
Journal of Artificial Intelligence Research 17 (2002) 229-264 Submitted 12/01; published 9/02

A Knowledge Compilation Map

Adnan Darwiche darwiche@cs.ucla.edu

Computer Science Department

University of California, Los Angeles

Los Angeles, CA 90095, USA

Pierre Marquis marquis@cril.univ-artois.fr

Université d’Artois

F-62307, Lens Cedex, France

Abstract
We propose a perspective on knowledge compilation which calls for analyzing different com-

pilation approaches according to two key dimensions: the succinctness of the target compilation
language, and the class of queries and transformations that the language supports in polytime.
We then provide a knowledge compilation map, which analyzes a large number of existing tar-
get compilation languages according to their succinctness and their polytime transformations and
queries. We argue that such analysis is necessary for placing new compilation approaches within
the context of existing ones. We also go beyond classical, flat target compilation languages based
on CNF and DNF, and consider a richer, nested class based on directed acyclic graphs (such as
OBDDs), which we show to include a relatively large number of target compilation languages.

1. Introduction

Knowledge compilation has emerged recently as a key direction of research for dealing with the
computational intractability of general propositional reasoning (Darwiche, 1999; Cadoli & Donini,
1997; Boufkhad, Grégoire, Marquis, Mazure, & Säıs, 1997; Khardon & Roth, 1997; Selman &
Kautz, 1996; Schrag, 1996; Marquis, 1995; del Val, 1994; Dechter & Rish, 1994; Reiter & de
Kleer, 1987). According to this direction, a propositional theory is compiled off-line into a target
language, which is then used on-line to answer a large number of queries in polytime. The key
motivation behind knowledge compilation is to push as much of the computational overhead into
the off-line phase, which is amortized over all on-line queries. But knowledge compilation can serve
other important purposes as well. For example, target compilation languages and their associated
algorithms can be very simple, allowing one to develop on-line reasoning systems for simple software
and hardware platforms. Moreover, the simplicity of algorithms that operate on compiled languages
help in streamlining the effort of algorithmic design into a single task: that of generating the smallest
compiled representations possible, as that turns out to be the main computational bottleneck in
compilation approaches.

There are three key aspects of any knowledge compilation approach: the succinctness of the
target language into which the propositional theory is compiled; the class of queries that can be
answered in polytime based on the compiled representation; and the class of transformations that
can be applied to the representation in polytime. The AI literature has thus far focused mostly on
target compilation languages which are variations on DNF and CNF formulas, such as Horn theories
and prime implicates. Moreover, it has focused mostly on clausal entailment queries, with very little
discussion of tractable transformations on compiled theories.

The goal of this paper is to provide a broad perspective on knowledge compilation by considering
a relatively large number of target compilation languages and analyzing them according to their
succinctness and the class of queries/transformations that they admit in polytime.

c©2002 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

Darwiche & Marquis

Instead of focusing on classical, flat target compilation languages based on CNF and DNF, we
consider a richer, nested class based on representing propositional sentences using directed acyclic
graphs, which we refer to as NNF. We identify a number of target compilation languages that have
been presented in the AI, formal verification, and computer science literature and show that they
are special cases of NNF. For each such class, we list the extra conditions that need to be imposed
on NNF to obtain the specific class, and then identify the set of queries and transformations that the
class supports in polytime. We also provide cross-rankings of the different subsets of NNF, according
to their succinctness and the polytime operations they support.

The main contribution of this paper is then a map for deciding the target compilation language
that is most suitable for a particular application. Specifically, we propose that one starts by iden-
tifying the set of queries and transformations needed for their given application, and then choosing
the most succinct language that supports these operations in polytime.

This paper is structured as follows. We start by formally defining the NNF language in Section 2,
where we list a number of conditions on NNF that give rise to a variety of target compilation languages.
We then study the succinctness of these languages in Section 3 and provide a cross-ranking that
compares them according to this measure. We consider a number of queries and their applications in
Section 4 and compare the different target compilation languages according to their tractability with
respect to these queries. Section 5 is then dedicated to a class of transformations, their applications,
and their tractability with respect to the different target compilation languages. We finally close in
Section 6 by some concluding remarks. Proofs of all theorems are delegated to Appendix A.

2. The NNF Language

We consider more than a dozen languages in this paper, all of which are subsets of the NNF language,
which is defined formally as follows (Darwiche, 1999, 2001a).

Definition 2.1 Let PS be a denumerable set of propositional variables. A sentence in NNFPS is
a rooted, directed acyclic graph (DAG) where each leaf node is labeled with true, false, X or ¬X,
X ∈ PS; and each internal node is labeled with ∧ or ∨ and can have arbitrarily many children.
The size of a sentence Σ in NNFPS, denoted | Σ |, is the number of its DAG edges. Its height is the
maximum number of edges from the root to some leaf in the DAG.

Figure 1 depicts a sentence in NNF, which represents the odd parity function (we omit reference
to variables PS when no confusion is anticipated). Any propositional sentence can be represented
as a sentence in NNF, so the NNF language is complete.

It is important here to distinguish between a representation language and a target compilation
language. A representation language is one which we expect humans to read and write with some
ease. The language of CNF is a popular representation language, and so is the language of Horn
clauses (especially when expressed in rules form). On other hand, a target compilation language does
not need to be suitable for human specification and interpretation, but should be tractable enough
to permit a non-trivial number of polytime queries and/or transformations. We will consider a
number of target compilation languages that do not qualify as representation languages from this
perspective, as they are not suitable for humans to construct or interpret. We will also consider a
number of representation languages that do not qualify as target compilation languages.1

A formal characterization of representation languages is outside the scope of this paper. But for
a language to qualify as a target compilation language, we will require that it permits a polytime
clausal entailment test. Note that a polytime consistency test is not sufficient here, as only one
consistency test on a given theory does not justify its compilation. Given this definition, NNF does

1. It appears that when proposing target compilation languages in the AI literature, there is usually an implicit
requirement that the proposed language is also a representation language. As we shall see later, however, the
most powerful target compilation languages are not suitable for humans to specify or interpret directly.

230

A Knowledge Compilation Map

Decomposability

¬¬A B ¬¬ B A C ¬¬ D D ¬¬ C

and and and and and and and and

or or or or

and and

or

A,B C,D

(a) Determinism

¬¬A B ¬¬ B A C ¬¬ D D ¬¬ C

and and and and and and and and

or or or or

and and

or

(b) Smoothness

¬¬A B ¬¬ B A C ¬¬ D D ¬¬ C

and and and and and and and and

or or or or

and and

or

A,B

A,B

(c)

Figure 1: A sentence in NNF. Its size is 30 and height is 4.

not qualify as a target compilation language unless P=NP (Papadimitriou, 1994), but many of its
subsets do. We define a number of these subsets below, each of which is obtained by imposing
further conditions on NNF.

We will distinguish between two key subsets of NNF: flat and nested subsets. We first consider
flat subsets, which result from imposing combinations of the following properties:

• Flatness: The height of each sentence is at most 2. The sentence in Figure 3 is flat, but the
one in Figure 1 is not.

• Simple-disjunction: The children of each or-node are leaves that share no variables (the
node is a clause).

• Simple-conjunction: The children of each and-node are leaves that share no variables (the
node is a term). The sentence in Figure 3 satisfies this property.

Definition 2.2 The language f-NNF is the subset of NNF satisfying flatness. The language CNF is
the subset of f-NNF satisfying simple–disjunction. The language DNF is the subset of f-NNF satisfying
simple–conjunction.

CNF does not permit a polytime clausal entailment test (unless P=NP) and, hence, does not qualify
as a target compilation language. But its dual DNF does.

The following subset of CNF, prime implicates, has been quite influential in computer science:

Definition 2.3 The language PI is the subset of CNF in which each clause entailed by the sentence
is subsumed by a clause that appears in the sentence; and no clause in the sentence is subsumed by
another.

A dual of PI, prime implicants IP, can also be defined.

Definition 2.4 The language IP is the subset of DNF in which each term entailing the sentence
subsumes some term that appears in the sentence; and no term in the sentence is subsumed by
another term.

There has been some work on representing the set of prime implicates of a propositional theory in
a compact way, allowing an exponential number of prime implicates to be represented in polynomial
space in certain cases—see for example the TRIE representation in (de Kleer, 1992), the ZBDD
representation used in (Simon & del Val, 2001), and the implicit representation based on meta-
products, as proposed in (Madre & Coudert, 1992). These representations are different from the
language PI in the sense that they do not necessarily support the same queries and transformations

231

Darwiche & Marquis

that we report in Tables 5 and 7. They also exhibit different succinctness relationships than the
ones we report in Table 3.

Horn theories (and renamable Horn theories) represent another target compilation subset of CNF,
but we do not consider it here since we restrict our attention to complete languages L only, i.e., we
require that every propositional sentence is logically equivalent to an element of L.

We now consider nested subsets of the NNF language, which do not impose any restriction on
the height of a sentence. Instead, these subsets result from imposing one or more of the following
conditions: decomposability, determinism, smoothness, decision, and ordering. We start by defining
the first three properties. From here on, if C is a node in an NNF, then Vars(C) denotes the set of
all variables that label the descendants of node C. Moreover, if Σ is an NNF sentence rooted at C,
then Vars(Σ) is defined as Vars(C).

• Decomposability (Darwiche, 1999, 2001a). An NNF satisfies this property if for each con-
junction C in the NNF, the conjuncts of C do not share variables. That is, if C1, . . . , Cn are
the children of and-node C, then Vars(Ci) ∩ Vars(Cj) = ∅ for i 6= j. Consider the and-node
marked in Figure 1(a). This node has two children, the first contains variables A,B while the
second contains variables C, D. This and-node is then decomposable since the two children do
not share variables. Each other and-node in Figure 1(a) is also decomposable and, hence, the
NNF in this figure is decomposable.

• Determinism (Darwiche, 2001b): An NNF satisfies this property if for each disjunction C
in the NNF, each two disjuncts of C are logically contradictory. That is, if C1, . . . , Cn are
the children of or-node C, then Ci ∧ Cj |= false for i 6= j. Consider the or-node marked
in Figure 1(b), which has two children corresponding to sub-sentences ¬A ∧ B and ¬B ∧ A.
The conjunction of these two sub-sentences is logically contradictory. The or-node is then
deterministic and so are the other or-nodes in Figure 1(b). Hence, the NNF in this figure is
deterministic.

• Smoothness (Darwiche, 2001b): An NNF satisfies this property if for each disjunction C in the
NNF, each disjunct of C mentions the same variables. That is, if C1, . . . , Cn are the children of
or-node C, then Vars(Ci) = Vars(Cj) for i 6= j. Consider the marked or-node in Figure 1(c).
This node has two children, each of which mentions variables A,B. This or-node is then
smooth and so are the other or-nodes in Figure 1(c). Hence, the NNF in this figure is smooth.

It is hard to ensure decomposability. It is also hard to ensure determinism while preserving decom-
posability. Yet any sentence in NNF can be smoothed in polytime, while preserving decomposability
and determinism. Preserving flatness, however, may blow-up the size of given NNF. Hence, smooth-
ness is not that important from a complexity viewpoint unless we have flatness.

The properties of decomposability, determinism and smoothness lead to a number of interesting
subsets of NNF.

Definition 2.5 The language DNNF is the subset of NNF satisfying decomposability; d-NNF is the sub-
set satisfying determinism; s-NNF is the subset satisfying smoothness; d-DNNF is the subset satisfying
decomposability and determinism; and sd-DNNF is the subset satisfying decomposability, determinism
and smoothness.

Note that DNF is a strict subset of DNNF (Darwiche, 1999, 2001a). The following decision property
comes from the literature on binary decision diagrams (Bryant, 1986).

Definition 2.6 (Decision) A decision node N in an NNF sentence is one which is labeled with true,
false, or is an or-node having the form (X ∧ α) ∨ (¬X ∧ β), where X is a variable, α and β are
decision nodes. In the latter case, dVar(N) denotes the variable X.

Definition 2.7 The language BDD is the set of NNF sentences, where the root of each sentence is a
decision node.

232

A Knowledge Compilation Map

or

and and

X1 ¬¬ X1
or or

and and andand

X2 X2¬¬ X2 ¬¬ X2

and and andand

X3 X3¬¬ X3 ¬¬ X3

or or

true false

X1

X2 X2

X3X3

1 0

Figure 2: On the left, a sentence in the BDD language. On the right, its corresponding binary decision
diagram.

The NNF sentence in Figure 2 belongs to the BDD subset.
The BDD language corresponds to binary decision diagrams (BDDs), as known in the formal

verification literature (Bryant, 1986). Binary decision diagrams are depicted using a more compact
notation though: the labels true and false are denoted by 1 and 0, respectively; and each decision

node X ¬¬Xα β

and

or

and

is denoted by α β

X

. The BDD sentence on the left of Figure 2 corresponds to the
binary decision diagram on the right of Figure 2. Obviously enough, every NNF sentence that satisfies
the decision property is also deterministic. Therefore, BDD is a subset of d-NNF.

As we show later, BDD does not qualify as a target compilation language (unless P=NP), but the
following subset does.

Definition 2.8 FBDD is the intersection of DNNF and BDD.

That is, each sentence in FBDD is decomposable and satisfies the decision property. The FBDD language
corresponds to free binary decision diagrams (FBDDs), as known in formal verification (Gergov &
Meinel, 1994a). An FBDD is usually defined as a BDD that satisfies the read-once property: on
each path from the root to a leaf, a variable can appear at most once. FBDDs are also known as
read-once branching programs in the theory literature. Imposing the read-once property on a BDD
is equivalent to imposing the decomposability property on its corresponding BDD sentence.

A more influential subset of the BDD language is obtained by imposing the ordering property:

Definition 2.9 (Ordering) Let < be a total ordering on the variables PS. The language OBDD<

is the subset of FBDD satisfying the following property: if N and M are or-nodes, and if N is an
ancestor of node M , then dVar(N) < dVar(M).

Definition 2.10 The language OBDD is the union of all OBDD< languages.

The OBDD language corresponds to the well–known ordered binary decision diagrams (OBDDs)
(Bryant, 1986).

Our final language definition is as follows:

Definition 2.11 MODS is the subset of DNF where every sentence satisfies determinism and smooth-
ness.

233

Darwiche & Marquis

¬¬XX ¬¬YY ¬¬ZZ

and

or

and andand

Figure 3: A sentence in language MODS.

NNF

d-NNF s-NNF f-NNF

sd-DNNF

DNNF

CO, CE, ME

d-DNNF

VA, IM, CT

EQ?

CNFDNF

IP PI
CO , CE, EQ, SE, MEVA, IM, EQ, SE

BDD

FBDD EQ?

OBDD<

SE

MODS

EQ, SE

VA, IM

OBDD

EQ

Figure 4: The set of DAG-based languages considered in this paper. An edge L1 → L2 means that
L1 is a proper subset of L2. Next to each subset, we list the polytime queries supported
by the subset but not by any of its ancestors (see Section 4).

Figure 3 depicts a sentence in MODS. As we show later, MODS is the most tractable NNF subset we
shall consider (together with OBDD<). This is not surprising since from the syntax of a sentence in
MODS, one can immediately recover the sentence models.

The languages we have discussed so far are depicted in Figure 4, where arrows denote set inclusion.
Table 1 lists the acronyms of all of these languages, together with their descriptions. Table 2 lists
the key language properties discussed in this section, together with a short description of each.

3. On the Succinctness of Compiled Theories

We have discussed more than a dozen subsets of the NNF language. Some of these subsets are well
known and have been studied extensively in the computer science literature. Others, such as DNNF
(Darwiche, 2001a, 1999) and d-DNNF (Darwiche, 2001b), are relatively new. The question now is:
What subset should one adopt for a particular application? As we argue in this paper, that depends

234

A Knowledge Compilation Map

Acronym Description

NNF Negation Normal Form

DNNF Decomposable Negation Normal Form

d-NNF Deterministic Negation Normal Form

s-NNF Smooth Negation Normal Form

f-NNF Flat Negation Normal Form

d-DNNF Deterministic Decomposable Negation Normal Form

sd-DNNF Smooth Deterministic Decomposable Negation Normal Form

BDD Binary Decision Diagram

FBDD Free Binary Decision Diagram

OBDD Ordered Binary Decision Diagram

OBDD< Ordered Binary Decision Diagram (using order <)

DNF Disjunctive Normal Form

CNF Conjunctive Normal Form

PI Prime Implicates

IP Prime Implicants

MODS Models

Table 1: Language acronyms.

Property Short Description

Flatness The height of NNF is at most 2

Simple Disjunction Every disjunction is a clause, where literals share no variables

Simple Conjunction Every conjunction is a term, where literals share no variables

Decomposability Conjuncts do not share variables

Determinism Disjuncts are logically disjoint

Smoothness Disjuncts mention the same set of variables

Decision A node of the form true, false, or (X ∧ α ∨ ¬X ∧ β),
where X is a variable and α, β are decision nodes

Ordering Decision variables appear in the same order on any path in the NNF

Table 2: Language properties.

235

Darwiche & Marquis

on three key properties of the language: its succinctness, the class of tractable queries it supports,
and the class of tractable transformations it admits.

Our goal in this and the following sections is to construct a map on which we place different
subsets of the NNF language according to the above criteria. This map will then serve as a guide to
system designers in choosing the target compilation language most suitable to their application. It
also provides an example paradigm for studying and evaluating further target compilation languages.
We start with a study of succinctness2 in this section (Gogic, Kautz, Papadimitriou, & Selman, 1995).

Definition 3.1 (Succinctness) Let L1 and L2 be two subsets of NNF. L1 is at least as succinct
as L2, denoted L1 ≤ L2, iff there exists a polynomial p such that for every sentence α ∈ L2, there
exists an equivalent sentence β ∈ L1 where |β| ≤ p(|α|). Here, |α| and |β| are the sizes of α and β,
respectively.

We stress here that we do not require that there exists a function that computes β given α in
polytime; we only require that a polysize β exists. Yet, our proofs in Appendix A contain specific
algorithms for computing β from α in certain cases. The relation ≤ is clearly reflexive and transitive,
hence, a pre-ordering. One can also define the relation <, where L1 < L2 iff L1 ≤ L2 and L2 6≤ L1.

Proposition 3.1 The results in Table 3 hold.

An occurrence of ≤ in the cell of row r and column c of Table 3 means that the fragment Lr

given at row r is at least as succinct as the fragment Lc given at column c. An occurrence of 6≤ (or
6≤∗) means that Lr is not at least as succinct as Lc (provided that the polynomial hierarchy does
not collapse in the case of 6≤∗). Finally, the presence of a question mark reflects our ignorance about
whether Lr is at least as succinct as Lc. Figure 5 summarizes the results of Proposition 3.1 in terms
of a directed acyclic graph.

A classical result in knowledge compilation states that it is not possible to compile any proposi-
tional formula α into a polysize data structure β such that: α and β entail the same set of clauses,
and clausal entailment on β can be decided in time polynomial in its size, unless NP ⊆ P/poly
(Selman & Kautz, 1996; Cadoli & Donini, 1997). This last assumption implies the collapse of the
polynomial hierarchy at the second level (Karp & Lipton, 1980), which is considered very unlikely.
We use this classical result from knowledge compilation in some of our proofs of Proposition 3.1,
which explains why some of its parts are conditioned on the polynomial hierarchy not collapsing.

We have excluded the subsets BDD, s-NNF, d-NNF and f-NNF from Table 3 since they do not
qualify as target compilation languages (see Section 4). We kept NNF and CNF though given their
importance. Consider Figure 5 which depicts Table 3 graphically. With the exception of NNF and
CNF, all other languages depicted in Figure 5 qualify as target compilation languages. Moreover, with
the exception of language PI, DNNF is the most succinct among all target compilation languages—we
know that PI is not more succinct than DNNF, but we do not know whether DNNF is more succinct
than PI.

In between DNNF and MODS, there is a succinctness ordering of target compilation languages:

DNNF < d-DNNF < FBDD < OBDD < OBDD< < MODS.

DNNF is obtained by imposing decomposability on NNF; d-DNNF by adding determinism; FBDD by
adding decision; and OBDD and OBDD< by adding ordering (w.r.t. any total ordering on PS in the
first case and a specific one in the second case). Adding each of these properties reduces language
succinctness (assuming that the polynomial hierarchy does not collapse).

One important fact to stress here is that adding smoothness to d-DNNF does not affect its suc-
cinctness: the sd-DNNF and d-DNNF languages are equally succinct. It is also interesting to compare

2. A more general notion of space efficiency (model preservation for polysize reductions) exists (Cadoli, Donini,
Liberatore, & Schaerf, 1996), but we do not need its full generality here.

236

A Knowledge Compilation Map

L NNF DNNF d-DNNF sd-DNNF FBDD OBDD OBDD< DNF CNF PI IP MODS

NNF ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
DNNF 6≤∗ ≤ ≤ ≤ ≤ ≤ ≤ ≤ 6≤∗ ? ≤ ≤

d-DNNF 6≤∗ 6≤∗ ≤ ≤ ≤ ≤ ≤ 6≤∗ 6≤∗ ? ? ≤
sd-DNNF 6≤∗ 6≤∗ ≤ ≤ ≤ ≤ ≤ 6≤∗ 6≤∗ ? ? ≤
FBDD 6≤ 6≤ 6≤ 6≤ ≤ ≤ ≤ 6≤ 6≤ 6≤ 6≤ ≤
OBDD 6≤ 6≤ 6≤ 6≤ 6≤ ≤ ≤ 6≤ 6≤ 6≤ 6≤ ≤
OBDD< 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ ≤ 6≤ 6≤ 6≤ 6≤ ≤
DNF 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ ≤ 6≤ 6≤ ≤ ≤
CNF 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ ≤ ≤ 6≤ ≤
PI 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ ≤ 6≤ ?

IP 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ ≤ ≤
MODS 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ ≤

Table 3: Succinctness of target compilation languages. ∗ means that the result holds unless the
polynomial hierarchy collapses.

NNF

DNNF

CNFd-DNNF

DNF

PI

FBDD

OBDD<

IP

MODS

sd-DNNF =

OBDD

Figure 5: An edge L1 → L2 indicates that L1 is strictly more succinct than L2: L1 < L2, while
L1 = L2 indicates that L1 and L2 are equally succinct: L1 ≤ L2 and L2 ≤ L1. Dotted
arrows indicate unknown relationships; for instance, the dotted arrow from DNNF to PI
means that we do not know whether DNNF is at least as succinct as PI. Some of the edges
are conditioned on the polynomial hierarchy not collapsing—see Table 3.

sd-DNNF (which is more succinct than the influential FBDD, OBDD and OBDD< languages) with MODS,
which is a most tractable language. Both sd-DNNF and MODS are smooth, deterministic and de-
composable. MODS, however, is flat and obtains its decomposability from the stronger condition
of simple-conjunction. Therefore, sd-DNNF can be viewed as the result of relaxing from MODS the
flatness and simple-conjunction conditions, while maintaining decomposability, determinism and
smoothness. Relaxing these conditions moves the language three levels up the succinctness hierar-
chy, although it compromises only the polytime test for sentential entailment and possibly the one
for equivalence as we show in Section 4.

237

Darwiche & Marquis

4. Querying a Compiled Theory

In evaluating the suitability of a target compilation language to a particular application, the suc-
cinctness of the language must be balanced against the set of queries and transformations that it
supports in polytime. We consider in this section a number of queries, each of which returns valu-
able information about a propositional theory, and then identify target compilation languages which
provide polytime algorithms for answering such queries. We restrict our attention in this paper to
the existence of polytime algorithms for answering queries, but we do not present the algorithms
themselves. The interested reader is referred to (Darwiche, 2001a, 2001b, 1999; Bryant, 1986) for
some of these algorithms and to the proofs of theorems in Appendix A for others.

The queries we consider are tests for consistency, validity, implicates (clausal entailment), im-
plicants, equivalence, and sentential entailment. We also consider counting and enumerating theory
models; see Table 4. One can also consider computing the probability of a propositional sentence,
assuming that all variables are probabilistically independent. For the subsets we consider, however,
this can be done in polytime whenever models can be counted in polytime.

From here on, L denotes a subset of language NNF.

Definition 4.1 (CO, VA) L satisfies CO (VA) iff there exists a polytime algorithm that maps
every formula Σ from L to 1 if Σ is consistent (valid), and to 0 otherwise.

One of the main applications of compiling a theory is to enhance the efficiency of answering
clausal entailment queries:

Definition 4.2 (CE) L satisfies CE iff there exists a polytime algorithm that maps every formula
Σ from L and every clause γ from NNF to 1 if Σ |= γ holds, and to 0 otherwise.

A key application of clausal entailment is in testing equivalence. Specifically, suppose we have a
design expressed as a set of clauses ∆d =

∧
i αi and a specification expressed also as a set of clauses

∆s =
∧

j βj , and we want to test whether the design and specification are equivalent. By compiling
each of ∆d and ∆s to targets Γd and Γs that support a polytime clausal entailment test, we can test
the equivalence of ∆d and ∆s in polytime. That is, ∆d and ∆s are equivalent iff Γd |= βj for all j
and Γs |= αi for all i.

A number of the target compilation languages we shall consider support a direct polytime equiv-
alent test:

Definition 4.3 (EQ, SE) L satisfies EQ (SE) iff there exists a polytime algorithm that maps every
pair of formulas Σ, Φ from L to 1 if Σ ≡ Φ (Σ |= Φ) holds, and to 0 otherwise.

Note that sentential entailment (SE) is stronger than clausal entailment and equivalence. Therefore,
if a language L satisfies SE, it also satisfies CE and EQ.

For completeness, we consider the following dual to CE:

Definition 4.4 (IM) L satisfies IM iff there exists a polytime algorithm that maps every formula
Σ from L and every term γ from NNF to 1 if γ |= Σ holds, and to 0 otherwise.

Finally, we consider counting and enumerating models:

Definition 4.5 (CT) L satisfies CT iff there exists a polytime algorithm that maps every formula
Σ from L to a nonnegative integer that represents the number of models of Σ (in binary notation).

Definition 4.6 (ME) L satisfies ME iff there exists a polynomial p(., .) and an algorithm that
outputs all models of an arbitrary formula Σ from L in time p(n,m), where n is the size of Σ and
m is the number of its models (over variables occurring in Σ).

238

A Knowledge Compilation Map

Notation Query
CO polytime consistency check
VA polytime validity check
CE polytime clausal entailment check
IM polytime implicant check
EQ polytime equivalence check
SE polytime sentential entailment check
CT polytime model counting
ME polytime model enumeration

Table 4: Notations for queries.

L CO VA CE IM EQ SE CT ME

NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
DNNF

√ ◦ √ ◦ ◦ ◦ ◦ √
d-NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
s-NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
f-NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
d-DNNF

√ √ √ √
? ◦ √ √

sd-DNNF
√ √ √ √

? ◦ √ √
BDD ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
FBDD

√ √ √ √
? ◦ √ √

OBDD
√ √ √ √ √ ◦ √ √

OBDD<
√ √ √ √ √ √ √ √

DNF
√ ◦ √ ◦ ◦ ◦ ◦ √

CNF ◦ √ ◦ √ ◦ ◦ ◦ ◦
PI

√ √ √ √ √ √ ◦ √
IP

√ √ √ √ √ √ ◦ √
MODS

√ √ √ √ √ √ √ √

Table 5: Subsets of the NNF language and their corresponding polytime queries.
√

means “satisfies”
and ◦ means “does not satisfy unless P = NP.”

Table 4 summarizes the queries we are interested in and their acronyms.
The following proposition states what we know about the availability of polytime algorithms for

answering the above queries, with respect to all languages we introduced in Section 2.

Proposition 4.1 The results in Table 5 hold.

The results of Proposition 4.1 are summarized in Figure 4. One can draw a number of conclusions
based on the results in this figure. First, NNF, s-NNF, d-NNF, f-NNF, and BDD fall in one equivalence
class that does not support any polytime queries and CNF satisfies only VA and IM; hence, none
of them qualifies as a target compilation language in this case. But the remaining languages all
support polytime tests for consistency and clausal entailment. Therefore, simply imposing either
of smoothness (s-NNF), determinism (d-NNF), flatness (f-NNF), or decision (BDD) on the NNF lan-
guage does not lead to tractability with respect to any of the queries we consider—neither of these
properties seem to be significant in isolation. Decomposability (DNNF), however, is an exception and
leads immediately to polytime tests for both consistency and clausal entailment, and to a polytime
algorithm for model enumeration.

239

Darwiche & Marquis

Recall the succinctness ordering DNNF < d-DNNF < FBDD < OBDD < OBDD< < MODS
from Figure 5. By adding decomposability (DNNF), we obtain polytime tests for consistency and
clausal entailment, in addition to a polytime model enumeration algorithm. By adding determinism
to decomposability (d-DNNF), we obtain polytime tests for validity, implicant and model counting,
which are quite significant. It is not clear, however, whether the combination of decomposability and
determinism leads to a polytime test for equivalence. Moreover, adding the decision property on top
of decomposability and determinism (FBDD) does not appear to increase tractability with respect to
the given queries3, although it does lead to reducing language succinctness as shown in Figure 5. On
the other hand, adding the ordering property on top of decomposability, determinism and decision,
leads to polytime tests for equivalence (OBDD and OBDD<) as well as sentential entailment provided
that the ordering < is fixed (OBDD<).

As for the succinctness ordering NNF < DNNF < DNF < IP < MODS from Figure 5, note that
DNNF is obtained by imposing decomposability on NNF, while DNF is obtained by imposing flatness
and simple-conjunction (which is stronger than decomposability). What is interesting is that DNF is
less succinct than DNNF, yet does not support any more polytime queries; see Figure 4. However, the
addition of smoothness (and determinism) on top of flatness and simple-conjunction (MODS) leads to
five additional polytime queries, including equivalence and entailment tests.4

We close this section by noting that determinism appears to be necessary (but not sufficient) for
polytime model counting: only deterministic languages, d-DNNF, sd-DNNF, FBDD, OBDD, OBDD< and
MODS, support polytime counting. Moreover, polytime counting implies a polytime test of validity,
but the opposite is not true.

5. Transforming a Compiled Theory

A query is an operation that returns information about a theory without changing it. A transfor-
mation, on the other hand, is an operation that returns a modified theory, which is then operated
on using queries. Many applications require a combination of transformations and queries.

Definition 5.1 (∧C,∨C) Let L be a subset of NNF. L satisfies ∧C (∨C) iff there exists a polytime
algorithm that maps every finite set of formulas Σ1, . . . , Σn from L to a formula of L that is logically
equivalent to Σ1 ∧ . . . ∧ Σn (Σ1 ∨ . . . ∨ Σn).

Definition 5.2 (¬C) Let L be a subset of NNF. L satisfies ¬C iff there exists a polytime algorithm
that maps every formula Σ from L to a formula of L that is logically equivalent to ¬Σ.

If a language satisfies one of the above properties, we will say that it is closed under the corre-
sponding operator. Closure under logical connectives is important for two key reasons. First, it has
implications on how compilers are constructed for a given target language. For example, if a clause
can be easily compiled into some language L, then closure under conjunction implies that compiling
a CNF sentence into L is easy. Second, it has implications on the class of polytime queries supported
by the target language: If a language L satisfies CO and is closed under negation and conjunction,
then it must satisfy SE (to test whether ∆ |= Γ, all we have to do, by the Refutation Theorem,
is test whether ∆ ∧ ¬Γ is inconsistent). Similarly, if a language satisfies VA and is closed under
negation and disjunction, it must satisfy SE by the Deduction Theorem.

3. Deciding the equivalence of two sentences in FBDD, d-DNNF, or in sd-DNNF, can be easily shown to be in coNP.
However, we do not have a proof of coNP-hardness, nor do we have deterministic polytime algorithms for deciding
these problems. Actually, the latter case is quite unlikely as the equivalence problem for FBDD has been intensively
studied, with no such algorithm in sight. Note, however, that the equivalence of two sentences in FBDD can be
decided probabilistically in polytime (Blum, Chandra, & Wegman, 1980), and similarly for sentences in d-DNNF

(Darwiche & Huang, 2002).
4. Given flatness, simple-conjunction and smoothness, we can obtain determinism by simply removing duplicated

terms.

240

A Knowledge Compilation Map

It is important to stress here that some languages are closed under a logical operator, only if the
number of operands is bounded by a constant. We will refer to this as bounded closure.

Definition 5.3 (∧BC,∨BC) Let L be a subset of NNF. L satisfies ∧BC (∨BC) iff there exists
a polytime algorithm that maps every pair of formulas Σ and Φ from L to a formula of L that is
logically equivalent to Σ ∧ Φ (Σ ∨ Φ).

We now turn to another important transformation:

Definition 5.4 (Conditioning) (Darwiche, 1999) Let Σ be a propositional formula, and let γ be
a consistent term. The conditioning of Σ on γ, noted Σ | γ, is the formula obtained by replacing
each variable X of Σ by true (resp. false) if X (resp. ¬X) is a positive (resp. negative) literal of γ.

Definition 5.5 (CD) Let L be a subset of NNF. L satisfies CD iff there exists a polytime algorithm
that maps every formula Σ from L and every consistent term γ to a formula from L that is logically
equivalent to Σ | γ.

Conditioning has a number of applications, and corresponds to restriction in the literature on
Boolean functions. The main application of conditioning is due to a theorem, which says that Σ∧ γ
is consistent iff Σ | γ is consistent (Darwiche, 2001a, 1999). Therefore, if a language satisfies CO
and CD, then it must also satisfy CE. Conditioning also plays a key role in building compilers
that enforce decomposability. If two sentences ∆1 and ∆2 are both decomposable (belong to DNNF),
their conjunction ∆1 ∧∆2 is not necessarily decomposable since the sentences may share variables.
Conditioning can be used to ensure decomposability in this case since ∆1 ∧ ∆2 is equivalent to∨

γ(∆1 | γ) ∧ (∆2 | γ) ∧ γ, where γ is a term covering all variables shared by ∆1 and ∆2. Note that∨
γ(∆1 | γ) ∧ (∆2 | γ) ∧ γ must be decomposable since ∆1 | γ and ∆2 | γ do not mention variables

in γ. The previous proposition is indeed a generalization to multiple variables of the well-known
Shannon expansion in the literature on Boolean functions. It is also the basis for compiling CNF into
DNNF (Darwiche, 1999, 2001a).

Another critical transformation we shall consider is that of forgetting (also referred to as marginal-
ization, or elimination of middle terms (Boole, 1854)):

Definition 5.6 (Forgetting) Let Σ be a propositional formula, and let X be a subset of variables
from PS. The forgetting of X from Σ, denoted ∃X.Σ, is a formula that does not mention any variable
from X and for every formula α that does not mention any variable from X, we have Σ |= α precisely
when ∃X.Σ |= α.

Therefore, to forget variables from X is to remove any reference to X from Σ, while maintaining all
information that Σ captures about the complement of X. Note that ∃X.Σ is unique up to logical
equivalence.

Definition 5.7 (FO, SFO) Let L be a subset of NNF. L satisfies FO iff there exists a polytime
algorithm that maps every formula Σ from L and every subset X of variables from PS to a formula
from L equivalent to ∃X.Σ. If the property holds for singleton X, we say that L satisfies SFO.

Forgetting is an important transformation as it allows us to focus/project a theory on a set of
variables. For example, if we know that some variables X will never appear in entailment queries,
we can forget these variables from the compiled theory while maintaining its ability to answer
such queries correctly. Another application of forgetting is in counting/enumerating the instantia-
tions of some variables Y, which are consistent with a theory ∆. This query can be answered by
counting/enumerating the models of ∃X.∆, where X is the complement of Y. Forgetting also has
applications to planning, diagnosis and belief revision. For instance, in the SATPLAN framework,

241

Darwiche & Marquis

Notation Transformation
CD polytime conditioning
FO polytime forgetting
SFO polytime singleton forgetting
∧C polytime conjunction
∧BC polytime bounded conjunction
∨C polytime disjunction
∨BC polytime bounded disjunction
¬C polytime negation

Table 6: Notations for transformations.

L CD FO SFO ∧C ∧BC ∨C ∨BC ¬C

NNF
√ ◦ √ √ √ √ √ √

DNNF
√ √ √ ◦ ◦ √ √ ◦

d-NNF
√ ◦ √ √ √ √ √ √

s-NNF
√ ◦ √ √ √ √ √ √

f-NNF
√ ◦ √ • • • • √

d-DNNF
√ ◦ ◦ ◦ ◦ ◦ ◦ ?

sd-DNNF
√ ◦ ◦ ◦ ◦ ◦ ◦ ?

BDD
√ ◦ √ √ √ √ √ √

FBDD
√ • ◦ • ◦ • ◦ √

OBDD
√ • √ • ◦ • ◦ √

OBDD<
√ • √ • √ • √ √

DNF
√ √ √ • √ √ √ •

CNF
√ ◦ √ √ √ • √ •

PI
√ √ √ • • • √ •

IP
√ • • • √ • • •

MODS
√ √ √ • √ • • •

Table 7: Subsets of the NNF language and their polytime transformations.
√

means “satisfies,” •
means “does not satisfy,” while ◦ means “does not satisfy unless P=NP.”

compiling away fluents or actions amounts to forgetting variables. In model-based diagnosis, com-
piling away every variable except the abnormality ones does not remove any piece of information
required to compute the conflicts and the diagnoses of a system (Darwiche, 2001a). Forgetting has
also been used to design update operators with valuable properties (Herzig & Rifi, 1999).

Table 6 summarizes the transformations we are interested in and their acronyms. The following
proposition states what we know about the tractability of these transformations with respect to the
identified target compilation languages.

Proposition 5.1 The results in Table 7 hold.

One can draw a number of observations regarding Table 7. First, all languages we consider satisfy
CD and, hence, lend themselves to efficient application of the conditioning transformation. As for
forgetting multiple variables, only DNNF, DNF, PI and MODS permit that in polytime. It is important
to stress here that none of FBDD, OBDD and OBDD< permits polytime forgetting of multiple variables.
This is noticeable since some of the recent applications of OBDD< to planning—within the so-called
symbolic model checking approach to planning (A. Cimmati & Traverso, 1997)—depend crucially

242

A Knowledge Compilation Map

on the operation of forgetting and it may be more suitable to use a language that satisfies FO in
this case. Note, however, that OBDD and OBDD< allow the forgetting of a single variable in polytime,
but FBDD does not allow even that. d-DNNF is similar to FBDD as it satisfies neither FO nor SFO.

It is also interesting to observe that none of the target compilation languages is closed under
conjunction. A number of them, however, are closed under bounded conjunction, including OBDD<,
DNF, IP and MODS.

As for disjunction, the only target compilation languages that are closed under disjunction are
DNNF and DNF. The OBDD< and PI languages, however, are closed under bounded disjunction. Again,
the d-DNNF, FBDD and OBDD languages are closed under neither.

The only target compilation languages that are closed under negation are FBDD, OBDD and OBDD<,
while it is not known whether d-DNNF or sd-DNNF are closed under this operation. Note that d-DNNF
and FBDD support the same set of polytime queries (equivalence checking is unknown for both)
so they are indistinguishable from that viewpoint. Moreover, the only difference between the two
languages in Table 7 is the closure of FBDD under negation, which does not seem to be that significant
in light of no closure under either conjunction or disjunction. Note, however, that d-DNNF is more
succinct than FBDD as given in Figure 5.

Finally, OBDD< is the only target compilation language that is closed under negation, bounded
conjunction, and bounded disjunction. This closure actually plays an important role in compiling
propositional theories into OBDD< and is the basis of state-of-the-art compilers for this purpose
(Bryant, 1986).

6. Conclusion

The main contribution of this paper is a methodology for analyzing propositional compilation ap-
proaches according to two key dimensions: the succinctness of the target compilation language, and
the class of queries and transformations it supports in polytime. The second main contribution
of the paper is a comprehensive analysis, according to the proposed methodology, of more than
a dozen languages for which we have produced a knowledge compilation map, which cross-ranks
these languages according to their succinctness, and the polytime queries and transformations they
support. This map allows system designers to make informed decisions on which target compilation
language to use: after the class of queries/transformations have been decided based on the applica-
tion of interest, the designer chooses the most succinct target compilation language that supports
such operations in polytime. Another key contribution of this paper is the uniform treatment we
have applied to diverse target compilation languages, showing how they all are subsets of the NNF
language. Specifically, we have identified a number of simple, yet meaningful, properties, including
decomposability, determinism, decision and flatness, and showed how combinations of these proper-
ties give rise to different target compilation languages. The studied subsets include some well known
languages such as PI, which has been influential in AI; OBDD<, which has been influential in formal
verification; and CNF and DNF, which have been quite influential in computer science. The subsets
also include some relatively new languages such as DNNF and d-DNNF, which appear to represent
interesting, new balances between language succinctness and query/transformation tractability.

Acknowledgments

This is a revised and extended version of the paper “A Perspective on Knowledge Compilation,”
in Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI’01), pp.
175-182, 2001. We wish to thank Alvaro del Val, Mark Hopkins, Jérôme Lang and the anonymous
reviewers for some suggestions and comments, as well as Ingo Wegener for his help with some of
the issues discussed in the paper. This work has been done while the second author was a visiting
researcher with the Computer Science Department at UCLA. The first author has been partly

243

Darwiche & Marquis

supported by NSF grant IIS-9988543 and MURI grant N00014-00-1-0617. The second author has
been partly supported by the IUT de Lens, the Université d’Artois, the Nord/Pas-de-Calais Région
under the TACT-TIC project, and by the European Community FEDER Program.

Appendix A. Proofs

To simplify the proofs of our main propositions later on, we have identified a number of lemmas that
we list below. Some of the proofs of these lemmas are direct, but we include them for completeness.

Lemma A.1 Every sentence in d-DNNF can be translated to an equivalent sentence in sd-DNNF in
polytime.

Proof: Let α = α1 ∨ . . .∨ αn be an or-node in a d-DNNF sentence Σ. Suppose that α is not smooth
and let V = Vars(α). Consider now the sentence Σs obtained by replacing in Σ each such node
by

∨n
i=1 αi ∧

∧
v∈V \Vars(αi)

(¬v ∨ v). Then Σs is equivalent to Σ and is smooth. Moreover, Σs can
be computed in time polynomial in the size of Σ and it satisfies decomposability and determinism. 2

Lemma A.2 Every sentence in FBDD can be translated to an equivalent sentence in FBDD ∩ s-NNF
in polytime.

Proof: Let Σ be a sentence in FBDD and let α be a node in Σ. We can always replace α with (Y ∧α)∨
(¬Y ∧ α), for some variable Y , while preserving equivalence and the decision property. Moreover,
as long as the variable Y does not appear in α and is not an ancestor of α, then decomposability is
also preserved (that is, the resulting sentence is in FBDD). Note here that “ancestor” is with respect
to the binary decision diagram notation of Σ–see left of Figure 2.

Now, suppose that (X ∧ α) ∨ (¬X ∧ β) is an or-node in Σ. Suppose further that the or-node
is not smooth. Hence, there is some Y which appears in Vars(β) but not in Vars(α) (or the other
way around). Since Σ is decomposable, then Y cannot be an ancestor of α (since in that case it
would also be an ancestor of β, which is impossible by decomposability of Σ). Hence, we can re-
place α with (Y ∧ α) ∨ (¬Y ∧ α), while preserving equivalence, decision and decomposability. By
repeating the above process, we can smooth Σ while preserving all the necessary properties. Finally,
note that for every or-node (X ∧ α) ∨ (¬X ∧ β) in Σ, we need to repeat the above process at most
| Vars(α) − Vars(β) | + | Vars(β) − Vars(α) | times. Hence, the smoothing operation can be per-
formed in polytime. 2

Lemma A.3 If a subset L of NNF satisfies CO and CD, then it also satisfies ME.

Proof: Let Σ be a sentence in L. First, we test if Σ is inconsistent (can be done in polytime). If
it is, we return the empty set of models. Otherwise, we construct a decision-tree representation of
the models of Σ. Given an ordering of the variables x1, . . . , xn of Vars(Σ), we start with a tree
T consisting of a single root node. For i = 1 to n, we repeat the following for each leaf node α
(corresponds to a consistent term) in T :

a. If Σ | α ∧ xi is consistent, we add xi as a child to α;

b. If Σ | α ∧ ¬xi is consistent, we add ¬xi as a child to α.

The key points are:

• Test (a) and Test (b) can be performed in time polynomial in the size of Σ (since L satisfies
CO and CD).

244

A Knowledge Compilation Map

• Either Test (a) or Test (b) above must succeed (since Σ is consistent).

Hence, the number of tests performed is O(mn), where m is the number of leaf nodes in the final
decision tree (bounded by the number of models of Σ) and n is the number of variables of Σ. 2

Lemma A.4 If a subset of NNF satisfies CO and CD, then it also satisfies CE.

Proof: To test whether sentence Σ entails non-valid clause α, Σ |= α, it suffices to test whether
Σ | ¬α is inconsistent (Darwiche, 2001a). 2

Lemma A.5 Let α and β be two sentences that share no variables. Then α∨β is valid iff α is valid
or β is valid.

Proof: α∨ β is valid iff ¬α∧¬β is inconsistent. Since ¬α and ¬β share no variables, then ¬α∧¬β
is inconsistent iff ¬α is inconsistent or ¬β is. This is true iff α is valid or β is valid. 2

Lemma A.6 Let Σ be a sentence in d-DNNF and let γ be a clause. Then a sentence in d-DNNF
which is equivalent to Σ ∨ γ can be constructed in polytime in the size of Σ and γ.

Proof: Let l1, . . . , ln be the literals that appear in clause γ. Then β =
∨n

i=1(li ∧
∧i−1

j=1 ¬lj) is
equivalent to clause γ, is in d-DNNF, and can be constructed in polytime in size of γ. Now let α be
the term equivalent to ¬γ. We have that Σ ∨ γ is equivalent to ((Σ | α) ∧ α) ∨ β. The last sentence
is in d-DNNF and can be constructed in polytime in size of Σ and γ. 2

Lemma A.7 If a subset of NNF satisfies VA and CD, then it also satisfies IM.

Proof: To test whether a consistent term α entails sentence Σ, α |= Σ, it suffices to test whether
¬α∨Σ is valid. This sentence is equivalent to ¬α∨(α∧Σ), to ¬α∨(α∧(Σ | α)), and to ¬α∨(Σ | α).
Since ¬α and Σ | α share no variables, the disjunction is valid iff ¬α is valid or Σ | α is valid (by
Lemma A.5). ¬α cannot be valid since α is consistent. Σ | α can be constructed in polytime since
the language satisfies CD and its validity can be tested in polytime since the language satisfies VA. 2

Lemma A.8 Every CNF or DNF formula can be translated to an equivalent sentence in BDD in
polytime.

Proof: It is straightforward to convert a clause or term into an equivalent sentence in BDD. In order
to generate a BDD sentence corresponding to the conjunction (resp. disjunction) of BDD sentences α
and β, it is sufficient to replace the 1-sink (resp. 0-sink) of α with the root of β. 2

Lemma A.9 If a subset of NNF satisfies EQ, then it satisfies CO and VA.

Proof: true and false belong to every NNF subset. Σ is inconsistent iff it is equivalent to false. Σ is
valid iff it is equivalent to true. 2

Lemma A.10 If a subset of NNF satisfies SE, then it satisfies EQ, CO and VA.

Proof: Sentences Σ1 and Σ2 are equivalent iff Σ1 |= Σ2 and Σ2 |= Σ1. EQ implies CO and VA
(Lemma A.9). 2

245

Darwiche & Marquis

Lemma A.11 Let Σ be a sentence in d-DNNF and let γ be a clause. The validity of Σ ∨ γ can be
tested in time polynomial in the size of Σ and γ.

Proof: Construct Σ ∨ γ in polytime as given in Lemma A.6 and check its validity, which can be
done in polytime too. 2

Lemma A.12 For every propositional formula Σ and every consistent term γ, we have Σ|γ is
equivalent to
∃Vars(γ).(Σ ∧ γ).

Proof: Without loss of generality, assume that Σ is given by the disjunctively-interpreted set of
its models (over Vars(Σ)). Conditioning Σ on γ leads (1) to removing every model of ¬γ, then
(2) projecting the remaining models so that every variable of γ is removed. Conjoining Σ with γ
leads exactly to (1), while forgetting every variable of γ in the resulting formula leads exactly to (2)
(Lang, Liberatore, & Marquis, 2000). 2

Lemma A.13 Each sentence Σ in f-NNF can be converted into an equivalent sentence Σ∗ in poly-
nomial time, where Σ∗ ∈ CNF or Σ∗ ∈ DNF.

Proof: We consider three cases for the sentence Σ:

1. The root node of Σ is an and-node. In this case, Σ can be turned into a CNF sentence Σ∗ in
polynomial time by simply ensuring that each or-node in Σ is a clause (that is, a disjunction
of literals that share no variables). Let C be an or-node in Σ. Since Σ is flat and its root is
an and-node, C must be a child of the root of Σ and the children of C must be leaves. Hence,
we can easily ensure that C is a clause as follows:

• If we have one edge from C to some leaf X and another edge from C to ¬X (C is valid),
we replace the edge from the root to C by an edge from the root to true.

• If we have more than one edge from C to the same leaf node X, we keep only one of these
edges and delete the rest.

2. The root of Σ is an or-node. Σ can be turned into a DNF sentence Σ∗ in a dual way.5

3. The root of Σ is a leaf node. Σ is already a CNF sentence.

2

Lemma A.14 α is a prime implicant (resp. an essential prime implicant) of sentence Σ iff ¬α is
a prime implicate (resp. an essential prime implicate) of ¬Σ. 6

Proof: This is a folklore result, immediate from the definitions. 2

Proof of Proposition 3.1

The proof of this proposition is broken down into eight steps. In each step, we prove a number of
succinctness relationships between different languages, and then apply transitivity of the succinctness
relation to infer even more relationships. Associated with each step of the proof is a table in which

246

A Knowledge Compilation Map

L NNF DNNF d-DNNF FBDD OBDD OBDD< DNF CNF PI IP MODS sd-DNNF

NNF ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
DNNF ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
d-DNNF ≤ ≤ ≤ ≤ ≤ ≤
FBDD ≤ ≤ ≤
OBDD ≤ ≤

OBDD< ≤
DNF ≤ ≤ ≤
CNF ≤ ≤
PI ≤
IP ≤

MODS ≤
sd-DNNF ≤ ≤

Table 8:

L NNF DNNF d-DNNF FBDD OBDD OBDD< DNF CNF PI IP MODS sd-DNNF

NNF ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
DNNF ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

d-DNNF ≤ ≤ ≤ ≤ ≤ ≤
FBDD ≤ ≤ ≤
OBDD ≤ ≤

OBDD< ≤
DNF 6≤ ≤ 6≤ 6≤ ≤ ≤
CNF 6≤ 6≤ 6≤ ≤ ≤ 6≤
PI 6≤ 6≤ 6≤ 6≤ ≤ 6≤
IP 6≤ 6≤ 6≤ 6≤ 6≤ ≤
MODS ≤

sd-DNNF ≤ ≤

Table 9:

we mark all relationships that are proved in that step–we don’t show these marks in the very first
table though.

Table 8: Follows immediately from the language inclusions reported in Figure 4.
Table 9: We can prove both that DNF 6≤ PI and CNF 6≤ IP (this slightly generalizes the results

DNF 6≤ CNF and CNF 6≤ DNF given in (Gogic et al., 1995)).
Let us consider the CNF formula Σn =

∧n−1
i=0 (x2i ∨ x2i+1). This formula is in prime implicates

form7 (and each clause in Σn is an essential prime implicate of it). Hence its negation ¬Σn is in
prime implicants form (as an easy consequence of Lemma A.14).

Since Quine’s early work (Quine, 1959), we know that the number of essential prime implicants
(resp. prime implicates) of a formula is a lower bound of the number of terms (resp. clauses) that
can be found in any DNF (resp. CNF) representation of it (indeed, any such representation must
include the essential prime). Σn has 2n essential prime implicants. Indeed, this can be easily shown
by induction on n given that (i) every literal occurring in Σn occurs only once, (ii) the set of prime
implicants of any nontautological clause is the set of literals occurring in it (up to logical equivalence),
and (iii) the distribution property for prime implicants (see e.g., (dual of) Proposition 40 in (Marquis,
2000)) which states that IP(α∧β) = max({PIα∧PIβ | PIα ∈ IP(α), PIβ ∈ IP(β)}, |=) (up to logical
equivalence). Subsequently, ¬Σn has 2n essential prime implicates (cf. Lemma A.14). Accordingly,
we obtain that both DNF 6≤ PI and CNF 6≤ IP. We also obtain PI 6≤ IP and IP 6≤ PI. Now, it is
well–known that some DNF formulas have exponentially many prime implicants (see the proof of
Proposition 5.1 where we show that IP does not satisfy SFO). Hence, their negations are CNF

5. Note that f-NNF satisfies ¬C and that the negation of a CNF sentence (resp. DNF sentence) can be turned into a
DNF (resp. CNF) in linear time.

6. A prime implicant (resp. a prime implicate) α of Σ is essential iff the disjunction (resp. conjunction) of all prime
implicants (resp. prime implicates) of Σ except α is not equivalent to Σ.

7. The correctness of (the dual of) Quine’s consensus algorithm for computing prime implicants (Quine, 1955)
ensures it, since no clause of Σn is subsumed by another clause and no consensi can be performed since there are
no negated variables.

247

Darwiche & Marquis

L NNF DNNF d-DNNF FBDD OBDD OBDD< DNF CNF PI IP MODS sd-DNNF

NNF ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
DNNF ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
d-DNNF ≤ ≤ ≤ ≤ ≤ ≤
FBDD ≤ ≤ ≤
OBDD ≤ ≤

OBDD< ≤
DNF 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ ≤ 6≤ 6≤ ≤ ≤
CNF 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ ≤ ≤ 6≤
PI 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ ≤ 6≤
IP 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ ≤

MODS ≤
sd-DNNF ≤ ≤

Table 10:

L NNF DNNF d-DNNF FBDD OBDD OBDD< DNF CNF PI IP MODS sd-DNNF

NNF ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
DNNF ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
d-DNNF ≤ ≤ ≤ ≤ ≤ ≤
FBDD 6≤ 6≤ 6≤ ≤ ≤ ≤
OBDD 6≤ 6≤ 6≤ 6≤ ≤ ≤

OBDD< 6≤ 6≤ 6≤ 6≤ 6≤ ≤
DNF 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ ≤ 6≤ 6≤ ≤ ≤
CNF 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ ≤ ≤ 6≤
PI 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ ≤ 6≤
IP 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ ≤

MODS ≤
sd-DNNF ≤ ≤

Table 11:

formulas having exponentially many prime implicates. Subsequently IP 6≤ DNF and PI 6≤ CNF. The
remaining results in this table follow from the transitivity of ≤.

Table 10: The parity function On =
⊕n−1

i=0 xi has linear size OBDD< representations (Bryant,
1986) but only exponential size CNF and DNF representations. The reason is that On has 2n

essential prime implicants (resp. essential prime implicates) and the number of essential prime
implicants (resp. essential prime implicates) of a formula is a lower bound of the size of any of its
DNF (resp. CNF) representation. This easily shows that both CNF 6≤ OBDD and DNF 6≤ OBDD. The
remaining results in this table follow from the language inclusions reported in Figure 4.

Table 11: It is shown in (Darwiche, 2001b) that there is a sentence in d-DNNF which only
has exponential FBDD representations. Accordingly, we have FBDD 6≤ d-DNNF. In (Gergov & Meinel,
1994a), it is shown that OBDD 6≤ FBDD. Finally, it is easy to show that OBDD< 6≤ OBDD (for instance,
the formula Σn =

∧n
i=1(xi ⇔ yi) has an OBDD< representation of size polynomial in n whenever <

satisfies x1 < y1 < x2 < . . . < xn < yn, while it has an OBDD< representation of size exponential in
n provided that < is s.t. x1 < x2 < . . . < xn < y1 < y2 < . . . < yn). The remaining results in this
table follow from the language inclusions reported in Figure 4.

Table 12: L’ 6≤∗ L means that L’ 6≤ L unless the polynomial hierarchy PH collapses. The
results in this table follow since the existence of polysize knowledge compilation functions for clausal
entailment implies the collapse of the polynomial hierarchy PH (Selman & Kautz, 1996; Cadoli &
Donini, 1997). Now, if DNNF ≤ CNF, then for each sentence Σ in CNF there exists a polysize equivalent
sentence Γ in DNNF. Therefore, we can test whether a clause is entailed by Σ in polytime by testing
whether the clause is entailed by Γ. This proves the existence of polysize knowledge compilation
functions for clausal entailment, leading to the collapse of the polynomial hierarchy PH. The same
is true for d-DNNF and sd-DNNF since all these languages support a polytime clausal entailment test
(see Proposition 4.1).

Table 13: In (Wegener, 1987) (Theorem 6.2 pp. 436), a family of n2-variable boolean functions
Σ is pointed out. Provided that every interpretation I over these n2 variables represents a n-vertices
digraph (for every 1 ≤ i, j ≤ n, we have I(xi,j) = 1 iff (i, j) is an arc of the digraph), Σ(I) = 1 iff the

248

A Knowledge Compilation Map

L NNF DNNF d-DNNF FBDD OBDD OBDD< DNF CNF PI IP MODS sd-DNNF

NNF ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
DNNF 6≤∗ ≤ ≤ ≤ ≤ ≤ ≤ 6≤∗ ≤ ≤ ≤
d-DNNF 6≤∗ ≤ ≤ ≤ ≤ 6≤∗ ≤ ≤
FBDD 6≤ 6≤ 6≤ ≤ ≤ ≤
OBDD 6≤ 6≤ 6≤ 6≤ ≤ ≤

OBDD< 6≤ 6≤ 6≤ 6≤ 6≤ ≤
DNF 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ ≤ 6≤ 6≤ ≤ ≤
CNF 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ ≤ ≤ 6≤
PI 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ ≤ 6≤
IP 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ ≤

MODS ≤
sd-DNNF 6≤∗ 6≤∗ ≤ ≤

Table 12:

L NNF DNNF d-DNNF FBDD OBDD OBDD< DNF CNF PI IP MODS sd-DNNF

NNF ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
DNNF 6≤∗ ≤ ≤ ≤ ≤ ≤ ≤ 6≤∗ ≤ ≤ ≤

d-DNNF 6≤∗ ≤ ≤ ≤ ≤ 6≤∗ ≤ ≤
FBDD 6≤ 6≤ 6≤ ≤ ≤ ≤ 6≤ 6≤ 6≤ 6≤
OBDD 6≤ 6≤ 6≤ 6≤ ≤ ≤ 6≤ 6≤ 6≤ 6≤

OBDD< 6≤ 6≤ 6≤ 6≤ 6≤ ≤ 6≤ 6≤ 6≤ 6≤
DNF 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ ≤ 6≤ 6≤ ≤ ≤
CNF 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ ≤ ≤ 6≤
PI 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ ≤ 6≤
IP 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ ≤

MODS ≤
sd-DNNF 6≤∗ 6≤∗ ≤ ≤

Table 13:

digraph represented by I contains a k-clique of a special kind (k is a parameter of the family). It is
shown that for certain values of k (depending on n), every FBDD representation of Σ has exponential
size. Moreover, it is shown that Σ has only a cubic number of prime implicants. This shows that
FBDD 6≤ IP, hence FBDD 6≤ DNF. Because FBDD satisfies ¬C (see Proposition 5.1),8 it cannot be the
case that ¬Σ has a polynomial size FBDD. Since ¬Σ has only a cubic number of prime implicates, we
obtain that FBDD 6≤ PI, hence FBDD 6≤ CNF. The remaining results in this table follow since FBDD≤
OBDD ≤ OBDD<.

Table 14: Assume that d-DNNF ≤ DNF holds. As a consequence, every sentence Σ in DNF can be
compiled into an equivalent d-DNNF sentence Σ∗ of polynomial size. Now, checking whether a clause
γ is entailed by the CNF sentence Σ is equivalent to checking whether the DNF sentence ¬Σ ∨ γ is
valid. Checking whether (¬Σ)∗∨γ is valid—when (¬Σ)∗ is a d-DNNF sentence and γ is a clause—can
be achieved in polynomial time by Lemma A.11. Therefore, (¬Σ)∗ is a polysize compilation of the

8. That is, a sentence in FBDD can be negated in polytime to yield a sentence in FBDD too.

L NNF DNNF d-DNNF FBDD OBDD OBDD< DNF CNF PI IP MODS sd-DNNF

NNF ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
DNNF 6≤∗ ≤ ≤ ≤ ≤ ≤ ≤ 6≤∗ ≤ ≤ ≤

d-DNNF 6≤∗ 6≤∗ ≤ ≤ ≤ ≤ 6≤∗ 6≤∗ ≤ ≤
FBDD 6≤ 6≤ 6≤ ≤ ≤ ≤ 6≤ 6≤ 6≤ 6≤ 6≤
OBDD 6≤ 6≤ 6≤ 6≤ ≤ ≤ 6≤ 6≤ 6≤ 6≤ 6≤

OBDD< 6≤ 6≤ 6≤ 6≤ 6≤ ≤ 6≤ 6≤ 6≤ 6≤ 6≤
DNF 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ ≤ 6≤ 6≤ ≤ ≤ 6≤
CNF 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ ≤ ≤ 6≤ 6≤
PI 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ ≤ 6≤ 6≤
IP 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ ≤ 6≤
MODS ≤

sd-DNNF 6≤∗ 6≤∗ ≤ ≤ ≤ ≤ 6≤∗ 6≤∗ ≤ ≤

Table 14:

249

Darwiche & Marquis

L NNF DNNF d-DNNF FBDD OBDD OBDD< DNF CNF PI IP MODS sd-DNNF

NNF ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤
DNNF 6≤∗ ≤ ≤ ≤ ≤ ≤ ≤ 6≤∗ ≤ ≤ ≤

d-DNNF 6≤∗ 6≤∗ ≤ ≤ ≤ ≤ 6≤∗ 6≤∗ ≤ ≤
FBDD 6≤ 6≤ 6≤ ≤ ≤ ≤ 6≤ 6≤ 6≤ 6≤ ≤ 6≤
OBDD 6≤ 6≤ 6≤ 6≤ ≤ ≤ 6≤ 6≤ 6≤ 6≤ ≤ 6≤

OBDD< 6≤ 6≤ 6≤ 6≤ 6≤ ≤ 6≤ 6≤ 6≤ 6≤ ≤ 6≤
DNF 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ ≤ 6≤ 6≤ ≤ ≤ 6≤
CNF 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ ≤ ≤ 6≤ ≤ 6≤
PI 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ ≤ 6≤ 6≤
IP 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ ≤ ≤ 6≤
MODS 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ 6≤ ≤ 6≤

sd-DNNF 6≤∗ 6≤∗ ≤ ≤ ≤ ≤ 6≤∗ 6≤∗ ≤ ≤

Table 15:

CNF sentence Σ, allowing clausal entailment to be achieved in polynomial time. The existence of
such (¬Σ)∗ for every CNF sentence Σ implies the collapse of the polynomial hierarchy (Selman &
Kautz, 1996; Cadoli & Donini, 1997). Hence, we obtain that d-DNNF 6≤∗ DNF. As a consequence, we
also have d-DNNF 6≤∗ DNNF. Finally, since every d-DNNF sentence can be turned in polynomial time
into an equivalent sd-DNNF sentence by Lemma A.1, we have sd-DNNF ≤ d-DNNF. Moreover, since
d-DNNF ≤ sd-DNNF, we obtain sd-DNNF 6≤∗ DNF, sd-DNNF 6≤∗ DNNF, sd-DNNF ≤ FBDD, sd-DNNF ≤
OBDD, sd-DNNF ≤ OBDD<, FBDD 6≤ sd-DNNF, OBDD< 6≤ sd-DNNF, DNF 6≤ sd-DNNF, CNF 6≤ sd-DNNF, PI
6≤ sd-DNNF and IP 6≤ sd-DNNF.

Table 15: Let us now show that MODS is not less succinct than PI, IP, sd-DNNF and OBDD.
First, let us consider the formula Σ =

∨n
i=1 xi. Σ can be represented by PI, IP, sd-DNNF and OBDD

formulas of size polynomial in n. Contrastingly, Σ cannot be represented by a MODS formula of
size polynomial in n since Σ has 2n − 1 models over Vars(Σ). Now, it is well-known that the old
good Quine-McCluskey’s algorithm for generating prime implicants from a MODS representation of
a propositional formula Σ runs in time polynomial in the number of models of Σ (Wegener, 1987).
This shows that IP ≤ MODS. As to CNF and OBDD<, it is obvious that a decision tree (or Shannon tree)
for Σ that respects a given total ordering over Vars(Σ) can be generated in polynomial time from a
MODS representation of Σ. Such a decision tree has m 1-leaves where m is the number of models of
Σ over Vars(Σ). Accordingly, it has at most n ∗m 0-leaves where n = |Vars(Σ)|. Since the set of all
paths from the root of the tree to any 0-leaf can be read as a CNF representation of Σ, we obtain that
CNF ≤ MODS. On the other hand, since reducing a decision tree to derive a corresponding OBDD<

can be done in polynomial time, it follows that an OBDD< representation of Σ can also be generated
from a MODS representation of it. Hence, OBDD< ≤ MODS. The remaining results in this table follow
from the language inclusions reported in Figure 4. 2

Proof of Proposition 4.1

The proof of this proposition is broken down into twelve steps. In each step, we prove a number
of results. Associated with each step of the proof is a table in which we mark all results that are
proved in that step. The table of the last step includes all results declared by this proposition.

Table 16: Every classical CNF or DNF formula can be translated in a straightforward way into
an equivalent f-NNF sentence (with a tree structure) in polytime. Moreover, every NNF sentence
can be translated into an equivalent s-NNF sentence in polytime (Lemma A.1). Given that CO
is NP-hard (resp. VA is coNP-hard) for classical CNF (resp. DNF) sentences, and the inclusion
between the various NNF subsets reported in Figure 4, we obtain the table.

Table 17: SE implies both CO and VA (Lemma A.10). Moreover, since CT implies both CO
and VA, IM implies VA (valid term), and CE implies CO (inconsistent clause), we obtain the
table.

250

A Knowledge Compilation Map

L CO VA CE IM EQ CT SE ME

NNF ◦ ◦
DNNF ◦
d-NNF

d-DNNF

BDD

FBDD

OBDD

OBDD<

DNF ◦
CNF ◦
PI

IP

MODS

s-NNF ◦ ◦
f-NNF ◦ ◦

sd-DNNF

Table 16:

L CO VA CE IM EQ CT SE ME

NNF ◦ ◦ ◦ ◦ ◦ ◦
DNNF ◦ ◦ ◦ ◦
d-NNF

d-DNNF

BDD

FBDD

OBDD

OBDD<

DNF ◦ ◦ ◦ ◦
CNF ◦ ◦ ◦ ◦
PI

IP

MODS

s-NNF ◦ ◦ ◦ ◦ ◦ ◦
f-NNF ◦ ◦ ◦ ◦ ◦ ◦
sd-DNNF

Table 17:

L CO VA CE IM EQ CT SE ME

NNF ◦ ◦ ◦ ◦ ◦ ◦
DNNF ◦ ◦ ◦ ◦
d-NNF

d-DNNF

BDD

FBDD

OBDD

OBDD<
DNF ◦ ◦ ◦ ◦
CNF ◦ ◦ ◦ ◦
PI

IP

MODS
√ √ √

s-NNF ◦ ◦ ◦ ◦ ◦ ◦
f-NNF ◦ ◦ ◦ ◦ ◦ ◦
sd-DNNF

Table 18:

251

Darwiche & Marquis

L CO VA CE IM EQ CT SE ME

NNF ◦ ◦ ◦ ◦ ◦ ◦
DNNF

√ ◦ √ ◦ ◦ ◦
d-NNF

d-DNNF
√ √

BDD

FBDD

OBDD

OBDD<

DNF
√ ◦ √ ◦ ◦ ◦

CNF ◦ ◦ ◦ ◦
PI

IP
√ √

MODS
√ √ √ √

s-NNF ◦ ◦ ◦ ◦ ◦ ◦
f-NNF ◦ ◦ ◦ ◦ ◦ ◦
sd-DNNF

√ √

Table 19:

L CO VA CE IM EQ CT SE ME

NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦
DNNF

√ ◦ √ ◦ ◦ ◦ √
d-NNF

d-DNNF
√ √ √

BDD

FBDD
√ √ √ √ √ √

OBDD
√ √ √ √ √ √ ◦ √

OBDD<
√ √ √ √ √ √ √ √

DNF
√ ◦ √ ◦ ◦ ◦ √

CNF ◦ ◦ ◦ ◦ ◦
PI

IP
√ √ √

MODS
√ √ √ √ √

s-NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦
f-NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦

sd-DNNF
√ √ √

Table 20:

Table 18: A sentence Σ is consistent (resp. valid) iff it has a model (resp. 2n models, where
n = |Vars(Σ)|). Moreover, the number of models of Σ is given by the number of edges outgoing
from the or-node in any MODS representation of Σ. Accordingly, CO, VA and CT can be achieved
in polynomial time when Σ is given by a MODS formula which gives us the table.

Table 19:Because DNNF satisfies CE (Darwiche, 2001a), CE implies CO and MODS ⊆ DNF ⊆
DNNF, IP⊆ DNF and
sd-DNNF ⊆ d-DNNF ⊆ DNNF, we obtain the table.

Table 20: We now use the following results:

CD and CO imply CE (Lemma A.4).

CD and VA imply IM (Lemma A.7).

CD and CO imply ME (Lemma A.3).

All considered NNF subsets satify CD (cf. Proposition 5.1).

If an NNF subset does not satisfy CO it cannot satisfy ME.

It is well-known that FBDD satisfies CO, VA and CT, and that OBDD< satisfies (in addition)
EQ (Gergov & Meinel, 1994a; Bryant, 1992).

Since Σ |= α holds iff Σ ∧ ¬α is inconsistent and since OBDD< satisfies CO, ¬C and ∧BC (cf.
Proposition 5.1), OBDD< also satisfies SE.

252

A Knowledge Compilation Map

L CO VA CE IM EQ CT SE ME

NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦
DNNF

√ ◦ √ ◦ ◦ ◦ √
d-NNF

d-DNNF
√ √ √

BDD

FBDD
√ √ √ √ √ √

OBDD
√ √ √ √ √ √ ◦ √

OBDD<
√ √ √ √ √ √ √ √

DNF
√ ◦ √ ◦ ◦ ◦ √

CNF ◦ √ ◦ √ ◦ ◦ ◦
PI

√ √
IP

√ √ √
MODS

√ √ √ √ √
s-NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦
f-NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦

sd-DNNF
√ √ √

Table 21:

L CO VA CE IM EQ CT SE ME

NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦
DNNF

√ ◦ √ ◦ ◦ ◦ √

d-NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦
d-DNNF

√ √ √

BDD ◦ ◦ ◦ ◦ ◦ ◦ ◦
FBDD

√ √ √ √ √ √
OBDD

√ √ √ √ √ √ ◦ √
OBDD<

√ √ √ √ √ √ √ √
DNF

√ ◦ √ ◦ ◦ ◦ √
CNF ◦ √ ◦ √ ◦ ◦ ◦
PI

√ √
IP

√ √ √
MODS

√ √ √ √
s-NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦
f-NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦
sd-DNNF

√ √ √

Table 22:

Obviously enough, any query concerning OBDD is equivalent to the corresponding query con-
cerning OBDD< provided that only one DAG is brought into play. Together with the above
results, we conclude that OBDD satisfies CO, VA and CT. Since this fragment satisfies CD as
well, it satisfies CE, IM and ME in addition. It also satisfies EQ (see Theorem 8.11 from
(Meinel & Theobald, 1998)) but does not satisfy SE (unless P = NP). Indeed, it is known
that checking the consistency of two OBDD< formulas α and β (based on two different vari-
able orderings <) is NP-complete (Lemma 8.14 from (Meinel & Theobald, 1998)). Since OBDD
satisfies ¬C and since α ∧ β is consistent iff α 6|= ¬β, checking sentential entailment for OBDD
formulas is coNP-complete.

These results lead to the table.
Table 21: It is known that IM is satisfied by classical CNF formulas (hence, PI) (in order to

check whether a non-valid clause is implied by a consistent term, it is sufficient to test that they
share a literal). CNF (hence, PI) is also known to satisfy VA. We then obtain the table.

Table 22: Every sentence in CNF or DNF can be turned into an equivalent sentence in BDD in
polytime (Lemma A.8). Hence, a ◦ in a CNF or DNF cell implies a ◦ in the corresponding BDD cell.
Similarly, since BDD ⊆ d-NNF, a ◦ in a BDD cell implies a ◦ in the corresponding d-NNF cell. This
leads to the table.

Table 23: Since EQ implies CO and VA (Lemma A.9), a ◦ in a CO or VA cell implies a ◦ in
the corresponding EQ cell. This leads to the table.

Table 24: By definition, PI satisfies CE and IP satisfies IM. Since PI ⊆ CNF and IP ⊆ DNF,
this implies that both PI and IP satisfy SE. Now, SE implies EQ, hence both PI and IP satisfy EQ
(actually, two equivalent formulas share the same prime implicates and the same prime implicants
(both forms are canonical ones, provided that one representative per equivalence class is considered,

253

Darwiche & Marquis

L CO VA CE IM EQ CT SE ME

NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
DNNF

√ ◦ √ ◦ ◦ ◦ ◦ √

d-NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
d-DNNF

√ √ √

BDD ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
FBDD

√ √ √ √ √ √
OBDD

√ √ √ √ √ √ ◦ √
OBDD<

√ √ √ √ √ √ √ √

DNF
√ ◦ √ ◦ ◦ ◦ ◦ √

CNF ◦ √ ◦ √ ◦ ◦ ◦ ◦
PI

√ √
IP

√ √ √
MODS

√ √ √ √ √

s-NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
f-NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
sd-DNNF

√ √ √

Table 23:

L CO VA CE IM EQ CT SE ME

NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
DNNF

√ ◦ √ ◦ ◦ ◦ ◦ √
d-NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
d-DNNF

√ √ √
BDD ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
FBDD

√ √ √ √ √ √
OBDD

√ √ √ √ √ √ ◦ √
OBDD<

√ √ √ √ √ √ √ √
DNF

√ ◦ √ ◦ ◦ ◦ ◦ √
CNF ◦ √ ◦ √ ◦ ◦ ◦ ◦
PI

√ √ √ √ √ ◦ √ √

IP
√ √ √ √ √ ◦ √ √

MODS
√ √ √ √ √

s-NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
f-NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
sd-DNNF

√ √ √

Table 24:

254

A Knowledge Compilation Map

L CO VA CE IM EQ CT SE ME

NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
DNNF

√ ◦ √ ◦ ◦ ◦ ◦ √
d-NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
d-DNNF

√ √ √
BDD ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
FBDD

√ √ √ √ √ √
OBDD

√ √ √ √ √ √ ◦ √
OBDD<

√ √ √ √ √ √ √ √
DNF

√ ◦ √ ◦ ◦ ◦ ◦ √
CNF ◦ √ ◦ √ ◦ ◦ ◦ ◦
PI

√ √ √ √ √ ◦ √ √
IP

√ √ √ √ √ ◦ √ √

MODS
√ √ √ √ √ √ √ √

s-NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
f-NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

sd-DNNF
√ √ √

Table 25:

L CO VA CE IM EQ CT SE ME

NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
DNNF

√ ◦ √ ◦ ◦ ◦ ◦ √
d-NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
d-DNNF

√ √ √ √ √ √
BDD ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
FBDD

√ √ √ √ √ √
OBDD

√ √ √ √ √ √ ◦ √
OBDD<

√ √ √ √ √ √ √ √
DNF

√ ◦ √ ◦ ◦ ◦ ◦ √
CNF ◦ √ ◦ √ ◦ ◦ ◦ ◦
PI

√ √ √ √ √ ◦ √ √
IP

√ √ √ √ √ ◦ √ √
MODS

√ √ √ √ √ √ √ √
s-NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
f-NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

sd-DNNF
√ √ √ √ √ √

Table 26:

only)). Since PI satisfies CE, it also satisfies CO. Since it satisfies CD as well (cf. Proposition 5.1),
it also satisfies ME (Lemma A.3). Contrastingly, the models counting problem for monotone Krom
formulas (i.e. conjunctions of clauses containing at most two literals and only positive literals)
is #P-complete (Roth, 1996). Such formulas can easily be turned into prime implicates form in
polynomial time (Marquis, 2000), hence PI does not satisfy CT. Now, since the negation of a
formula Σ in prime implicates form is a formula in prime implicants form (cf. Lemma A.14), and
since the number of models of ¬Σ over Vars(Σ) is 2|Vars(Σ)| minus the number of models of Σ over
Vars(Σ), we necessarily have that IP does not satisfy CT. This also imply that IP satisfies VA,
leading to the table.

Table 25: In the proof of Proposition 3.1, we have shown that the prime implicants of Σ can
be computed in polytime from a MODS representation of Σ. As an immediate consequence, since IP
satisfies IM, EQ and SE, we obtain that MODS satisfies IM, EQ and SE, leading to the table.

Table 26: Since d-DNNF satisfies CT (Darwiche, 2001b), it also satisfies VA. Since it satisfies
CD (Proposition 5.1), it also satisfies IM as well (Lemma A.7). Since sd-DNNF ⊆ d-DNNF, these
results follow for sd-DNNF. Hence, we obtain the table.

Table 27: It is known that determining whether the conjunction of two FBDD formulas α1 and α2

is consistent is NP-complete (Gergov & Meinel, 1994b) Moreover, FBDD satisfies ¬C. Since α1 ∧ α2

is inconsistent iff α1 |= ¬α2, we can reduce the consistency test into an entailment test. Hence, FBDD
does not satisfy SE. Since FBDD ⊆ d-DNNF, d-DNNF does not satisfy SE either. Finally, since every
d-DNNF can be translated into an equivalent sd-DNNF sentence in polytime (Lemma A.1), sd-DNNF
does not satisfy SE either. This leads to the final table above. 2

255

Darwiche & Marquis

L CO VA CE IM EQ CT SE ME

NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
DNNF

√ ◦ √ ◦ ◦ ◦ ◦ √
d-NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
d-DNNF

√ √ √ √ √ ◦ √
BDD ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
FBDD

√ √ √ √ √ ◦ √
OBDD

√ √ √ √ √ √ ◦ √
OBDD<

√ √ √ √ √ √ √ √
DNF

√ ◦ √ ◦ ◦ ◦ ◦ √
CNF ◦ √ ◦ √ ◦ ◦ ◦ ◦
PI

√ √ √ √ √ ◦ √ √
IP

√ √ √ √ √ ◦ √ √
MODS

√ √ √ √ √ √ √ √
s-NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
f-NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

sd-DNNF
√ √ √ √ √ ◦ √

Table 27:

Proof of Proposition 5.1

The proof of this proposition is broken down into eight steps. Each step corresponds to one of the
transformations, where we prove all results pertaining to that transformation.

• CD. To show that a language L satisfies CD, we want to show that for any sentence Σ ∈ L
and any consistent term γ, we can construct in polytime a sentence which belongs to L and is
equivalent to Σ | γ.

– NNF, f-NNF, CNF and DNF. The property is trivially satisfied by these languages: If Σ
belongs to any of these languages, then replacing the literals of γ by a Boolean constant
in Σ results a sentence in the same language. In the case of DNF (resp. CNF), some
inconsistent terms (valid clauses) may result through conditioning, but these can be
removed easily in polynomial time.

– DNNF. It is sufficient to prove that conditioning preserves decomposability. For every
propositional sentences α, β and every consistent term γ, if α and β do not share variables,
then α|γ and β|γ do not share variables either since Vars(α|γ) ⊆ Vars(α) and Vars(β|γ) ⊆
Vars(β).

– d-NNF and d-DNNF. Since NNF and DNNF satisfy CD, it is sufficient to prove that condition-
ing preserves determinism, i.e. for every propositional formulas α, β and every consistent
term γ, if α ∧ β |= false, then (α|γ) ∧ (β|γ) |= false. If α ∧ β |= false, then for every term
γ, we have (α ∧ β) ∧ γ |= false. Since (α ∧ β) ∧ γ ≡ ((α ∧ β)|γ) ∧ γ, this implies that
((α∧β)|γ)∧γ |= false. Since γ is consistent and share no variable with (α∧β)|γ, it must
be the case that (α∧β)|γ is inconsistent. This is equivalent to state that (α|γ)∧ (β|γ) |=
false.

– s-NNF and sd-DNNF. Since NNF satisfies CD, and since conditioning preserves decompos-
ability and determinism, all we have to show is that conditioning also preserves smooth-
ness. This follows immediately since for two propositional sentences α, β and a consistent
term γ, we have Vars(α) = Vars(β) only if Vars(α | γ) = Vars(β | γ).

– BDD, FBDD, OBDD and OBDD<. It is well–known that BDD satisfies CD—the conditioning
operation on binary decision diagrams is known as the restrict operation (Bryant, 1986).
To condition a sentence Σ in BDD on a consistent term γ, we replace every node labeled
by a variable in γ by one of its two children, according to the sign of the variable in γ.
The resulting sentence is also a BDD and is equivalent to Σ | γ. The same applies to FBDD,
OBDD and OBDD<.

– PI. The prime implicates of Σ ∧ γ can be computed in polytime when Σ is in prime
implicates form and γ is a term (see Proposition 36 in (Marquis, 2000)). Moreover, since

256

A Knowledge Compilation Map

PI satisfies FO (see below), the prime implicates of ∃Vars(γ).(Σ∧γ) can be computed in
polytime. But these are exactly the prime implicates of Σ | γ according to Lemma A.12.

– IP. Let Σ =
∨n

i=1 γi be a formula in prime implicants form. It is clear that the formula
(
∨n

i=1 γi) | γ is a DNF formula equivalent to Σ | γ. Now, our claim is that the formula Σ∗
obtained by keeping only the logically weakest terms γi | γ among (

∨n
i=1 γi) | γ is a prime

implicants formula equivalent to Σ | γ. Removing such terms clearly is truth-preserving.
Since generating Σ∗ requires only O(n2) entailment tests among terms, and since such
tests can be easily achieved in polynomial time, we obtain that IP satisfies CD. Now,
how to prove that Σ∗ is in prime implicants form? Since any pair of different terms of
Σ∗ cannot be compared w.r.t. logical entailment, the correctness of Quine’s consensus
algorithm for generating prime implicants shows that it is sufficient to prove that every
consensus among two terms of Σ∗ is inconsistent or entails another term of Σ∗. Let’s
recall that consensus is to DNF formulas what resolution is to CNF formulas. Since Σ
is in prime implicants form, every consensus among two terms of Σ is inconsistent or
entails another term of Σ. What happens to the terms (here, the prime implicants) of Σ
when conditioned by γ? All those containing the negation of a literal of γ are removed
and the remaining ones are shortened by removing from them every literal of γ. Hence,
for every pair of terms γ1, γ2 of Σ, if there is no consensus between γ1 and γ2, then
there is no consensus between γ1|γ and γ2|γ: conditioning cannot create new consensus.
Now, it remains to prove that no unproductive consensus between terms of Σ can be
rendered productive through conditioning. Formally, let γ1 = γ′1 ∧ l and γ2 = γ′2 ∧ ¬l be
two prime implicates of Σ s.t. l (resp. ¬l) does not appear in γ′1 (resp. γ′2). There is a
consensus γ′1∧γ′2 between γ1 and γ2. Let us assume that both γ1 and γ2 have survived the
conditioning: this means that both γ1|γ and γ2|γ are consistent. Especially, l belongs to
γ1|γ and ¬l belongs to γ2|γ. Accordingly, there is a consensus between γ1|γ and γ2|γ. By
construction, this consensus is equivalent to (γ′1|γ)∧(γ′2|γ), hence equivalent to (γ′1∧γ′2)|γ.
Now, if γ′1 ∧ γ′2 is inconsistent, then (γ′1 ∧ γ′2)|γ is inconsistent as well and we are done.
Otherwise, let us assume that there exists a prime implicant γ3 of Σ s.t. γ′1 ∧ γ′2 |= γ3

holds. Necessarily, γ3 is preserved by the conditioning of Σ by γ. Otherwise, γ3 would
contain the negation of a literal of γ, but since every literal of γ3 is a literal of γ1 or a
literal of γ2, γ2 and γ3 would not have both survived the conditioning. Since γ′1∧γ′2 |= γ3

holds, we necessarily have (γ′1 ∧ γ′2)|γ |= γ3|γ. This completes the proof.

– MODS. Direct consequence of Lemma A.12 and the fact that MODS satisfies ∧BC and FO
(see below).

• FO.

– DNNF and DNF. It is known that DNNF satisfies FO (Darwiche, 2001a). It is also known
that DNF satisfies FO (Lang et al., 2000).

– NNF, s-NNF, f-NNF, d-NNF, BDD and CNF. Let Σ be a sentence in CNF. We now show that
if any of the previous languages satisfies FO, then we can test the consistency of Σ in
polytime. Since CNF does not satisfy CO (see Proposition 4.1), it then follows that none
of the previous languages satisfy FO unless P = NP. First, we note that Σ must also
belong to NNF and f-NNF. Moreover, Σ can be turned into a sentence in BDD in polytime
(Lemma A.8) or a sentence in s-NNF in polytime (see the proof of Lemma A.1). We
also have that Σ can be turned into a sentence in d-NNF in polytime since BDD ⊆ d-NNF.
Suppose now that one of the previous languages, call it L, satisfy FO. We can test the
consistency of Σ in polytime as follows:

∗ Convert Σ into a sentence Σ∗ in L in polytime (as shown above).
∗ Compute ∃Vars(Σ∗).Σ∗, which can be done in polytime by assumption.

257

Darwiche & Marquis

∗ Test the validity of ∃Vars(Σ∗).Σ∗, which can be done in polytime since the sentence
contains no variables—all we have to do is check whether the sentence evaluates to
true.

Finally, note that the definition of forgetting implies that a sentence Γ is consistent iff
∃Vars(Γ).Γ is valid, which completes the proof.

– d-DNNF and sd-DNNF. Follows immediately since none of these languages satisfies SFO
unless P = NP (see below).

– IP. Follows immediately since IP does not satisfy SFO.

– FBDD, OBDD and OBDD<. We will show that if FBDD (resp. OBDD, OBDD<) satisfies FO,
then for every sentence Γ in DNF, there must exist an equivalent sentence Σ in FBDD (resp.
OBDD, OBDD<), which size is polynomial in the size of Γ. This contradicts the fact that
FBDD (resp. OBDD, OBDD<) 6≤ DNF—see Table 3.
Given a DNF Γ consisting of terms γ1, ..., γn, we can convert each of these terms into equiv-
alent FBDD (resp. OBDD, OBDD<) sentences α1, . . . , αn in polytime. Let {v1, . . . , vn−1}
be a set of variables that do not belong to PS. Construct a new set of variables
PS′ = PS ∪ {v1, . . . , vn−1}. In case of OBDD and OBDD<, we also assume that these
new variables are earlier than variables PS in the ordering. Consider now the sentence
Σ = ∃{v1, . . . , vn−1}.∆1, with respect to variables PS′, where ∆i is inductively defined
by:

∗ ∆i = αi, for i = n, and
∗ ∆i = (αi ∧ vi) ∨ (∆i+1 ∧ ¬vi), for i = 1, . . . , n− 1.

Clearly enough, an FBDD (resp. OBDD, OBDD<) sentence equivalent to ∆1 can be computed
in time polynomial in the input size. Moreover, we have Σ ≡ ∨n

i=1 αi ≡
∨n

i=1 γi ≡ Γ.
Hence, if FBDD (resp. OBDD, OBDD<) satisfies FO, then we can convert the DNF sentence Γ
into an equivalent FBDD (resp. OBDD, OBDD<) which size is polynomial in the size of the
given DNF. This is impossible in general.

– PI. It is known that the prime implicates of ∃X.Σ are exactly the prime implicates of Σ
that do not contain any variable from X (see Proposition 55 in (Marquis, 2000)). Hence,
such prime implicates can be computed in time polynomial in the input size when Σ is
in prime implicates form.

– MODS. Given a MODS formula Σ and a subset X of PS, the formula obtained by removing
every leaf node (and the corresponding incoming edges) of Σ labeled by a literal x or ¬x
s.t. x ∈ X is a MODS representation of ∃X.Σ—this is an easy consequence of Propositions
18 and 20 from (Lang et al., 2000). See also the polytime operation of forgetting on DNNF,
as defined in (Darwiche, 2001a), which applies to MODS, since
MODS ⊆ DNNF, and which can be easily modified so it guarantees that the output is in
MODS when the input is also in MODS.

• SFO.

– DNNF, DNF, PI and MODS. Immediate from the fact that each of these languages satisfies
FO (see above).

– NNF, d-NNF, s-NNF, f-NNF, BDD, OBDD< and CNF. Direct from the fact that ∃x.Σ ≡ (Σ|x)∨
(Σ|¬x) holds and the fact that any of these fragments satisfies CD and ∨BC.

– OBDD. Direct from the fact that only one OBDD sentence is considered in the transformation
and OBDD< satisfies SFO.

– d-DNNF, sd-DNNF and FBDD. Let α1 and α2 be two FBDD formulas. Let x be a variable
not included in Vars(α1) ∪ Vars(α2). The formula Σ = (x ∧ α1) ∨ (¬x ∧ α2) is a FBDD

258

A Knowledge Compilation Map

formula since decomposability and decision are preserved by this construction. Since ∃x.Σ
is equivalent to α1 ∨ α2, if FBDD would satisfy SFO, it would satisfy ∨BC as well, but
this is not the case unless P = NP (see below). The same conclusion can be drawn for
d-DNNF. Hence, FBDD and d-DNNF do not satisfy SFO unless P = NP. Since every d-DNNF
formula can be turned in polynomial time into an equivalent sd-DNNF formula, we obtain
that sd-DNNF does not satisfy SFO unless P = NP.

– IP. Let us show that the number of prime implicants of ∃x.Σ can be exponentially greater
than the number of prime implicants of Σ. Let Σ′ be the following DNF formula:

Σ′ =

k∨

i=1

m∨

j=1

(pi ∧ qi,j)

 ∨

k∧

i=1

¬pi.

Σ′ has (m + 1)k + mk primes implicants (Chandra & Markowsky, 1978). Now, let Σ be
the formula:

Σ =

k∨

i=1

m∨

j=1

(x ∧ pi ∧ qi,j)

 ∨ (¬x ∧

k∧

i=1

¬pi).

Since Σ′ can be obtained from Σ by removing in every term of Σ every occurrence of x
and ¬x, Σ′ is equivalent to ∃{x}.Σ (see (Lang et al., 2000)). Now, Σ has only mk + 1
prime implicants; indeed, every term of it is a prime implicant, and the converse holds
since every term is maximal w.r.t. logical entailment and every consensus of two terms
is inconsistent. This completes the proof.

• ∧C.

– NNF, s-NNF, d-NNF, CNF. The property is trivially satisfied by these languages since deter-
minism and smoothness are only concerned with or-nodes. Hence, if α1, . . . , αn belong to
one of these languages, so is α1 ∧ . . . ∧ αn.

– BDD. It is well–known that the conjunction of two BDDs α and β can be easily computed
by connecting the 1-sink of α to the root of β (see proof of Lemma A.8). The size of the
resulting BDD is just the sum of the sizes of the respective BDDs of α and β. Accordingly,
we can repeat this operation n times in time polynomial in the input size.

– f-NNF. Direct from the fact that f-NNF does not satisfy ∧BC.

– FBDD, OBDD, OBDD<, DNF, PI and IP. It is straightforward to convert a clause into an
equivalent formula in any of these languages in polynomial time. In the proof of Proposi-
tion 3.1, we show specific CNF formulas which cannot be turned into an equivalent FBDD
(resp. OBDD, OBDD<, DNF, PI and IP) formulas in polynomial space (see Tables 9 and 10).
Hence, such conversion cannot be accomplished in polynomial time either. This implies
that none of FBDD, OBDD, OBDD<, DNF, PI and IP satisfies ∧C.

– DNNF, d-DNNF and sd-DNNF. Direct from the fact that none of these languages satisfy
∧BC unless
P = NP.

– MODS. Let Σ =
∧n

i=1 Σi, where Σi = (xi,1 ∨ xi,2), i ∈ 1..n. Each Σi has 3 models over
Vars(Σi). Since Σ has 3n models, it does not have a MODS representation of size polynomial
in the input size.

• ∧BC.

259

Darwiche & Marquis

– NNF, s-NNF, d-NNF, BDD and CNF. Immediate since each of these languages satisfy ∧C (see
above).

– DNNF, d-DNNF, sd-DNNF, FBDD and OBDD. Checking whether the conjunction of two OBDD<

formulas α1 and α2 (w.r.t. two different variable orderings <) is consistent is NP-complete
(see Lemma 8.14 in (Meinel & Theobald, 1998)). Since OBDD satisfies CO, it cannot satisfy
∧BC unless P = NP. Since OBDD ⊆ FBDD ⊆ d-DNNF ⊆ DNNF, and d-DNNF and DNNF satisfy
CO, none of them can satisfy ∧BC unless P = NP. Finally, since every d-DNNF formula
can be turned in polynomial time into an equivalent smoothed d-DNNF formula and since
sd-DNNF satisfies CO, it cannot be the case that sd-DNNF satisfy ∧BC unless P = NP.

– OBDD<. Well-known fact (Bryant, 1986).

– f-NNF. Let α1 =
∧n−1

i=0 (x2i ∨ x2i+1) be a CNF formula and α2 =
∨n−1

i=0 (x′2i ∧ x′2i+1) a DNF
formula. α1 has 2n essential prime implicants and n essential prime implicates (see the
proof of Proposition 3.1, Table 9). By duality, α2 has n essential prime implicants and 2n

essential prime implicates. Now, α1 and α2 are two f-NNF formulas. By Lemma A.13, we
know that every f-NNF formula β can be turned in polynomial time into a CNF formula or
a DNF formula. If f-NNF would satisfy ∧BC, then a f-NNF formula β s.t. β ≡ α1∧α2 could
be computed in time polynomial in the input size. Hence, either a CNF formula equivalent
to α1 ∧ α2 or a DNF formula equivalent to α1 ∧ α2 could be computed in polytime. But
this is impossible since α1 ∧ α2 has n + 2n essential prime implicates and n ∗ 2n essential
prime implicants. Hence every CNF (resp. DNF) formula equivalent to α1 ∧ α2 has a size
exponential in |α1|+ |α2|.
Note that in the case where the two f-NNF formulas α1 and α2 into consideration can
be turned in polynomial time into either two CNF formulas or two DNF formulas, then a
f-NNF formula equivalent to α1 ∧ α2 can be computed in time polynomial in the input
size (this is obvious when two CNF formulas are considered and the next item of the proof
shows how this can be achieved when two DNF formulas are considered).

– DNF and MODS. If α1 and α2 are sentences in one of these languages L, then we can construct
a sentence in L which is equivalent to α1∧α2 by simply taking all the conjunctions of one
term from α1 and one term from α2, while removing redundant literals in the resulting
terms and removing any inconsistent terms in the result. The disjunction of all the
resulting terms is a sentence from L equivalent to α1 ∧ α2 and it has been computed in
polynomial time.

– PI. Let α1 =
∨k

i=1 pi and α2 =
∧k

i=1

∧m
j=1(¬pi∨qi,j). Sentence α1 has one prime implicate

and α2 has m ∗ k prime implicates. But α1 ∧ α2 has (m + 1)k + m ∗ k prime implicates
(Chandra & Markowsky, 1978).

– IP. Let IP(α) be the set of prime implicants for α. We have IP(α1 ∧ α2) = max({β1 ∧
β2 | β1 ∈ IP(α1), β2 ∈ IP(α2)}, |=) (up to logical equivalence). See e.g., (dual of) Propo-
sition 40 in (Marquis, 2000).

260

A Knowledge Compilation Map

• ∨C.

– NNF, s-NNF, DNNF and DNF. The property is trivially satisfied by these languages since
decomposability is only concerned with and-nodes, and since every NNF formula can be
turned in polynomial time into an equivalent smoothed NNF formula.

– d-NNF and BDD. Direct consequence from the fact that d-NNF and BDD satisfies both ∧C
and ¬C. Especially, it is well-known that the disjunction of two BDDs α and β can
be easily computed by connecting the 0-sink of α to the root of β (see the proof of
Lemma A.8). The size of the resulting BDD is just the sum of the sizes of the respective
BDDs of α and β. Accordingly, we can repeat this operation n times in time polynomial
in the input size.

– f-NNF. Since f-NNF does not satisfy ∧C but satisfies ¬C, it cannot satisfy ∨C (due to
De Morgan’s laws).

– FBDD, OBDD, OBDD<, CNF, PI, IP and MODS. It is straightforward to convert any term into
an equivalent formula from any of the previous languages in polynomial time. In the
proof of Proposition 3.1, we show specific DNF formulas which cannot be turned into
equivalent FBDD (resp. OBDD, OBDD<, CNF , PI, IP and MODS) formulas in polynomial space
(see Tables 9, 10 and 15). Hence, the conversion cannot be accomplished in polynomial
time either. This implies that none of FBDD, OBDD, OBDD<, CNF, PI, IP and MODS satisfies
∨C.

– d-DNNF and sd-DNNF. Immediate form the fact that none of these classes satisfies ∨BC
unless P = NP (see below).

• ∨BC.

– NNF, d-NNF, DNNF, s-NNF, BDD and DNF. Immediate since each of these languages satisfies
∨C.

– OBDD<. Well-known fact (Bryant, 1986).

– OBDD, FBDD, d-DNNF and sd-DNNF. Checking whether the conjunction of two OBDD< formu-
las α1 and α2 (w.r.t. two different variable orderings <) is consistent is NP-complete (see
Lemma 8.14 in (Meinel & Theobald, 1998)). Now, α1 ∧ α2 is inconsistent iff ¬α1 ∨ ¬α2

is valid. Since OBDD satisfies ¬C, an OBDD formula equivalent to ¬α1 (resp. ¬α2) can
be computed in time polynomial in |α1| (resp. |α2|). Since OBDD ⊆ FBDD ⊆ d-DNNF, the
resulting formulas are also FBDD and d-DNNF formulas. If OBDD (resp. FBDD, d-DNNF)
would satisfy ∨BC, then an OBDD (resp. FBDD, d-DNNF) formula equivalent to ¬α1 ∨ ¬α2

could be computed in time polynomial in |α1| + |α2|. But since d-DNNF satisfies VA,
this is impossible unless P = NP. Finally, since every d-DNNF formula can be turned in
polynomial time into an equivalent sd-DNNF formula, sd-DNNF cannot satisfy ∨BC unless
P = NP.

– f-NNF. Since f-NNF does not satisfy ∧BC but satisfies ¬C, it cannot satisfy ∨BC (due
to De Morgan’s laws).

– CNF. If α1 and α2 are two CNF sentences, then we can construct a CNF sentence which
is equivalent to α1 ∨ α2 by simply taking all the disjunctions of one clause from α1 and
one clause from α2, while removing redundant literals inside the resulting clauses and
removing any valid clause in the result. The conjunction of all the resulting clauses is a
CNF sentence equivalent to α1 ∨ α2, and it has been computed in polynomial time.

– PI. Let PI (α) be the set of prime implicates for sentence α. We have PI (α1 ∨ α2) =
min({β1 ∨ β2 | β1 ∈ PI (α1), β2 ∈ PI (α2)}, |=). See Proposition 40 in (Marquis, 2000).

261

Darwiche & Marquis

– IP. Let α1 =
∧k

i=1 pi and α2 =
∨k

i=1

∨m
j=1(¬pi∧qi,j). Sentence α1 has one prime implicant

and α2 has m ∗ k prime implicants. But α1 ∨ α2 has (m + 1)k + m ∗ k prime implicants
(Chandra & Markowsky, 1978).

– MODS. Let α1 =
∧n

i=1 xi and α2 = y. Sentence α1 has 1 model over Vars(α1) and α2 has
1 model over Vars(α2). But α1 ∨ α2 has 2n + 1 models over Vars(α1) ∪Vars(α2).

• ¬C.

– NNF, s-NNF, f-NNF, BDD, FBDD, OBDD and OBDD<. The property is obviously satisfied by
NNF. s-NNF also satisfies ¬C since every NNF formula can be turned in polynomial time
into an equivalent s-NNF formula. f-NNF satisfies ¬C since applying De Morgan’s laws
on a f-NNF formula results in a f-NNF formula. Finally, for all the forms of BDDs, it is
sufficient to switch the labels of the sinks to achieve negation (Bryant, 1986).

– CNF. Because the negation of a DNF formula is a CNF formula that can be computed in
polynomial time, if CNF would satisfy ¬C, then it would be possible to turn any DNF
formula into an equivalent CNF formula in polynomial time (by involution of negation).
But we know that it is not possible in polynomial space since CNF 6≤ DNF(see the proof of
Proposition 3.1). Hence, CNF does not satisfy ¬C.

– DNF. Dual of the proof just above (just replace CNF by DNF and vice-versa).

– PI. The formula Σn =
∧n−1

i=0 (x2i ∨ x2i+1) is in prime implicates form (see the proof of
Proposition 3.1, Table 9). This formula has exponentially many prime implicants, that
are just the negations of the prime implicates of ¬Σn. Since ¬Σn has exponentially many
prime implicates, it cannot be the case that PI satisfies ¬C.

– IP. We just have to take the dual of the above proof (prime implicates case). The formula
Σn =

∨n−1
i=0 (x2i∧x2i+1) is in prime implicants form. This formula has exponentially many

prime implicates, that are just the negations of the prime implicants of ¬Σn. Since ¬Σn

has exponentially many prime implicants, it cannot be the case that IP satisfies ¬C.

– DNNF. The negation of any CNF formula can be computed in polynomial time as a DNF
formula, hence as a DNNF formula. If DNNF would satisfy ¬C, then it would be possible
to turn a CNF formula into an equivalent DNNF one (by involution of negation). Because
DNNF satisfies CO, we would have P = NP.

– d-NNF. Following is a procedure for negating a d-NNF sentence ∆:9

∗ Traverse nodes in the DAG of ∆, visiting the children of a node before you visit the
node itself. When visiting a node, construct its negation as follows:
· true is the negation of false.
· false is the negation of true.
· ∧(N ′

1, . . . , N
′
k) is the negation of ∨(N1, . . . , Nk). Here, N ′

i is the node representing
the negation of Ni.

· ∨(∧(N ′
1,M1), . . . ,∧(N ′

k,Mk)) is the negation of ∧(N1, . . . , Nk). Here, N ′
i is the

node representing the negation of Ni, and Mi is a node representing the conjunc-
tion N1 ∧ . . . ∧Ni−1.

∗ Return the negation of the root of d-NNF ∆.

We can implement the above four steps so that we when we visit a node with k children,
we only construct O(k) nodes and O(k) edges.10 Hence, the procedure complexity is

9. Mark Hopkins pointed us to this procedure.
10. We assume that any or-node (resp. and-node) with less than two children is removed and replaced by its unique

child or by false (resp. true) if it has no children. This simplification process is equivalence-preserving and it
can be achieved in time linear in the size of the input DAG.

262

A Knowledge Compilation Map

linear in the size of the original d-NNF. It is easy to check that the result is equivalent to
the negation of the given d-NNF sentence and is also in d-NNF.

– sd-DNNF and d-DNNF. Unknown.

– MODS. Σ =
∧n

i=1 xi has only one model over
⋃n

i=1{xi} but its negation ¬Σ has 2n − 1
models over

⋃n
i=1{xi}. Hence MODS cannot satisfy ¬C. 2

References

A. Cimmati, E. Giunchiglia, F. G., & Traverso, P. (1997). Planning via model checking: a decision
procedure for AR. In Proceedings of the 4th European Conference on Planning (ECP’97), pp.
130–142.

Blum, M., Chandra, A. K., & Wegman, M. N. (1980). Equivalence of free Boolean graphs can be
decided probabilistically in polynomial time. Information Processing Letters, 10 (2), 80–82.

Boole, G. (1854). An investigation of the laws of thought. Walton and Maberley, London.

Boufkhad, Y., Grégoire, E., Marquis, P., Mazure, B., & Säıs, L. (1997). Tractable cover compilations.
In Proc. of the 15th International Joint Conference on Artificial Intelligence (IJCAI’97), pp.
122–127, Nagoya.

Bryant, R. E. (1986). Graph-based algorithms for Boolean function manipulation. IEEE Transac-
tions on Computers, C-35, 677–691.

Bryant, R. E. (1992). Symbolic Boolean manipulation with ordered binary decision diagrams. ACM
Computing Surveys, 24 (3), 293–318.

Cadoli, M., & Donini, F. (1997). A survey on knowledge compilation. AI Communications, 10,
137–150. (printed in 1998).

Cadoli, M., Donini, F., Liberatore, P., & Schaerf, M. (1996). Comparing space efficiency of propo-
sitional knowledge representation formalisms. In Proc. of the 5rd International Conference on
Knowledge Representation and Reasoning (KR’96), pp. 364–373.

Chandra, A., & Markowsky, G. (1978). On the number of prime implicants. Discrete Mathematics,
24, 7–11.

Darwiche, A. (1999). Compiling knowledge into decomposable negation normal form. In Proceedings
of International Joint Conference on Artificial Intelligence (IJCAI’99), pp. 284–289. Morgan
Kaufmann, California.

Darwiche, A. (2001a). Decomposable negation normal form. Journal of the ACM, 48 (4), 608–647.

Darwiche, A. (2001b). On the tractability of counting theory models and its application to belief
revision and truth maintenance. Journal of Applied Non-Classical Logics, 11 (1-2), 11–34.

Darwiche, A., & Huang, J. (2002). Testing equivalence probabilistically. Tech. rep. D–123, Computer
Science Department, UCLA, Los Angeles, Ca 90095.

de Kleer, J. (1992). An improved incremental algorithm for generating prime implicates. In Proc.
of the 10th National Conference on Artificial Intelligence (AAAI’92), pp. 780–785, San Jose,
California.

Dechter, R., & Rish, I. (1994). Directional resolution: the Davis-Putnam procedure, revisited. In
Proceedings of the Fourth International Conference on Principles of Knowledge Representation
and Reasoning (KR’94), pp. 134–145, Bonn.

del Val, A. (1994). Tractable databases: How to make propositional unit resolution complete through
compilation. In Proceedings of the International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR’94), pp. 551–561. Morgan Kaufmann Publishers, Inc., San
Mateo, California.

263

Darwiche & Marquis

Gergov, J., & Meinel, C. (1994a). Efficient analysis and manipulation of obdds can be extended to
fbdds. IEEE Transactions on Computers, 43 (10), 1197–1209.

Gergov, J., & Meinel, C. (1994b). On the complexity of analysis and manipulation of Boolean
functions in terms of decision diagrams. Information Processing Letters, 50, 317–322.

Gogic, G., Kautz, H., Papadimitriou, C., & Selman, B. (1995). The comparative linguistics of
knowledge representation. In Proc. of the 14th International Joint Conference on Artificial
Intelligence (IJCAI’95), pp. 862–869, Montreal.

Herzig, A., & Rifi, O. (1999). Propositional belief base update and minimal change. Artificial
Intelligence, 115 (1), 107–138.

Karp, R., & Lipton, R. (1980). Some connections between non-uniform and uniform complexity
classes. In Proc. of the 12th ACM Symposium on Theory of Computing (STOC’80), pp. 302–
309.

Khardon, R., & Roth, D. (1997). Learning to reason. Journal of the ACM, 44 (5), 697–725.

Lang, J., Liberatore, P., & Marquis, P. (2000). Propositional independence—Part I: formula–variable
independence and forgetting. Submitted.

Madre, J. C., & Coudert, O. (1992). A new method to compute prime and essential prime implicants
of boolean functions. In Advanced research in VLSI and parallel systems, Proceedings of the
Brown/MIT conference, pp. 113–128.

Marquis, P. (2000). Consequence finding algorithms, Vol. 5 of Handbook of Defeasible Reasoning
and Uncertainty Management Systems: Algorithms for Uncertain and Defeasible Reasoning.
Kluwer Academic Publishers.

Marquis, P. (1995). Knowledge compilation using theory prime implicates. In Proc. International
Joint Conference on Artificial Intelligence (IJCAI’95), pp. 837–843. Morgan Kaufmann Pub-
lishers, Inc., San Mateo, California.

Meinel, C., & Theobald, T. (1998). Algorithms and Data Structures in VLSI Design: OBDD Foun-
dations and Applications. Springer.

Papadimitriou, C. (1994). Computational complexity. Addison–Wesley.

Quine, W. (1955). A way to simplify truth functions. American Mathematical Monthly, 52, 627–631.

Quine, W. (1959). On cores and prime implicants of truth functions. American Mathematical
Monthly, 66, 755–760.

Reiter, R., & de Kleer, J. (1987). Foundations of assumption-based truth maintenance systems:
Preliminary report. In Proceedings of the Fifth National Conference on Artificial Intelligence
(AAAI), pp. 183–188.

Roth, D. (1996). On the hardness of approximate reasoning. Artificial Intelligence, 82 (1-2), 273–302.

Schrag, R. (1996). Compilation for critically constrained knowledge bases. In Proc. of the 13th

National Conference on Artificial Intelligence (AAAI’96), pp. 510–515, Portland, Oregan.

Selman, B., & Kautz, H. (1996). Knowledge compilation and theory approximation. Journal of the
Association for Computing Machinery, 43, 193–224.

Simon, L., & del Val, A. (2001). Efficient consequence finding. In Proc. of the 17th International
Joint Conference on Artificial Intelligence (IJCAI’01), pp. 359–365, Seattle (WA).

Wegener, I. (1987). The complexity of boolean functions. Wiley-Teubner, Stuttgart.

264

