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Abstract

In a sequential Bayesian ranking and selection problem with independent normal
populations and common known variance, we study a previously introduced measure-
ment policy which we refer to as the knowledge-gradient policy. This policy myopically
maximizes the expected increment in the value of information in each time period,
where the value is measured according to the terminal utility function. We show that
the knowledge-gradient policy is optimal both when the horizon is a single time pe-
riod, and in the limit as the horizon extends to infinity. We show furthermore that, in
some special cases, the knowledge-gradient policy is optimal regardless of the length
of any given fixed total sampling horizon. We bound the knowledge-gradient policy’s
suboptimality in the remaining cases, and show through simulations that it performs
competitively with or significantly better than other policies.

1 Introduction

We consider a ranking and selection problem in which we are faced with M ≥ 2 alterna-

tives, each of which can be measured sequentially to estimate its constant but unknown

underlying average performance. The measurements are noisy, and as we obtain more

measurements, our estimates become more accurate. We assume normally distributed

measurement noise, and independent normal Bayesian priors for each alternative’s un-

derlying average performance. We have a budget of N measurements to spread over

the M alternatives before deciding which is best. The goal is to choose the alternative

with the best underlying average performance.

Information collection problems of this type arise in a number of applications:

(i) Choosing the chemical compound from a library of existing test compounds that

has the greatest effectiveness against a particular disease. A compound’s effec-

tiveness may be measured by exposing cultured cells infected with the disease to
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the compound and observing the result. The compound found most effective will

be developed into a drug for treating the disease.

(ii) Choosing the most efficient of several alternative assembly line configurations.

We may spend a certain short amount of time testing different configurations,

but once we put one particular configuration into production, that choice will

remain in production for a period of several years.

(iii) Selecting the best of several policies applied to a stochastic Markov decision pro-

cess. The policies may only be evaluated through Monte Carlo simulation so a

method of ranking and selection is needed to determine which policy is best. This

selection may be as part of a larger algorithm for finding the optimal policy as in

Evolutionary Policy Iteration (Chang et al. (2007)).

In this article we study a measurement policy introduced in Gupta and Miescke

(1996) under the name of the (R1, . . . , R1) policy, and referred to herein as the knowledge-

gradient (KG) policy. We briefly describe this policy and leave further description for

section 4.1. Let µnx and (σnx)2 denote the mean and variance of the posterior pre-

dictive distribution for the unknown value of alternative x after the first n measure-

ments. Then the KG policy is the policy that chooses its (n + 1)st measurement

XKG((µn1 , σ
n
1 ), . . . , (µnM , σ

n
M )) from within {1, . . . ,M} to maximize the single-period

expected increase in value, En
[
(maxx′ µn+1

x′ )− (maxx′ µnx′)
]

where En indicates the

conditional expectation with respect to what is known after the first n measurements.

That is,

XKG((µn1 , σ
n
1 ), . . . , (µnM , σ

n
M )) ∈ arg max

xn∈{1,...,M}
En
[
(max
x′

µn+1
x′ )− (max

x′
µnx′)

]
.

In this expression the expectation is implicitly a function of xn, the measurement deci-

sion at time n. If the maximum is attained by more than one alternative then we choose

the one with the smallest index. As the terminal reward is given by maxx=1,...,M µNx ,

this policy is like a gradient ascent algorithm on a utility surface with domain param-

eterized by the state of knowledge ((µ1, σ1), . . . , (µM , σM )). It may also be viewed as

a single-step Bayesian look-ahead policy.

In this work we continue the analysis of Gupta and Miescke (1996). We demonstrate

that the knowledge-gradient policy, introduced there as the most rudimentary of a

collection of potential policies and studied for its simplicity but neglected thereafter, is
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actually a powerful and efficient tool for ranking and selection that should be considered

for application alongside current state-of-the-art policies. As discussed in detail in

section 2 below, a number of other sequential Bayesian look-ahead policies have been

derived in the years by solving a sequence of single-stage optimization problems just as

the knowledge-gradient policy does, and, among these, the optimal computing budget

allocation for linear loss of He et al. (2007) and the LL(S) policy of Chick and Inoue

(2001b) assume situations most similar to the one assumed here. The knowledge-

gradient policy differs, however, from these other policies in that it solves its single-

stage problem exactly while the other policies must use approximations. We believe

that solving the look-ahead problem exactly offers an advantage.

After formulating the problem in section 3 and defining the policy in section 4,

we show in section 5 that the KG policy is optimal in the limit as N → ∞ in the

sense that the policy incurs no opportunity cost in the limit as infinitely many mea-

surements are allowed. Also, by its construction and as noted in Gupta and Miescke

(1996), KG is optimal when there is only one measurement remaining. This provides

optimality guarantees at two extremes: N large and N small. While many policies

are asymptotically optimal without performing particularly well in the finite sample

case, a policy with both kinds of optimality satisfies a more stringent performance

check. For example, the equal-allocation policy is asymptotically optimal, but is not

optimal when N = 1 except in certain special cases, and performs poorly overall. In

the other extreme, myopic policies for generic Markov decision processes often perform

poorly because they ignore long-term rewards. By being optimal for both N = 1 and

N =∞, KG avoids the problem that most afflicts other myopic policies, while retaining

single-sample optimality.

In accord with our belief that optimality at two extremes suggests good perfor-

mance in the region between, we provide a bound on the policy’s suboptimality for

finite N in section 6. In section 7 we introduce the KG persistence property and use

it to show both optimality for the case when M = 2 and for a further special case in

which the means and variances are ordered. Our proof that KG is optimal when M = 2

confirms a claim made by Gupta and Miescke (1994), who showed its optimality among

deterministic policies for M = 2, but did not offer a formal proof for optimality among

sequential policies. Finally, in section 8, we demonstrate in numerical experiments that
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KG performs competitively against the other policies discussed here. In particular, the

KG policy is best according to the measure of average performance across a number of

randomly generated problems, and the margin by which it outperforms the best com-

peting policies on the most favorable problems is significantly larger than the margin

by which it is outperformed on the most unfavorable problems.

2 Literature Review

The KG policy was introduced in Gupta and Miescke (1996) as the simplest of a collec-

tion of look-ahead policies, and was studied because its simplicity provided tractability,

but this simple policy has been seldom studied or applied in the years since. Instead, a

number of more complex Bayesian look-ahead policies have been introduced. A series

of researches beginning with Chen (1995) and continuing with Chen et al. (1996, 1997,

2000a,b, 2003) proposed and then refined a family of policies known as the Optimal

Computing Budget Allocation (OCBA). These policies are derived by formulating a

static optimization problem in which one chooses the measurements to maximize the

probability of later correctly selecting the best alternative. OCBA policies solve this

optimization problem by approximating the objective function with various bounds,

relaxations, and by assuming that the predictive mean will remain unchanged by mea-

surement. They then solve the approximate problem using gradient ascent, greedy

heuristics, or with an asymptotic solution that is exact in the limit as the number of

measurements in the second stage is large. All OCBA policies assume normal samples

with known sampling variance but in practice one may estimate this variance through

sampling.

Any OCBA policy can be extended to multi-stage or fully sequential problems by

performing the second stage of the two-stage policy repeatedly, at each stage calling

all previous measurements the first stage and the set of measurements to be taken

next the second stage. It is in this extension that one sees the similarity to the one-

step Bayesian look-ahead approach of KG, which extends the one-stage policy which is

optimal with one measurement remaining to a sequential policy by supposing at each

point in time that the current measurement will be the last.

The OCBA policies mentioned above are designed to maximize the probability of

correctly selecting the best alternative, while KG is designed to maximize the expected
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value of the chosen alternative. These different objective functions are also termed 0−1

loss and linear loss respectively. They are similar but not identical; 0−1 loss perhaps

being more appropriate when knowledge of the identity of the best is intrinsically

valuable (and where accidentally choosing the second best is nearly as harmful as

choosing the worst), and linear loss being more appropriate when value is obtained

directly by implementing the chosen alternative.

Recently He et al. (2007) introduced an OCBA policy designed to minimize expected

linear loss. Although more similar to KG than other OCBA policies, it differs in that

it uses the Bonferroni inequality to approximate the linear loss objective function for

a single stage, and then solves the approximate problem using a second approximation

which is accurate in the limit as the second stage is large. This is in contrast to KG,

which solves the single-stage problem exactly. The He et al. (2007) OCBA policy does

not assume like the other OCBA approaches that the posterior predictive mean is equal

to the prior predictive mean, and in this regard is more similar to the approach of Chick

and Inoue (2001b) discussed below.

A set of Bayesian look-ahead ranking and selection policies distinct from OCBA

were introduced in Chick and Inoue (2001b). They differ by not assuming the predictive

means equal through time, and by allowing the sampling variance to be unknown. This

causes the posterior predictive mean to be student-t distributed, inducing an optimiza-

tion problem governing the second stage allocation with a somewhat different objective

function than that in OCBA formulations. This objective function, corresponding to

expected loss, is bounded below, and this lower bound is then approximately minimized.

The resulting solution minimizes the lower bound exactly in the limit as sampling costs

are small, or as the number second-stage measurements is large.

Six policies are derived in total by considering both 0−1 and linear loss under three

different settings: two-stage measurements with a budget constraint; two-stage without

a budget constraint; and sequential. Among these policies, the one most similar to KG

is LL(S), which uses linear loss in a sequential setting, allocating τ measurements at a

time.

In Chick et al. (2007) an unknown-variance version of the KG policy was developed

under the name LL1. The authors compared LL1 to LL(S) using Monte Carlo simu-

lations and found that LL1 performed well for a small sampling budget, but degraded
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in performance as the sampling budget increased. We briefly discuss how these results

relate to our own in Section 8.

In addition to the Bayesian approaches to sequentially ranking and selecting normal

populations described thus far, a substantial amount of progress has been made using

a frequentist approach. We do not review this literature in detail, and only state that

an overview may be found in Bechhofer et al. (1995), and that a more recent policy

which performs quite well in the multi-stage setting with normal rewards is given in

Kim and Nelson (2001, 2006b). Other sequential and staged policies for independent

normal rewards with frequentist guarantees include those in Paulson (1964), Rinott

(1978), Hartmann (1991), Paulson (1994), and Nelson et al. (2001).

Sequential tests also exist which choose measurements based upon confidence bounds

for the value Yx. Such tests include interval estimation (Kaelbling (1993)), which was

developed for on-line bandit-style learning in a reinforcement learning setting, and

upper confidence bound estimation (Chang et al. (2007)), which was developed for

estimating value functions for Markov decision processes. Both tests form frequen-

tist confidence intervals for each Yx and then select the alternative with the largest

upper bound on its confidence interval for measurement. Such policies have general

applicability beyond the independent normal setting discussed here.

3 Problem formulation

We state a formal model for our problem, including transition and objective functions.

We then formulate the problem as a dynamic program.

3.1 A formal model

Let (Ω,F ,P) be a probability space and let {1, . . . ,M} be the set of alternatives. For

each x ∈ {1, . . . ,M} define a random variable Yx to be the true underlying value

of alternative x. We assume a Bayesian setting for the problem in which we have

a multivariate normal prior predictive distribution for the random vector Y , and we

further assume that the components of Y are independent under the prior, and that

maxx=1,...,M |Yx| is integrable. We will be allotted exactly N measurements, and time

will be indexed using n with the first measurement decision made at time 0. At

each time 0 ≤ n < N , we choose an alternative xn to measure. Let εn+1 be the
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measurement error, which we assume is normally distributed with mean 0 and a fi-

nite known variance (σε)2 that is the same across all alternatives. We also assume

that errors are independent of each other and of the random vector Y . Then define

ŷn+1 = Yx + εn+1 to be the measurement value observed. At time N , we choose an

implementation decision xN based on the measurements recorded, and we receive an

implementation reward ŷN+1. We assume that the reward is unbiased, so that ŷN+1

satisfies E
[
ŷN+1|Y, xN

]
= YxN . Define the filtration (Fn)Nn=0 by letting Fn be the

sigma-algebra generated by x0, ŷ1, x1, . . . xn−1, ŷn. We will use the notation En[·] to in-

dicate E[ · | Fn], the conditional expectation taken with respect to Fn. Measurement

and implementation decisions xn are restricted to be Fn-measurable so that decisions

may only depend on measurements observed and decisions made in the past.

Let µ0 := E [Y ] and Σ0 := Cov [Y ] be the mean and covariance of the predic-

tive distribution for Y so that Y has prior predictive distribution N (µ0,Σ0) and Σ0

is a diagonal covariance matrix. Note that our assumed integrability of maxx |Yx|

is equivalent to assuming integrability of every Yx because |Yx′ | ≤ maxx |Yx| and

maxx |Yx| ≤ |Y1| + . . . + |YM |, which is equivalent to assuming Σ0
xx finite for every

x.

We will use Bayes’ rule to form a sequence of posterior predictive distributions for

Y from this prior and the successive measurements. Let µn := En [Y ] be the mean

vector and Σn := Cov [Y | Fn] the covariance matrix of the predictive distribution

after n measurements have been made. Because the error term εn+1 is independent

and normally distributed, the predictive distribution for Y will remain normal with

independent components, and Σn will be diagonal almost surely. We write (σnx)2 to

refer to the diagonal component Σn
xx of the covariance matrix. Then Yx ∼ N (µnx, (σ

n
x)2)

conditionally on Fn. We will also write βnx := (σnx)−2 to refer to the precision of the pre-

dictive distribution for Yx, βn := (βn1 , . . . , β
n
M ) to refer to the vector of precisions, and

βε := (σε)−2 to refer to the measurement precision. Note that σε <∞ implies βε > 0.

Our goal will be to choose the measurement policy (x0, . . . , xN−1) and implemen-

tation decision xN that maximizes E [YxN ]. The implementation decision xN that

maximizes EN [YxN ] = µNx is any element of arg maxx µNx and the value achieved is

maxx µNx . Thus, letting Π be the set of measurement strategies π = (x0, . . . , xN−1)
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adapted to the filtration, we may write our problem’s objective function as

sup
π∈Π

Eπ
[
max
x

µNx

]
. (1)

3.2 State space and transition function

Our state space is the space of all possible predictive distributions for Y . It can be

shown by induction that these are all multivariate normal with independent compo-

nents. We formally define the state space S by S := RM × (0,∞]M and it consists of

points s = (µ, β) where, for each x ∈ {1, . . . ,M}, µx and βx are respectively the mean

and precision of a normal distribution. We will write Sn := (µn, βn) to refer to the

state at time n. The notation Sn will refer to a random variable while s will refer to a

fixed point in the state space.

Fix a time n. We use Bayes’ rule to update the predictive distribution of Yx

conditioned on Fn to reflect the observation ŷn+1 = Yx + εn+1, obtaining a posterior

predictive distribution conditioned on Fn+1. Since εn+1 is an independent normal

random variable, and the family of normal distributions is closed under sampling,

the posterior predictive distribution is also normal. Thus our posterior predictive

distribution for Yx is N (µn+1
x , 1/βn+1

x ), and writing it as a function of the prior and

the observation reduces to writing µn+1 and βn+1 as functions of µn, βn, and ŷn+1.

Bayes’ rule tells us these functions are

µn+1
x =

{[
βnxµ

n
x + βεŷn+1

]
/βn+1

x , if xn = x,
µnx, otherwise,

(2)

βn+1
x =

{
βnx + βε, if xn = x,
βnx , otherwise.

(3)

Conditionally on Fn, the random variable µn+1 has a multivariate normal distri-

bution whose mean and variance we can compute. First, we use the tower property of

conditional expectation and the definitions of µn and µn+1 as the predictive means of

Y given Fn and Fn+1, respectively, to write En
[
µn+1

]
= En [En+1 [Y ]] = En [Y ] = µn.

Then we compute the variance of µn+1 component-wise. For those alternatives x 6= xn

that we do not measure, our posterior is equal to our prior and µn+1 = µn. This shows

that Var
[
µn+1
x | Fn

]
= 0 if x 6= xn. For x = xn this variance is generally positive. Let

us define

σ̃nx :=
√

Var
[
µn+1
x | Fn, xn = x

]
, (4)
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so that (σ̃nx)2 is equal to Var
[
µn+1
x | Fn, xn = x

]
. This variance may be interpreted as

the variance of the change in the predictive mean µn+1
x −µnx caused by a measurement

as Var
[
µn+1
x | Fn, xn = x

]
= Var

[
µn+1
x − µnx | Fn, xn = x

]
. As shown in the following

proposition, it is also equal to the reduction in predictive variance, i.e. the reduction

in “uncertainty,” caused by a measurement.

Proposition 3.1. For every x = 1, . . . ,M , we have (σ̃nx)2 = (σnx)2 − (σn+1
x )2.

Proof. We begin with the relation

(µn+1
x − Yx) = (µn+1

x − µnx) + (µnx − Yx).

Squaring both sides, taking the expectation with respect to Fn+1, and noting that

(σn+1
x )2 = En+1

[
(Yx − µn+1

x )2
]

gives

(σn+1
x )2 = En+1

[
(µnx − Yx)2

]
+ 2En+1

[
(µnx − Yx)(µn+1

x − µnx)
]

+ En+1

[
(µn+1
x − µnx)2

]
= En+1

[
(µnx − Yx)2

]
+ 2(µnx − µn+1

x )(µn+1
x − µnx) + (µn+1

x − µnx)2

= En+1

[
(µnx − Yx)2

]
− (µn+1

x − µnx)2.

Since σn+1
x ∈ Fn, we may take the expectation with respect to Fn to get

(σn+1
x )2 = En

[
En+1

[
(µnx − Yx)2

]]
− En

[
(µn+1
x − µnx)2

]
= En

[
(µnx − Yx)2

]
− En

[
(µn+1
x − µnx)2

]
= (σnx)2 − (σ̃nx)2. �

To more easily compute σ̃nx , define a function σ̃ : (0,∞] 7→ [0,∞) by

σ̃(βx) =
√

(βx)−1 − (βx + βε)−1. (5)

Then we have that σ̃nx = σ̃(βnx ) by Proposition 3.1 applied to the identities

(σn+1
x )2 = (βn+1

x )−1 = (βnx + βε)−1 and (σnx)2 = (βnx )−1.

Remark 3.1. For βx ∈ (0,∞), we have that (σ̃(βx))2 = βε/[(βx + βε)βx] is strictly

decreasing in βx, and thus so is σ̃(βx).

Since µn+1
xn is a normal random variable with conditional mean µnxn and condi-

tional variance (σ̃(βnxn))2 under Fn, we can write in terms of an Fn adapted sequence

Z1, . . . , ZN of standard normal random variables,

µn+1 = µn + σ̃(βnxn)Zn+1exn , (6)

βn+1 = βn + βεexn , (7)
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where ex is a vector in RM with all components zero except for component x, which is

equal to 1. We also define a function T : S× {1, . . . ,M} × R 7→ S by

T ((µ, β), x, z) := (µ+ σ̃(βx)zex, β + βεex), (8)

so that Sn+1 = T (Sn, xn, Zn+1). This is our transition function.

We briefly recall and summarize the random variables which play a role in the

measurement process. The underlying and unknown value of alternative x is denoted

Yx, and is randomly fixed at the beginning of the measurement process. At time n, µnx

is our best estimate of Yx and βnx is the precision with which we make this estimate.

The result of our time n measurement causes us to update this estimate to µn+1
x ,

which we now know with precision βn+1
x . This change from µnx to µn+1

x is random, and

furthermore is normally distributed with mean 0 and standard deviation σ̃(βnx ) when

we measure alternative x.

One may think of Yx as fixed and of µnx as converging toward Yx while βnx con-

verges to infinity under some appropriately exploratory sampling strategy. It is also

appropriate, however, to fix µnx and βnx (this is the essential content of conditioning on

Fn) and think of Yx as an unknown quantity. From this viewpoint, Yx is random, and

furthermore is normally distributed with predictive mean µnx and precision βnx . This

randomness does not imply that Yx need be chosen again according to the predictive

normal distribution, but instead the predictive normal distribution only quantifies our

uncertain knowledge of the value Yx adopted when it was first chosen.

3.3 Dynamic program

We apply a dynamic programming approach to our problem. In this approach, the

value function is defined as the value of the optimal policy given a particular state

Sn at a particular time n, and may also be determined recursively through Bellman’s

equation. If the value function can be computed efficiently, the optimal policy may

then also be computed from it. Although in this problem the “curse of dimensionality”

makes direct computation of the value function difficult even for M as small as 3,

the dynamic programming principle still provides a valuable method for studying the

problem.
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The terminal value function V N : S 7→ R is given by (1) as

V N (s) := max
x∈{1,...,M}

µx for every s = (µ, β) ∈ S. (9)

The dynamic programming principle tells us that the value function at any other time
0 ≤ n < N is given recursively by

V n(s) = max
x∈{1,...,M}

E
[
V n+1(T (s, x, Zn+1))

]
, s ∈ S. (10)

We define the Q-factors, Qn : S× {1, . . . ,M} 7→ R, as

Qn(s, x) := E
[
V n+1(T (s, x, Zn+1))

]
, s ∈ S, (11)

and the dynamic programming principle tells us that any policy whose measurement
decisions satisfy

X∗n(s) ∈ arg max
x∈{1,...,M}

Qn(s, x), s ∈ S (12)

is optimal. Finally, we define the value of a measurement policy π ∈ Π as

V n,π(s) := Eπ
[
V N (SN ) | Sn = s

]
, s ∈ S. (13)

This same object might also be thought of as the reward-to-go from state s at time n

under policy π.

Later we will need several preliminary results concerning the benefit of measure-

ment. First, the following proposition states that, under the optimal policy, it is always

better to make a measurement than to measure nothing at all. Here, the value of mea-

suring alternative x when Sn = s at time n is Qn(s, x) and the value of making no

measurement is V n+1(s). The proof is left until the appendix.

Proposition 3.2. Qn(s, x) ≥ V n+1(s) for every 0 ≤ n < N , s ∈ S, and

x ∈ {1, . . . ,M}.

We see as a corollary to this proposition that the optimal policy will never measure

an alternative with zero variance (i.e., with infinite precision) unless all the other

alternatives also have zero variance. In other words, there is no value to measuring

something that we know perfectly. This is stated precisely in the following corollary.

Corollary 3.1. Let i, j ∈ {1, . . . ,M}, n < N , and s = (µ, β) ∈ S. If βj = ∞, then

Qn(s, i) ≥ Qn(s, j).
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Proof. Since σ̃(βj) = σ̃(∞) = 0 and βj + βε = βj ,

T (s, j, Zn+1) = (µ+ σ̃(βj)Zn+1ej , β + βεej) = (µ, β) = s.

Then, by Proposition 3.2,

Qn(s, j) = E
[
V n+1(T (s, j, Zn+1))

]
= V n+1(s) ≤ Qn(s, i). �

We also have a second corollary to the proposition. Proposition 3.2 allowed arbi-

trarily specifying the alternative to which the extra measurement would be applied,

while this corollary points out that the extra measurement may be made according to

the optimal policy, in which case Qn(s, x) is equal to V n(s). We will use this corollary

in section 6 to bound the suboptimality of KG.

Corollary 3.2. V n+1(s) ≤ V n(s) for all states s ∈ S.

Proof. In Proposition 3.2, take the extra measurement x to be the measurement made

by the optimal policy in state s. �

Let us say that a policy π is stationary if Xπ,n(s) = Xπ,0(s) for all s ∈ S and all

n = 1, . . . , N−1. In this case we denote Xπ,n simply by Xπ. Corollary 3.2 showed that

the value of the optimal policy increases as more measurements are allowed, and we

will see in Theorem 3.1 below that this monotonicity also holds for stationary policies.

Theorem 3.1. V π,n(s) ≥ V π,n+1(s) for every stationary policy π and every state

s ∈ S.

The proof is left until the appendix. We will need this theorem when showing both

asymptotic optimality and bounded suboptimality of KG.

4 The knowledge-gradient policy

In our problem, the entire reward is received after the final measurement. We may

formulate an equivalent problem in which the reward is given in pieces over time, but

the total reward given is identical. We define the KG policy as that policy which

maximizes the single period reward under this alternate formulation. We will see later

that this KG policy is optimal in several cases and has bounded suboptimality in all

others. This policy was first introduced in Gupta and Miescke (1996) under the name

of the (R1, . . . , R1) policy.
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4.1 Definition

The problem given by (1) has a terminal reward V N (SN ) := maxx µNx , but no rewards

at any other times. We restructure these rewards by writing V N (SN ) as a telescoping

sequence,

max
x

µNx =
[
V N (SN )− V N (SN−1)

]
+ . . .+

[
V N (Sn+1)− V N (Sn)

]
+ V N (Sn).

Thus, the problem that provides single period reward V N (Sn) at time n and

V N (Sk)−V N (Sk−1) at times k = n+1, . . . , N is equivalent to problem (1) because the

total reward provided is the same in each case. The KG policy πKG is defined as the

policy that chooses its measurements to maximize the expectation of the single period

reward provided under this alternate formulation, En
[
V N (T (Sn, x, Zn+1))− V N (Sn)

]
.

Since the (Zn)Nn=1 are i.i.d. normal random variables, we may take Z to be a generic

standard normal random variable and write the decision function of the KG policy

XKG : S 7→ {1, . . . ,M} as

XKG(s) ∈ arg max
x∈{1,...,M}

E
[
V N (T (s, x, Z))− V N (s)

]
for every s ∈ S, (14)

where ties in the arg max are broken by choosing the alternative with the smaller index.

Note that KG is stationary in time so we drop the time index n when we write XKG.

Since V N (s) does not depend on x, the KG policy may be rewritten as

XKG(s) ∈ arg max
x∈{1,...,M}

E
[
V N (T (s, x, Z))

]
= arg max

x∈{1,...,M}
QN−1(s, x). (15)

Remark 4.1. As noted in Gupta and Miescke (1996), KG is optimal by construction

when N = 1. This is because V N−1 = V KG,N−1 by (12) and (15), where V KG,n

denotes the value of the KG policy at time n and is defined according to (13) with the

policy π fixed to KG.

If we think of V N (·) as a utility function, or as a measure of the amount of “know-

ledge” contained in a state, we see from (14) that the knowledge-gradient policy chooses

its decisions in the direction of steepest expected ascent of this measure. This is the rea-

son behind the name knowledge-gradient policy. One may also view it as a single-step

look-ahead policy.

13



4.2 Computation

It was already known in Gupta and Miescke (1996) that an exact and computationally

tractable expression exists for XKG. We present it here.

For each x ∈ {1, . . . ,M} define a function ζx : S 7→ [0,∞) by

ζx(s) := −
∣∣∣∣µx −maxx′ 6=x µx′

σ̃(βx)

∣∣∣∣ . (16)

Except for the sign, ζx(Sn) is the minimum distance, in terms of the number of standard

deviations σ̃(βnx ), that a measurement of alternative x must alter µn+1
x from its pre-

measurement value of µnx to make arg maxx′ µ
n+1
x′ 6= arg maxx′ µnx′ — that is, to change

the identity of the alternative with the largest conditional expected value. In addition,

define the function f : R 7→ R as

f(z) := zΦ(z) + ϕ(z), (17)

where Φ(z) is the normal cumulative distribution function and ϕ(z) is the normal

probability density function. Then the following theorem provides an efficient way to

compute KG’s decisions. The proof may be found in the appendix.

Theorem 4.1. For every s = (µ, β) ∈ S, we have

QN−1(s, x) = max
x′

µx′ + σ̃(βx)f(ζx(s)), (18)

XKG(s) ∈ arg max
x∈{1,...,M}

σ̃(βx)f(ζx(s)). (19)

with ties broken by choosing the alternative with the smallest index.

The term QN−1(s, x) − maxx′ µx′ = σ̃(βx)f(ζx(s)) is in some sense the expected

value of the information that would be obtained by measuring alternative x, and is

sometimes called the “expected value of information” or EVI, e.g., in Chick and Inoue

(2001b) and Chick et al. (2007).

Computation of the KG policy via (19) scales linearly with the number of alterna-

tives M . This compares well with other policies that might be used on this problem.

To compute the KG policy at time n, we must first find the largest and second largest

µnx across all alternatives x, which will be used to compute ζnx := ζx(Sn). This may be

implemented either by an initial pass through the alternatives at each time period, or

by storing and updating the two values across time periods. Once we have the largest
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and second largest µnx, we iterate through the alternatives, calculating σ̃(βnx )f(ζnx ) for

each one, and returning the alternative with the largest value for this expression. This

iteration may be streamlined by recomputing the expression only for those alternatives

that changed ζnx or βnx from the previous iteration.

The following remark, which is an easily obtained consequence of Theorems 1 and 2

in Gupta and Miescke (1996) and may also be obtained directly from (18), may also be

used to accelerate the computation of the KG policy by eliminating some alternatives

from consideration. It is also useful for proving later results. It states that if an

alternative dominates another in both mean and variance, then of the two, KG prefers

the dominating alternative.

Remark 4.2. For every s = (µ, β) ∈ S such that µj ≥ µi and βj ≤ βi we have

QN−1(s, j) ≥ QN−1(s, i).

Finally, during computation, we may also use the following remark to eliminate

some alternatives from consideration, again improving the speed with which we may

compute the KG policy.

Remark 4.3. Take n = N − 1 in Corollary 3.1. If βj = ∞ for some j ∈ {1, . . . ,M}

(that is, if the predictive distribution N (µj , 1/βj) for Yj is a point mass), then

QN−1(S, i) ≥ QN−1(S, j) for every i ∈ {1, . . . ,M}.

Thus, KG will never measure an alternative with zero variance unless every alterna-

tive has zero variance. Corollary 3.1 shows that the optimal policy shares this behavior

of preferring not to measure any alternative whose true value is known perfectly.

4.3 Behavior

KG balances two considerations when it chooses its measurement decisions. First, it

prefers to measure those alternatives about which comparatively little is known. These

alternatives x are the ones whose predictive distributions have large variance (σnx)2 or

equivalently with small precision βnx . Thus, we have that if KG prefers to measure some

alternative i over another alternative j, then it would still prefer to measure alternative

i over j if the predictive variance of i were increased.

Second, KG prefers to measure alternatives x with |µnx−maxx′ 6=x µnx′ | close to 0. We

call−|µnx−maxx′ 6=x µnx′ | the unnormalized influence and ζnx = −|µnx−maxx′ 6=x µnx′ |/σ̃(βnx )
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the normalized influence, or simply the influence, of alternative x, where σ̃(βnx ) is un-

derstood as a normalization term because predictions for different alternatives have

different variances and comparison does not make sense unless we standardize these

differences. Measurements of alternatives with large influence are more likely to cause

a change in the optimal implementation decision; that is, to cause arg maxx′ µnx′ 6=

arg maxx′ µ
n+1
x′ . KG’s preference for small predictive precision and large influence are

formalized in Propositions 4.1 and 4.2, but first we calculate the derivative of f , as

defined in (17), in a lemma.

Lemma 4.1. We have f ′(z) = Φ(z) ≥ 0 for every z ∈ R.

Proof. First note that d
dz e
−z2/2 = −ze−z2/2, showing that ϕ′(z) = −zϕ(z). From this

we see that f has non-negative derivative f ′(z) = Φ(z) + zϕ(z)− zϕ(z) = Φ(z). �

Proposition 4.1. Let states s = (µ, β) ∈ S, s′ = (µ′, β′) ∈ S, and alternatives

i, j ∈ {1, . . . ,M} satisfy the following criteria: ζi(s′) > ζi(s), ζj(s′) = ζj(s), β′i < βi,

and β′j = βj. If QN−1(s, i) > QN−1(s, j), then QN−1(s′, i) > QN−1(s′, j).

Proof. First, σ̃(β′i) ≥ σ̃(βi) by Remark 3.1 and f(ζi(s′)) ≥ f(ζi(s)) by Lemma 4.1. By

(18), QN−1(s′, i) > QN−1(s, i). Also, the equalities σ̃(β′j) = σ̃(βj) and

f(ζj(s′)) = f(ζj(s)) imply through (18) that QN−1(s′, j) = QN−1(s, j). Thus, if

QN−1(s, i) > QN−1(s, j), then QN−1(s′, i) ≥ QN−1(s, i) > QN−1(s, j) = QN−1(s′, j).

�

Proposition 4.2. If alternative i and state s = (µ, β) are such that ζi(s) ≥ ζj(s) and

βi < βj for every alternative j 6= i, then XKG(s) = i.

Proof. Let j be an alternative different from i. Then σ̃(βi) > σ̃(βj) by Remark 3.1

and f(ζi(s)) ≥ f(ζj(s)) by Lemma 4.1. This implies that QN−1(s, i) > QN−1(s, j) by

Proposition 4.1. Since this is true for all j 6= i, we have that

i = arg maxj QN−1(s, j) = XKG(s) where the arg max is unique. �

It is also interesting to note that increasing the predictive mean of a single alterna-

tive usually, but not universally, encourages KG to measure it. Thus, having a large

predictive mean is similar, but not identical, to having a large unnormalized influence.

We formalize this in the following proposition.
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Proposition 4.3. If KG prefers alternative i in state (µ, β), then it also prefers the

same alternative i in state (µ+aei, β) for all positive real numbers a such that µi+a ≤

maxx µx, i.e., for 0 ≤ a ≤ −µi + maxx µx.

We leave the proof until the appendix.

5 Asymptotic optimality

In this section we show that the KG policy is asymptotically optimal in the limit as the

number of measurements N grows large. This means that, given the opportunity to

measure infinitely often, KG will discover which alternative is best. In some sense, this

is a convergence result because it shows that the policy’s estimate of which alternative

is best will converge to the alternative that is truly best.

The KG policy is not alone in possessing this property. Indeed, the following

well-known policies are all asymptotically optimal: the equal-allocation policy which

distributes its measurements in a round-robin fashion equally among the alternatives;

the uniform exploration policy which randomly chooses its measurements with equal

probability across the alternatives; and the Boltzmann exploration policy discussed

later in section 8 which randomly chooses its measurements according to exponentially

weighted probabilities.

These policies differ from KG in that they explore for exploration’s sake and for

the long-term benefit it provides, while KG is purely myopic. Moreover, we argue that

KG’s asymptotic optimality is notable exactly because the policy is entirely myopic,

maximizing its single-period expected reward without regard for the long-term. This is

not generally the case with myopic policies for other problems. That a myopic policy

is also optimal in the long-term shows that this ranking and selection problem has

a special structure, and it foreshadows what is further suggested by our numerical

experiments: that this myopic policy, KG, performs quite well in many cases which are

neither myopic nor asymptotic.

In addition, one policy, interval estimation, performs very well in our numerical

experiments but is not asymptotically optimal as in some cases it “sticks”, measuring

one alternative only and obtaining its true value perfectly without learning about the

others (Kaelbling (1993)). Indeed, one can construct cases in which this policy’s per-

formance is arbitrarily bad compared to any asymptotically optimal policy. Although
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a policy’s asymptotic optimality is not evidence of quality by itself, its absence should

raise concern among those who might use a policy lacking it. Finally, a natural ques-

tion is whether other policies, such as those in the OCBA family and those proposed

in Chick and Inoue (2001b), are asymptotically optimal. This question is currently

open as these other policies are more complex and require more care during analysis

than does KG. Nevertheless, we believe that the proof techniques applied here may be

extended to show that many other Bayesian look-ahead policies are also asymptotically

optimal.

To show that KG is asymptotically optimal, we begin by showing in Proposition 5.1

that the asymptotic value of a policy is well defined and bounded above by the value

E maxx Yx of learning every alternative exactly. Then we show in Proposition 5.2 that

this value is achieved by any stationary policy that measures every alternative infinitely

often. Thus, any stationary policy that samples every alternative infinitely often is

asymptotically optimal. Finally, we show in Theorem 5.1 that KG is asymptotically

optimal. The proof centers on the notion that, as the number of times an alternative

is measured increases, the variance of the value of that alternative shrinks toward

0. Eventually, that variance will be so low that KG will prefer to measure another

alternative. This argument is used to show that KG samples every alternative infinitely

often, and thus is asymptotically optimal.

Since we will be varying the number N of measurements allowed, we use the no-

tation V 0( · ;N) to denote the value function at time 0 when the problem’s ter-

minal time is N . We then define the asymptotic value function V ( · ;∞) by the limit

V (s;∞) := limN→∞ V
0(s;N) for s ∈ S. Similarly, we denote the asymptotic value func-

tion for stationary policy π by V π( · ;∞) and define it by V π(s;∞) := limN→∞ V
π,0(s;N)

for s ∈ S. Proposition 5.1 shows that both limits exist.

If V π(s;∞) is equal to V (s;∞) for every s ∈ S, then π is said to be asymptotically

optimal. In particular, if a stationary policy π achieves the upper bound U( · ) on

V ( · ;∞) shown in Proposition 5.1, then π must be asymptotically optimal. We will

use this later to show that KG is asymptotically optimal. The proof of Proposition 5.1

may be found in the appendix.

Proposition 5.1. Let s ∈ S. Then the limit V (s;∞) exists and is bounded above by

U(s) := E
[
max
x

Yx | S0 = s
]
<∞, (20)
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where we recall that {Yx}x∈{1,...,M} are independent and Yx ∼ N (µ0
x, (β

0
x)−1). Further-

more, V π(s;∞) exists and is finite for every stationary policy π.

For any finite terminal time N we define the random variable ηNx as the number of

times that alternative x is measured up to but not including the terminal time N . We

also define η∞x as the limit of the ηNx ; namely,

ηNx :=
N∑
k=1

1{xk=x} and η∞x := lim
N→∞

ηNx .

The limit η∞x exists because ηNx is non-decreasing in N almost surely. Note that we

allow the limit η∞x to be infinite.

Proposition 5.2 formalizes the idea that if we measure every alternative infinitely

often, then we eventually learn the true value of every alternative. This implies asymp-

totic optimality. We then use Proposition 5.2 in the proof of Theorem 5.1 to show that

KG is asymptotically optimal. The proofs for both Theorem 5.1 and Proposition 5.2

may be found in the appendix.

Proposition 5.2. If π is a stationary policy under which η∞x = ∞ almost surely for

every x, then π is asymptotically optimal.

Theorem 5.1. The KG policy is asymptotically optimal and has value U(S0).

6 Bound on suboptimality

We have shown that KG is optimal when N = 1 and in the limit as N → ∞. In

this section we address the range of N between these extremes by bounding KG’s

suboptimality in this region. This bound will be tight for small N and will grow as N

increases.

We begin with a theorem that implies our bound as a corollary. This theorem shows

that there is a limit on how much we may learn through any single measurement.

Theorem 6.1. Let s = (µ, β) ∈ S and c = (2π)−1/2 maxx σ̃(βx). Then

V n(s) ≤ V N−1(s) + c(N − n− 1).

The proof may be found in the appendix. We combine this result with Theorem 3.1

to bound KG’s suboptimality. Here, V KG,n(s) is the value of the KG policy at time n

when Sn = s.
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Corollary 6.1. Let s = (µ, β) ∈ S and c = (2π)−1/2 maxx σ̃(βx). Then

V n(s)− V KG,n(s) ≤ c(N − n− 1).

Proof. By Remark 4.1, we have V N−1(s) = V KG,N−1(s). From Theorem 3.1 we have

V KG,N−1(s) ≤ V KG,n(s). Substituting the inequality V N−1(s) ≤ V KG,n(s) into The-

orem 6.1 shows the corollary. �

7 Optimality for finite horizon special cases

We saw in Remark 4.1 that KG is optimal when N = 1. We will show that KG

is optimal in two other special cases: first, when there are only two alternatives to

measure; second, when the measurements are free from noise, (σε)2 = 0, and when

the parameters of the time 0 prior can be ordered by µ0
1 ≥ µ0

2 ≥ . . . ≥ µ0
M and

σ0
11 ≥ σ0

22 ≥ . . . ≥ σ0
MM . Before showing optimality under these conditions, we first

define and discuss a property called the KG persistence property. This property is

useful because it provides a sufficient condition for optimality.

7.1 Persistence of the knowledge-gradient policy

Proofs of the optimality of the KG policy in these special cases is based on the KG

persistence property. A problem setting is said to have the KG persistence property

if, operating the problem under some policy other than KG, an alternative preferred

by KG will remain preferred until the alternative is measured. Below, in Theorem

7.1, we show that if a problem setting has the KG persistence property, then KG is

optimal in that problem setting. Before stating this theorem, we formally define the

KG persistence property and an associated term, “covering of the future.”

Definition 7.1. A sequence of subsets of S, {Sn}Nn=k, is called a covering of the future

from k if T (s, x, Zn+1) ∈ Sn+1 almost surely for every s ∈ Sn, x ∈ {1, . . . ,M}, and

n ∈ {k, . . . , N − 1}.

Definition 7.2. We say that the KG persistence property holds on a covering {Sn}Nn=k

of the future from k if XKG(T (s, x, Zn+1)) = XKG(s) almost surely for every s ∈ Sn,

x 6= XKG(s), and n ∈ {k, . . . , N − 1}.

This KG persistence property gives us a sufficient condition for the optimality of

the KG policy, as stated in the following theorem.
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Theorem 7.1. If the KG persistence property holds on a covering {Sn}Nn=k of the

future from k for some k ∈ {0 . . . N − 1}, then V KG,k(s) = V k(s) for every s ∈ Sk.

We leave the proof until the appendix, but we give a sketch here. Consider a

time n < N − 1 and the alternative that KG prefers. If the problem setting has

the KG persistence property, then, even if we do not measure that alternative now,

KG will continue to prefer it until we reach the final measurement N − 1. At this

measurement, KG is optimal by construction and so it is now provably optimal to

measure this persistent alternative. Thus, there exists an optimal policy that measures

the persistent alternative almost surely, and by the temporal symmetry in the model,

there exists an optimal policy that measures the persistent alternative immediately at

time n. This argument is used with induction to show that there exists an optimal

policy making the same measurements as KG.

7.2 Optimality for two alternatives

We use the KG persistence principle to show that KG is optimal when there are exactly

two alternatives to consider, i.e., M = 2. In this case we will see that the optimal policy

is one that, at each decision point, measures the alternative with the largest variance.

This policy is actually deterministic, and it was shown in Gupta and Miescke (1994)

that this policy is optimal among the class of deterministic policies. Theorem 7.2

extends this result to show that this same policy is also optimal among the class of

fully sequential policies. It is not generally true that the best deterministic policy is

also as good or better than every sequential policy, but Theorem 7.2 shows that this

is exactly the case for this particular problem.

We will see that the policy of measuring the alternative with the largest variance is

optimal because knowing the correct implementation decision is the same as knowing

the true sign of Y1 − Y2. Each measurement measures only one of Y1 or Y2, and an

equal reduction in variance for Y1 or Y2 contributes equally to the overall reduction in

variance of Y1 − Y2, regardless of which expected value is bigger. Thus, the best way

to learn about the difference between points Y1 − Y2 is to measure that point about

which the least is known.

To show that KG is optimal when M = 2, we need to show that KG persistence

holds when M = 2 and then refer to Theorem 7.1.
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Lemma 7.1. If M = 2, then XKG(s) ∈ arg minx βx for each s = (µ, β) ∈ S with ties

broken by choosing the alternative with the smaller index.

Proof. By (19) from Theorem 4.1, it is enough to show equality between the sets

arg maxx σ̃(βx)f(ζx(s)) and arg minx βx. When M = 2, ζx(s) = −|µ1 − µ2|/σ̃(βx),

so arg maxx σ̃(βx)f(ζx(s)) = arg maxx σ̃(βx)f (−|µ1 − µ2|/σ̃(βx)). The function σ̃ is

strictly decreasing by Remark 3.1. This fact will be used on its own, and it also

implies that −|µ1 − µ2|/σ̃(βx) is a decreasing function of βx. The function f is non-

decreasing by Lemma 4.1, so the function βx 7→ f (−|µ1 − µ2|/σ̃(βx)) is the composition

of a non-decreasing function with a non-increasing function, and is thus itself non-

increasing. Thus, the function βx 7→ σ̃(βx)f (−|µ1 − µ2|/σ̃(βx)) is the product of a

strictly decreasing function with a non-increasing function, and is thus itself strictly

decreasing. This implies that arg maxx σ̃(βx)f (−|µ1 − µ2|/σ̃(βx)) = arg minx βx. �

Theorem 7.2. If M = 2, then KG is optimal.

Proof. Let Sn = S for all n, and note that {Sn}Nn=0 is a covering of the future from 0.

We will show that the KG persistence property holds on {Sn}Nn=0.

Let n ∈ {0, . . . , N − 1} and s = (µ, β) ∈ S. First consider the case when β1 ≤ β2.

By Lemma 7.1, XKG(s) = 1. The precision component of T (s, 2, Zn+1) is (β1, β2 +βε).

Since β1 ≤ β2 ≤ β2 + βε and by Lemma 7.1, XKG(T (s, 2, Zn+1)) = 1 a.s.

Now consider the case when β1 > β2. By Lemma 7.1, XKG(s) = 2. The precision

component of T (s, 1, Zn+1) is (β1 +βε, β2). Since β1 +βε ≥ β1 > β2 and by Lemma 7.1,

XKG(T (s, 1, Zn+1)) = 2 a.s.

In both cases, x 6= XKG(s) implies XKG(T (s, x, Zn+1)) = XKG(s) a.s., so KG

persistence holds. Then, by Theorem 7.1, V KG,0(s) = V 0(s) for every s ∈ S, and KG

is optimal. �

This theorem is founded on the intuition that the policy that learns the most is also

the one that changes our beliefs the most. This has a comparison in other measurement

problems — for example, the problem in which we have a quadratic function with

known second derivative and we measure the first derivative to find the maximum of

the function. In this case the optimal policy is also the one that maximizes the variance

of the change in our final belief with respect to our current belief. In both cases we

measure the change between our current and final belief by taking the variance. In

22



other problems the variance is likely not the right measure of change, but the same

intuition would apply with some other measure of change.

7.3 Optimality when the state space is ordered

The KG policy is also optimal when there is no measurement noise, i.e., (σε)2 = 0, and

when the components of S0 may be ordered in such a way that we have µ0
1 ≥ · · · ≥ µ0

M

together with β0
1 ≤ · · · ≤ β0

M . In other words, the optimality result requires that we

may order the alternatives with increasing means while simultaneously ordering them

with increasing variances. With the assumption of no measurement noise, the problem

is only interesting if the number of alternatives M is larger than the measurement

budget N .

We present this optimality result formally in the theorem below, but first, as these

conditions are particularly restrictive, we motivate them with an example. Consider a

problem in marketing research in which we have a collection of potential advertising

campaigns, some of which are more ambitious than others. The predictive distributions

for the value obtained from the ambitious campaigns have larger mean but larger vari-

ance as well. We may test a few of these campaigns in test markets before committing

to one of them. We will assume that the number of test markets allowed is smaller

than the number of potential campaigns. If we are willing to make two additional

assumptions, that loss is linear and that test markets give us perfect knowledge of the

campaign’s true value, then the example meets the conditions of the theorem. These

additional assumptions would not be met perfectly satisfied in reality, but it is not too

unreasonable to imagine situations in which loss would be approximately linear, and

in which the knowledge obtained from a test market would be large enough that one

would not wish to performing a second test market. With this marketing application

as an illustrative example, we expect that this sort of ordering of means and variances

may also in financial applications, or wherever greater expected reward brings greater

risk along with it.

Theorem 7.3. If (σε)2 = 0 and s = (µ, β) ∈ S is such that the implication

(βi 6=∞ and βj 6=∞ and βi < βj) =⇒ µi ≥ µj

holds every all i, j ∈ {1, . . . ,M}, then V 0(s) = V KG,0(s).
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The full proof may be found in the appendix, but the essential idea is that when

this ordering holds, the tension between exploration and exploitation is gone, and

KG will simply choose that alternative with the largest variance. This is because the

alternative with the largest variance is also the alternative with the largest mean among

those which are not yet perfectly known. This ordering by variances is persistent, as it

was in the M = 2 case. Thus, the KG persistence property holds and KG is optimal.

8 Computational experiments

We compared KG against other sampling policies using Monte Carlo simulation on 100

randomly generated problems, and found that it performs competitively. In particular,

KG performed best when measured by average performance across all the problems, and

the margin by which it outperformed the best competing policies in favorable cases was

significantly larger than the margin by which it was outperformed in unfavorable cases.

Its comparative performance was particularly good when the measurement budget was

not much larger than the number of alternatives to measure, and we would argue that

performing well in these cases is particularly important as it is often in these cases that

measurement efficiency is most highly prized.

The space of problems is parameterized by a number of measurements N , a number

of alternatives M , an initial precision β0 ∈ (0,∞]M , an initial mean µ0 ∈ RM , and a

measurement noise (σε)2 ∈ [0,∞). We chose a collection of 100 problems randomly

generated within this space according to the following distribution: M was integer-

valued between 2 and 100. N was chosen by first choosing M and then choosing a

ratio N/M uniformly from the set {1, 3, 10}. Each µx was uniformly distributed in the

interval [−1, 1], and each βx was independently chosen as 1 with probability .9 and

1000 with probability .1. The noise variance (σε)2 was set to 1 in all cases.

For each problem, we performed simulations in which true function values were

generated independently according to the prior. Rather than collecting the value ob-

tained by the policy in each simulation, we collected the opportunity cost realized,

where the opportunity cost is the difference in true value between the best option and

the option chosen by the policy. The difference in expected opportunity cost is the

same as the difference in policy value, but samples of opportunity cost have less error

and this allowed us to obtain accurate estimates with fewer simulations. We ran 105
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simulations for each policy.

We compared KG against seven other policies: the Optimal Computing Budget

Allocation (OCBA) for linear loss of He et al. (2007), the LL(S) policy of Chick and

Inoue (2001b), the interval estimation (IE) policy of Kaelbling (1993), Boltzmann ex-

ploration (see, e.g., Singh et al. (2000)), equal allocation, and exploitation. Several of

these policies required choosing one or more parameters, which we did by simulating

several choices on all 100 problems and taking the parameters whose resulting oppor-

tunity cost was smallest when summed over all 100 problems. We briefly describe each

policy and its tuning:

• (OCBA) This policy has three parameters: the number of alternatives to allocate

to in each stage, m; the number of measurements to allocate to each alternative

in the first stage, n0; and the number of measurements per-chosen-alternative to

allocate in each stage, τ . We set n0 to 0 because our prior is informative, and so

may be thought of as already providing the results of a first stage. To calibrate

m and τ , we ran initial experiments with 5000 samples each with settings of

m = 1, τ ∈ {1, 2, 5, 10}, and also with τ = 1,m ∈ {2, 5, 10}. We found that

m = 1, τ = 1 performed best.

• (LL(S) for known variance) The LL(S) policy allows normal measurement errors

with unknown variance and uses a normal-gamma prior for the unknown mean

and measurement precision. We adapted this policy to the known-variance case

by taking the limit as the gamma prior on the precision becomes a point mass at

the known variance. Details may be found in the appendix. The policy has two

parameters, n0 and τ . We set n0 to 0 as we did with OCBA. We tested the values

1, 2, 3, 4, 5, 10 for τ on our collection of 100 problems with 5000 samples for each

problem and found that τ = 1 worked best for every problem. This is the value

we used in comparison with KG.

• (Interval Estimation) IE is parameterized by zα/2. As Kaelbling (1993) suggests

that values of 2, 2.5 or 3 often work best for zα/2, we tested values between 2 and

4 in increments of .1 and found that zα/2 = 3.1 worked best. Although we found

IE worked very well when properly tuned, we also found it to be very sensitive

to the choice of tuning parameter.

• (Boltzmann exploration) Boltzmann exploration chooses its measurements by
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P {xn = x | Fn} = exp(µnx/T
n)PM

x′=1 exp(µn
x′/T

n) , where the policy is parameterized by a de-

creasing sequence of “temperature” coefficients (Tn)N−1
n=0 . We tuned this temper-

ature sequence within the set of exponentially decreasing sequences defined by

Tn+1 = γTn for some constant γ ∈ (0, 1]. The set of all such sequences is param-

eterized by γ and TN . We tested γ ∈ {.1, .5, .8, .9, 1} with TN ∈ {.1, 1, 10} and

found that γ = 1 performed best. We then tested the set of possible TN between

.1 and 10 with γ fixed to 1 and found that TN = .55 performed best.

• (Equal allocation) The equal-allocation policy is xn ∈ arg minx βnx , since we think

of the prior as providing the results of some previous first stage measurements,

and we interpret βnx/β
ε as the number of measurements of alternative x taken by

time n. It requires no tuning.

• (Exploitation) The exploitation policy is xn ∈ arg maxx µx. It requires no tuning.

The work required to tune other policies highlights one practical advantage of KG

policy: it requires no tuning.

8.1 Results

On each of the 100 randomly generated problems, we took 105 samples of opportunity

cost from every policy. The distribution of opportunity cost is not normal, as it is

positive almost surely and often equal to 0. We averaged groups of 500 samples to

obtain approximately normal samples from which we estimated expected opportunity

cost as well as standard errors on these estimates. The difference in value between KG

and any other policy on any particular problem was then estimated as the difference in

sampled opportunity costs, with standard error equal to the square root of the sum of

the squared standard errors. The resulting standard errors of the difference, reporting

maximum and averaged values across the 100 problems, were: .0018 and .0007 for IE;

.0018 and .0007 for OCBA; .0019 and .0007 for LL(S); .0020 and .0009 for Boltzmann

exploration; .0024 and .0013 for equal allocation; and .0026 and .0021 for exploitation.

We show in Figure 1 the sample estimates of V KG − V π aggregated across the

randomly generated problems for each of the competing policies π. Bars to the right

of 0 indicate that KG outperformed the plotted policy on those problems and bars to

the left indicate the converse. Note that the scale of the histograms in the right-hand

plots is much smaller than in the left-hand plots. The histograms show that Boltzmann
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Figure 1: Histogram of the sampled difference in value for competing policies aggregated
across the 100 randomly generated problems.

exploration, equal allocation, and exploitation policies were all outperformed by KG

in every problem setting tested, while IE, OCBA for linear loss, and the LL(S) policy

performed relatively better. Each of these three better competing policies performed

better than KG on some problems, and were outperformed on others; however, the tail

to the right of 0 is larger than to the left. This indicates that the amount by which

KG outperformed the competing policies was significantly larger than the amount by

which it was outperformed.

We note a seeming discrepancy between our numerical work and that in Chick

et al. (2007), who tested a variance-unknown version of the KG policy called LL1.

They found that LL1 performed well in small-sample settings, but poorly elsewhere.

In contrast, we found that KG, a very similar policy, performed quite well overall.

We believe that the difference lies in the stopping rule used. We simply stopped our

sampling policies after a fixed horizon N , but Chick et al. (2007) drew many of its

conclusions from experiments using the EOC Bonf stopping rule introduced in Branke

et al. (2005). In experiments not pictured here we found that KG also performed poorly

with EOC Bonf stopping, but much better when it was stopped using a stopping rule

that we introduce now.

This new rule stops as soon as the expected myopic value of the next measurement,

as determined by QN−1(s, x) − maxx′ µx′ = σ̃(βx)f(ζx(s)), drops below a threshold

c. That is, the number of measurements N to take under this rule is defined by

N = inf{n ≥ 0 : σ̃(βnx )f(ζx(Sn)) < c}. The threshold c should be interpreted as
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the cost of one measurement. Since the expected marginal value of each subsequent

measurement decreases on average, it is reasonable to stop measuring as soon as the

marginal expected value of the next measurement drops below its cost. Replacing EOC

Bonf with this new stopping rule may improve the performance of the KG sampling

policy enough to make it competitive with LL(S) and other commonly used policies

in an adaptive stopping setting. Our initial experiments suggest that this may be the

case, but space limitations prevent a thorough discussion of the experimental issues.

9 Conclusion

The KG measurement policy, as first proposed by Gupta and Miescke (1996) and as

analyzed here, has several attractive features. Under the assumption of independent

normally distributed priors with normal sampling errors of common known variance,

we showed that the policy is optimal in both extremes of the number of measure-

ments allowed (N = 1 and N →∞), as well as in other special cases, and has bounded

suboptimality in the remaining cases. We showed numerically that it performs compet-

itively with, or significantly better than, several other sequential measurement policies

in a broad class of problem settings. In addition, KG is simple in concept, easy to

implement, fast to compute, and requires no tuning. This simplicity may make it an

attractive alternative to its more complex but similarly performant cousins, the optimal

computing budget allocation and the LL(S) policy.

One important limitation of the version of the policy discussed herein is its assump-

tion of common known variance, which often fails to be met in practice. To lift this

assumption, it is possible to place a normal-gamma prior on the unknown means and

variances, as was done in Chick and Inoue (2001b), and recompute the optimal single-

step-lookahead policy. Indeed, if we begin with a non-informative normal-gamma prior

for the true mean Yx and unknown sampling variance βεx of alternative x, and after

sampling have vectors of statistics (µ, σ̂2, n) where (µx, σ̂2
x, nx) indicate the sample

mean, sample variance, and number of samples taken for alternative x, then a cal-

culation similar to that of Theorem 4.1 reveals that the corresponding KG policy is

arg maxx σ̃xfnx−1(ζx), where we must redefine σ̃x :=
√
σ̂2/nx(nx + 1), leave ζx defined

as before, and define fn(z) := ν+z2

ν−1 ϕν(z) + zΦν(z) where ϕν and Φν are respectively

the pdf and cdf of the student-t distribution with ν degrees of freedom. This provides
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a version of KG for the unknown-variance case. This was derived earlier and indepen-

dently in Chick et al. (2007), and is discussed there in much greater detail, together

with a numerical analysis of its properties.

Additionally, the KG policy as described herein has used a fixed number of sam-

ples instead of an adaptive stopping rule, while Branke et al. (2005) has shown that

such rules generally improve the efficiency of budgeted ranking and selection policies.

Nevertheless, as implied briefly in section 8 and as discussed in Chick et al. (2007),

one can certainly use an adaptive stopping rule with the KG sampling policy. Fu-

ture work is needed to assess the quality of such adaptively-stopped policies, and to

determine which stopping rules are best to use with KG, but this is by no means an

insurmountable obstacle.

Other limitations would seem to present more difficulty. The use of common random

numbers has proved immensely beneficial for simulation-based ranking and selection.

Chick and Inoue (2001a) and Fu et al. (2007) discuss Bayesian ranking and selection

policies taking advantage of common random numbers, as does Kim and Nelson (2006a)

for the frequentist formulation, and it may be possible to extend the KG approach

along these lines as well. Indeed, KG’s benefits may be overshadowed by its inability

to leverage common random numbers in simulation-based ranking and selection unless

this extension can be made. In addition, KG assumes the alternatives have a common

measurement cost while in practice it may be more expensive or time consuming to

measure some alternatives than others. It may be possible to lift this restriction by

dividing the benefit of measurement by the cost so as to obtain a normalized quantity

for comparison (a benefit per unit cost), but it may also be that the OCBA approach

is more appropriate in such instances.

Despite these limitations, KG has great potential for application. As demonstrated

here, it should be considered a reasonable alternative to other measurement policies for

those applications that meet its assumptions of a fixed sampling budget and normally

distributed errors with common known variance.
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10 Appendix

Proof of Proposition 3.2

We proceed by induction on n. For n = N − 1 and s = (µ, β) we have

QN−1(s, x) = E
[
V N (T (s, x, ZN ))

]
= E

[(
µx + σ̃(βx)ZN

)
∨max
x′ 6=x

µx′

]
≥ µx ∨max

x′ 6=x
µx′ = V N (s),

where the inequality is justified by Jensen’s inequality and the convexity of the max

operator. Now we prove the induction step. For 0 ≤ n < N ,

Qn(s, x) = E
[
V n+1(T (s, x, Zn+1))

]
= E

[
max

x′∈{1,...,M}
Qn+1(T (s, x, Zn+1), x′)

]
≥ max

x′∈{1,...,M}
E
[
Qn+1(T (s, x, Zn+1), x′)

]
= max

x′∈{1,...,M}
E
[
V n+2(T (T (s, x, Zn+1), x′, Zn+2))

]
. (21)

In this equation both decisions x and x′ are fixed, so the state to which we arrive

when we measure x first and x′ second, T (T (s, x, Zn+1), x′, Zn+2), is equal in dis-

tribution to the state to which we arrive when we measure x′ first and x second,

T (T (s, x′, Zn+2), x, Zn+1). This allows us to exchange the time-order of the decisions

x and x′ in equation (21) to write

Qn(s, x) ≥ max
x′∈{1,...,M}

E
[
V n+2(T (T (s, x′, Zn+2), x, Zn+1))

]
= max

x′∈{1,...,M}
E
[
E
[
V n+2(T (T (s, x′, Zn+2), x, Zn+1)) | Zn+2

]]
= max

x′∈{1,...,M}
E
[
Qn+1(T (s, x′, Zn+2), x)

]
.

Then the induction hypothesis tells us that

Qn+1(T (s, x′, Zn+2), x) ≥ V n+2(T (s, x′, Zn+2)) a.s.,

allowing us to write

Qn(s, x) ≥ max
x′∈{1,...,M}

E
[
V n+2(T (s, x′, Zn+2))

]
= max

x′∈{1,...,M}
Qn+1(s, x′) = V n+1(s).

Proof of Theorem 3.1

We proceed by induction on n. Consider the base case, which is n = N − 1. Fix

s = (µ, β) ∈ S. Then V N (s) = maxx µx is convex in its arguments, so we can employ
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Jensen’s inequality to write

V π,N−1(s) = E
[
V π,N (T (s,Xπ(s), ZN ))

]
≥ V π,N

(
E
[
T (s,Xπ(s), ZN )

])
= V π,N (µ, β + βεeXπ(s)) = V π,N (µ, β) = V π,N (s).

Now consider the induction step. For n < N − 1,

V π,n(s) = E
[
V π,n+1(T (s,Xπ(s), Zn+1))

]
≥ E

[
V π,n+2(T (s,Xπ(s), Zn+1))

]
,

by the induction hypothesis. Then, by the definition of V π,n+1 in terms of V π,n+2 from

(10), we have V π,n(s) ≥ V π,n+1(s).

Proof of Theorem 4.1

By (15), computing XKG(s) reduces to computing QN−1(s, x) for each x ∈ {1, . . . ,M}.

By definition (11) we have, for a generic state s and standard normal random variable

Z,

QN−1(s, x) = E
[
V N (T (s, x, Z))

]
= E

[
(µx + σ̃(βx)Z) ∨max

x′ 6=x
µx′

]
. (22)

This expectation is the expectation of the maximum of a constant and a normal random

variable, for which we have an analytical expression from Clark (1961). Let a ∈ R be

an arbitrary constant and W ∼ N (b, c2) an arbitrary normal random variable. Then

Clark (1961) tells us,

E [W ∨ a] = aΦ
(
a− b
c

)
+ bΦ

(
b− a
c

)
+ cϕ

(
a− b
c

)
, (23)

which can be rewritten as

E [W ∨ a] = aΦ
(
a− b
c

)
+ b

(
1− Φ

(
a− b
c

))
+ cϕ

(
a− b
c

)
= b+ (a− b)Φ

(
a− b
c

)
+ cϕ

(
a− b
c

)
= b+ c

[(
a− b
c

)
Φ
(
a− b
c

)
+ ϕ

(
a− b
c

)]
.

Fix x and consider two cases. First, consider the case that µx > maxx′ µx′ . This is

the case in which we measure an alternative that is uniquely the best according to

the prior. Then µx − maxx′ 6=x µx′ is positive and (maxx′ 6=x µx′ − µx)/σ̃(βx) = ζx(s).

Substitute ζx(s) for (a− b)/c and write (22) as

QN−1(s, x) = µx + σ̃(βx) [ζx(s)Φ(ζx(s)) + ϕ(ζx(s))] = µx + σ̃(βx)f(ζx(s)),
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which can be rewritten in our case using µx = maxx′ µx′ as

QN−1(s, x) = max
x′

µx′ + σ̃(βx)f(ζx(s)). (24)

Now consider the case that µx ≤ maxx′ µx′ . We rewrite (23) again using the

substitution Φ(−z) = 1 − Φ(z), and also using the symmetric property of the normal

probability density function, ϕ(−z) = ϕ(z), as

E [Z ∨ a] = a+ c

[(
b− a
c

)
Φ
(
b− a
c

)
+ ϕ

(
b− a
c

)]
.

In the case we are considering, µx−maxx′ 6=x µx′ ≤ 0 and (µx−maxx′ 6=x)/σ̃(βx) = ζx(s).

Substitute ζx(s) for (b− a)/c and write (22) as

QN−1(s, x) = max
x′ 6=x

µx′ + σ̃(βx) [ζx(s)Φ(ζx(s)) + ϕ(ζx(s))]

= max
x′ 6=x

µx′ + σ̃(βx)f(ζx(s)),

which can be rewritten in our case using maxx′ 6=x µx′ = maxx′ µx′ as

QN−1(s, x) = max
x′

µx′ + σ̃(βx)f(ζx(s)). (25)

In both cases the expression for QN−1(s, x) agrees with (18), and we use this expression
to rewrite (15) as

XKG(s) ∈ arg max
x

max
x′

µx′ + σ̃(βx)f(ζx(s)) = arg max
x∈{1,...,M}

σ̃(βx)f(ζx(s)),

since maxx′ µx′ does not depend on x.

Proof of Proposition 4.3

By Theorem 4.1, KG prefers the alternative with the largest value of σ̃(βx)f(ζx(S)).

Fix S = (µ, β), and let a be as in the statement of Proposition 4.3. Let i be the

alternative preferred by KG, so

i = arg max
x∈{1,...,M}

σ̃(βx)f(ζx(S)), (26)

where we recall that we are breaking ties by choosing the smallest index. Note that

the theorem’s condition on a trivializes the case when µi = maxx µx because here the

range of a contains only the value 0, for which the theorem is obviously true. Thus,
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without loss of generality we may assume µi < maxx µx, and let j ∈ arg maxx µx. Then

j 6= i.

Let S′ = (µ+ aei, β). We will show first for all alternatives x 6= i

σ̃(βi)f(ζi(S′)) ≥ σ̃(βx)f(ζx(S′)). (27)

This will show i ∈ arg maxx σ̃(βx)f(ζx(S′)). We will then show that the implication

σ̃(βx)f(ζx(S)) < σ̃(βi)f(ζi(S)) =⇒ σ̃(βx)f(ζx(S′)) < σ̃(βi)f(ζi(S′)) (28)

holds for all x 6= i. This will suffice to show the proposition because if we choose

any x′ 6∈ arg maxx σ̃(βx)f(ζx(S)), (26) will imply σ̃(βx′)f(ζx′(S)) < σ̃(βi)f(ζi(S)). The

implication (28) will then imply that σ̃(βx′)f(ζx′(S′)) < σ̃(βi)f(ζi(S′)) and, moreover,

that x′ 6∈ arg maxx σ̃(βx)f(ζx(S′)). Taking the contrapositive of the statement

x′ 6∈ arg max
x

σ̃(βx)f(ζx(S)) =⇒ x′ 6∈ arg max
x

σ̃(βx)f(ζx(S′))

reveals that

x′ ∈ arg max
x

σ̃(βx)f(ζx(S′)) =⇒ x′ ∈ arg max
x

σ̃(βx)f(ζx(S)).

By this argument, (28) implies that arg maxx σ̃(βx)f(ζx(S′)) ⊆ arg maxx σ̃(βx)f(ζx(S)).

Therefore i is the element of arg maxx σ̃(βx)f(ζx(S)) with the smallest index, and thus

i is the alternative that KG prefers in state S′.

We will show (27) and (28) by treating three cases separately, noting in general

that ζi(µ, β) ≤ ζi(µ+ aei, β). The first case is when x 6= i, j. Then

ζx(S′) = ζx(µ+ aei, β) = ζx(µ, β) = ζx(S).

Thus, (27) is true because

σ̃(βi)f(ζi(S′)) ≥ σ̃(βi)f(ζi(S)) ≥ σ̃(βx)f(ζx(S)) = σ̃(βx)f(ζx(S′)),

and (28) is true because if σ̃(βx)f(ζx(S)) < σ̃(βi)f(ζi(S)) then

σ̃(βx)f(ζx(S′)) = σ̃(βx)f(ζx(S)) < σ̃(βi)f(ζi(S)) ≤ σ̃(βi)f(ζi(S′)).

The second case is when x = j and µi+a < maxx′ 6=j µx′ . Then again ζj(S′) = ζj(S)

because j 6= i, and both (27) and (28) hold by the same reasoning as in the first case.
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The third case is when x = j and µi + a ≥ maxx′ 6=j µx′ . Then we have

ζj(µ + aei, β) = −|µi+a−µj |
σ̃(βj)

. For x = j, KG’s preference of alternative i implies that

βi ≤ βj . Otherwise, by Remark 4.2 and because µj ≥ µi, KG would prefer alternative

j. This shows that

ζi(µ+ aei, β) =
−|µi + a− µj |

σ̃(βi)
≥ −|µi + a− µj |

σ̃(βj)
= ζj(µ+ aei, β).

This shows (27). To show (28), assume the antecedent of condition (28). Since

|µj − maxx′ 6=j µx′ | ≤ |µj − µi|, and σ̃(βj)f(ζj(S)) < σ̃(βi)f(ζi(S)), it must be that

σ̃(βj) < σ̃(βi) since otherwise j would have been KG’s choice in state S. Thus,

ζi(µ+ aei, β) =
−|µi + a− µj |

σ̃(βi)
>
−|µi + a− µj |

σ̃(βj)
= ζj(µ+ aei, β).

Proof of Proposition 5.1

We will show that V 0(S0;N) is a non-decreasing function of N bounded from above

by U(S0), which will imply that the limit V (S0;∞) exists and is bounded as claimed.

To show that V 0(S0;N) is non-decreasing in N , note that V 0(S0;N −1) = V 1(S0;N),

so

V 0(S0;N)− V 0(S0;N − 1) = V 0(S0;N)− V 1(S0;N).

This difference is positive by Corollary 3.2.

Now we show that V 0(S0;N) ≤ U(S0). For every N ≥ 1 and policy π,

Eπ
[
max
x

µNx

]
= Eπ

[
max
x

EπN [Yx]
]
≤ Eπ

[
EπN
[
max
x

Yx

]]
= Eπ

[
max
x

Yx

]
= E

[
max
x

Yx

]
.

This value is independent of π and is equal to U(S0). Thus

V 0(S0;N) := sup
π

Eπ
[
max
x

µNx

]
≤ U(S0)

for every N ≥ 1. Taking the limit as N →∞ shows V (S0;∞) ≤ U(S0).

Finally, we show that the limit V π(S0;∞) exists and is finite for every stationary

policy π. Fix a stationary policy π. Then Theorem 3.1 implies that V π,0(S0;N) is non-

decreasing in N , and V π,0(S0;N) is bounded by V 0(S0;N), which is itself uniformly

bounded in N by U(S0). Then V π(S0;∞) is the limit of a non-decreasing bounded

sequence. Hence, it exists.
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Proof of Proposition 5.2

We assumed in the formal model in section 3.1 that our measurement-noise variance

(σε)2 is finite. This implies via the strong law of large numbers that the sequence

of posterior predictive means µNx converges as limN→∞ µ
N
x = Yx almost surely for

each x = 1, . . . ,M . Thus limN→∞maxx µNx exists almost surely and in probability.

We will show next that the sequence
(
maxx µNx

)
N≥1

is uniformly integrable and then

convergence in probability together with uniform integrability imply convergence in L1

(see, e.g., Kallenberg (1997) Theorem 3.12). Convergence in L1 of maxx µNx as N →∞

implies

V π(S0;∞) = lim
N→∞

Eπ
[
max
x

µNx

]
= Eπ

[
lim
N→∞

max
x

µNx

]
= Eπ

[
max
x

Yx

]
= U(S0).

Proposition 5.1 showed that U(S0) ≥ V (S0;∞), so V π(S0;∞) = V (S0;∞) and π must

be asymptotically optimal.

To complete the proof we must show uniform integrability of the sequence(
maxx µNx

)
N≥1

. For every fixed K we have

E
[∣∣∣max

x
µNx

∣∣∣ 1{|maxx µNx |≥K}

]
≤ E

[
max
x

∣∣µNx ∣∣ 1{maxx|µNx |≥K}

]
= E

[
max
x
|EN [Yx]| 1{maxx|EN [Yx]|≥K}

]
≤ E

[
max
x

EN [|Yx|] 1{maxx EN [|Yx|]≥K}

]
≤ E

[
EN
[
max
x
|Yx|

]
1{EN [maxx|Yx|]≥K}

]
= E

[
EN
[
max
x
|Yx| 1{EN [maxx|Yx|]≥K}

]]
= E

[
max
x
|Yx| 1{EN [maxx|Yx|]≥K}

]
.

We assumed in the formal model in section 3.1 that maxx |Yx| was integrable. This

implies via Markov’s inequality that

P
{

EN
[
max
x
|Yx|

]
≥ K

}
≤ E [EN [maxx |Yx|]]

K
=

E [maxx |Yx|]
K

.

This is bounded uniformly in N and the bound goes to zero as K →∞.

Proof of Theorem 5.1

First note that KG is stationary. We will show that limN→∞ η
N
x = ∞ almost surely

for all x under KG, and then Proposition 5.2 will complete the proof.

First we show that, for each x, {µnx}
∞
n=0 is a uniformly integrable martingale with

respect to the filtration F and hence converges. µnx is defined by µnx := E [Yx | Fn]

and thus is Fn-measurable and, by the tower property of conditional expectation,
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satisfies the martingale identity. Yx is a normal random variable with finite variance.

Thus, Yx ∈ L2 ⊂ L1, and by the Doob uniform integrability lemma (Kallenberg (1997)

Lemma 5.5), the collection of conditional expectations {µnx}n is uniformly integrable

(and hence each µnx is integrable). Thus, {µnx}n is a uniformly integrable martingale

and hence converges almost surely to an integrable random variable µ∞x . In addition,

limn→∞ β
n
x
a.s.= β0

x + βεη∞x for each x.

By the computation performed in Theorem 4.1, the Q-factors for each alternative

x are continuous functions of their arguments (µ, β) and hence,

lim
n→∞

QN−1(Sn;x) a.s.= max
x′

µ∞x′ + σ̃(β∞x )f
(
µ∞x −maxx′′ 6=x µ∞x′′

σ̃(β∞x )

)
.

Define Ω0 to be the almost sure event on which this convergence holds, and define the

event Hx to be Hx := {ω : η∞x (ω) <∞}. Then,

lim
n→∞

QN−1(Sn(ω);x) > max
x′

µ∞x′ (ω) for all ω ∈ Hx ∩ Ω0, (29)

lim
n→∞

QN−1(Sn(ω);x) = max
x′

µ∞x′ (ω) for all ω ∈ Hcx ∩ Ω0. (30)

Let A be any subset of {1, . . . ,M}, and define the event HA to be

HA := (∩x∈AHx)∩ (∩x∈AcHcx). We will show if A 6= ∅ then P(HA) = 0. This will prove

the theorem because Ω = ∪A⊆{1,...,M}HA, so if we know that A 6= ∅ =⇒ P(HA) = 0,

then 1 = P(H∅) = P{limn→∞ η
n
x =∞ ∀x}.

Fix A nonempty and suppose for contradiction that HA ∩ Ω0 is nonempty so that

we may choose ω ∈ HA ∩ Ω0 to be an element of this set. By (29) and (30), for all

x ∈ A and all y ∈ Ac,

lim
n→∞

QN−1(Sn(ω);x) > lim
n→∞

QN−1(Sn(ω); y),

and there exists a finite number Kxy such that, for all n > Kxy,

QN−1(Sn(ω);x) > QN−1(Sn(ω); y).

Let K := maxx∈A,y∈Ac Kxy if Ac is nonempty, and K := 1 if Ac is empty. Then K is

finite and for all n > K and all x ∈ A and y ∈ Ac,

QN−1(Sn(ω);x) > QN−1(Sn(ω); y).

Therefore, KG distributes all measurements n > K only to alternatives in the set A,

and
∑

x∈A η
∞
x (ω) = ∞. This is a contradiction because x ∈ A implies ω ∈ Hx, which

implies η∞x (ω) <∞.

Thus, P(H∅ ∩ Ω0) = 0, and since P(Ω0) = 1, P(H∅) = 0.
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Proof of Theorem 6.1

Note that ϕ(0) = (2π)−1/2, where ϕ is the normal pdf. We will use this throughout.

We induct backwards over n. First, when n = N −1, the theorem is trivially true with

equality. Now, under the assumption that the theorem is true for some n+ 1,

V n(s) = max
x

E
[
V n+1(T (s, x, Zn+1))

]
≤ max

x
E
[
V N−1(T (s, x, Zn+1)) + ϕ(0)(N − n− 2) max

x
σ̃
(
βx′ + βε1{x=x′}

)]
.

Then, since σ̃ is a decreasing function and βnx′ ≤ βnx′ + βε1{x=x′},

V n(s) ≤ max
x

E
[
V N−1(T (s, x, Zn+1)) + ϕ(0)(N − n− 2) max

x′
σ̃(βx′)

]
.

Since the last term is a constant and does not depend on x, we may move it outside

the maximum and expectation operators, giving

V n(s) ≤ max
x

E
[
V N−1(T (s, x, Zn+1))

]
+ ϕ(0)(N − n− 2) max

x′
σ̃(βx′). (31)

We will rewrite the first term on the right hand side of this inequality as a maximum

over a set of Q-factors using the definition of V N−1 in terms of QN−1, but before

making this substitution, let us bound QN−1. We rewrite the expression (24) for QN−1

as QN−1(s, x′) = maxx′′ µx′′ + σ̃(βx′)f(ζx′) = V N (s) + σ̃(βx′)f(ζx′). Lemma 4.1 tells

us that f is non-decreasing, so ζx′ ≤ 0 implies that f(ζx′) ≤ f(0) = ϕ(0). Thus,

QN−1(s, x′) ≤ V N (s) + ϕ(0)σ̃(βx′).

Using this and the definition of the value function in terms of the Q-factors from (10)

and (11), we have

V N−1(T (s, x, Zn+1)) = max
x′

QN−1(T (s, x, Zn+1), x′)

≤ max
x′

V N (T (s, x, Zn+1)) + ϕ(0)σ̃
(
βx′ + βε1{x=x′}

)
= V N (T (s, x, Zn+1)) + ϕ(0) max

x′
σ̃
(
βx′ + βε1{x=x′}

)
≤ V N (T (s, x, Zn+1)) + ϕ(0) max

x′
σ̃(βx′).

Combining this bound with (31), and moving the σ̃(βx) outside the maximization and

expectation operators, we obtain

V n(s) ≤ max
x

E
[
V N (T (s, x, Zn+1)) + ϕ(0) max

x′
σ̃(βnx′)

]
+ ϕ(0)(N − n− 2) max

x′
σ̃(βx′)

= max
x

E
[
V N (T (s, x, Zn+1))

]
+ ϕ(0)(N − n− 1) max

x′
σ̃(βx′)

= V N−1(s) + ϕ(0)(N − n− 1) max
x′

σ̃(βx′),
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where in the last step we used the definition of V N in terms of V N−1 from (10).

Proof of Theorem 7.1

The proof is by induction backward on k. The theorem holds for the base case,

k = N − 1, by Remark 4.1. Now let k < N − 1. Let π∗ be an optimal policy,

with decision function X∗k at time k. Let s = (µ, β) ∈ Sk. Then

V k(s) = E
[
V k+1(T (s,X∗k(s), Zk+1))

]
= E

[
V KG,k+1(T (s,X∗k(s), Zk+1))

]
, (32)

by the induction hypothesis, since {Sn}Nn=k+1 is a covering of the future from k+ 1 on

which KG persistence holds, and T (s,X∗k(s), Zk+1) ∈ Sk+1 a.s.

Consider two cases. In the first case, suppose X∗k(s) = XKG(s). By (32),

V k(s) = E
[
V KG,k+1(T (s,XKG(s), Zk+1))

]
= V KG,k(s).

In the second case, suppose X∗k(s) 6= XKG(s). Then, abbreviating the random

state at time k + 1 under the optimal policy by Sk+1 = T (s,X∗k(s), Zk+1),

V k(s) = E
[
V KG,k+2(T (Sk+1, XKG(Sk+1), Zk+2))

]
= E

[
V KG,k+2(T (Sk+1, XKG(s), Zk+2))

]
, (33)

since XKG(s) = XKG(Sk+1) a.s. by the KG persistence property. Let

Sk+2 = T (Sk+1, XKG(s), Zk+2). Then V k(s) = E
[
V KG,k+2(Sk+2)

]
.

Note that Sk+2 is the state to which we arrive when we measure X∗k(s) at time k

and XKG(s) at time k+1. Let Ex = ex(ex)T be a matrix of all zeros except for a single

1 at row x, column x, and let d= denote equality in distribution. Then the definition

(8) of the transition function T and XKG(s) 6= X∗,k(s) imply

Sk+2 = T (Sk+1, XKG(s), Zk+2)

= T (T (s,X∗k(s), Zk+1), XKG(s), Zk+2)

= µ+ σ̃(βXKG(s))Z
k+1 + σ̃(βX∗,k(s))Z

k+2 + βεEXKG(s) + βεEX∗,k(s)

d= µ+ σ̃(βXKG(s))Z
k+2 + σ̃(βX∗,k(s))Z

k+1 + βεEXKG(s) + βεEX∗,k(s)

= T (T (s,XKG(s), Zk+1), X∗k(s), Zk+2).

Thus, we have V k(s) = E
[
V KG,k+2(Sk+2)

]
equals

E
[
V KG,k+2(T (T (s,XKG(s), Zk+1), X∗k(s), Zk+2))

]
.
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This quantity is the value of making decisions XKG(s) at time k, X∗k(s) at time k+1,

and then following KG afterward. This value must be less than the value of making

the same decision XKG(s) at time k and following the optimal policy afterward. Thus,

V k(s) ≤ E
[
V k+1(T (s,XKG(s), Zk+1))

]
. Now, T (s,XKG(s), Zn+1) ∈ Sn+1 a.s., so by

the induction hypothesis we may replace the optimal value function with the KG value

function when operating on this state. This allows us to write

V k(s) ≤ E
[
V KG,k+1(T (s,XKG(s), Zk+1))

]
= V KG,k(s).

Finally, V k(s) ≥ V KG,k(s) implies V k(s) = V KG,k(s).

Proof of Theorem 7.3

For n ∈ {0 . . . N − 1}, define Sn to be the set of all s = (µ, β) ∈ S satisfying

(βi 6=∞ and βj 6=∞ and βi < βj) =⇒ µi ≥ µj (34)

for all i, j ∈ {1, . . . ,M}. Note that the sets Sn are identical for all n. We will show

that {Sn} is a covering of the future from 0.

Let n ∈ {0 . . . N − 2}, x ∈ {1, . . . ,M}, s ∈ Sn, and Sn = s a.s. Consider

Sn+1 := T (Sn, x, Zn+1). Let i, j ∈ {1, . . . ,M} meet the conditions of the implica-

tion (34) for Sn+1, so βn+1
i 6=∞ and βn+1

j 6=∞ and βn+1
i < βn+1

j . We will show that

µni ≥ µnj , which will show that Sn+1 meets condition (34) and is in Sn+1.

First, βn ≤ βn+1 component-wise implies that βni 6= ∞ and βnj 6= ∞. Also,

since (σε)2 = 0, βn+1
x = ∞, which implies that x 6= i, j, and the measurement be-

tween Sn and Sn+1 altered neither the i component nor the j component. Thus,

βni = βn+1
i < βn+1

j = βnj . This shows that i, j meet the conditions of the implication

(34) for Sn as well as Sn+1. Thus, since Sn ∈ Sn, µni ≥ µnj . Then, again because

x 6= i, j implies that the means of the i and j components did not change from time n

to n+ 1, µn+1
i ≥ µn+1

j , showing that Sn+1 meets the condition (34), and Sn+1 ∈ Sn+1.

Thus, {Sn} is a covering of the future from 0.

Now we will show that KG is persistent on {Sn}. Let s ∈ Sn and Sn = s a.s. Con-

dition (34) together with Remark 4.2 and Remark 4.3 imply XKG(Sn) ∈ arg minx′ βnx′

with ties broken by smallest index. Let x 6= XKG(Sn). We showed that

Sn+1 := T (Sn, x, Zn+1) ∈ Sn+1 almost surely. Thus, again by condition (34), Re-
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mark 4.2 and Remark 4.3, XKG(Sn+1) ∈ arg minx′ β
n+1
x′ . We use the state transition

function for the case with (σε) = 0, βn+1
x′ = βnx′ +∞1{x′=x}, and we consider two cases.

In the first case suppose βnx′ <∞ for some x′ 6= x. Then, since βn+1
x =∞, we have

βn+1
x′ = βnx′ < βn+1

x . Thus, we may drop x from the argmin set as in

arg min
x′

βn+1
x′ = arg min

x′ 6=x
βn+1
x′ = arg min

x′ 6=x
βnx .

XKG(Sn) is the element of this set with the smallest index, and sinceXKG(Sn+1) is also

defined to be the element of this set with the smallest index, XKG(Sn+1) = XKG(Sn).

In the second case suppose βnx′ =∞ for all x′ 6= x. Then, by XKG ∈ arg minx′ βnx′ ,

and since XKG(Sn) 6= x, we also have that βnx = ∞. The state transition rule for β

implies that βn+1
x′ = ∞ for all x′. Thus, arg minx′ βnx′ = {1, . . . ,M} = arg minx′ β

n+1
x′ ,

and since the tie-breaking rule is fixed to choose the element with the smallest index,

XKG(Sn+1) = XKG(Sn).

In both cases KG is persistent on {Sn}, and Theorem 7.1 shows that

V KG,0(s) = V 0(s) for all s ∈ S0.

Known Variance LL(S) Policy

The LL(S) policy was developed for normal measurement errors with unknown variance

and uses a normal-gamma prior for the unknown mean and measurement precision. To

adapt it to the known-variance case, we take both the shape and rate parameter in the

gamma prior on the measurement precision to infinity while keeping their ratio fixed

to the known measurement precision βε, we obtain a prior in which the measurement

precision is known perfectly and the alternative’s true value is still normally distributed.

Taking this limit in the allocation given by Chick and Inoue (2001b) in Corollary 1

provides the following policy. The steps below describe how the policy allocates τ

measurements for the stage beginning at a generic time n, and should be repeated a

total of N/τ times beginning at time 0 and finishing at time N . We use the notation [i]

to indicate the alternative whose µn component is ith largest. That is, µn[M ] ≥ · · · ≥ µ
n
[1].

(i) For each alternative calculate ni = βni /β
ε, which may be interpreted as the effec-

tive number of times alternative i has been sampled.

(ii) Initialize S, the set of alternatives under consideration for measurement in the

current stage, to S = {1, . . . ,M}.
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(iii) For each i ∈ S \ {[M ]} set λi,M as follows. If [M ]6∈S, set λi,M = β[i]. If [M ] ∈ S,

set λi,M =
(

(βn[M ])
−1 + (βn[i])

−1
)−1

.

(iv) Calculate a tentative number of samples r[i] to take from alternative [i],

r[i] =
τ +

∑
j∈S nj∑

j∈S

√
γj/γ[i]

− n[i],

where

γ[i] =

{√
λi,M φ

(√
λi,M (µn[M ] − µ

n
[i])
)
, if [i] 6= [M ],∑

[j]∈S\{[M ]} γ[j], if [i] = [M ].

(v) For each [i] ∈ S with r[i] < 0, remove [i] from S and set r[i] = 0. If any [i] were

removed, then return to Step iii.

(vi) Round the r[i] to integer values so that they still sum to τ .

(vii) Run r[i] additional samples for each alternative [i].
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