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Abstract
Motivation: In order to aid in hypothesis-driven experi-
mental gene discovery, we are designing a computer ap-
plication for the automatic retrieval of signal transduction
data from electronic versions of scientific publications us-
ing natural language processing (NLP) techniques, as well
as for visualizing and editing representations of regulatory
systems. These systems describe both signal transduction
and biochemical pathways within complex multicellular
organisms, yeast, and bacteria. This computer application
in turn requires the development of a domain-specific on-
tology, or knowledge model.
Results: We introduce an ontological model for the rep-
resentation of biological knowledge related to regulatory
networks in vertebrates. We outline a taxonomy of the con-
cepts, define their ‘whole-to-part’ relationships, describe
the properties of major concepts, and outline a set of the
most important axioms. The ontology is partially realized
in a computer system designed to aid researchers in biol-
ogy and medicine in visualizing and editing a representa-
tion of a signal transduction system.
Availability: The knowledge model can be reviewed at
http://genome6.cpmc.columbia.edu/ tkoike/ontology/
Contact: ar345@columbia.edu

Introduction
A large body of knowledge that has become available re-
cently through the internet consists of electronic versions
of articles published in scientific journals, such as Science
or Cell. This creates new opportunities for automated
knowledge acquisition: if information contained in these
articles can be extracted and organized, it could then be
stored in a knowledge base and used in computational
analyses such as data mining. While there is a prototype
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computer system for extracting medical knowledge from
research articles in medicine (e.g. Hahn et al. (1996)),
to our knowledge there is no equivalent system within
the fields of Genomics and Molecular Biology. We aim
to fill this gap by designing a system for the automatic
extraction of functional information describing regulatory
relationships between genes and proteins from online
versions of research articles. Below, we provide the
rationale for developing such a system.

The natural sciences proximal to molecular biology and
medicine currently enjoy exponential growth. Individual
researchers often find themselves unable to keep pace with
the rate of information accumulating in multiple fields
just outside their focus. Virtually every field of modern bi-
ology is likely to profit from the methodological advances
that help scientists cope with information overflow. This
is especially true for signal transduction-related research,
where numerous investigators would benefit from system-
atic compilation, integration, and synthesis of thousands
of disparate pieces of information scattered among indi-
vidual research articles. For example, at the time that this
paper was being revised, a search through the PubMed
system using the keywords ‘cell cycle’ and ‘apoptosis’
produced lists of 169 293 and 29 961 articles, respectively
(see http://www3.ncbi.nlm.nih.gov/Entrez/medline.html
to access PubMed). It would be difficult and extremely
time-consuming to navigate each of these articles man-
ually. The biological community at large clearly needs
specialized computer applications for the analysis of
complex regulatory schemes; Such a program would
facilitate the automatic retrieval of regulatory data from
electronic versions of scientific publications using natural
language processing (NLP) techniques (e.g. see literature
on MedLEE, Friedman et al., 1994), visualization and
editing of representations of regulatory systems, and
computer analysis and simulation of regulatory networks.
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Each of these tasks requires the development of a domain-
specific ontology tailored to the specific task of analyzing
complex regulatory pathways in a particular organism. In
this article we introduce such an ontology and describe
properties that distinguish it from the already existing
ontologies.

Background
Ontology
An ontology, conceptualization or domain model for a spe-
cialized field of science is usually defined as a collection
of concepts representing domain-specific entities, concept
definitions, a set of relationships among concepts (‘seman-
tic network’), properties of each concept, the range of al-
lowed values for each property, and, in some cases, a set of
explicit axioms defined on these concepts (Gruber, 1993).

Regulatory pathways
Regulation of tissue and organ development, as well as
cell cycling and differentiation, is governed by a complex
series of interactions between proteins and genes, in which
one protein can ‘switch off’ or ‘switch on’ another protein,
which in turn may stop or start its action on other proteins
or genes. When a regulatory protein A is known to
increase expression of gene B, biologists often say that ‘A
upregulates gene B,’ while they say that ‘A downregulates
gene B’ if protein A causes a decrease in the expression of
gene B. While the actual regulation process is continuous
and gradual, it is convenient to represent a regulatory
network as a network of logical switches that can be
turned on and off by other switches within the same
network. For example, a process illustrating the regulation
of long-term potentiation in human neurons is shown in
Figure 1. In this figure, glutamate (here defined as a small
molecule) binds and activates metabotropic receptor (a
protein). Metabotropic receptor, in conjunction with G-
protein activates another protein, PLC/PIC, and so on.
Biologists may describe this as ‘glutamate acts upstream
of PLC/PIC,’ and that ‘PLC/PIC acts downstream of
metabotropic receptor.’

In graph theory, a regulatory pathway is usually repre-
sented as an oriented graph with vertices corresponding to
substances and edges corresponding to interactions (Ac-
tions in our ontology). So long as any oriented graph is
completely defined by two sets, a set of vertices and a
set of edges, any complex pathway can be fully encoded
with a list of substances (vertices) and a list of interactions
(edges) between them.

It is common practice in biology to represent large seg-
ments of regulatory networks with non-uniquely defined
‘fuzzy’ names. For example, in the sentence ‘activation
of MKK3 kinase triggers cell death,’ ‘cell death’ is a pro-
cess including actions and substances that are not spec-
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Fig. 1. Example of representation of a regulatory pathway (long-
term potentiation in human neurons).

ified in the sentence, and ‘MKK3 kinase’ is a substance
(protein). Depending on the context, the term ‘cell death’
can represent one or a few different pathways leading to
apoptosis, or it may correspond to just a fragment of the
most downstream portion of a particular apoptotic path-
way. Furthermore, the level of details showed in descrip-
tions of the same regulatory pathway, usually considerably
varies among journal papers. For example, the oriented
graph shown in Figure 1 is commonly referred to in re-
search articles as ‘long-term potentiation’ even though the
number of proteins and genes included into a particular
regulatory scheme can vary tenfold.

Natural language processing (NLP) techniques aimed
at extracting information from electronic texts

In medicine, text reports of patient visits to their physi-
cians are a vast source of clinical information, but such
information in this ‘raw’ textual form is not useful for
automated clinical applications (there may be numerous
representations of the same piece of information) and al-
though electronically available, this information remains
locked within the text. Text is difficult to access because
it is extremely diverse and meanings of words vary de-
pending on their context. In spite of these underlying dif-
ficulties, NLP in the medical domain has begun to show
promising results. For example, there are two NLP sys-
tems (Friedman et al., 1994; Haug et al., 1990; Hripcsak
et al., 1995) which are currently integrated into opera-
tional clinical information systems. Evaluating these sys-
tems clearly demonstrated that automated applications us-
ing NLP perform as well as or almost as well as medical
experts in identifying abnormal conditions (Friedman et
al., 1994; Haug et al., 1990; Hripcsak et al., 1995).
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Existing related systems

The molecular biology community possesses a number
of online databases related to genomics research (Burks,
1999). GenBank (Benson et al., 1998) contains nucleic
acid sequence information, GDB (Fasman et al., 1997)
specializes in the location of genes on chromosomes,
and PDB (Abola et al., 1997) offers three-dimensional
protein structures. Two databases targeted to the clinical
community are OMIM (Pearson et al., 1994), a database
that maintains clinical phenotypes and their links to human
genes, and Helix (Tarczy-Hornoch et al., 1998), a database
containing information about diseases, genetic testing, and
laboratories in the United States that perform this testing.

Work in representing complex information has been
done with a domain independent knowledge-based
system called OWEB (Hon et al., 1998), which was
developed specifically for building and supporting share-
able online scientific data resources. OWEB models
complex information by using a knowledge base that
contains meta-information about the data resources. This
meta-information consists of a hierarchical taxonomy of
concepts, specifications of relations between these con-
cepts, as well as real-world objects, which are instances
of concepts and relations. One application of this system
resulted in the development of MHCWeb (Hon et al.,
1998), an online immunological knowledge base that
contains information about peptide molecules and the set
of major histocompatibility complex (MHC) molecules to
which they bind, along with experimental and publication
information.

Another complex modeling tool is the Oncology Think-
ing Cap (OncoTCAP) Ramakrishnan et al. (1998), which
was developed to support learning and provide a means
by which medical students, clinicians, and researchers can
develop research and treatment strategies through simula-
tion. OncoTCAP provides a simulation-modeling tool for
expressing the complex concepts and explicit relationships
associated with cancer research, treatment, apoptotic and
mutational mechanisms, cell repair processes, treatment
scheduling, and genetic characteristics.

Our research is similar to MHCWeb and OncoTCAP in
that it models complex information and makes explicit re-
lationships between informational concepts. Our work dif-
fers from the two systems in that our aim is to automati-
cally acquire functional genomics knowledge through the
extraction of relevant information from published articles
using natural language processing methods.

For the construction of our ontology it was useful
to include concepts from the UMLS (Unified Medical
Language System of the National Library of Medicine in
Washington, DC, McCray et al., 1993), a comprehensive
source of biomedical knowledge. The UMLS integrates
biomedical terminology and organizes concepts into

a hierarchy of classes. Some parts of UMLS, such as
the Methathesaurus which incorporates classifications
of diseases like ICD9, are immediately relevant to our
ontology; other aspects of UMLS are either unrelated
to our task or lack specifics essential for the computer
representation and modeling of regulatory pathways.
A detailed analysis of UMLS regarding the genomics
domain is provided by Yu et al. (1999).

Other existing biological ontologies such as EcoCyc
(Karp, 1991), Molecular Biology Ontology (Schulze-
Kremer, 1997; Schulze-Kremer and King, 1992) and
several other ontologies (Hafner et al., 1994; Hafner
and Fridman, 1996; Karp, 1998; Karp and Riley, 1993;
Schulze-Kremer, 1998) are useful for our study as points
of reference, but insufficient for our goal because they
were developed for different applications.

EcoCyc (Karp, 1998) is a carefully designed ontology
aimed at representing, modeling and visualizing biochem-
ical pathways in bacteria (Karp et al., 1999). Many fea-
tures are relevant to our application: EcoCyc can both rep-
resent a range of complex biochemical reactions and allow
for qualitative as well as quantitative modeling of each re-
action. However, since this system targets only the rep-
resentation of bacterial pathways, it does not reflect the
multiplicity of cell types, tissues, organs, and developmen-
tal stages of multicellular organisms. Moreover, it deals
mostly with linear or simple cyclic pathways typical of
bacteria, rather than more complex graphs corresponding
to regulatory networks in multicellular species. The design
of EcoCyc was designed for input of data to be done by
human experts and consequently does not consider issues
arising when information is automatically extracted from
literature using NLP techniques, such as conflicts between
statements. Finally, EcoCyc is a proprietary commercially
implemented ontology, not readily available in its com-
plete form to the general public.

MBO, a Molecular Biology Ontology (Schulze-Kremer,
1997; Schulze-Kremer and King, 1992), is a general on-
tology for molecular biology which aims to collect ‘all rel-
evant concepts that are required to describe biological ob-
jects, experimental procedures and computational aspects
of molecular biology.’ As a general ontology, MBO con-
tains large amounts of information that are important to
their application whereas our model has a different focus.
Our intention is to describe signal transduction as well as
biochemical pathways in both complex and simple organ-
isms through visualization and simulation.

Methods
In order to design the ontology, we manually collected
more than 300 online journal articles from Science,
Nature, Proceedings of the National Academy of Sciences
of the USA, Cell, and Current Biology, which addressed
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regulation of ‘programmed cell death’ in animals. We
then manually analyzed these articles with the aim of
reconstructing a moderately complete regulatory net-
work for this system. The selection of papers for this
analysis was done through an iterative keyword search
against an online reference database (MEDLINE, see
http://www3.ncbi.nlm.nih.gov/Entrez/medline.html),
followed by downloading relevant papers from Internet
sites of the mentioned journals and manual review. The
keywords used for the initial search were ‘apoptosis’
and the name of the publication, e.g. Science. We used
the reconstructed network to iteratively and manually
design a parsimonious representation capturing much of
the information that a biologist might consider important
when analyzing a regulatory network. While designing
ontology we followed recommendations aimed at facili-
tating future ‘graceful evolution’ of the ontology (Cimino,
1998). Each iteration of the development process included
a fine-tuning of the knowledge model followed by model
verification through description of a part of the apoptotic
network with the currently available tools of the ontol-
ogy. Altogether four iterations of this kind were carried
out.

Further, we downloaded twenty review articles from
Current Biology and Trends in Genetics, all of which con-
tained descriptions of relatively large regulatory pathways.
We then manually analyzed descriptions of pathways in
these articles attempting to use our knowledge model
for the representation of information contained in each
of these articles with the aim of verifying our ontology.
Because the last verification required little fine-tuning of
the model, we concluded that the model is sufficiently
mature for current purposes. However, in the future it may
be necessary to amend concepts and concept properties as
the system moves toward novel computational problems
and new aspects of the complex biological reality. Note
that the current evaluation of the knowledge model is
not a rigorous one because it was performed by the
model developers rather than by a group of impartial
experts.

Results and discussion
It is convenient to describe our ontology by considering
its three main aspects: taxonomy of the concepts, relations
between them, properties of the concepts, and axioms
defined in the ontology; below we will follow this scheme.

Taxonomy of terms
The ‘IS-A’ relationships between concepts (relationships
between a general concept and more concrete concepts
representing instances of the general concept) are often
represented as trees (taxonomies) in which each edge rep-
resents one binary relation of this kind and each node is
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Fig. 2. Top-level taxonomy (‘IS-A’ relationships, indicated with
continuous lines, and ‘is associated with’ relationships, indicated
with dashed lines) of concepts. Substances and Actions are the
central concepts in this ontology; Taxon, Structure, Publication,
and Disease are required to specify the living organism, the
structure within the organism, the source of the information and
the malady associated with each individual Action and Substance.
Stimulus and Process are categories associated with the external
triggers of the regulatory cascades in a living organism, and the
macroevents within an organism that involve multiple regulatory
steps, correspondingly. Finally, Relation is a separate concept
permitting the ordering of Actions and Processes in three different
ways (cf. Figure 4).

occupied by a concept (see Figure 2). Each of the ba-
sic concepts, depicted in this figure serves as a root for
a separate tree: Action, ActionAgent, Process, Publication,
Taxon, Disease, Mechanism, Result, Developmental Stage,
MicroStructure, State, MacroStructure, Relation, Similar-
ity, RelationType, and ActionTemplate. The most impor-
tant among these concepts are ActionAgent and Action.
The former most frequently corresponds to a Substance (a
protein, a gene or other molecule) and the latter to an in-
teraction between two or more molecules in a regulatory
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Fig. 3. Example of ‘PART-TO-WHOLE’ relationships (‘HAS-A’)
between some of the categories shown in Figure 1. Each arrow
corresponds to a single ‘HAS-A’ relationship between two concepts.
Arrows marked with asterisks represent optional relations. For
example, not every organism has organs and tissues because many
organisms are unicellular. Note that, unlike the taxonomies of
categories, these graphs are not trees.

network. For example, proteins IP3 and GAP-43 belong
to the group substances, and activation of GAP-43 by IP3
is an interaction (see Figure 1). A less frequent type of
ActionAgent is Effect, introduced here to reflect inputs or
outcomes of an action that can not be correctly character-
ized within Substances. Among the most common exam-
ples of input Effect found in the biological literature are
heat shock, cold shock, osmotic shock, radiation, electri-
cal stimulation, tension, and starvation. Mechanisms of
Action in our model are limited to their ‘normal’ reper-
toire in animal signal transduction systems. One can think
of ‘abnormal’ actions that we are not including into our
ontology at this stage.

Next in rank by importance are Process and Relation.
In our ontology, Process represents a set of several Sub-
stances, at least some of which are linked by Actions or
Relations. Process also represents a set of other Processes
or a mixture of Actions and Processes. Finally, Publica-
tion, Taxon, Structure, Developmental Stage, and Disease
encapsulate pieces of auxiliary information about Action-
Agents, Processes and Actions. These concepts indicate
the source of knowledge (e.g. a book), taxonomic position
of the organism (e.g. Homo sapiens), anatomical structure
(which can be a macro-structure, such as an organ or a tis-
sue, or a micro-structure, such as a mitochondrion), a stage
in ontogenesis (e.g. fetal), and a malady (e.g. cancer), re-
spectively. The concept Disease corresponds to a large list
of specific maladies and syndromes, which are taken from
UMLS (data not shown).

Note, that although the current ‘IS-A’ graph is a strict
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Fig. 4. Properties of major concepts. The frame Publication
contains a slot called ‘MEDLINE slots’ referring to types of
information (‘fields’) used in the MEDLINE reference database
(http://www3.ncbi.nlm.nih.gov/Entrez/). These fields include: title
of publication, names of the authors, year, journal volume, journal
number, page numbers, abstract, keywords and some others. The
frame Actions has a slot called KineticConstants, which refers to
constants characterizing kinetics of the interaction between two or
more molecules. The slots MicroStructure and MacroStructure in
the frame State must refer to the location of the corresponding
substance within the organism at several structural levels: organ,
tissue, cell type, and organelle (see Figure 7).

taxonomy (tree), the future evolution of the knowledge
model may require addition of edges representing relation
of multiple inheritance between concepts. In this case the
oriented graph will cease to be a tree but it will always
remain acyclic.

Relations between concepts
To bring our ontology closer to the language used by
biologists, we defined a network of ‘HAS-A’ relations (=
‘part-whole’ relations between concepts). A part of this
network is shown in Figure 3. This network explicitly
specifies ‘part–whole’ relations between concepts and the
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possibility that terms may have several different meanings,
common in the language of experimental biology and
medicine, where the same word, e.g. cell, may refer to
distinct entities with very different properties (e.g. cells in
Eukaryotes, Eubacteria and Archaea), and can correspond
to either a part of an organism, or the whole organism.

Properties of concepts, slots and admissible values
The properties of the above concepts can be conveniently
described using frame representation (Gruber, 1993).

In this representation, each concept is described with
a ‘frame’ having a name (e.g. Substance) unique for the
given domain and slots which can be filled by values of
a specified type and range (see Figure 4). For example,
following an expert’s advise (Cimino, 1998) that a well-
designed ontology needs to ‘have the unique identifiers
for the concepts which are free of hierarchical or other
implicit meaning (i.e. nonsemantic concept identifiers),’
we provided each concept with a slot ‘ConceptID,’ which
should hold a unique numeric value for each concept.
The slot Name(s) may contain a single string or a set
of strings representing alternative names of the same
substance, and the slot Publication(s) must refer to a
concept object defined with the frame named Publication.
Figure 4 depicts the current knowledge model, which
utilizes these features and illustrates the concepts first
introduced in Figure 2.

Similarities and differences with EcoCyc
We adopted a number of important features from the
EcoCyc (Karp, 1998) ontology. Most importantly, the
structure of the concept Action in our ontology is based on
the concepts reaction and enzymatic reaction in EcoCyc.
Following EcoCyc, we explicitly specify sideAction-
Agents and mainActionAgents, a CatalystActionAgent.
Likewise, our concepts UpstreamActionAgents and Down-
streamActionAgents are not unlike the EcoCyc concepts
reaction left side and reaction right side, respectively. In
the Biochemical Representation A phosphorylates B in
Figure 6, The sideActionAgent is ATP, the mainActionA-
gent is B, and the CatalystActionAgent is A. Meanwhile,
the logical representation of the same action, the Upstrea-
mActionAgent is A and the DownstreamActionAgent is
B.

Also analogous to EcoCyc’s isozyme-sequence-
similarity is our concept Similarity. Our definition
describes both primary sequences and three-dimensional
protein structures, where similarity at the sequence level
is not required (see Murzin and Bateman, 1997).

The concept ActionAgent is somewhat parallel to the
compound concept of EcoCyc. In addition, it includes
Effect, which is not a substance. For example, in the
statement ‘ultraviolet light can induce expression of the
p53 gene,’ ‘ultraviolet light’ is an effect and p53 gene is a

substance (gene) activated via an unspecified mechanism.
EcoCyc (Karp, 1998) is very well designed for rep-

resenting metabolic pathways of bacteria, and therefore
it includes details of cell morphology of prokaryotic
species (e.g. cytoplasm, membrane, inner-membrane,
outer-membrane, membrane-spanning, periplasm). Be-
cause our model seeks to describe signal transduction and
biochemical pathways in eukaryotes as well as bacterial,
it includes the additional concepts of tissues, body parts,
organs, developmental stages, and cellular organelles that
distinguish multicellular eukaryotes from prokaryotes
(see Figure 4).

Signal transduction pathways are currently described
as a mixture of two representations, logical and
biochemical
Analyzing the language of current biological literature re-
veals a curious mixture of two different representations of
regulatory pathways, which we will denote here as logi-
cal and biochemical (see Figure 6). The ‘logical’ repre-
sentation handles changes in ‘logical states’ of the pro-
teins and genes, while the ‘biochemical’ representation
defines the chemical or physical mechanism leading to a
change in the logical state of a substance. A single logi-
cal description ‘A activates B’ can correspond to a multi-
plicity of biochemical descriptions. Regulatory diagrams
in present-day research articles often blend both logical
and biochemical descriptions in the same figure. More-
over, situations where only the logical description of an ac-
tion may be inferred from experimental data are common.
The availability of only a biochemical action description
is a dominant feature in the portrayal of metabolic path-
ways, such as synthesis of fatty acids; in contrast, actions
with only well-defined logical descriptions are foremost
in the portrayal of signal transduction pathways, such as
cell cycle regulation. Similar to the described duality of
Action, we define two properties of State for each sub-
stance: LogicalState and BiochemicalState. Without con-
textual information, a property cannot be directly inferred
from the other. For example, a protein that is phosphory-
lated (BiochemicalState) can be in either active or inactive
LogicalState.

In signal transduction literature it is possible to observe
both logical and biochemical representations of an action
combined within a single sentence of a research article.
For example, in the following sentence taken from an
actual research article (Boussiotis et al., 1997)

‘Activated Raf-1 phosphorylates and activates MEK-1. . . ’

one can clearly distinguish the logical action between pro-
teins Raf-1 and MEK-1 (‘activate’) and the biochemical
mechanism of the action (‘phosphorylate’).

Because signal transduction pathways use a rather lim-
ited repertoire of biochemical reactions, such as phospho-
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Fig. 5. An additional concept of ActionTemplate is designed
to store rules of conversion of LogicalAction to corresponding
BiochemicalAction and vice versa.

rylation, dephosphorylation, cleavage, etc. (see Figure 6),
a logical description can often be converted to its corre-
sponding biochemical description (or vice versa) automat-
ically. For this purpose we introduce the ActionTemplate
concept, which defines rules of converting of a logical
action representation into the corresponding biochemical
representation, or the other way around, assuming that the
required information is present (see Figure 5).

Consensus-level conceptualization vs observation-level
conceptualization
Most of the existing knowledge models, including EcoCyc
(Karp, 1998), are oriented toward consensus-level con-
ceptualization. This means that data inconsistencies are
removed or resolved by domain experts before the data is
represented with a knowledge model. This is impractical
in the case of automatic extraction of data from original
research articles: the ‘raw’ data obtained in this way
are bound to contain inconsistencies and even mutually
exclusive statements. Therefore, in our application we
adopt an observation-level conceptualization rather than a
consensus-level conceptualization. Each statement in our
knowledge base will be given a ‘weight,’ a real number
measuring the ‘credibility’ of the statement and computed
as described below.

We reason that as controversies and occasional errors
are unavoidable realities of a productive research process,
Natural Language Processing analysis is destined to
produce some contradictory and incorrect statements.
Observation-level conceptualization would potentially
allow the retention of original natural language passages
containing primary information, thus enabling an individ-
ual researcher accessing our system to make independent

Logical Representation
Biochemical

Representation Example

A = PI 3K
B = AKT/PKB

A = protein
phospatase 2A

B = FAS-
activated

serine/threonine
kinase

A = ICE
B = CPP32

A = FAS-L
B = FAS

A = (C-Myc:Max)
protein complex
B = cdc25A gene

A = eIF2B
B = virtually any

gene

A = Ca    pump
ATPase
B = Ca

2+

2+

A

B

ATP

ADP +

(pump/channel )

inside

Boutside

-
PO4

A

B

(catalyst -
phosphatase )

active

Binactive

phosphorylated

-
PO4

A

B

ATP

ADP

(catalyst - kinase)

active

Binactive

phosphorylated

Bactive

Cinactive

D +

A (catalyst - protease )

A is a ligand

BinactiveA +

active[AB     ]
B is a receptor

A initiates transcription  of B

phosphorylation

dephosphorylation

transport

cleavage

binding

transcription

translation A initiates translation of B

A activates B through a processprocess A = FAS-L
B = AKT/PKB

A activates B through an action

other

single action

A

B

"A activates B"

Fig. 6. Multiple biochemical representations corresponding to a
single logical representation. A similar figure corresponds to the
logical representation ‘A inhibits B.’

decisions on the quality of different pieces of information.
In order to determine the ‘credibility’ of a statement,
we introduce a set of weights that take into account the
reliability of an individual journal, the publication year,
particular authors, and the section within an article (e.g.
‘Discussion’) in which particular statements appeared.
(Similarly, if a statement in a research article is a citation
of the previous work, it may be given lower weight
than that of an original experimental observation.) This
should provide a flexible mechanism for re-defining
the regulatory model along with an accumulation of
knowledge about previous errors. It would be desirable,
for example, to exclude from analysis a statement that
appeared in a retracted article, in an article with an
erratum published later, or derived from an experiment
that was not successfully reproduced. (A hypothetical
example: one may decide to exclude all papers published
before 1990 because of an unreliable, older experimental
technique that was replaced in 1990.)

A weight for each binary action (statement) can be
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Body part
(optional)

tissue
(optional)

Organ
(optional)

Organelle

Cell

Cell

Extracellular
matrix

(optional)

Inner
membrane

Inner
membrane

Outer
membrane

Outer
membrane

Mitochondrion

Plastid
(optional)

Cytoskeleton

Endoplasmic
reticulum

Secretory
vesicle

Nucleus

Golgi body

Peroxisome

Endosome

Lysosome

Nuclear
membrane

Chromosomes

Nucleoli

Smooth

Rough

Lumen

LumenExtracellular
space

Plasma
membrane

Cell wall
(optional)

Intracellular
space

Pili

Flagella

Inclusion

Pseudopodia

Microvilli

Celia

MacroStructure

MicroStructure

Fig. 7. Models corresponding to concepts MicroStructure and
MacroStructure.

computed according to the following ‘equations’ where
W(x) is defined as ‘the weight of x .’

W(a statement) = A weighted sum of W(all sentences
related to this statement)

W(a sentence related to the statement) = W(journal,
year, authors, article, etc.).

The sum of the first ‘formula’ is weighted in order to
allow for downweighting multiple identical statements
from the same paper and from different papers of the
same authors. In the simplest scheme, the weight of a
sentence would be defined as a product of the individual
weights of journal, year, author, etc. Once all the weights
are explicitly defined, it is trivial to compute a weight
for each statement and for each statement’s negation. For
each set of conflicting statements, only the statement with
the largest weight would be selected for visualization
and simulation. The goal of this is to create a scenario in
which a researcher can easily trace individual statements
and corresponding sentences, remove erroneous data, and
downweight equivocal statements. We intend to imple-
ment an ‘iterative editing’ regime, where a researcher can
begin to visualize or simulate a pathway, then ‘descend’

to statements and sentences (each sentence highlighted
within the text of the corresponding article or shown
independently) related to a particular part of the pathway,
redefine weights, and again ‘ascend’ to a modified visual
representation and dynamic model of the same pathway,
repeating this cycle as often as desired. This weight
scheme may potentially accommodate fluctuations in
the dominant scientific paradigm: different paradigms
would correspond to different sets of weights for the same
collection of statements.

Axioms
The area of molecular biology describing signal transduc-
tion incorporates a set of axioms that are implicit for biol-
ogists, but should be specified explicitly within a knowl-
edge model. The fundamental axiom of molecular biology
can be formulated in the following way; ‘For every pro-
tein there is a unique mRNA, and for every mRNA there
is a unique gene or a unique set of genes.’ Among other
important axioms are the following three:

1. If ActionAgent A is upstream to ActionAgent B
in an action, and the action Result is defined, the
ActionAgent A is active.

2. If ActionAgent A is situated downstream in an action
and the action Result is Activate, the ActionAgent A
is active.

3. If ActionAgent A is situated downstream in an action
and the action result is Inactivate, the ActionAgent
A is inactive.

A few other axioms used in logical and biochemical
representation of actions are shown in Figure 8.

Conclusion
With the goal of developing computational tools for the
analysis of signal transduction pathways, we have intro-
duced ontology suitable for the description and model-
ing of regulatory pathways in multicellular and unicellu-
lar species. This ontology has a number of common fea-
tures with EcoCyc and several other existing ontologies,
but differs significantly from them in a number of fea-
tures, most important of which is that it allows for mod-
eling both Boolean (‘logical’) and biochemical pathways,
multiple cells, tissues, and organ types, as well as repre-
senting partial and/or conflicting information.
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Logical result-related axioms

1. Transitivity.  If A activates B and B activates C, it is valid to state that A
activates C.

2. Additivity.  A logical result of a pathway can be calculated as a sum of
results of separate actions along the pathway.

Biochemical mechanism-related axioms (in the form mechanism[subject
substance, object substance])

1. Transcribe[gene]

2. Translate[mRNA]

3. Phosphorylate[protein (kinase), protein ]

4. Dephosphorylate[protein (phosphatase), protein]

5. Methylate[protein (methylase), gene OR protein OR lipid]

6. Demethylate[protein (demethylase), protein OR lipid]

7. Cleave[protein, gene OR protein OR lipid OR RNA OR
                                                    small molecule OR carbohydrate]
    Cleave[RNA, RNA]
    Cleave[small molecule, protein OR gene OR lipid OR RNA OR
                                                    small molecule OR carbohydrate]

8. Bind[protein, protein OR RNA OR gene]
    Bind[RNA, RNA OR gene]
    Bind[small molecule, protein OR gene OR lipid OR RNA OR small
                                                                                                    molecule]

9. Transport[protein, protein OR gene OR lipid OR RNA OR small molecule]
    Transport[RNA, small molecule]

Fig. 8. Major axioms of the knowledge model described in this
paper. A more complete set of axioms will be made available
through the Internet in near future.

References
Abola,E.E., Sussman,J.L., Prilusky,J. and Manning,N.O. (1997)

Protein Data Bank archives of three-dimensional macromolec-
ular structures. Meth. Enzymol., 277, 556–571.

Benson,D.A., Boguski,M.S., Lipman,D.J., Ostell,J. and Ouel-
lette,B.F. (1998) GenBank. Nucleic Acids Res., 26, 1–7.

Boussiotis,V.A., Freeman,G.J., Berezovskaya,A., Barber,D.L. and
Nadler,L.M. (1997) Maintenance of human T cell anergy:
blocking of IL-2 gene transcription by activated Rap1. Science,
278, 124–128.

Burks,C. (1999) Molecular biology database list. Nucleic Acids
Res., 27, 1–9.

Cimino,J.J. (1998) Desiderata for controlled medical vocabularies
in the twenty-first century. Meth. Infect. Med., 37, 394–403.

Fasman,K.H., Letovsky,S.I., Li,P., Cottingham,R.W. and Kings-
bury,D.T. (1997) The GDB Human Genome Database Anno
1997. Nucleic Acids Res., 25, 72–81.

Friedman,C., Alderson,P.O., Austin,J.H., Cimino,J.J. and John-
son,S.B. (1994) A general natural-language text processor for
clinical radiology. J. Am. Med. Inform. Assoc., 1, 161–174.

Gruber,T.R. (1993) Towards Principles for the Design of Ontologies
Used for Knowledge Sharing: Knowledge Systems Laboratory.
Stanford University.

Hafner,C.D., Baclawski,K., Futrelle,R.P., Fridman,N. and Sam-
path,S. (1994) Creating a knowledge base of biological research
papers. Ismb, 2, 147–155.

Hafner,C.D. and Fridman,N. (1996) Ontological foundations for
biology knowledge models. Ismb, 4, 78–87.

Haug,P.J., Ranum,D.L. and Frederick,P.R. (1990) Computerized
extraction of coded findings from free-text radiologic reports.
Work in progress. Radiology, 174, 543–548.

Hon,L., Abernethy,N.F., Brusic,V., Chai,J. and Altman,R.B. (1998)
MHCWeb: converting a WWW database into a knowledge-
based collaborative environment. Proc. AMIA Symp., 947–951.

Hripcsak,G., Friedman,C., Alderson,P.O., DuMouchel,W., John-
son,S.B. and Clayton,P.D. (1995) Unlocking clinical data from
narrative reports: a study of natural language processing. Ann.
Int. Med., 122, 681–688.

Karp,P.D. (1991) Artificial intelligence methods for theory repre-
sentation and hypothesis formation. Comput. Appl. Biosci., 7,
301–308.

Karp,P.D. (1998) Metabolic databases. Trends Biochem. Sci., 23,
114–116.

Karp,P.D. and Riley,M. (1993) Representations of metabolic knowl-
edge. Ismb, 1, 207–215.

Karp,P.D., Riley,M., Paley,S.M., Pellegrini-Toole,A. and Krumme-
nacker,M. (1999) Eco Cyc: Encyclopedia of Escherichia coli
genes and metabolism. Nucleic Acids Res., 27, 55–58.

McCray,A.T., Aronson,A.R., Browne,A.C., Rindflesch,T.C.,
Razi,A. and Srinivasan,S. (1993) UMLS knowledge for biomed-
ical language processing. Bull. Med. Libr. Assoc., 81, 184–194.

Murzin,A.G. and Bateman,A. (1997) Distant homology recognition
using structural classification of proteins. Proteins, (Suppl 1),
105–112.

Pearson,P., Francomano,C., Foster,P., Bocchini,C., Li,P. and McKu-
sick,V. (1994) The status of online Mendelian inheritance in man
(OMIM) medio 1994. Nucleic Acids Res., 22, 3470–3473.

Schulze-Kremer,S. (1997) Adding semantics to genome databases:
towards an ontology for molecular biology. Ismb, 5, 272–275.

Schulze-Kremer,S. (1998) Ontologies for molecular biology. Pacific
Symp. Biocomput., 695–706.

Schulze-Kremer,S. and King,R.D. (1992) IPSA-inductive protein
structure analysis. Protein Eng, 5, 377–390.

Tarczy-Hornoch,P., Covington,M.L., Edwards,J., Shannon,P.,
Fuller,S. and Pagon,R.A. (1998) Creation and maintenance of
helix, a web based database of medical genetics laboratories, to
serve the needs of the genetics community. Proc. AMIA Symp.,
341–345.

Yu,H., Friedman,C., Rzhetsky,A. and Kra,P. (1999) Representing
genomic knowledge in the UMLS semantic network. AMIA 1999
Fall Annual Symposium.

1128


