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Introduction

Sophisticated cooperative reasoning among agents
requires that the agents be able to share models of their
reasoning processes. Developing intelligent systems cost-
effectively necessitates that components be reused. In
order to facilitate sharing and reusing knowledge among
distributed (knowledge-based) applications, we have been
developing a canonical representation for acquiring and
transmitting semantics. This representation will include
both a scheme for representing semantics and a hierarchy
of concepts used to describe predicates.

We have been developing and formalizing a hierarchy
describing knowledge to facilitate (1) the specification 
knowledge and assumptions employed by a system, (2)
transferring knowledge among agents (applications) in 
system and (3) for resolving conflicts among these agents
(Figure 1). We are utilizing derivatives of object
diagrams [Rumbaugh91], semantic networks [CQ69],
and conceptual dependencies [SR74] to describe the
fundamental concepts which underlay various algorithms
and knowledge representations. By formally describing
higher level concepts via these fundamental concepts, we
intend to reason about the semantics of and translate
knowledge among applications employing different
knowledge representations. This hierarchy of concepts
will be validated by performing analysis on a complex
domain (probably plastics manufacturing) to ensure that
the formalisms used to describe elements in the hierarchy
are sufficient.

Background

Attempts at sharing knowledge among applications
have largely been based upon various knowledge
acquisition methods. Such methods include KADS
[WSB92], KL-ONE [BS, 85] and Conceptual Graphs
[Sowa84]. The implicit understanding is that
experimenters using such methods would use tools
supporting the methods. Examples of such tools are the
Shelley integrated workbench [AWR92] and the
PROTEGE system for constructing knowledge editors

[Musen89]. Our approach here is closest to Conceptual
Graphs, in that the motivation is from a linguistic basis.

We are using derivatives of object diagrams,
conceptual dependencies, and semantic networks. We
are employing conceptual dependencies because of their
success in natural language processing; natural language
processing intuitively seems a more difficult problem
then describing the exchange of knowledge, and so
should suffice. We are employing a derivative of object
diagrams for (1) inheritance and (2) abstraction. Object
diagrams facilitate organizing the concepts contained in
a specific application.

Approach

The initial thrust of our project has been to analyze a
domain (manufacturing) simply to provide a mechanism
for refining the problem. We are also analyzing the
standards and taxonomies/data dictionaries developed in
relevant efforts. The analysis is to provide a basis for
creating a taxonomy of knowledge. This hierarchy will
support the object-oriented models (in a partial reference
architecture) by defining a lattice of semantic concepts.
The most "atomic" elements of the lattice will be the
primitives (probably Product Data Exchange
Specification measurement units, basic transformation
operators, and conceptual-dependency concepts) behind
any system reflecting this work. Lower level concepts
will be used to define higher level concepts; we will use
equations to define mathematically or symbolically an
object and its attributes, such as acceleration, in terms of
other objects, such as velocity.

We have modified object diagrams to facilitate pointers
to (1) our semantic network/conceptual dependency
information and (2) functions to perform the actual
translation of concepts. For example, entities in Figure 2
would include pointers to numerous functions, the
simplest being those performing translation, rotation and
scaling, to accomplish this conversion. More complex
functions are required when translation must be
performed across dimensions, for example, three-
dimensional CSG representations to two-dimensional
planes.
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The modified object diagrams are being used to create
higher level concepts in the hierarchy, such as materials;
physical items; configurations; parts; rules about parts;
and mechanisms for resolving conflicting part
requirements, manufacturing operations and deductions
(Figure 3). We are attempting to build dual versions 
each model as we proceed. The first version is hierarchy
defined to minimize the semantic assumptions made by
the lowest level elements in the hierarchy (which in turn
define higher level elements); by minimizing the number
of primitives this should facilitate provable correctness
and an exhaustive reasoning capability. The other
version of the models contains functional programmed
"hacks" to expedite real-time processing.

We have also been exploring derivatives of conceptual
dependencies to represent the concepts of the hierarchy
from a linguistic standpoint. This, in turn, provides a
basis for defining the intension of concepts (as opposed to
the extension of concepts taken by many approaches
using only predicate calculus derivatives in defining
crucial concepts, such as the predicates used in
knowledge.) Hence, the object models contain pointers to
derivatives of conceptual dependencies (Figure 4)
providing possible contexts for the objects in various
applications. We are currently addressing shortcomings
in semantic dependencies to accommodate inheritance
and a better representation of constraints.

A promising direction we are currently exploring uses
"feature terms" as formal explications of conceptual
dependencies. Feature description languages [Smolka92]
subsume unification grammars used in computational
linguistics and terminological logic (such as KL-ONE)
used in knowledge representation. Feature terms include
the v-terms of the logic programming language LIFE
[Ait-Kaci94, AP93]. [Smolka92] shows that feature
description languages can be viewed as a type of
language facilitating of first-order predicate logic with
equality and develops a Tarski-style semantics for them.
Ait-Kaci [APG93] develops a formal system of order-
sorted feature (OSF) terms that logically models flexible
record objects with recursive class definitions that
accommodate multiple inheritance. Sort definitions are
viewed as axioms forming an OSF theory. OSF theory
unification, then, is a process of normalizing OSF terms
that enforces (possibly inherited) structural constraints
imposed on sorts by their definitions.

Status
We have implemented the modified object diagrams

and conceptual dependencies in a "toy" system to
crystallize ideas. The system considers transferring
information between a CAD system and design critiques
in the assembly (manufacturing) domain. The system has
been implemented in Prolog and is being ported to LIFE
(to support inheritance). Our methods are designed to 
extensible, such that an engineer in almost any domain
could extend the hierarchy for his application (given
enough time).

We are still building the actual hierarchy of concepts.
The hierarchy will certainly incorporate concepts from
manufacturing standards such as PDES and various ISO
standards. The formalizing mechanisms and hierarchy
will be refined, verified and validated through further
domain analysis and experimentation during later steps
of this endeavor. Our first genuine application will
probably result from our work with a major, U.S.
manufacturer.

We will use the hierarchy to develop efficient
algorithms to facilitate transferring information among
agents. Such algorithms would enable agents to transmit
their underlying semantics (such as assumptions) and the
characteristics of their procedural knowledge employed
to other agents (i.e., to have agents "teach" other agents).
Similarly, agents could share semantic knowledge to
develop models of each other’s thought processes. We
will analyze the hierarchy and knowledge protocol to
determine their (1) algebraic and computational
properties, (2) descriptive limitations and (3) underlying
requirements (such as synchronization required.)

The algorithms and hierarchies will be realized as
software as resources permit. The "logically sound"
models will be implemented in LIFE [Ait-Kaci94]. LIFE
incorporates aspects of logic, functional, and object-
oriented programming. Our "hacked" version will be
developed via "wrappers" to a cooperative reasoning
framework (such as the Distributed Artificial Intelligence
Toolkit [Goldstein94]). We would also like to consider
the requirements of a (graphical or language-based)
knowledge-sharing mechanism. Finally, we intend to
realizing our work by at least beginning the development
of an application (probably a concurrent engineering
testbed).



Goal: Translating between Knowledge Representation Schemes

Vision Package

Imaging Information

Lines, Edge Detection Algorithm

Canonical Representation

-...,
""O Network

CAD Package

Canonical Representation

CAD Information

Vectors, Rules about Vectors

Figure 1: Transferring Knowledge among Applications
A canonical representation can be used to translate to and from an application’s specific

knowledge representation. We intend to develop a hierarchical canonical representation with
computable elements at the lowest level of the hierarchy to preserve the semantics of knowledge

translated to and from the canonical representation.
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Goal: A Formalized Hierarchy containing Computable Members
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Figure 3: Partial Lattice of Informational Concepts
A trivial lattice of informational concepts. The actual lattice developed will incorporate

attributes, methods and definitions (e.g., equations) describing concepts. The lattice will also 
split into separate, distinct hierarchies to reflect various dependencies.
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Figure 4: Conceptual Dependency reflecting Usage of an Object
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