactory image
selection and pre-fetching by the pre-fetching system that fails
to support individual radiologists’ examination reading tasks.
In a learning session, the cases read by an individual radiol-
ogist are retrieved from the case repository and randomly as-
signed for training or testing purposes. Using the documented
decision factors and corresponding decision outcomes of the
training cases, the learning system constructs multiple decision
trees or multiple sets of decision rules, depending on the spe-

cific learning technique applied (i.e., MDTI or CN2-MD). The
resulting learning outcomes then are validated using the testing
cases. However, the KB pertinent to a specific radiologist is up-
dated only when the validated learning results are significantly
superior to those achieved by the existing heuristics.

Knowledge Transformer:The knowledge induced by the
learning system is represented using either multiple decision
trees or multiple sets of decision rules, neither of which is
compatible with the SOOER-based representation of radiol-
ogists’ heuristic knowledge. Thus, knowledge representation
transformation becomes necessary and is performed by the
knowledge transformer, which transforms the knowledge from
the representation scheme used by the learning system to
the appropriate SOOER model representation. Separation of
knowledge transformation from learning provides desirable
flexibility in the development of the learning system, which, as
a result, is not confined by the representation scheme adopted
by the underlying KBs. In addition, this separation also allows
the learning system not to be concerned with data operation
details when representing learning results.

The complexity of a knowledge transformation algorithm
greatly depends on the similarity between the source and target
representation. Knowledge constructed by MDTI or CN2-MD
can easily be converted to predicate-based production rules,
similarly to the heuristic rule representation used in a SOOER
model. Thus, the knowledge transformation is straightforward.
Based on the semantic knowledge maintained in the mediator’s
catalogue, knowledge transformation requires modifying each
predicate in theIF clause to a path expression, changing the
THEN clause to correspondingSELECT–FROM–WHERE–ORDER

BY clauses with appropriate path expressions in each sub-clause,
and determining the entity class in which each transformed rule
should be encapsulated.

Knowledge Repository:The knowledge repository main-
tains a set of KBs, each of which is tailored to a particular
individual radiologist and represents his or her patient prior
image reference heuristics. Upon completing transformation
of the learning results constructed by the learning system into
the heuristic rule representation used in a SOOER model, the
resulting heuristics are deposited into the KB pertaining to the
target radiologist.

Monitoring Capability: The pre-fetching system monitors
radiologists’ image reference behaviors and its pre-fetching ac-
curacy. The monitoring capabilities are provided jointly by the
access monitor agent and performance monitor agent in the fol-
lowing manner.

Access Monitor Agent:The access monitor agent monitors
a radiologist’s patient prior image reference behavior within an
examination reading task. The actual image reference pattern
is stored in the case repository to support future learning. The
specific patient prior images referenced by the reading radiol-
ogist can reside in local or remote image archives (i.e., PACS).
Local retrievals refer to those images needed by the reading ra-
diologist that have been correctly identified and selected by the
pre-fetching system and transmitted to local archives before the
examination reading takes place. On the other hand, remote re-
trievals are patient images retrieved by the radiologist from re-
mote archives as the examination reading proceeds. Thus, re-
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mote retrievals are necessitated by failures of the pre-fetching
system to support radiologists’ patient prior image reference
needs effectively. Both local and remote retrievals are necessary
for the performance monitor agent’s decision making when ini-
tiating a relearning session to update image reference heuristics.

Performance Monitor Agent:The performance monitor
agent keeps track of the accuracy of the pre-fetching system
with respect to the actual image reference behavior of an
individual radiologist. Pre-fetching accuracy is measured by
both recall and precision rates. The recall rate measures the
effectiveness of the induced image reference heuristics and is
defined as “the percentage of the patient prior examinations
referenced by the reading radiologist that have been correctly
suggested and pre-fetched by the pre-fetching system.” On the
other hand, the precision rate is concerned with the efficiency
of the induced image reference heuristics and is defined as
“the percentage of patient prior examinations suggested by the
pre-fetching system that are actually referenced by the reading
radiologist during the examination reading.”

Relearning becomes necessary when the average accuracy of
the pre-fetching system in supporting an individual radiologist’s
examination reading is lower than a pre-specified threshold, as
measured by the recall rate, precision rate, or both. When this
happens, the performance monitor agent activates the learning
system, which, in turn, performs relearning of prior image ref-
erence heuristics for the particular radiologist.

Deduction Capability: The knowledge-based patient image
pre-fetching system has a built-in deduction capability to deter-
mine and pre-fetch the patient prior images presumably needed
by a radiologist during reading of a newly scheduled radiolog-
ical examination. The following discusses the important system
components that jointly provide the pre-fetching system’s de-
duction capability.

Inference Engine:The inference engine performs forward-
chaining knowledge inferencing to identify the particular patient
prior images to be pre-fetched for a newly scheduled examina-
tion. Depending on the reading radiologist, a specific KB from
the knowledge repository will be applied for image pre-fetching.
During a knowledge inferencing session, theIF clauses of the
heuristic rules contained in the chosen KB need to be instan-
tiated from local databases or the inference engine’s working
memory to decide whether or not a rule has been satisfied. When
involved in rule instantiation, a local database receives a query
(queries) from the inference engine through the mediator. For
example, to determine whether or not the following rule can
be applied on the newly scheduled examination with Exam-ID
being “1123,”

IF this.Patient.Age() < 7
THEN SELECT e.Exam-ID

FROM Examination e
WHERE e.Patient.Patient-ID = this.Patient.Patient-ID

The inference engine formulates a query based on the predi-
cate of theIF clause to obtain the patient’s age and submits it to
the appropriate local database system(s) through the mediator:

SELECT m.Patient.Age()
FROM Examination m
WHERE m.Exam-ID = “1123”

When theIF clause of a rule is satisfied by the query result(s),
the inference engine subsequently executes the corresponding
THEN clause of the rule. Depending on the specificTHEN clause,
the inference engine may simply update its working memory
with the query result(s) or submit to the mediator data retrieval
request(s). In the latter case, the data retrieval request(s) is the
same as theTHEN clause, except that all of the instance vari-
ables “this” need to be replaced by a specific data object in data
sources, according to the semantic knowledge maintained in the
catalogue. To continue with our example, when the above rule
is satisfied, the corresponding data retrieval submitted by the in-
ference engine is as follows:

SELECT e.Exam-ID
FROM Examination e, Examination m
WHERE m.Exam-ID = “1123” AND

e.Patient.Patient-ID = m.Patient.Patient-ID

Once the inference engine completes the knowledge infer-
encing session for a newly scheduled examination and the medi-
ator returns the query results in response to the fired rules, the in-
ference engine identifies the specific patient prior examinations
presumably relevant to the reading radiologist’s reading of the
examination under consideration. Information about the iden-
tified patient prior examinations is then passed to pre-fetcher,
which literally executes the actual image pre-fetching.

Pre-Fetcher: The pre-fetcher receives from the inference
engine the information on the relevant patient prior examina-
tions, retrieves the corresponding images from the archives
(i.e., PACS), and delivers these images to the local archive of
the designated reading site. The pre-fetcher submits queries
to the mediator, requesting the images from some identified
patient prior examinations. Furthermore, when the local archive
has insufficient space to accommodate all pre-fetched images,
the pre-fetcher needs to make image replacement decisions to
minimize “image faults” that would unnecessarily prolong an
examination reading.

Prototype mediator and knowledge-based patient image
pre-fetching systems have been implemented. Sybase, a
relational database management system (DBMS), is used to
develop the catalogue, knowledge repository, case repository,
and local archive. The software modules of both the mediator
and knowledge-based patient image pre-fetching system were
developed in C/C , except for the MDTI technique, which
was implemented in Pascal. On the local data source side,
experiments with the HIS, RIS, and PACS have been under-
taken using Sybase and Versant, an object-oriented DBMS.
The implementation will continue to include other DBMS’s
employed by different local data sources. Accordingly, the
query translator and global transaction manager will need to be
extended to manage the additional heterogeneity.
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V. SYSTEM EVALUATION

The fundamental objective of the developed patient image
pre-fetching system is to effectively adapt to and accurately sup-
port radiologists’ image reference needs. In this connection, pre-
dictive utility is of critical importance in evaluating the system’s
effectiveness. Image pre-fetching accuracy, in turn, may affect a
reading radiologist’s decision making in his or her examination
reading. Thus, impacts of the pre-fetching system on radiolo-
gists’ examination reading are also an essential evaluation di-
mension. Pragmatically, the system has been developed to sup-
port radiologists’ examination reading thus as to increase ef-
ficiency, enhance service quality, and improve work satisfac-
tion. The following discusses some encouraging results from
our preliminary evaluative studies conducted at the University
Medical Center (UMC), University of Arizona, Tucson, a mod-
erate-sized teaching/tertiary hospital that serves the population
of southern Arizona. Choice of the evaluation site was made
primarily based on accessibility and considerable needs for ef-
fective patient image pre-fetching support. Accordingly, we in-
cluded the current patient image pre-fetching practice at the
UMC to provide a desired benchmark again in which the per-
formance achieved by the respective learning techniques can be
evaluated.

A. Evaluation of Learning Accuracy

A study was conducted to evaluate the learning accuracy
of the knowledge-based patient image pre-fetching system’s
learning system implemented using either the MDTI or the
CN2-MD technique. Two hundred historical cases, radiological
examinations for which clinical reading had been completed
by radiologists at the UMC, were included in this study. These
cases covered several radiology subspecialty areas, including
chest X-ray, computed tomography/magnetic resonance
imaging (CT/MRI) body, CT/MRI neural, and musculoskeletal
X-ray.

Each case included was stored in the case repository and was
jointly described by 14 decision factors identified by previous
studies [9], [10], [19]. These decision factors can be classified
into three broad categories: current-examination related (e.g.,
examined anatomical portion, modality used and reason for ex-
amination), patient related (e.g., patient’s gender, clinical status,
and source), and disease/abnormality related (e.g., disease/ab-
normality type, nature, and phase). The decision outcomes for
each case were the reading radiologist’s actual image reference
behavior monitored by the access monitor agent.

Table I summarizes the aggregate accuracy of several pro-
posed techniques for the learning system (more detailed empir-
ical evaluations can be found in [9] and [19]). The accuracy of
the UMC current pre-fetching practice and that of the patient
prior image reference heuristics acquired through an intensive
knowledge acquisition process (knowledge-engineer-driven ap-
proach) were used to provide desirable benchmarks. As shown,
the recall rates of both MDTI and CN2-MD techniques were
significantly higher than that of the UMC current pre-fetching
practice, which, nevertheless, was superior in precision rate,
showing a 24.42% or 5.37% advance. The observed low re-
call and high precision rate combination may have resulted par-

TABLE I
COMPARATIVE AGGREGATEACCURACY OF PATIENT PRIOR IMAGE

REFERENCEHEURISTICS

*: Average number of prior examinations referenced by radiologists is 2.33.
aA pre-pruning approach was taken with the MDTI technique to manage the noise in

both decision factors and outcomes. The specific method adopted was critical value pruning
(CVP) with which the expansion of a decision tree halts at a node where the ratio of the
dominant class is greater than a prespecified threshold value (i.e., the critical value) [9]. In
this experiment, the critical value was set to 0.55.

tially from an under-provision tendency of the UMC practice.
On average, a radiologist needed to reference 2.33 prior exami-
nations in each examination reading, but the current UMC prac-
tice pre-fetched only a 0.87 examination. On the other hand,
MDTI and CN2-MD, on the average, delivered 2.83 and 1.84
prior examinations, respectively, close to the average number of
prior examinations referenced by radiologists.

The recall and precision rates achieved by the knowledge-en-
gineer-driven approaches were higher than that accomplished
by the MDTI technique. On the other hand, the CN2-MD tech-
nique appeared to outperform the knowledge-engineer-driven
approach in the precision rate, but had a lower recall rate. The
better performance yielded by the knowledge-engineer-driven
approach can, in part, be explained by its inherent white-box na-
ture. Through interactions with radiologists, it can capture rich
relationships between decision factors and outcomes. In con-
trast, as inductive learning techniques, MDTI, or CN2-MD may
suffer from their data-driven nature. That is, a small data set, to-
gether with its inherent inductive bias, may put either technique
at a distinct disadvantage. However, with a relatively small data
set (i.e., 200 cases), the respective accuracy of the MDTI and
CN2-MD techniques were largely reasonable, as manifested by
the respective 79.65% and 66.19% recall rates and 66.64% and
85.33% precision rates. The resulting learning accuracy of both
techniques is expected to improve as the size of data for learning
grows. Thus, both techniques clearly demonstrated their appli-
cability and desirability for the learning of radiologists’ patient
prior image reference heuristics.

B. Evaluation of Effects on Decision Making

If patient prior images are to support radiologists’ examina-
tion reading, the pre-fetching system’s impacts on radiologists’
decision making need to be evaluated. Toward this end, we per-
formed a field experiment investigating such impacts, including
those on decision time requirements (i.e., examination reading
time), decision quality (i.e., accuracy in diagnosis), and satisfac-
tion with the decision making process (i.e., examination reading
process) [5].

A nested-within experimental design was used in this study
using the UMC’s current pre-fetching practice as a bench-
mark. The KBs acquired by the knowledge-engineer-driven
approach were adopted, primarily because of their superiority
in pre-fetching accuracy over those currently achieved by
KB’s induced by either MDTI or CN2-MD, as measured
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TABLE II
EXPERIMENTAL RESULTS—MUSCULOSKELETAL EXAMINATIONS

b (Rate of improvement)
UMC KB UMC for examination reading time.
KB UMC UMC for objective report quality score and satisfaction with examination reading.

cBased on a ten-point Likert scale with “1" being unsatisfied and “10” being very satisfied.

TABLE III
EXPERIMENTAL RESULTS—CHEST EXAMINATIONS

by a combination of the recall and precision rates achieved.
Two radiology sub-specialties were investigated: chest and
musculoskeletal diagnostic radiology. These sub-specialties
were chosen because they were the most common examination
types at the UMC. Jointly, they accounted for approximately
70% of the radiological examinations performed there at the
time of the study. In both sub-specialties, radiologist subjects
were classified into three experience levels: senior, junior, and
resident. The decision to control for clinical experience levels
was made based on results from some previously conducted
studies, suggesting that clinical experience differences may
contribute to variations in individual radiologists’ patient prior
image reference needs [5]. Specifically, senior radiologists
were those who had more than ten years of post-residency
practice in a specified (or certified) radiology subspecialty area,
whereas junior radiologists had 3–7 years of post-residency
practice.

Two experimental sessions were conducted, one for each in-
vestigated subspecialty. Randomly drawn from a previously es-
tablished historical case pool consisting of examinations col-
lected from clinical settings, eight cases were included in each
experimental session. Each radiologist subject performed read-

ings on all of the included cases in the same way they would
have done for clinical purposes. At the end of each examination
reading, each subject was asked to produce a verbal report for a
subsequent report quality analysis. In addition, the total amount
of time a subject spent reading an examination was also doc-
umented. Also, when completing an examination, each subject
was asked to assess his or her satisfaction with the examina-
tion reading process. To analyze the diagnosis accuracy of indi-
vidual radiologist subjects, a gold-standard report was produced
for each included examination, using a majority-based method
for consolidating individual examination reports rendered by a
review panel consisting of three radiologists who did not par-
ticipate in the experiments as subjects. These reports were then
used to evaluate the quality of diagnosis reports generated by
subjects.

Tables II and III summarize experimental results obtained
from the musculoskeletal and chest examinations, respectively.
Overall, it appeared that use of the pre-fetching system to sup-
port radiologists’ examination reading may have resulted in in-
creased reading efficiency, enhanced service quality, and im-
proved satisfaction when compared with the UMC’s current
practice. However, the effects seemed stronger with the mus-
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culo-skeletal than with the chest examinations. The differential
effects may, in part, have resulted from the relative complexity
of interpreting chest versus musculo-skeletal images. As sev-
eral radiologists commented, the radiographic signs on a mus-
culo-skeletal image may be more subtle and complex than those
commonly detected on a chest image. Consequently, increased
complexity or difficulty may have made radiologists increas-
ingly dependent on prior image pre-fetching support in their
examination reading. In this connection, effects of the knowl-
edge-based patient image pre-fetching system may appear to
have been stronger with musculo-skeletal than with chest ex-
aminations.

Judging from the experimental results, use of the knowledge-
based patient image pre-fetching system would result in desired
improvements in radiologists’ efficiency, service quality, and
satisfaction. On average, the knowledge-based patient image
pre-fetching system might be able to reduce radiologists’ exam-
ination reading time for musculo-skeletal examinations by ap-
proximately 20%, while its effect on chest examinations might
be experience dependent. Use of the knowledge-based patient
image pre-fetching system was also shown to be likely to re-
sult in better examination report quality, leading to 35% and
15% improvement for the musculo-skeletal and chest exam-
inations, respectively. Furthermore, radiologists may become
better satisfied with their examination readings supported by the
pre-fetching system than by the UMC’s pre-fetching practice.
A 60% improvement for musculo-skeletal examinations and a
30% improvement for chest examinations were observed.

VI. CONCLUSIONS ANDFUTURE RESEARCH

When performing primary reading on a newly taken radio-
logical examination, a radiologist often needs to reference rele-
vant prior images of the same patient for confirmation or com-
parison purposes. Support of such image references is of clin-
ical importance and may have significant effects on radiologists’
examination reading efficiency, service quality, and work satis-
faction. To support such image reference needs effectively, we
proposed and developed a knowledge-based patient image pre-
fetching system. A conceptual model, i.e., the SOOER model,
was used to represent radiologists’ highly heuristics-oriented
and data-intensive prior image reference heuristics. We detailed
the system architecture and design for a knowledge-based pa-
tient image pre-fetching system. This architecture, based on a
three-tier client–mediator–server design, is capable of coping
with a dynamic environment characterized by distributed, het-
erogeneous, and highly autonomous database systems. To adapt
to changes in radiologists’ patient prior image reference heuris-
tics, MDTI and CN2-MD learning techniques were developed
and empirically evaluated. Effects of the pre-fetching system
were also examined. Preliminary results showed both that the
knowledge-based patient image pre-fetching system more accu-
rately supported radiologists’ prior image needs than the prac-
tice currently adopted by the study site and that radiologists may
become more efficient, consultatively effective, and better satis-
fied professionals when supported by the knowledge-based pa-
tient image pre-fetching system rather than by the study site’s
current practice.

Continued theoretical and applied investigations along
this line of research are necessary. Several specific topics
or issues demand our immediate research attention. For in-
stance, the identification of related or similar applications
to expand our research results is desirable. Case selection
for clinical education and training appears to be a promising
potential application. Intelligent Intranet-based applications
that distribute information to users within an organization
offer another interesting future research direction. Additional
evaluations of MDTI and CN2-MD learning techniques are
also important. Large-scale case collection and evaluation
studies in different radiology environments are appealing.
Performing a longitudinal empirical evaluation of the effects
of the knowledge-based patient image pre-fetching system on
radiologists’ examination reading efficiency, diagnosis quality,
and work satisfaction is essential as well. In addition, extending
the proposed architecture to incorporate advanced functionality,
including image prioritization, is also interesting and would
have considerable theoretical and pragmatic impacts.
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