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Abstract

Structural shape optimization plays an important role in the design of wind-

Q1

sensitive structures. The numerical evaluation of aerodynamic performance for

each shape search and update during the optimization process typically involves

significant computational costs. Accordingly, an effective shape optimization

algorithm is needed. In this study, the reinforcement learning (RL) method with

deep neural network (DNN)-based policy is utilized for the first time as a shape

optimization scheme for aerodynamic mitigation of wind-sensitive structures.

In addition, “tacit” domain knowledge is leveraged to enhance the training effi-

ciency. Both the specific direct-domain knowledge and general cross-domain

knowledge are incorporated into the deep RL-based aerodynamic shape opti-

mizer via the transfer-learning and meta-learning techniques, respectively, to

reduce the required datasets for learning an effective RL policy. Numerical exam-

ples for aerodynamic shape optimization of a tall building are used to demon-

strate that the proposed knowledge-enhanced deep RL-based shape optimizer

outperforms both gradient-based and gradient-free optimization algorithms.
Q2

1 INTRODUCTION

The rapid increase in height of buildings and span of

bridges makes these slender structures extremely sensi-

tive to winds. In addition to optimizing structural proper-

ties (e.g., Kociecki & Adeli, 2014; Park & Adeli, 1997) and

utilizing structural control techniques (e.g., Kim & Adeli,

2005; Wang & Adeli, 2015), various aerodynamic mitiga-

tion strategies by modifying external shapes are employed

in the design process. The selection of an appropriate aero-

dynamic shape is traditionally based on several candi-

dates resulting from a designer’s engineering experience

and judgment. Usually the iterative procedure to update

these baseline geometries is not triggered unless a safety

or serviceability issue of the structure under aerodynamic

© 2020 Computer-Aided Civil and Infrastructure Engineering

loads is identified. In case an aerodynamic improvement

is required, a limited number of aerodynamic mitigation

options are available, for example, corner modification or

helical twisting for high-rise buildings (Davenport, 1971;

Tanaka, Tamura, Ohtake, Nakai, & Kim, 2012) and edge

fairing or central slot adding for long-span bridges (Nagao,

Utsunomiya, Oryu, & Manabe, 1993; Yang, Wu, Ge, &

Kareem, 2015). Although this cut-and-try design, essen-

tially based on intuition, is routinely used by the engi-

neering community as a viable problem-solving approach,

a mathematically optimal (or near optimal) aerodynamic

configuration and hence a cost-effective shape design is

not necessarily acquired. However, the rapid increase of

structural height/span (with innovative cross sections) and

recent advances of performance-based wind engineering

Comput Aided Civ Inf. 2020;1–14. wileyonlinelibrary.com/journal/mice 1
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2 LI et al.

methodology (with various engineering objectives) have

placed a demand for more cost-effective aerodynamic

designs. To this end, there is a need for an automated pro-

cess to facilitate the comprehensive search of shape design

space that is rigorously guided by optimization algorithms

and the efficient evaluation of aerodynamic performance

with each updated structural geometry (Ding & Kareem,

2018). To achieve this goal, themathematical programming

techniques are applied to the aerodynamic shape optimiza-

tion process (Topping, 1983). The problem formulation of

the aerodynamic shape optimization generally consists of

assessment of aerodynamic performance, parameteriza-

tion of external shape, and specification of a set of geo-

metric requirements, respectively, represented by objective

functions, design variables, and design constrains (Skinner

& Zare-Behtash, 2018).

A wind tunnel experiment is considered as one of the

most reliable ways to assess structural aerodynamic per-

formance. However, a systematic testing procedure involv-

ing automated fabrication of structural models, acqui-

sition, and processing of input–output data, and con-

trol of fan operations is not currently available. Usu-

ally, the computational fluid dynamics (CFD) simula-

tion, along with its mesh update schemes, is utilized in

each search step during the shape optimization process

for aerodynamic mitigation of wind-sensitive structures

(Elshaer&Bitsuamlak, 2018). Due to the extreme complex-

ities involved in the bluff-body aerodynamics and wind–

structure interactions at large Reynolds numbers, high

computational cost is needed for a reliable CFD simula-

tion. Although surrogate models can be used to effectively

alleviate the computational burden, further investigation

may be needed to enhance their performance in terms

of interpolation/extrapolation accuracy in the simulation

(e.g., using adaptive surrogate models) and this considera-

tion is outside the scope of the current study (Peherstorfer,

Willcox, & Gunzburger, 2018; Yazdi & Neyshabouri, 2014).

On the other hand, there have been significant efforts

on the development of effective optimization algorithms

that can achieve the globally optimal solution with a rela-

tively small number of iterations (Skinner & Zare-Behtash,

2018).

Among numerous mathematical formulations of var-

ious aerodynamic shape search and update rules, the

gradient-based optimization algorithms (e.g., basic gradi-

ent decent, gradient decent with momentum and gradi-

ent descent with adaptive step size) are widely employed

since they are easy to implement and sample efficient.

However, the gradient-based algorithms often get trapped

in local optima that heavily depend on the start points.

The accumulated engineering experience and intuition

may be helpful in appropriate selection of initial config-

urations (baseline designs); however, they provide little

contribution to intelligently guiding the search of globally

optimal solution since effective communication between

the human-readable knowledge through cognition pro-

cess (e.g., thought, experience, and sense) and machine-

readable information for computational algorithms has

not been well established yet. To increase the chance of

acquiring the global optima from the whole search space,

a number of gradient-free optimization algorithms (e.g.,

genetic algorithm, particle swarm optimization [PSO], and

simulated annealing) have been developed at the expense

of sample efficiency. It is noted that both gradient-based

and gradient-free optimization algorithms are essentially

hand-design approaches, where the determination of their

parameters for a specific application is usually based on

a costly, manual trial-and-error process (Andrychowicz

et al., 2016). To further enhance the automation level

based on mathematical programming techniques and

hence save computational cost, an auto-learned optimiza-

tion approach based on increasingly popular deep learn-

ing techniques would probably be a better choice. With

newer andmore powerful learning algorithms, deep learn-

ing has been utilized in many engineering fields (e.g.,

Benito-Picazo, Domínguez, Palomo, & López-Rubio, 2020;

Simões, Lau, & Reis, 2020; Sørensen, Nielsen, & Karstoft,

2020). Despite the existing applications in civil engineering

(e.g., Liang, 2019; Rafiei & Adeli, 2017a; Rafiei, Khushefati,

Demirboga, & Adeli, 2017), its great potential to improve

the optimization scheme for aerodynamic mitigation has

not been well explored yet. To this end, the reinforcement

learning (RL)methodologywill be utilized here for the first

time as a data-driven shape optimization scheme for aero-

dynamicmitigation of wind-sensitive structures. In RL set-

ting, the effective policy (i.e., shape search and update

rule) with a goal to efficiently achieve the globally opti-

mal solution (i.e., maximizing aerodynamic mitigation)

can be learnt by an agent (i.e., structure) through inter-

acting with its environment (i.e., wind) based on an auto-

mated trial-and-error process (Sutton & Barto, 2018). In

addition, theRL policywill be represented by a deep neural

network (DNN). The obtained deepRL-based optimizer, by

leveraging recent advances in deep learning, shows great

promise in structural shape optimization for aerodynamic

mitigation that is characterized as a typical nonlinear,

high-dimensional, and nonconvex problem (Mnih et al.,

2015).

Learning a DNN-based policy usually involves a large

amount of data. As mentioned above, the generation of

high-quality input–output data of structural aerodynamics

(i.e., aerodynamic performance with each set of updated

design variables) from CFD simulations is very expen-

sive. To reduce the required training datasets, the prior

domain knowledge can be leveraged to enhance the reg-

ularization mechanism during the training process of a
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LI et al. 3

neural network (Psichogios & Ungar, 1992). For example,

deep learning enhanced by “explicit” domain knowledge

in terms of physics-based and/or semiempirical equations

has been recently utilized for effective simulations of tropi-

cal cyclonewinds (Snaiki &Wu, 2019) and nonlinear struc-

tural dynamics (Wang & Wu, 2020) with a small training

dataset. It is noted that both the tropical cyclonewinds and

nonlinear structural dynamics are actually governed by

the Newton’s second law, and the corresponding “explicit”

domain knowledge is represented by the Navier–Stokes

equations and equations of motion, respectively. On the

other hand, the no-free-lunch theorem for search and opti-

mization indicates that a universal law and associated gov-

erning equations for the optimization systemmay not exist

(Wolpert & Macready, 1997). Hence, it is challenging to

incorporate the equation-based “explicit” domain knowl-

edge into the deep RL-based shape optimizer. Accord-

ingly, the equation-free “tacit” domain knowledge will be

leveraged here to greatly enhance the training efficiency.

In this study, both the specific direct-domain knowledge

and general cross-domain knowledge extracted from the

low-cost source tasks will be integrated into the deep RL-

based shape optimizer for its applications to high-cost tar-

get tasks (Min, Sagarna, Gupta, Ong, & Goh, 2017). The

former can be efficiently obtained via the transfer-learning

technique based on low-fidelity simulations of the current

optimization problem (e.g., Pan & Yang, 2009; Yan, Zhu,

Kuang,&Wang, 2019), and the latter is usually acquired via

the meta-learning technique based on a group of inexpen-

sive tasks generated from a common probability distribu-

tion (e.g., multivariate Gaussian distribution) that reflects

important high-level structures of the current optimiza-

tion problem (e.g., Finn, Abbeel, & Levine, 2017; Zhou, Li,

& Zare, 2017). It is noted that the “tacit” domain knowl-

edge usually presents a heuristic nature and its inappropri-

ate incorporation into the target task may result in a neg-

ative impact (Rosenstein, Marx, Kaelbling, & Dietterich,

2005). Accordingly, suitable relatedness (or similarity) and

transferability measures between source and target tasks

should be established (Eaton & Lane, 2008). In this study,

the low-cost source tasks for extracting both direct- and

cross-domain knowledge are carefully selected to avoid

the negative knowledge transfer. Numerical examples of

a simple case study (i.e., shape optimization of a high-

rise building cross section to minimize its drag) are carried

out by the proposed scheme as well as gradient-based and

gradient-free algorithms. The comparison results demon-

strate that an improved performance of the developed

knowledge-enhanced deep RL-based shape optimizer for

aerodynamic mitigation of wind-sensitive structures is

achieved.

F IGURE 1 Typical process of aerodynamic shape optimization

2 AERODYNAMIC SHAPE
OPTIMIZATION SCHEMES

A general optimization problem could be simply formu-

lated as

min
�

� (�) (1a)

where � = [�1, �2, … , ��] is a vector of n design variables

and �(�) is the objective function. The optimization pro-

cess is usually subjected to Rc equality and/or Sc inequality

constraints:

�� (�) = 0 � = 1, 2, … , �	, (1b)


� (�) ≤ 0 � = 1, 2, … , �	. (1c)

In the setting of aerodynamic shape optimization of

wind-sensitive structures, the design variables � charac-

terize the external shape; the objective function �(�) rep-

resents the aerodynamic performance of wind-sensitive

structures (e.g., the drag coefficient for tall buildings or

the critical flutter wind speed for long-span bridges); the

equality and inequality constraints are usually based on

practical considerations (e.g., geometric symmetry and

structural dimension). A typical aerodynamic shape opti-

mization process is shown in Figure 1. The optimization

process utilizes an optimizer to propose a new design (i.e.,

to take “action”) based on aerodynamic performance of

current external shape (i.e., “state”). As mentioned in the

previous section, the evaluations of aerodynamic perfor-

mance for bluff-body structures using CFD are very expen-

sive due to the nature of turbulent flow field and intense

flow separation. Hence, it is highly desirable to reduce

the amount of CFD-based performance evaluations for the

aerodynamic shape optimization problems. To this end,

a sample-efficient optimizer that can achieve the glob-

ally optimal solution with a relatively small number of
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iterations is needed. In this section, the conventional opti-

mization schemes used for comparison purposes in this

study are first briefly reviewed for the sake of complete-

ness. Then, the newly developed deep RL-based optimiza-

tion schemes are introduced in the context of aerodynamic

shape optimization.

2.1 Conventional optimization schemes

The conventional optimization schemes for aerodynamic

shape optimization could be generally classified into

gradient-based and gradient-free methods. Based on the

argument that the objective function decreases fastest

in the direction of negative gradient, the basic gradient

descent takes the increment of design variables propor-

tional to the negative gradient of objective function at

current design (Skinner & Zare-Behtash, 2018). The gra-

dients here are computed using a simple finite-difference

method. It is noted that the computational cost for opti-

mizationmay be reduced by using other approaches to cal-

culate gradients (e.g., adjoint method). Since the gradient-

based methods follow a deterministic rule to calculate the

next design (i.e., moving greedily in direction of steepest

descent based on gradient), the optimization process is

likely to be stuck in local optima (Skinner & Zare-Behtash,

2018).

To address the issue of being trapped in local optima,

the gradient-free methods could be introduced to better

search for global optima. Instead of using a deterministic

search and update rule as in the gradient-based methods,

the gradient-free methods (e.g., genetic algorithm, PSO,

and simulated annealing) usually follow rules that allow

for random explorations in the design space. Furthermore,

they can benefit from working with a population of candi-

date designs to search the design space with shared infor-

mation among the population (Skinner & Zare-Behtash,

2018). Despite the high chance of finding global optima,

the gradient-free methods usually need a significant num-

ber of samples.

2.2 Deep reinforcement learning-based
optimization schemes

Considering the inherent limitations resulting from the

hand-designed search and update rules for conventional

gradient-based and gradient-free methods, it is desir-

able to design an auto-learned rule for optimization

problems:

�
+1 = � [�0, �1, … , �
, � (�0) , � (�1) , … , � (�
)] , (2)

where function � represents a general form of effective

optimization scheme in terms of reaching global optima

with a relatively small number of iterations. It can be

effectively obtained based on the RLmethodology without

human intervention (Silver et al., 2017).

2.2.1 RL in aerodynamic shape
optimization

The mathematical model for RL in a fully observable envi-

ronment is usually based on the Markov decision process

characterized by a tuple [S, A, P(st, st+1, at), R(st, st+1, at)],

where S andA denote the set of state s and action a, respec-

tively; P(st, st+1, at) is the state-transition probability from

state st to state st+1 under action at (Sutton & Barto, 2018).

After moving from st to st+1 under action at, an immedi-

ate reward rt is received from the environment based on

the reward function R(st, st+1, at). It is noted that P(st,

st+1, at) and R(st, st+1, at) are the properties of the envi-

ronment. In RL, an agent aims to learn a policy � that

maps from state to action [i.e., � = �(�)] such that the

expected cumulative reward E(
∑∞

� = 0 ���
+�) (also known

as return �return =
∑∞

�=0 ���
+� ) is maximized, where the

discount factor � (usually 0 ≤ � ≤ 1) determines the rela-

tive importance of future reward compared with immedi-

ate reward. The policy maximizing the expected cumula-

tive reward is known as the optimal policy �∗. Unlike a

closely related field of dynamic programming with explic-

itly given environment dynamics (i.e., the state-transition

probability and reward function), the environment in RL

is usually unknown and the optimal policy �∗ is learned

based only on the agent’s interaction experiences with the

observable environment.

A schematic description of RL to learn an effective

search and update rule for aerodynamic shape optimiza-

tion � is shown in Figure 2. The term “effective” policy

is used here instead of “optimal” policy since it is usu-

ally difficult to exhaust the policy space to find the best

one in practice. It is noted that the strict optimality of the

policy is generally not the primary concern considering

effectively finding the optimal aerodynamic shape is the

focus. Although only �
 and �(�
) are shown in Figure 2

for the sake of simplicity, the state could include all previ-

ously evaluated designs�0, �1, … , �
and their performance

�(�0), �(�1), … , �(�
) in wind environment as indicated

in Equation (2). The action resulting from the policy deter-

mines the new design �
+1. The RL agent (i.e., the struc-

ture) interacts with the wind environment to obtain an

effective policy� such that the optimal aerodynamic shape

could be found within limited number of steps, which is

learned by maximizing the user-defined rewards based on
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F IGURE 2 Schematic of RL in aerodynamic shape optimiza-

tion

selected RL algorithm. Among numerous RL algorithms,

the value-based and policy-based methods are two most

popularly used ones in optimization problems.

2.2.2 Value-based methods

In addition to the automated trial-and-error search

through interacting with the environment, another impor-

tant feature of RL is the use of delayed reward. In such a

case, actionsmay affect not only the immediate reward but

also the next situation, and through that, all subsequent

rewards, and accordingly a state-value function ��(�) is

defined as the expected cumulative future reward starting

from the state s and following policy � afterwards (Sut-

ton & Barto, 2018). The optimal policy �∗ corresponds to

the optimal state-value function ��∗
(�) that is larger than

those following all other policies for all states. However,

it is impossible to extract �∗ based only on ��∗
(�) due to

the lack of action knowledge. To address this issue, the

action-value function ��(�, �) (also known as the state-

action value) is introduced as the expected cumulative

future reward starting from the state s, taking action a

and following policy � afterwards (Sutton & Barto, 2018).

The optimal policy could be identified by searching a

greedy action that leads to highest value, that is, � =

argmax
�

[��∗
(�, �)] (where ��∗

(�, �) is optimal action-value

function). Most of value-based methods to obtain �∗ (e.g.,

Q learning) are based on the Bellman equation, which

recursively relates the action value of current state to sum

of the immediate reward and the discounted action value

of next state (Sutton & Barto, 2018):

��+1 (�
, �
) = �� (�
, �
)

+��

[
�
 + � max

�
�� (�
+1, �) − �� (�
, �
)

]
, (3)

where capital Q indicates an estimate of lower-case q; sub-

script “k” represents the iteration number; �� is the learn-

ing rate.

For a high-dimensional continuous state space, the tab-

ular representation of Q functions (e.g., a lookup table)

in conventional Q learning could be replaced by function

approximators (e.g., a DNN). In a deep Q learning, the

input of deep Q network is the high-dimensional contin-

uous state and the output is the Q value for each discrete

action (Mnih et al., 2015). It is noted that the combination

of Q learning with the DNN-based function approxima-

tions often suffers from divergence due mainly to two rea-

sons, namely strong correlation between the consecutive

samples (�
, �
, �
, �
+1,�
+1, �
+1, …) and nonstationarity of

the target [�
 + � max
�

��(�
+1, �)] in Equation (3) (Mnih

et al., 2015). To address the divergence issue from corre-

lation, a replay buffer is usually employed to store the past

experiences and the randomly sampled experiences from

the replay buffer are utilized to update the deepQnetwork.

The use of replay buffer not only removes the strong corre-

lation of samples but also improves sample efficiency with

repetitively accessed learning experiences. To overcome

the divergence issue from nonstationarity, an additional

DNN called a target Q network with weights slowly track-

ing that of the originalQnetwork is introduced tomake the

target Q value changing slowly and hence improve stabil-

ity (Mnih et al., 2015). Although the deep Q learning shows

very promising results in solving complicated tasks with

high-dimensional continuous state space due to the pow-

erful function approximation ability of DNN, it can only

handle the low-dimensional discrete action space due to

the curse of dimensionality (Lillicrap et al., 2016). To con-

sider general application of RL to aerodynamic shape opti-

mization, the policy in Figure 2 needs to be represented

by a DNN mapping from continuous states to continuous

actions.

2.2.3 Policy-based methods

Policy-based methods are popularly employed in RL prob-

lems with a continuous action space. In contrast to value-

based methods, the policy-based algorithms directly learn

a parameterized policy � = �(�|�) (where � is the pol-

icy parameters) mapping states to high-dimensional con-

tinuous actions without using the action-value function as

the intermediary to compute the policy. In the policy-based

methods, the RL agent directly updates the policy parame-

ter � (e.g., the weights of DNN) by gradient ascent (Sutton

& Barto, 2018):

��+1 = �� + ���∇�� (��) , (4)
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F IGURE 3 Incorporation of “tacit” knowledge into deep RL-based aerodynamic shape optimizer

where ��� is the learning rate; �(��) is a performance index

of current policy �(�|��) in terms of expected cumulative

reward and could be estimatedwith the cumulative reward

(i.e., return �return) of sampled sequences using current

policy; ∇��(��) is the gradient of performance index with

respect to policy parameters �.

Although it is straightforward and effective to adjust

the policy parameters in the direction of policy gradient,

�return and hence obtained gradients usually present high

variance in a stochastic environment and learning diffi-

culty may occur. To reduce the variance of policy gradi-

ents, the action value �(�, �) following current policy is

employed to estimate �(��) (Sutton & Barto, 2018). The

obtained “actor-critic” scheme actually inherits essential

features from both policy-based and value-based methods,

where the “actor” proposes the action � = �(�|�) as in

policy-based methods and the “critic” evaluates the qual-

ity of the action (i.e., action value �[�, � = �(�|�)]) as in

value-based methods. In the application of deep Q func-

tion to the “actor-critic” scheme, the previouslymentioned

numerical tricks of replay buffer and target network for

deep Q learning should also be adopted to improve the

learning performance.

3 KNOWLEDGE-ENHANCED DEEP
RL-BASED SHAPE OPTIMIZER

Deep RL algorithms usually start from a random policy

(i.e., DNNwith randomly initialized weights), and hence a

large amount of interactions with the high-cost CFD envi-

ronment may be necessary for convergence to an effec-

tive DNN-based policy. To further enhance the search effi-

ciency, the domain knowledge will be incorporated into

the current learning problem. Unlike recent attempts of

using the “explicit” domain knowledge in terms of physics-

based and/or semiempirical equations to enhance train-

ing efficiency of conventional deep learning (Snaiki &Wu,

2019; Wang & Wu, 2020), the domain knowledge utilized

to efficiently obtain aerodynamic shape optimization pol-

icy is equation-free “tacit” domain knowledge due to the

nonexistence of a universal law and associated governing

equations for the optimization system according to the no-

free-lunch theorem for search and optimization (Wolpert

& Macready, 1997). As shown in Figure 3, the “tacit”

knowledge extracted from the low-cost environment in

this study includes both specific direct-domain knowl-

edge and general cross-domain knowledge. The former is

obtained via the transfer-learning technique based on low-

fidelity simulations of the current optimization problem

(e.g., Pan & Yang, 2009; Yan et al., 2019), and the latter is

acquired via themeta-learning technique based on a group

of inexpensive tasks generated from a common probabil-

ity distribution (e.g., multivariate Gaussian distribution)

that reflects important high-level structures of the current

optimization problem (e.g., Finn et al., 2017; Zhou et al.,

2017).

3.1 Incorporation of specific
direct-domain knowledge via transfer
learning

To incorporate the specific direct-domain knowledge in

the deep RL-based shape optimizer, the widely used trans-

fer learning in deep learning community, which stores

knowledge gained from solving one problem (source task)

and applies it to a different but related problem (target
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F IGURE 4 Incorporation of specific direct-domain knowledge into deep RL-based shape optimizer via transfer learning

task), is utilized here (Pan & Yang, 2009). Among various

transfer learning schemes (e.g., instance-based, feature-

based, parameter-based, and relational-based ones), this

study utilizes the parameter-based approach transferring

the knowledge in terms of the weights of DNN-based

policy from the source task (e.g., in a low-cost environ-

ment based on Reynolds-averaged Navier–Stokes [RANS]

scheme) to the target task (e.g., in a high-cost environment

based on large-eddy simulation [(LES] scheme). As shown

in Figure 4, the policy is represented by a fully connected

feedforward DNN (i.e., a multilayer perceptron [MLP]).

The input (state) of the MLP is the current design �
 and

the output (action) is the design variation ∆�
 for the cal-

culation of the next design �
+1 = �
 + ∆�
:

∆ �
 = �MLP (�
�
�MLP) , (5)

where the ��MLP is the weights of the policy network �MLP.

Since there is a unique objective function in transfer learn-

ing, an effective search direction at current design�
 is suf-

ficient for the purpose of optimization. Hence, only �
 is

utilized here as state and input to the MLP-based policy.

In addition, the �(�
) can be fully determined by �
 and

hence not included as state. It is noted that the objective

function in the low-cost environment is denoted as��(�) to

differentiate from the objective function �(�) in high-cost

environment. The reward �
 received at each step for min-

imizing the objective function is chosen to be the aerody-

namic performance improvement of proposed new design

��(�
+1) compared to the baseline design ��(�0), that is,

�
 = �� (�0) − ��(�
+1). In the case where the optimization

purpose is to maximize the objective function, a negative

sign needs to be added to the reward.

The deep deterministic policy gradient (DDPG) algo-

rithm, which has been successfully applied in numerous

continuous control tasks with high sample-efficiency (Lill-

icrap et al., 2016), is utilized to obtain the effective policy for

aerodynamic shape optimization. In addition to the policy

network �MLP(�
|��MLP), there are three additional DNN

inDDPG, namelyQnetwork [�MLP(�
, ∆�
|��MLP)], target

policy network [�MLP
′(�
|��MLP

′
)] and target Q network

[�MLP
′(�
, ∆�
|��MLP

′
)], with ��MLP , ��MLP

′
, and ��MLP

′

representing their corresponding weights. The policy

�MLP(�
|��MLP) is learned in an “actor-critic” mode. The

“actor,” represented by policy network �MLP(�
|��MLP),

follows a deterministic policy to output the action ∆�


based on the observed state �
. The “critic,” represented

by the Q network �MLP(�
, ∆�
|��MLP), evaluates the

actor’s action value to provide valuable update informa-

tion by encouraging the actions leading to large future

rewards (large Q values) and penalizing the actions lead-

ing to small future rewards (small Q values). The delayed

copies of the policy network �MLP(�
|��MLP) and Q net-

work �MLP(�
, ∆�
|��MLP) are used to compute the tar-

get policy network �MLP
′(�
|��MLP

′
) and target Q net-

work �MLP
′(�
, ∆�
|��MLP

′
). The learning details based on

DDPG is presented in Algorithm 1. The trained weights

of policy networks (and other three networks) are utilized

as the initial weights for training progress in the high-cost

environment using the same DDPG algorithm.

3.2 Incorporation of general
cross-domain knowledge via meta learning

In the case that the specific direct-domain knowledge

extracted from the low-cost environment (e.g., low-fidelity
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A l g o r i t hm 1 Training MLP-based optimizer using DDPG

simulations) is not available, the meta-learning tech-

nique may be utilized to incorporate general cross-domain

knowledge extracted from a set of prescribed functions

that share high-level similarities with the objective func-

tion of the current aerodynamic shape optimization prob-

lem into the deep RL-based aerodynamic shape optimizer.

Meta learning has recently drawn a great attention due to

the fact that knowledge obtained from learning to mas-

ter a set of tasks can be generalized to master new tasks

(Finn et al., 2017), and it is used here to leverage the gen-

eralization ability of the trained deep RL-based optimizer

based on a set of prescribed low-cost functions for optimiz-

ing the high-cost objective functions for an unseen aero-

dynamic shape optimization problem. Since the effective

optimization policy in meta learning is obtained from and

will be utilized for optimizing a large number of func-

tions, the current design �
 and corresponding objective

function�(�
)may not be able to provide enough informa-

tion to take next action. In this study, all previously eval-

uated designs and associated aerodynamic performance

[i.e., �0, �(�0), �1, �(�1), … , �
, �(�
)] are considered as

state input to the policy network. Accordingly, the recur-

rent neural networks (RNN) is used to parameterize the

policy due to its convenience to pass information across

time steps (Li, Wu, & Liu, 2020; Wu & Kareem, 2011). In

addition, RNN utilizes shared weights for different time

steps and hence greatly reduces the number of weights

to be learned in an optimization problem. To solve the

issue of vanishing and exploding gradients in backpropaga-

tion for a plain-vanilla RNN, the long-short time memory

(LSTM) cell is utilized to replace the conventional neurons

in the hidden layers (Chen et al., 2017; Zhou et al., 2017).

As shown in Figure 5, the proposed next design of aerody-

namic shape �
+1 (and associated vector !
+1 representing

cell output) is calculated through the RNNwith LSTM cell

(denoted by ��"" with weights of �RNN):

[�
+1, !
+1] = �RNN [�
, �(�
) , !
|�RNN, (6)

where cell output vector !
 is composed of LSTM cell state

and hidden state with the memory contributions from all

previously evaluated designs and their associated objective

functions [�0, �(�0), �1, �(�1), … , �
−1, �(�
−1)]. The

effective optimization policy �RNN is achieved by maxi-

mizing the cumulative reward (return) of the �step opti-

mization steps in the low-cost environment, i.e., �return =

−
∑�step


 = 1 ��(�
). It should be noted that functions used

to construct the low-cost environment in meta learning is

usually synthesized based on a common probability distri-

bution (e.g., multivariate Gaussian distribution) and easy

to learn, and hence the basic policy-gradient algorithm

performs well. The learning details based on policy gra-

dient used in this study is described in Algorithm 2. The

trained RNN-based optimizer in the low-cost environment
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F IGURE 5 Incorporation of general cross-domain

knowledge into deep RL-based shape optimizer via

meta learning

A l g o r i t hm 2 Training RNN-based optimizer using policy gradient

is directly utilized in current aerodynamic shape optimiza-

tion process without further learning to highlight its gen-

eralization ability.

4 NUMERICAL EXAMPLES

Due to the extremely high computational demand for

three-dimensional (3D) CFD simulations (e.g., Elshaer

& Bitsuamlak, 2018; Kim & Yhim, 2014), a simple case

study of aerodynamic shape optimization of the cross sec-

tion of a typical high-rise building is used to demonstrate

the improved performance of the proposed knowledge-

enhanced deep RL-based aerodynamic shape optimizer

compared to conventional gradient-based and gradient-

free schemes. Since state of the practice in analyzing wind

effects on 3D realistic slender structures is essentially

based on the two-dimensional (2D) cross-section aerody-

namic properties according to strip theory (e.g., Daven-

port, 1962; Hao & Wu, 2018; Hou & Sarkar, 2018; Scanlan,

1978), the 2D numerical examples can be considered as the

fundamental building blocks for more complex 3D realis-

tic scenarios. As shown in Figure 6, the baseline design is

a square with nondimensional width D = 1 and rounded

corners with radius rc = 0.4, and the straight-line seg-

ments are fixed while the rounded parts are allowed to

change. The optimization task is to minimize the mean

drag force coefficient #�$ by updating the two design
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F IGURE 6 Geometric configuration of a typical tall-building

cross section

variables ∆%∗
1 and ∆%∗

2 defined as the relative displace-

ments in the %∗ direction with respect to the control points

in a baseline design located at �∗
1 = –0.16 and �∗

2 = –0.04

(Ding & Kareem, 2018). The resulting aerodynamic shape

is obtained through interpolation with a cubic spline pass-

ing through the new control points. Considering the exis-

tence of the four axes of symmetry, the geometry could be

fully determined by the two design variables ∆%∗
1 and ∆%∗

2 .

The constraints |∆%∗
1 | ≤ 0.1 and |∆%∗

2 | ≤ 0.1 are imposed

to limit the maximum allowable geometric change. It is

noted that the parameterization scheme used here has

been successfully applied to the aerodynamic shape opti-

mization of tall buildings (Bernardini, Spence, Wei, &

Kareem, 2015; Ding & Kareem, 2018). Although the 2D

numerical examples are employed for the sake of conve-

nience, it is expected that the knowledge-enhanced deep

RL-based shape optimizer will present greater promise in

high-dimensional applications duemainly to the inclusion

of DNN function approximators (Chen et al., 2017; Yan

et al., 2019).

4.1 Specific direct-domain
knowledge-enhanced deep RL-based
optimization

To effectively incorporate the specific direct-domain

knowledge into the current aerodynamic shape optimiza-

tion process, the low-fidelity low-cost RANS simulations

and high-fidelity high-cost LES simulations are employed

as the source and target tasks, respectively. TheRANS-level

and LES-level CFD simulations given by Ding and Kareem

(2018) are utilized to evaluate the mean drag force coef-

ficient #�$. The CFD simulations are carried out based

on the Open Source Field Operation and Manipulation

(OpenFOAM)C++ class library, where the spatial domain

is discretized utilizing the Finite volume method. Specifi-

cally, a uniform wind flow approaching the building at a

F IGURE 7 Velocity fields of CFD simulations for a selected

shape design

fixed angle of attack is considered. TheReynolds number is

105 for both RANS and LES. In a computational domain of

30D× 20D (whereD is the cross-section width), structured

mesh is utilized with a mesh number of around 435,000

(for RANS) and 1,418,000 (for LES), and the mesh inde-

pendence is checked following the AJI guideline (Tomi- Q3

naga et al., 2008). The k–ω shear stress transport model is

used for RANS, while dynamic Lagrangian subgrid-scale

model for LES. The y+ number is around 40 (with stan-

dardwall functions) for RANS and 1 for LES. TheCourant–

Friedrichs–Lewy numbers for RANS and LES are 0.1 and

0.4, respectively. The numerical simulations are termi-

nated after four cycles of flow passing the computational

domain. The computational time for one 2D shape design

is around 10 and 150 h for RANS and LES using 16 CPU

cores [Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50 GHz].

The representative velocity fields of RANS and LES for a

selected shape design are shown in Figure 7. It is noted that

the RANS-based simulations are first used for establishing

a reliable surrogate model over the design space to save

the computational demand (Ding&Kareem, 2018). Hence,

the computational cost in low-cost environment is consid-

ered as negligible compared to that in high-cost environ-

ment. In this numerical example, the computational bud-

get is restricted to 20 LES-based evaluations of the objec-

tive functions for each method. Since each “step” repre-

sents one LES-based evaluation, the maximum step nstep
for the optimization is 20. The hyperparameters of DDPG

used in the numerical example are shown in Table 1. The

trained weights of the four networks in DDPG in the low-

cost RANS environment are used as the initial weights

for learning and optimizing processes in the high-cost

environment.
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TABLE 1 Hyperparameters of DDPG

Hyperparameters Values

Number of layers (policy network) 4

Number of neurons (policy network) 40

Learning rate of policy network �� 0.0001

Activation functions in hidden

layers (policy network)

Rectified linear unit

Activation functions in output layer

(policy network)

Hyper tangent

Number of layers (Q network) 4

Number of neurons (Q network) 40

Learning rate of Q network �� 0.001

Activation functions in hidden

layers (Q network)

Rectified linear unit

Activation functions in output layer

(Q network)

Linear

Discount factor � 0.99

Update factor & 0.001

Batch size �'�
	ℎ 128

For the sake of simplicity, the basic gradient descent

(Skinner & Zare-Behtash, 2018) and PSO (Kennedy &

Eberhart, 1995) are, respectively, selected as examples of

gradient-based and gradient-free optimization schemes,

respectively, and used for comparison with deep RL-based

shape optimizer. For a fair comparison, the parameters of

the basic gradient descent and PSO methods are selected

to ensure that both of them present good performance in

the optimization based on low-cost simulations. The step

size �BGD of the basic gradient descent is set to be 0.01, and

each step requires extra evaluations of the objective func-

tion to compute its gradient. The population size npop and

step size �PSO of PSO are set to be 5 and 1, respectively.

The starting point is taken as (–0.1, –0.1) far from the opti-

mal design for effective evaluation of various optimization

schemes. The sampled designs for different methods are

shown in Figure 8a–d, where the cross mark with a step

number aside denotes the proposed designs in the opti-

mization process. It is noted that the deep RL-based opti-

mizer without integrating domain knowledge (i.e., directly

interacting with the high-cost environment), as shown in

Figure 8c, does not necessarily perform better than con-

ventional optimization schemes for this simple 2D case

considering the random initialization of the optimization

policy. The comparison results in Figure 8f indicate that

the specific direct-domain knowledge from RANS-level

simulations can greatly facilitate the efficient search of

deep RL-based optimizer for the optimal (or near opti-

mal) design in LES-based simulations, which demonstrate

that direct-domain knowledge-enhanced deep RL-based

optimizer outperforms both gradient-based and gradient-

TABLE 2 Hyperparameters of policy gradient

Hyperparameters Values

LSTM cell state and

hidden state size

100

Learning rate of policy

network η_RNN

0.0001

Batch size n_b 128

free optimization algorithms in this case study. The two

design variables are –0.011 and 0.028 for the selected opti-

mal shape, which results in a drag coefficient of 0.276. The

small oscillations in the sampled designs as indicated in

Figure 8d may be attributed to the synchronized learning

and optimizing processes in the high-cost environment.

4.2 General cross-domain
knowledge-enhanced deep RL-based
optimization

To effectively incorporate the general cross-domain knowl-

edge into the current optimization process, it is impor-

tant to select a set of appropriate prescribed functions

for constructing a low-cost environment. For the aero-

dynamic shape optimization of tall buildings, the objec-

tive function is likely to have multiple local optima.

Considering the nonconvex continuous Gaussian process

functions are often used for the synthesis of functions

with multiple local optima (e.g., Chen et al., 2017; Zhou

et al., 2017), they are utilized here by assuming that the

high-cost objective functions of aerodynamic shape opti-

mization could be well approximated by a mixture of

Gaussian process functions. Accordingly, a set of sup-

porting points - = [�1, �2, … , �/] (m × d) and their

corresponding values3� = [�1, �2, …�/] (m× 1) are first

randomly generated, where m represents the number of

supporting points and d denotes the dimension of design

variables. The synthetic Gaussian process function passing

the supporting points is then given by

�� (�) = (4−1
-,-3�)

5 4- (�) (7)

where the essential element in matrix 4-,- (m by m) is

exp(−
|�6−�7|

2

2�2
) (for i= 1, 2,. . . ,m and j= 1, 2,. . . ,m) and the

essential element inmatrix4-(�) (m by 1) is exp(−
|��−�|2

2�2
)

(for k = 1, 2,. . . , m). The parameters m and l are set to

be 6 and 0.5, respectively, in this case. A total of 4000

synthetic Gaussian process functions are utilized to train

the RNN-based shape optimizer using policy-gradient

algorithm, and the used hyperparameters are shown in

Table 2. The obtained RNN-based shape optimizer and the
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F IGURE 8 Optimization of #�$ using different schemes with the starting point (–0.1, –0.1)

corresponding effective policy are directly employed in the

current aerodynamic shape optimization process without

further training.

The proposed designs by the general cross-domain

knowledge-enhanced deep RL-based shape optimizer in

the current aerodynamic optimization process are shown

in Figure 8e. It is shown that the developed optimizer

first explores in design space for a few steps and then

efficiently march towards the global optimum. The com-

parison results in Figure 8f indicate that the general

cross-domain knowledge from a mixture of Gaussian pro-

cess functions can greatly facilitate the efficient search of

deep RL-based optimizer for the optimal (or near opti-

mal) design in LES-based simulations, which demonstrate

that the general cross-domain knowledge-enhanced deep

RL-based optimizer outperforms both gradient-based and

gradient-free optimization schemes in this case study. In

addition to the starting point (–0.1, –0.1), the comparative

study with another starting point (–0.1, 0.1) is further car-

ried out to more comprehensively demonstrate the com-

putational advantage of the proposed aerodynamic shape

optimizer. The simulation results are given in Figure 9, and

it is shown that both specific direct-domain and general

cross-domain knowledge-enhanced deep RL-based opti-

mizers still present improved performance compared to

conventional methods in the case of a different starting

point. Other starting points (e.g., points of (0.1, 0.1) and

(0.1, –0.1)) are also investigated, and it is found that the

knowledge-enhanced deep RL-based optimizer can always

quickly reach to optimum. It is noted that the performance

F IGURE 9 Comparison of various methods with the starting

point (–0.1, 0.1)

of each optimization scheme used in this numerical exam-

plemay varywithmodel parameters, wind conditions (e.g.,

angles of attack), and other factors. Hence, a comprehen-

sive parametric study is needed before a more general con-

clusion in terms of optimization efficiency can be obtained.

5 CONCLUSION

This study developed anovel aerodynamic shape optimizer

for wind-sensitive structures using knowledge-enhanced

deep RL. The RL approach with a DNN-based policy

(for shape search and update) is utilized as a data-driven

shape optimization scheme for aerodynamic mitigation of

wind-sensitive structures, and the equation-free domain
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knowledge is leveraged to remarkably enhance the train-

ing efficiency. It is shown that the specific direct-domain

knowledge learnt from low-fidelity computational fluid

dynamics simulations (with RANS equations) and general

cross-domain knowledge learned from a mixture of Gaus-

sian process functions can be incorporated into the deep

RL-based aerodynamic shape optimizer via the transfer-

learning and meta-learning techniques, respectively, and

both greatly facilitated the efficient search of an effective

RL policy to obtain the optimal (or near optimal) design

in expensive high-fidelityCFD simulations (i.e., large-eddy

simulations). Numerical examples for aerodynamic shape

optimization of the cross section of a typical tall build-

ing demonstrated the improved performance of both spe-

cific direct-domain and general cross-domain knowledge-

enhanced deep RL-based shape optimizers compared to

conventional gradient-based and gradient-free optimiza-

tion algorithms. To simultaneously incorporate both spe-

cific direct-domain and general cross-domain knowledge

into the same deep RL-based shape optimization for a

further improved performance would be an interesting

research topic to explore. Other advanced deep learn-

ing schemes (e.g., enhanced probabilistic neural network,

Ahmadlou & Adeli, 2010; neural dynamic classification,

Rafiei & Adeli, 2017b; dynamic ensemble learning, Alam,

Siddique, & Adeli, 2020; and finite element machine,

Pereira, Piteri, Souza, Papa, & Adeli, 2020) should be also

explored to enhance simulation accuracy and efficiency

of the aerodynamic shape optimization. Another direc-

tion of future work is to extend current simple 2D aero-

dynamic shape optimization to more complex nonlinear,

high-dimensional and nonconvex problems for aerody-

namic mitigation of large-scale wind-sensitive structures.
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