Journal of Artificial Intelligence Research 17 (2002) 229-264 Submitted 12/01; published 9/02

A Knowledge Compilation Map

Adnan Darwiche DARWICHE@CS.UCLA.EDU
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90095, USA

Pierre Marquis MARQUIS@QCRIL.UNIV-ARTOIS.FR
Université d’Artois
F-62307, Lens Cedex, France

Abstract

We propose a perspective on knowledge compilation which calls for analyzing different com-
pilation approaches according to two key dimensions: the succinctness of the target compilation
language, and the class of queries and transformations that the language supports in polytime.
We then provide a knowledge compilation map, which analyzes a large number of existing tar-
get compilation languages according to their succinctness and their polytime transformations and
queries. We argue that such analysis is necessary for placing new compilation approaches within
the context of existing ones. We also go beyond classical, flat target compilation languages based
on CNF and DNF, and consider a richer, nested class based on directed acyclic graphs (such as
OBDDs), which we show to include a relatively large number of target compilation languages.

1. Introduction

Knowledge compilation has emerged recently as a key direction of research for dealing with the
computational intractability of general propositional reasoning (Darwiche, 1999; Cadoli & Donini,
1997; Boufkhad, Grégoire, Marquis, Mazure, & Sais, 1997; Khardon & Roth, 1997; Selman &
Kautz, 1996; Schrag, 1996; Marquis, 1995; del Val, 1994; Dechter & Rish, 1994; Reiter & de
Kleer, 1987). According to this direction, a propositional theory is compiled off-line into a target
language, which is then used on-line to answer a large number of queries in polytime. The key
motivation behind knowledge compilation is to push as much of the computational overhead into
the off-line phase, which is amortized over all on-line queries. But knowledge compilation can serve
other important purposes as well. For example, target compilation languages and their associated
algorithms can be very simple, allowing one to develop on-line reasoning systems for simple software
and hardware platforms. Moreover, the simplicity of algorithms that operate on compiled languages
help in streamlining the effort of algorithmic design into a single task: that of generating the smallest
compiled representations possible, as that turns out to be the main computational bottleneck in
compilation approaches.

There are three key aspects of any knowledge compilation approach: the succinctness of the
target language into which the propositional theory is compiled; the class of queries that can be
answered in polytime based on the compiled representation; and the class of transformations that
can be applied to the representation in polytime. The Al literature has thus far focused mostly on
target compilation languages which are variations on DNF and CNF formulas, such as Horn theories
and prime implicates. Moreover, it has focused mostly on clausal entailment queries, with very little
discussion of tractable transformations on compiled theories.

The goal of this paper is to provide a broad perspective on knowledge compilation by considering
a relatively large number of target compilation languages and analyzing them according to their
succinctness and the class of queries/transformations that they admit in polytime.

(©2002 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

DARWICHE & MARQUIS

Instead of focusing on classical, flat target compilation languages based on CNF and DNF, we
consider a richer, nested class based on representing propositional sentences using directed acyclic
graphs, which we refer to as NNF. We identify a number of target compilation languages that have
been presented in the AI, formal verification, and computer science literature and show that they
are special cases of NNF. For each such class, we list the extra conditions that need to be imposed
on NNF to obtain the specific class, and then identify the set of queries and transformations that the
class supports in polytime. We also provide cross-rankings of the different subsets of NNF, according
to their succinctness and the polytime operations they support.

The main contribution of this paper is then a map for deciding the target compilation language
that is most suitable for a particular application. Specifically, we propose that one starts by iden-
tifying the set of queries and transformations needed for their given application, and then choosing
the most succinct language that supports these operations in polytime.

This paper is structured as follows. We start by formally defining the NNF language in Section 2,
where we list a number of conditions on NNF that give rise to a variety of target compilation languages.
We then study the succinctness of these languages in Section 3 and provide a cross-ranking that
compares them according to this measure. We consider a number of queries and their applications in
Section 4 and compare the different target compilation languages according to their tractability with
respect to these queries. Section 5 is then dedicated to a class of transformations, their applications,
and their tractability with respect to the different target compilation languages. We finally close in
Section 6 by some concluding remarks. Proofs of all theorems are delegated to Appendix A.

2. The NNF Language

We consider more than a dozen languages in this paper, all of which are subsets of the NNF language,
which is defined formally as follows (Darwiche, 1999, 2001a).

Definition 2.1 Let PS be a denumerable set of propositional variables. A sentence in NNFpg is
a rooted, directed acyclic graph (DAG) where each leaf node is labeled with true, false, X or =X,
X € PS; and each internal node is labeled with A or V and can have arbitrarily many children.
The size of a sentence 3 in NNFpg, denoted | X |, is the number of its DAG edges. Its height is the
maximum number of edges from the root to some leaf in the DAG.

Figure 1 depicts a sentence in NNF, which represents the odd parity function (we omit reference
to variables PS when no confusion is anticipated). Any propositional sentence can be represented
as a sentence in NNF, so the NNF language is complete.

It is important here to distinguish between a representation language and a target compilation
language. A representation language is one which we expect humans to read and write with some
ease. The language of CNF is a popular representation language, and so is the language of Horn
clauses (especially when expressed in rules form). On other hand, a target compilation language does
not need to be suitable for human specification and interpretation, but should be tractable enough
to permit a non-trivial number of polytime queries and/or transformations. We will consider a
number of target compilation languages that do not qualify as representation languages from this
perspective, as they are not suitable for humans to construct or interpret. We will also consider a
number of representation languages that do not qualify as target compilation languages.'

A formal characterization of representation languages is outside the scope of this paper. But for
a language to qualify as a target compilation language, we will require that it permits a polytime
clausal entailment test. Note that a polytime consistency test is not sufficient here, as only one
consistency test on a given theory does not justify its compilation. Given this definition, NNF does

1. It appears that when proposing target compilation languages in the Al literature, there is usually an implicit
requirement that the proposed language is also a representation language. As we shall see later, however, the
most powerful target compilation languages are not suitable for humans to specify or interpret directly.

230

A KNOWLEDGE COMPILATION MAP

@ Decomposability ® Determinism © Smoothness

and and and and and and and and and and and and and and and anhd and an d and d and

-A B =B A C -D D =C -A - B C -D D =C -A B =B A C =D

%and/ \and ° and/o r\and

AB cp and/r\and
L N O/\or Q&or/\or o/\OI’ Q?&X&%&\

Figure 1: A sentence in NNF. Its size is 30 and height is 4.

not qualify as a target compilation language unless P=NP (Papadimitriou, 1994), but many of its
subsets do. We define a number of these subsets below, each of which is obtained by imposing
further conditions on NNF.

We will distinguish between two key subsets of NNF: flat and nested subsets. We first consider
flat subsets, which result from imposing combinations of the following properties:

e Flatness: The height of each sentence is at most 2. The sentence in Figure 3 is flat, but the
one in Figure 1 is not.

e Simple-disjunction: The children of each or-node are leaves that share no variables (the
node is a clause).

e Simple-conjunction: The children of each and-node are leaves that share no variables (the
node is a term). The sentence in Figure 3 satisfies this property.

Definition 2.2 The language £-NNF is the subset of NNF satisfying flatness. The language CNF is
the subset of £-NNF satisfying simple—disjunction. The language DNF is the subset of £-NNF satisfying
simple—conjunction.

CNF does not permit a polytime clausal entailment test (unless P=NP) and, hence, does not qualify
as a target compilation language. But its dual DNF does.
The following subset of CNF, prime implicates, has been quite influential in computer science:

Definition 2.3 The language PI is the subset of CNF in which each clause entailed by the sentence
is subsumed by a clause that appears in the sentence; and no clause in the sentence is subsumed by
another.

A dual of PI, prime implicants IP, can also be defined.

Definition 2.4 The language IP is the subset of DNF in which each term entailing the sentence
subsumes some term that appears in the sentence; and no term in the sentence is subsumed by
another term.

There has been some work on representing the set of prime implicates of a propositional theory in
a compact way, allowing an exponential number of prime implicates to be represented in polynomial
space in certain cases—see for example the TRIE representation in (de Kleer, 1992), the ZBDD
representation used in (Simon & del Val, 2001), and the implicit representation based on meta-
products, as proposed in (Madre & Coudert, 1992). These representations are different from the
language PI in the sense that they do not necessarily support the same queries and transformations

231

DARWICHE & MARQUIS

that we report in Tables 5 and 7. They also exhibit different succinctness relationships than the
ones we report in Table 3.

Horn theories (and renamable Horn theories) represent another target compilation subset of CNF,
but we do not consider it here since we restrict our attention to complete languages L only, i.e., we
require that every propositional sentence is logically equivalent to an element of L.

We now consider nested subsets of the NNF language, which do not impose any restriction on
the height of a sentence. Instead, these subsets result from imposing one or more of the following
conditions: decomposability, determinism, smoothness, decision, and ordering. We start by defining
the first three properties. From here on, if C' is a node in an NNF, then Vars(C) denotes the set of
all variables that label the descendants of node C. Moreover, if ¥ is an NNF sentence rooted at C,
then Vars(X) is defined as Vars(C).

e Decomposability (Darwiche, 1999, 2001a). An NNF satisfies this property if for each con-
junction C in the NNF, the conjuncts of C' do not share variables. That is, if Cy,...,C, are
the children of and-node C, then Vars(C;) N Vars(C;) = 0 for i # j. Consider the and-node
marked in Figure 1(a). This node has two children, the first contains variables A, B while the
second contains variables C'; D. This and-node is then decomposable since the two children do
not share variables. Each other and-node in Figure 1(a) is also decomposable and, hence, the
NNF in this figure is decomposable.

e Determinism (Darwiche, 2001b): An NNF satisfies this property if for each disjunction C
in the NNF, each two disjuncts of C' are logically contradictory. That is, if Cy,...,C), are
the children of or-node C, then C; A C; = false for i # j. Consider the or-node marked
in Figure 1(b), which has two children corresponding to sub-sentences ~A A B and =B A A.
The conjunction of these two sub-sentences is logically contradictory. The or-node is then
deterministic and so are the other or-nodes in Figure 1(b). Hence, the NNF in this figure is
deterministic.

e Smoothness (Darwiche, 2001b): An NNF satisfies this property if for each disjunction C in the
NNF, each disjunct of C mentions the same variables. That is, if Cq,...,C), are the children of
or-node C, then Vars(C;) = Vars(Cj) for i # j. Consider the marked or-node in Figure 1(c).
This node has two children, each of which mentions variables A, B. This or-node is then
smooth and so are the other or-nodes in Figure 1(c). Hence, the NNF in this figure is smooth.

It is hard to ensure decomposability. It is also hard to ensure determinism while preserving decom-
posability. Yet any sentence in NNF can be smoothed in polytime, while preserving decomposability
and determinism. Preserving flatness, however, may blow-up the size of given NNF. Hence, smooth-
ness is not that important from a complexity viewpoint unless we have flatness.

The properties of decomposability, determinism and smoothness lead to a number of interesting
subsets of NNF.

Definition 2.5 The language DNNF is the subset of NNF satisfying decomposability; d-NNF is the sub-
set satisfying determinism; s-NNF is the subset satisfying smoothness; d-DNNF is the subset satisfying
decomposability and determinism; and sd-DNNF is the subset satisfying decomposability, determinism
and smoothness.

Note that DNF is a strict subset of DNNF (Darwiche, 1999, 2001a). The following decision property
comes from the literature on binary decision diagrams (Bryant, 1986).

Definition 2.6 (Decision) A decision node N in an NNF sentence is one which is labeled with true,
false, or is an or-node having the form (X A a)V (=X A), where X is a variable, o and 3 are
decision nodes. In the latter case, dVar(N) denotes the variable X.

Definition 2.7 The language BDD is the set of NNF sentences, where the root of each sentence is a
decision node.

232

A KNOWLEDGE COMPILATION MAP

Figure 2: On the left, a sentence in the BDD language. On the right, its corresponding binary decision
diagram.

The NNF sentence in Figure 2 belongs to the BDD subset.

The BDD language corresponds to binary decision diagrams (BDDs), as known in the formal
verification literature (Bryant, 1986). Binary decision diagrams are depicted using a more compact
notation though: the labels true and false are denoted by 1 and 0, respectively; and each decision

and/\and h
node X a Kb is denoted by ¢ B. The BDD sentence on the left of Figure 2 corresponds to the
binary decision diagram on the right of Figure 2. Obviously enough, every NNF sentence that satisfies
the decision property is also deterministic. Therefore, BDD is a subset of d-NNF.
As we show later, BDD does not qualify as a target compilation language (unless P=NP), but the
following subset does.

Definition 2.8 FBDD is the intersection of DNNF and BDD.

That is, each sentence in FBDD is decomposable and satisfies the decision property. The FBDD language
corresponds to free binary decision diagrams (FBDDs), as known in formal verification (Gergov &
Meinel, 1994a). An FBDD is usually defined as a BDD that satisfies the read-once property: on
each path from the root to a leaf, a variable can appear at most once. FBDDs are also known as
read-once branching programs in the theory literature. Imposing the read-once property on a BDD
is equivalent to imposing the decomposability property on its corresponding BDD sentence.

A more influential subset of the BDD language is obtained by imposing the ordering property:

Definition 2.9 (Ordering) Let < be a total ordering on the variables PS. The language 0BDD.
is the subset of FBDD satisfying the following property: if N and M are or-nodes, and if N is an
ancestor of node M, then dVar(N) < dVar(M).

Definition 2.10 The language OBDD is the union of all 0BDD. languages.

The 0BDD language corresponds to the well-known ordered binary decision diagrams (OBDDs)
(Bryant, 1986).
Our final language definition is as follows:

Definition 2.11 MODS is the subset of DNF where every sentence satisfies determinism and smooth-
ness.

233

DARWICHE & MARQUIS

ar

and and and and

X Y Z X aY -Z

Figure 3: A sentence in language MODS.

NNF
CO, E,ME
d-NNF SNNF DNNF f-NNF
VA, IM, CT 4 2
BDD d-DNNF | £e?
VA, IM
FBDD |0 <d-D DNF | | CNF |

JEQSE CO,CEEQ| SEME

SE ,
MODS e | [A |

Figure 4: The set of DAG-based languages considered in this paper. An edge L; — L means that
L, is a proper subset of Ly. Next to each subset, we list the polytime queries supported
by the subset but not by any of its ancestors (see Section 4).

Figure 3 depicts a sentence in MODS. As we show later, MODS is the most tractable NNF subset we
shall consider (together with OBDD.). This is not surprising since from the syntax of a sentence in
MODS, one can immediately recover the sentence models.

The languages we have discussed so far are depicted in Figure 4, where arrows denote set inclusion.
Table 1 lists the acronyms of all of these languages, together with their descriptions. Table 2 lists
the key language properties discussed in this section, together with a short description of each.

3. On the Succinctness of Compiled Theories

We have discussed more than a dozen subsets of the NNF language. Some of these subsets are well
known and have been studied extensively in the computer science literature. Others, such as DNNF
(Darwiche, 2001a, 1999) and d-DNNF (Darwiche, 2001b), are relatively new. The question now is:
What subset should one adopt for a particular application? As we argue in this paper, that depends

234

A KNOWLEDGE COMPILATION MAP

l Acronym Description
NNF Negation Normal Form
DNNF Decomposable Negation Normal Form
d-NNF Deterministic Negation Normal Form
s-NNF Smooth Negation Normal Form
f£-NNF Flat Negation Normal Form
d-DNNF Deterministic Decomposable Negation Normal Form
sd-DNNF Smooth Deterministic Decomposable Negation Normal Form
BDD Binary Decision Diagram
FBDD Free Binary Decision Diagram
0BDD Ordered Binary Decision Diagram
0BDD< Ordered Binary Decision Diagram (using order <)
DNF Disjunctive Normal Form
CNF Conjunctive Normal Form
PI Prime Implicates
IP Prime Implicants
MODS Models

Table 1: Language acronyms.

Property [Short Description
Flatness The height of NNF is at most 2
Simple Disjunction Every disjunction is a clause, where literals share no variables
Simple Conjunction Every conjunction is a term, where literals share no variables
Decomposability Conjuncts do not share variables
Determinism Disjuncts are logically disjoint
Smoothness Disjuncts mention the same set of variables
Decision A node of the form true, false, or (X AaV =X A),
where X is a variable and «, § are decision nodes
Ordering Decision variables appear in the same order on any path in the NNF

Table 2: Language properties.

235

DARWICHE & MARQUIS

on three key properties of the language: its succinctness, the class of tractable queries it supports,
and the class of tractable transformations it admits.

Our goal in this and the following sections is to construct a map on which we place different
subsets of the NNF language according to the above criteria. This map will then serve as a guide to
system designers in choosing the target compilation language most suitable to their application. It
also provides an example paradigm for studying and evaluating further target compilation languages.
We start with a study of succinctness? in this section (Gogic, Kautz, Papadimitriou, & Selman, 1995).

Definition 3.1 (Succinctness) Let Ly and Ly be two subsets of NNF. Ly is at least as succinct
as Loy, denoted Ly < Ly, iff there exists a polynomial p such that for every sentence a € Lo, there
exists an equivalent sentence 3 € Ly where |5] < p(|a|). Here, || and |3| are the sizes of a and 3,
respectively.

We stress here that we do not require that there exists a function that computes § given a in
polytime; we only require that a polysize (§ exists. Yet, our proofs in Appendix A contain specific
algorithms for computing 3 from « in certain cases. The relation < is clearly reflexive and transitive,
hence, a pre-ordering. One can also define the relation <, where L < Lo iff Ly < Ly and Lo £ L;.

Proposition 3.1 The results in Table 3 hold.

An occurrence of < in the cell of row r and column ¢ of Table 3 means that the fragment L,
given at row r is at least as succinct as the fragment L. given at column c¢. An occurrence of £ (or
£*) means that L, is not at least as succinct as L. (provided that the polynomial hierarchy does
not collapse in the case of £*). Finally, the presence of a question mark reflects our ignorance about
whether L, is at least as succinct as L.. Figure 5 summarizes the results of Proposition 3.1 in terms
of a directed acyclic graph.

A classical result in knowledge compilation states that it is not possible to compile any proposi-
tional formula « into a polysize data structure 3 such that: o and (8 entail the same set of clauses,
and clausal entailment on § can be decided in time polynomial in its size, unless NP C P/poly
(Selman & Kautz, 1996; Cadoli & Donini, 1997). This last assumption implies the collapse of the
polynomial hierarchy at the second level (Karp & Lipton, 1980), which is considered very unlikely.
We use this classical result from knowledge compilation in some of our proofs of Proposition 3.1,
which explains why some of its parts are conditioned on the polynomial hierarchy not collapsing.

We have excluded the subsets BDD, s-NNF, d-NNF and f-NNF from Table 3 since they do not
qualify as target compilation languages (see Section 4). We kept NNF and CNF though given their
importance. Consider Figure 5 which depicts Table 3 graphically. With the exception of NNF and
CNF, all other languages depicted in Figure 5 qualify as target compilation languages. Moreover, with
the exception of language PI, DNNF is the most succinct among all target compilation languages—we
know that PI is not more succinct than DNNF, but we do not know whether DNNF is more succinct
than PI.

In between DNNF and MODS, there is a succinctness ordering of target compilation languages:

DNNF < d-DNNF < FBDD < 0BDD < O0BDD. < MODS.

DNNF is obtained by imposing decomposability on NNF; d-DNNF by adding determinism; FBDD by
adding decision; and 0BDD and 0BDD. by adding ordering (w.r.t. any total ordering on PS in the
first case and a specific one in the second case). Adding each of these properties reduces language
succinctness (assuming that the polynomial hierarchy does not collapse).

One important fact to stress here is that adding smoothness to d-DNNF does not affect its suc-
cinctness: the sd-DNNF and d-DNNF languages are equally succinct. It is also interesting to compare

2. A more general notion of space efficiency (model preservation for polysize reductions) exists (Cadoli, Donini,
Liberatore, & Schaerf, 1996), but we do not need its full generality here.

236

A KNOWLEDGE COMPILATION MAP

L | NNF | DNNF [d-DNNF | sd-DNNF | FBDD | OBDD | OBDD. [DNF [CNF | PI |

NNF
DNNF
d-DNNF
sd-DNNF
FBDD
0BDD
0BDD
DNF
CNF
PI
IP
MODS

| MoDsS

N

MIA

*

il

PAPATA

*

IATA] SIAUATANATAAIAIAIA

PAIA[PA[PAIA [P [BA[PA] | - [IA[IA]| B

A A [PA | PA A A [PA A
A A [PA A DA BA [BA[PA [P PATA A
A PA A PA AP [TA A A IA[IA[IA
AP [PA AP PA [TA A A IA[IA[IA
PAPA [PA P[P A A A IA[IA[IA
PA A AP TA A A IA[IA[IA
PAA AR RAIA TA A A IAIA[IA
PAPA PP IA DA PP [PAPA T A TTIA
PAPA[PA[IA A [PA [PA[1A

PAPAIA AP DA A [RA | +5| | -3|IA

Table 3: Succinctness of target compilation languages. * means that the result holds unless the
polynomial hierarchy collapses.

Figure 5: An edge L; — Ly indicates that L; is strictly more succinct than Ly: L; < Lo, while
L; = Ly indicates that L; and Ls are equally succinct: L; < Ly and Ly < L. Dotted
arrows indicate unknown relationships; for instance, the dotted arrow from DNNF to PI
means that we do not know whether DNNF is at least as succinct as PI. Some of the edges
are conditioned on the polynomial hierarchy not collapsing—see Table 3.

sd-DNNF (which is more succinct than the influential FBDD, 0BDD and 0BDD. languages) with MODS,
which is a most tractable language. Both sd-DNNF and MODS are smooth, deterministic and de-
composable. MODS, however, is flat and obtains its decomposability from the stronger condition
of simple-conjunction. Therefore, sd-DNNF can be viewed as the result of relaxing from MODS the
flatness and simple-conjunction conditions, while maintaining decomposability, determinism and
smoothness. Relaxing these conditions moves the language three levels up the succinctness hierar-
chy, although it compromises only the polytime test for sentential entailment and possibly the one
for equivalence as we show in Section 4.

237

DARWICHE & MARQUIS

4. Querying a Compiled Theory

In evaluating the suitability of a target compilation language to a particular application, the suc-
cinctness of the language must be balanced against the set of queries and transformations that it
supports in polytime. We consider in this section a number of queries, each of which returns valu-
able information about a propositional theory, and then identify target compilation languages which
provide polytime algorithms for answering such queries. We restrict our attention in this paper to
the existence of polytime algorithms for answering queries, but we do not present the algorithms
themselves. The interested reader is referred to (Darwiche, 2001a, 2001b, 1999; Bryant, 1986) for
some of these algorithms and to the proofs of theorems in Appendix A for others.

The queries we consider are tests for consistency, validity, implicates (clausal entailment), im-
plicants, equivalence, and sentential entailment. We also consider counting and enumerating theory
models; see Table 4. One can also consider computing the probability of a propositional sentence,
assuming that all variables are probabilistically independent. For the subsets we consider, however,
this can be done in polytime whenever models can be counted in polytime.

From here on, L denotes a subset of language NNF.

Definition 4.1 (CO, VA) L satisfies CO (VA) iff there exists a polytime algorithm that maps
every formula ¥ from L to 1 if ¥ is consistent (valid), and to 0 otherwise.

One of the main applications of compiling a theory is to enhance the efficiency of answering
clausal entailment queries:

Definition 4.2 (CE) L satisfies CE iff there exists a polytime algorithm that maps every formula
Y from L and every clause v from NNF to 1 if ¥ |= v holds, and to 0 otherwise.

A key application of clausal entailment is in testing equivalence. Specifically, suppose we have a
design expressed as a set of clauses A? = /\; @; and a specification expressed also as a set of clauses
A=A j B, and we want to test whether the design and specification are equivalent. By compiling
each of A? and A® to targets I'* and I'* that support a polytime clausal entailment test, we can test
the equivalence of A? and A® in polytime. That is, A and A® are equivalent iff I'Y |= 3; for all j
and I'* = «; for all 4.

A number of the target compilation languages we shall consider support a direct polytime equiv-
alent test:

Definition 4.3 (EQ, SE) L satisfies EQ (SE) iff there exists a polytime algorithm that maps every
pair of formulas X, ® from L to 1 if X = ® (X = ®) holds, and to 0 otherwise.

Note that sentential entailment (SE) is stronger than clausal entailment and equivalence. Therefore,
if a language L satisfies SE, it also satisfies CE and EQ.
For completeness, we consider the following dual to CE:

Definition 4.4 (IM) L satisfies IM iff there exists a polytime algorithm that maps every formula
Y from L and every term v from NNF to 1 if v = ¥ holds, and to 0 otherwise.

Finally, we consider counting and enumerating models:

Definition 4.5 (CT) L satisfies CT iff there exists a polytime algorithm that maps every formula
Y from L to a nonnegative integer that represents the number of models of ¥ (in binary notation).

Definition 4.6 (ME) L satisfies ME iff there exists a polynomial p(.,.) and an algorithm that
outputs all models of an arbitrary formula ¥ from L in time p(n,m), where n is the size of ¥ and
m is the number of its models (over variables occurring in X).

238

A KNOWLEDGE COMPILATION MAP

’ Notation \ Query
CcO polytime consistency check
VA polytime validity check
CE polytime clausal entailment check
M polytime implicant check
EQ polytime equivalence check
SE polytime sentential entailment check
CcT polytime model counting
ME polytime model enumeration

Table 4: Notations for queries.

L [CO[VA[CE|IM | EQ][SE]|CT | ME |
NNF
DNNF
d-NNF
s-NNF
£-NNF

d-DNNF

sd-DNNF
BDD
FBDD
OBDD
0BDD .

DNF
CNF
PI

P
MODS

N[N O|O|[O]|O|O

<Jolo|o|o R[]0 |k |]o|o|o|o]|o
SN 9P o[= [o f oo e

NN OSSN o | ol efef]e
R N N e
SN O o[[o f oo e
<& o g o x| o fo oo
<J|J< ook |o|o|lo|o|o|o|o|o|o]|o

<o o] o< <] 0

Table 5: Subsets of the NNF language and their corresponding polytime queries. y/ means “satisfies”
and o means “does not satisfy unless P = NP.”

Table 4 summarizes the queries we are interested in and their acronyms.
The following proposition states what we know about the availability of polytime algorithms for
answering the above queries, with respect to all languages we introduced in Section 2.

Proposition 4.1 The results in Table 5 hold.

The results of Proposition 4.1 are summarized in Figure 4. One can draw a number of conclusions
based on the results in this figure. First, NNF, s-NNF, d-NNF, £-NNF, and BDD fall in one equivalence
class that does not support any polytime queries and CNF satisfies only VA and IM; hence, none
of them qualifies as a target compilation language in this case. But the remaining languages all
support polytime tests for consistency and clausal entailment. Therefore, simply imposing either
of smoothness (s-NNF), determinism (d-NNF), flatness (£-NNF), or decision (BDD) on the NNF lan-
guage does not lead to tractability with respect to any of the queries we consider—neither of these
properties seem to be significant in isolation. Decomposability (DNNF), however, is an exception and
leads immediately to polytime tests for both consistency and clausal entailment, and to a polytime
algorithm for model enumeration.

239

DARWICHE & MARQUIS

Recall the succinctness ordering DNNF < d-DNNF < FBDD < OBDD < O0BDD. < MODS
from Figure 5. By adding decomposability (DNNF), we obtain polytime tests for consistency and
clausal entailment, in addition to a polytime model enumeration algorithm. By adding determinism
to decomposability (d-DNNF), we obtain polytime tests for validity, implicant and model counting,
which are quite significant. It is not clear, however, whether the combination of decomposability and
determinism leads to a polytime test for equivalence. Moreover, adding the decision property on top
of decomposability and determinism (FBDD) does not appear to increase tractability with respect to
the given queries®, although it does lead to reducing language succinctness as shown in Figure 5. On
the other hand, adding the ordering property on top of decomposability, determinism and decision,
leads to polytime tests for equivalence (0BDD and OBDD.) as well as sentential entailment provided
that the ordering < is fixed (0BDD.).

As for the succinctness ordering NNF < DNNF < DNF < IP < MODS from Figure 5, note that
DNNF is obtained by imposing decomposability on NNF, while DNF is obtained by imposing flatness
and simple-conjunction (which is stronger than decomposability). What is interesting is that DNF is
less succinct than DNNF, yet does not support any more polytime queries; see Figure 4. However, the
addition of smoothness (and determinism) on top of flatness and simple-conjunction (MODS) leads to
five additional polytime queries, including equivalence and entailment tests.*

We close this section by noting that determinism appears to be necessary (but not sufficient) for
polytime model counting: only deterministic languages, d-DNNF, sd-DNNF, FBDD, 0BDD, OBDD. and
MODS, support polytime counting. Moreover, polytime counting implies a polytime test of validity,
but the opposite is not true.

5. Transforming a Compiled Theory

A query is an operation that returns information about a theory without changing it. A transfor-
mation, on the other hand, is an operation that returns a modified theory, which is then operated
on using queries. Many applications require a combination of transformations and queries.

Definition 5.1 (AC,VC) Let L be a subset of NNF. L satisfies AC (VC) iff there exists a polytime
algorithm that maps every finite set of formulas %1, ...,%, from L to a formula of L that is logically
equivalent to Sy A ... A S, (X1 V...V E,).

Definition 5.2 (=C) Let L be a subset of NNF. L satisfies =C iff there exists a polytime algorithm
that maps every formula 3 from L to a formula of L that is logically equivalent to —3.

If a language satisfies one of the above properties, we will say that it is closed under the corre-
sponding opera