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Abstract We consider the problem of predicting the

spatial field of particle-size curves (PSCs) from a sample

observed at a finite set of locations within an alluvial

aquifer near the city of Tübingen, Germany. We interpret

PSCs as cumulative distribution functions and their deriv-

atives as probability density functions. We thus (a) embed

the available data into an infinite-dimensional Hilbert

Space of compositional functions endowed with the

Aitchison geometry and (b) develop new geostatistical

methods for the analysis of spatially dependent functional

compositional data. This approach enables one to provide

predictions at unsampled locations for these types of data,

which are commonly available in hydrogeological appli-

cations, together with a quantification of the associated

uncertainty. The proposed functional compositional kriging

(FCK) predictor is tested on a one-dimensional application

relying on a set of 60 PSCs collected along a 5-m deep

borehole at the test site. The quality of FCK predictions of

PSCs is evaluated through leave-one-out cross-validation

on the available data, smoothed by means of Bernstein

Polynomials. A comparison of estimates of hydraulic

conductivity obtained via our FCK approach against those

rendered by classical kriging of effective particle diameters

(i.e., quantiles of the PSCs) is provided. Unlike traditional

approaches, our method fully exploits the functional form

of PSCs and enables one to project the complete infor-

mation content embedded in the PSC to unsampled loca-

tions in the system.

Keywords Geostatistics � Compositional data �
Functional data � Particle-size curves � Groundwater �
Hydrogeology

1 Introduction

The geostatistical characterization of the spatial distribu-

tion of particle-size curves (PSCs) is a key issue in earth

sciences. These types of data are typically based on stan-

dard grain sieve analysis of soil samples, yielding a dis-

crete representation of the curves by measuring selected

particle diameters which, in turn, correspond to quantiles of

the particle-size curve. The information can then be

employed to classify soil types [e.g., Riva et al. (2006) and

references therein], to infer hydraulic parameters such as

porosity and hydraulic conductivity [e.g., amongst others,

Lemke and Abriola (2003); Riva et al. (2006, 2008, 2010);

Bianchi et al. (2011); Tong et al. (2010); Barahona-Palomo

et al. (2011) and references therein], or, in the presence of

inorganic compounds, to provide estimates of the porous

medium sorption capacity [e.g., Hu et al. (2004) and ref-

erences therein].

Classification of aquifer geomaterials and estimation of

their spatial arrangement is relevant to properly reconstruct

the internal architecture of groundwater systems which can

play a critical role in controlling contaminant spreading on

different scales. Methodologies which are typically

employed for the estimation of the location of internal
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boundaries between lithofacies take advantage of geologi-

cal and/or hydraulic information and include, amongst

other methods, sequential indicator approaches [Deutsch

and Journel (1997); Guadagnini et al. (2004) and refer-

ences therein], Nearest-neighbor classification [e.g.,

Tartakovsky et al. (2007)], or Support Vector Machines

(Wohlberg et al. 2006).

Several techniques widely employed for the estimation

of aquifer hydraulic parameters are based on particle-size

information. They usually rely on spatially dependent

particle-size data, measured from samples collected at a

discrete set of points in a reservoir. In this context, the

knowledge of the functional form of PSCs is not fully

exploited in typical aquifer reconstruction practice. As an

example of the way this information content is employed,

we mention the work of Riva et al. (2006). These authors

perform a geostatistical facies-based parametrization of the

lithofacies occurring within a small scale alluvial aquifer

system. They rely on sampled PSCs and apply a standard

multivariate cluster analysis technique to classify these.

They then perform indicator variography of the identified

classes and provide estimates of the spatial distribution of

lithotypes in the system. Hydraulic conductivity values are

then assigned to the blocks of a numerical flow and

transport model upon projecting only the 10th and 60th

quantiles of the observed PSCs on the computational grid

through kriging. A similar approach has been employed,

amongst other authors, by Bianchi et al. (2011). In this

sense, the information content embedded in the particle-

size curve is only partially transferred to unsampled loca-

tions in the system, through few selected local features (in

the example above, the 10th and 60th quantiles). Instead, a

complete characterization of the spatial distribution of

lithotypes in a reservoir attributes would require embed-

ding the full particle-size curve into the geostatistical

analysis.

In addition to this, having at our disposal the spatial

arrangement of all the components of soil PSCs would

allow improved predictions of soil hydraulic attributes

through pedotransfer functions [e.g., Nemes et al. (2003);

Pachepsky and Rawls (2004), and reference therein] as

well as of soil geochemical parameters which are relevant

in sorption/desorption and cation exchange processes.

These problems motivate the development of advanced

geostatistical techniques which enable one to treat geore-

ferenced PSCs. To this end, we model PSCs as cumulative

distribution functions (CDFs) and analyze their derivatives,

by coherently considering them as probability density

functions (PDFs). We use two viewpoints to interpret these

types of data: (a) a Functional Data Analysis [FDA,

Ramsay and Silverman (2005)] and (b) a Compositional

Data Analysis [CoDa, Aitchison (1982); Aitchison (1986);

Pawlowsky-Glahn and Buccianti (2011)] approach. The

key idea underlying FDA methods is to view each datum

(i.e., each PSC), even though discretely observed, as a

unique entity belonging to a suitable functional space. In

this way, the curse of dimensionality is overcome allowing

the statistical analysis of high-dimensional (virtually infi-

nite-dimensional) data. On the other hand, CoDa deals with

data which convey only relative information: a B-part

composition is a B-dimensional vector whose components

are proportions (or percent amounts) of a whole according

to a certain partition of the domain. Thus, a B-part com-

position has B non-negative components, constrained to

sum up to a constant (usually set to unity or 100) and

belongs to a (B - 1)-dimensional simplex. Probability

density functions are functional and compositional data,

i.e., they are infinite-dimensional objects which are con-

strained to be non-negative and to integrate to unity. They

can be considered as compositional data obtained by

refining the domain partition until (infinite) infinitesimal

parts are obtained (Egozcue et al. 2006). In this framework,

the geostatistical methodology we propose to treat spatially

dependent functional compositional data takes advantage

of the strengths of both the FDA and CoDa approaches.

An increasing body of literature on the geostatistical

analysis of functional data is available, either in the sta-

tionary [e.g., Goulard and Voltz (1993); Nerini et al.

(2010); Delicado et al. (2010) and references therein] or

non-stationary setting (Menafoglio et al. 2013; Caballero

et al. 2013). A relatively rich literature is also available in

the field of spatially dependent compositional data [e.g.,

Tolosana-Delgado et al. (2011); Tolosana-Delgado et al.

(2011); Pawlowsky-Glahn and Olea (2004); Leininger

et al. (2013) and references therein]. In this context, par-

ticle-size fractions have been treated as discrete composi-

tional data [e.g., Odeh et al. (2003); Buchanan et al.

(2012)] and compositional techniques have been employed

to predict the soil composition at unsampled location.

Albeit these techniques take properly into account the

compositional constraints in PSCs, they are only suited for

low-dimensional compositions and their application can be

problematic if the dimensionality increases (i.e., curse of

dimensionality). The data dimensionality is closely related

to the resolution of the measurement technique which is

employed: modern sieve-analysis techniques enable one to

obtain high-resolution PSC, i.e., high-dimensional data,

which need to be treated with advanced techniques.

However, to the best of our knowledge, none of the

available literature works addresses the problem of the

geostatistical analysis of high-dimensional and functional

particle-size data.

Here, we focus specifically on the formulation of new

geostatistical models and methods for functional compo-

sitional data. The problem of kriging PDFs has been con-

sidered also by Salazar Buelvas (2011), who exploits a
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logarithmic transformation to deal with the data constraint.

Our approach is however different and move from the

geostatistical methodology proposed in (Menafoglio et al.

2013) and the mathematical construction developed by

Egozcue et al. (2006) and further investigated in (van den

Boogaart et al. 2010). Our approach shares with FDA and

CoDa the foundational role of geometry. Hilbert space

theory allows FDA methods to cope with the infinite-

dimensionality of the data [e.g., Ramsay and Dalzell

(1991); Ferraty and Vieu (2006); Horváth and Kokoszka

(2012) and references therein], while the log-ratio approach

grounds the Aitchison geometry, which properly accounts

for the compositional nature of the data [e.g., Pawlowsky-

Glahn and Egozcue (2001); Pawlowsky-Glahn and Egoz-

cue (2002)]. Here, we employ the Aitchison geometry

within a Hilbert Space method to accommodate both the

functional and the compositional nature of the data.

Even though the developments illustrated in this work

are motivated by the analysis of the particle-size data

presented in Sect. 2, our methodology is general and allows

performing a geostatistical analysis of any kind of com-

pactly supported functional compositional data, provided

that these can be embedded in the Hilbert Space endowed

with the Aitchison geometry described in Sect. 3. We

introduce the model and illustrate the methodology within

a stationary setting, in view of the considered application.

For completeness, the theoretical developments associated

with a non-stationary approach are reported in Appendix 1.

Among the practical issues which need to be tackled

when dealing with functional data, we consider the prob-

lem of their preprocessing when only discrete observations

are available, as in our application: we propose the use of a

smooth estimator based on Bernstein Polynomials and

prove its consistency in Sect. 4 and Appendix 2, respec-

tively. Section 5 illustrates applications of our functional

compositional kriging (FCK) technique to the target

dataset.

2 Field data

The data we consider are part of the dataset collected at an

experimental site located near the city of Tübingen, Ger-

many. The aquifer is made up by alluvial material overlain

by stiff silty clay and underlain by hard silty clay. The site

characterization has been based on stratigraphic informa-

tion collected at a set of monitoring and pumping wells

[Martac and Ptak (2003) and references therein]. The sat-

urated thickness of the aquifer is about 5 m and all bore-

holes reach the bedrock which forms the impermeable

aquifer base.

The extensive investigations performed at the site

comprise field- and laboratory-scale data collection and

analysis. Available data include PSCs, pumping and tracer

tests as well as down-hole impeller flowmeter measure-

ments. A complete description of the analyses performed at

the site has been presented by Riva et al. (2006, 2008), to

which we refer for additional details. The available data

have been partially employed by Neuman et al. (2007,

2008) in the context of (a) the application of a stochastic

interpretation of the results of a series of cross-hole

pumping tests and (b) a geostatistically-based character-

ization of multiscale distribution of hydraulic conductivity

at the site. Barahona-Palomo et al. (2011) compared

hydraulic conductivity estimates obtained through PSCs

and impeller flowmeter measurements. Riva et al. (2006,

2008, 2010) performed numerical Monte Carlo analyses of

a tracer test and well-related capture zones at the site upon

relying on the information provided by the available PSCs.

The latter were measured on core samples associated with

characteristic length ranging from 5 to 26.5 cm and indi-

cating the occurrence of heterogeneous and highly condu-

cive alluvial deposits. A total of 411 PSCs collected along

12 vertical boreholes are available within the site. PSCs are

reconstructed through grain sieve analysis performed with

a set of 12 discrete sieve diameters. These data have been

subject to cluster analysis to classify the spatial distribution

of hydrofacies in the system through indicator-based vari-

ogaphy and Monte Carlo numerical simulations (Riva et al.
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Fig. 1 Available particle-size data. Vertical coordinates correspond

to the data sampling locations. Data are supported on the compact

domain (dmin = 0.001 mm; dmax = 200 mm); dmin and dmax are the

smallest and largest measured particle-size diameters, respectively;

elevation is given in meters above sea level (m a.s.l.)
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2006). Characteristic particle diameters estimated from the

PSCs have been employed to provide estimates of porosity

and hydraulic conductivity which have then formed the

basis for three-dimensional simulations of the heteroge-

neous structure of the aquifer hydraulic attributes.

Here, we focus on the 60 PSCs which were collected in

the quaternary sand and gravel depositional unit at well

B5 at the site. Figure 1 depicts the set of PSCs available at

the well together with the vertical location of the sampling

points. For ease of reference, each curve has been attrib-

uted to a vertical coordinate which coincides with the

center of the sampling interval from which particle-size

data have been extracted. The data are grouped within three

main regions along the borehole and are mainly associated

with (a) moderately sorted gravel with about 14 % sand

and very few fines, and (b) poorly sorted gravel with about

24 % sand and few fines (Riva et al. 2006). This constitutes

a rather unique data-set that enables us to explore exten-

sively the key features and potential of the methodology we

present which is conducive to the estimation of the com-

plete particle-size distribution at unsampled locations.

3 A kriging approach for particle-size distributions

characterization

3.1 A stochastic model for particle-size distributions

Let ðX;F;PÞ be a probability space and consider the ran-

dom process fvs; s 2 Dg;D � R
d; whose elements are

PSCs. Each element vs; s 2 D; is a [0,1] valued random

function defined on a compact domain T ¼ ½tm; tM�; i.e., vs
is measurable and, for x 2 X; vsðx; �Þ : T ! ½0; 1�: Given
a particle size t 2 T ; vsð�; tÞ indicates the random fraction

of grains with diameter smaller than or equal to t. Hence,

each function vsðx; �Þ is a CDF.

The usual vectorial structure for functional spaces,

based on point-wise notions of sum and product by a real

constant, is not appropriate when dealing with CDFs

because the space of CDFs is not closed with respect to

such operations (for instance, the point-wise sum of two

CDFs is not a CDF). Instead, an approach based on the

Aitchison geometry (Aitchison 1982, 1986) is more

appropriate to treat distribution functions because it

accounts for their compositional nature. In particular,

Aitchison geometry is well suited for PDFs, which are

(discrete or continuous) compositions, in the sense that

they provide only relative information and are constrained

to sum (or integrate) to a constant.

We thus consider the derivative process fYs; s 2 Dg;
defined on the probability space introduced above and such

that, for s 2 D, x 2 X:

Ysðx; �Þ : T ! ð0;þ1Þ; s:t:

Z

T

Ysðx; tÞdt ¼ 1; x 2 X:

We assume that, for x 2 X; Ysðx; �Þ ¼ dvsðx; �Þ=dt is the

density function of the random probability measure l

defined, for all a B b, by:

lsðx; ða; b�Þ ¼ vsðx; bÞ � vsðx; aÞ:

We call Ys the particle-size density function in s 2 D:

Let us denote with L2ðT Þ the space of (equivalence

classes of) real functions on T that are square-integrable

with respect to the Lebesgue measure,

L2ðT Þ ¼ f : T ! R; such that

Z

T

jf ðtÞj2dt\1

8
<

:

9
=

;;

and call A2ðT Þ the space of (equivalence classes of) non-

negative real functions on T with square-integrable

logarithm, i.e. (Egozcue et al. 2006):

A2ðT Þ ¼ ff : T ! R; such that f� 0 a:e: and logðfÞ
2 L2ðT Þg:

In this work we assume that Ysðx; �Þ 2 A2ðT Þ for all

s 2 D;x 2 X:
Egozcue et al. (2006) provide A2 with a Hilbert space

structure on the basis of its relationship with the space ‘2 of

square-summable real sequences, endowed with the inner

product hx; yi ¼
P

i� 1 xiyi; x ¼ fxigi� 1 and y = {yi}i C 1

being sequences in ‘2. Indeed, if fukgk� 0 is an orthonor-

mal basis of L2ðT Þ such that u0 ¼ 1=
ffiffiffi
g

p
(g = tM - tm),

each element f 2 A2 admits the representation logðf Þ ¼
P

k� 0 akuk: If we define the operator T : A2ðT Þ ! ‘2 as

Tf = {ak}k C 1, i.e., the operator associating to f 2 A2 the

Fourier coefficients of logðf Þ 2 L2 (except a0), then the

following result holds.

Proposition 1 [Egozcue et al. (2006)] A2ðT Þ endowed

with perturbation � and powering � operations,

f � g ¼ T�1ðTf þ TgÞ; c� f ¼ T�1ðc � Tðf ÞÞ;
f ; g 2 A2; c 2 R;

and the Aitchison inner product

hf ; giA2 ¼ hTf ;Tgi‘2 ; f ; g 2 A2ðT Þ; ð1Þ

is a separable Hilbert space.

Some of the basic definitions and properties of the

functional space A2 are recalled in the following Subsec-

tions. Furthermore, we show in Sect. 3.3 that an isometric

isomorphism exists between A2ðT Þ and L2ðT Þ: Additional
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properties and generalizations are reported in (Egozcue

et al. 2006; van den Boogaart et al. 2010).

3.2 A kriging predictor for particle-size densities

We indicate with C½f � the closure of an absolutely inte-

grable function f on T ; i.e.,

C½f � ¼ fR
T f ðtÞdt ;

and denote with �;� the perturbation and powering

operators in A2ðT Þ; respectively, acting as:

f � g ¼ C½fg�; f ; g 2 A2ðT Þ
a� f ¼ C½f a�; a 2 R; f 2 A2ðT Þ:

Egozcue et al. (2006) prove that these two operators are the

same as those defined in Proposition 1 and that

ðA2ðT Þ;�;�Þ is a vector space. Note that the neutral

elements of perturbation and powering are e(t) = 1/g and

1, respectively. We denote with f 	 g the difference in the

Aitchison geometry between f and g, namely the pertur-

bation of f with the reciprocal of g, i.e., f 	 g ¼ f�
C½1=g�; f ; g 2 A2ðT Þ:

For s 2 D; we indicate with ms the Fréchet mean of Ys

with respect to the Aitchison geometry on A2ðT Þ; namely

(Fréchet 1948):

ms ¼ EA2 ½Ys� ¼ arginf
Y2A2ðT Þ

E½kYs 	 Yk2A2 �

¼ arginf
Y2A2ðT Þ

Z

X

kYsðx; �Þ 	 Yð�Þk2A2PðdxÞ:

Following (Menafoglio et al. 2013), for any given s 2 D;
we represent the element Ys as a perturbation of the mean

function ms with a neutral-mean stochastic residual ds

Ys ¼ ms � ds;

EA2 ½ds� ¼ 1=g:
ð2Þ

We assume that the process Ys can be represented by a

global second-order stationary model. Hence, the process is

characterized by a spatially constant mean function

(ms ¼ m; for all s 2 D), a trace-covariogram C : Rd ! R

and a trace-variogram c : Rd ! R; which are respectively

defined as:

Cðsi � sjÞ ¼ CovA2ðYsi ;YsjÞ ¼ E½hYsi � m;Ysj � miA2 �;
si; sj 2 D;

ð3Þ

2cðsi � sjÞ ¼ VarA2ðYsi 	 YsjÞ ¼ E½kYsi 	 Ysjk2A2 �;
si; sj 2 D:

ð4Þ

Given a sample Ys1 ; . . .;Ysn of fYs; s 2 Dg; the Ordin-

ary Kriging predictor of Ys0 ; at an unsampled location s0 2
D; is the best linear unbiased predictor (BLUP) in the

Aitchison geometry:

Y

s0
¼a

n

i¼1

k
i � Ysi : ð5Þ

Here, the weights k
1; . . .; k


n 2 R minimize the Aitchison

variance of the prediction error under the unbiasedness

constraint:

ðk
1; . . .; k
nÞ ¼ argmin
k1;...;kn2R:

Yks0
¼an

i¼1
ki�Ysi

VarA2ðYk

s0
	 Ys0Þ s:t:

EA2 ½Yk

s0
� ¼ m:

ð6Þ

The problem of kriging functional data has been tackled

in (Menafoglio et al. 2013) within the general framework

of (possibly non-stationary) functional processes valued in

any separable Hilbert Space. Hence, problem (6) can be

solved by exploiting this general approach which we recall

here for a stationary setting.

Proposition 2 [Menafoglio et al. (2013)] Assume that

R ¼ ðCðhi;jÞÞ 2 R
n�n; hi;j ¼ si � sj; i; j ¼ 1; . . .; n; is a

positive definite matrix. Then problem (6) admits a unique

solution ðk
1; . . .; k
nÞ 2 R
n; which is obtained by solving:

ð7Þ

f being the Lagrange multiplier associated with the unbi-

asedness constraint. The ordinary kriging variance of

predictor (5) is then

r2
ðs0Þ ¼ VarA2ðY

s0
Þ ¼ Cð0Þ �

Xn

i¼1

k
i Cðhi;0Þ � f
: ð8Þ

In the light of expression (8), the following Chebyshev

inequality can be provided for the prediction errors:

PðkYs0 	 Y

s0
kA2[ j � r
ðs0ÞÞ\

1

j2
ð9Þ

Note that this inequality can be used to build confidence

bands on the norm of the prediction errors.

As in classical geostatistics (Cressie 1993), under sta-

tionarity conditions the only quantity which is required to

be estimated is the trace-semivariogram c, as

CðhÞ � Cð0Þ ¼ cðhÞ; h 2 R
d being a lag, or separation

distance vector. To this end, a method of moments (MoM)

estimator bc can be employed:
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ĉðhÞ ¼ 1

2jNðhÞj
X

ði;jÞ2NðhÞ
kYsi 	 Ysjk2A2 ; ð10Þ

where NðhÞ denotes the set of location pairs separated

by h and jNðhÞj its cardinality. A discretized version of

ĉ is considered in typical applications and a valid vario-

gram model is fitted to observations (Chilès and Delfiner

1999).

The approach we present can also be employed in a non-

stationary setting. For completeness, we report the details

of this case in Appendix 1.

3.3 Centered log-ratio transform

Here, we illustrate a representation of the process through

a centered log-ratio transform. In addition to its theoret-

ical value, this representation enables one to considerably

simplify the computation of the quantities of interest (e.g.,

the trace-variogram). Our developments rely on the

properties of the space A2ðT Þ derived in (Egozcue et al.

2006).

Whenever fYs; s 2 Dg is a random field valued in A2

which follows model (2) and has finite variance, i.e.,

E½kdsk2A2 �\þ1 for all s 2 D; there exist a (deterministic)

sequence flkðsÞgk� 0; a zero-mean random sequence

fnkð�; sÞgk� 0; both valued in ‘2, and an orthonormal

basis—also called Hilbert basis—fWkgk� 1 of A2, such

that:

Ysðx; �Þ ¼a1
k¼1

ðlkðsÞ þ nkðx; sÞÞ �Wkð�Þ; x 2 X:

Here, lkðsÞ ¼ hms;WkiA2 ; nkðsÞ ¼ hds;WkiA2 ; k� 1; s 2 D:

The sequences flkð�; sÞgk� 0 and fnkð�; sÞgk� 0 satisfy the

decomposition:

logðYsðx; �ÞÞ ¼
X1

k¼0

ðlkðsÞ þ nkðx; sÞÞukð�Þ; x 2 X

provided that fukgk� 0 is an orthonormal basis of L2ðT Þ
such that u0 ¼ 1=

ffiffiffi
g

p
(g = tM - tm) and Wk ¼

C½expfukg�; k� 1 [see also (Egozcue et al. 2006)].

The process fZs; s 2 Dg defined on ðX;F;PÞ as

Zsðx; tÞ ¼ logðYsðx; tÞÞ �
1

g

Z

T

logðYsðx; zÞÞdz;

x 2 X; t 2 T ; s 2 D; ð11Þ

satisfies

Zsðx; �Þ ¼
X1

k¼1

ðlkðsÞ þ nkðx; sÞÞukð�Þ; ð12Þ

since [see Egozcue et al. (2006)]

logðYsðx; �ÞÞ ¼
Xþ1

k¼0

ðlkðsÞ þ nkðx; sÞÞuk

¼
Xþ1

k¼1

ðlkðsÞ þ nkðx; sÞÞuk þ
1

g

Z

T

logðYsðx; tÞÞdt:

Each element Zs of the process fZs; s 2 Dg is a cen-

tered log-ratio (clr) transform of the corresponding ele-

ment Ys; in analogy with the finite- dimensional case

(Pawlowsky-Glahn and Egozcue 2001). Note that the A2

inner product between two elements f ; g 2 A2ðT Þ can be

computed as an L2 inner product between the clr transforms

clrðf Þ; clrðgÞ 2 L2ðT Þ:

hf ; giA2 ¼
Z

T

logðf ðtÞÞ logðgðtÞÞdt � 1

g

Z

T

logðf ðtÞÞdt

�
Z

T

logðgðtÞÞdt ¼
Z

T

logðf ðtÞÞ � 1

g

Z

T

logðf ðzÞÞdz

0

@

1

A

8
<

:

� logðgðtÞÞ � 1

g

Z

T

logðgðzÞÞdz

0

@

1

A

9
=

;dt

¼ hclrðf Þ; clrðgÞiL2

the first equality above being proven by Egozcue et al.

(2006).

The correspondence between the distributional features

of the processes fYs; s 2 Dg in A2ðT Þ and fZs; s 2 Dg in

L2ðT Þ is apparent from identity (12), as the clr transform

defines an isometric isomorphism between A2ðT Þ and

L2ðT Þ: In particular, the Fréchet mean of process fYsg
with respect to the Aitchison geometry on A2ðT Þ coincides
with the Fréchet mean of fZsg with respect to L2ðT Þ:
Moreover, stationarity and isotropy assumption for fYsg in

A2ðT Þ can be stated in terms of the corresponding prop-

erties of fZsg in L2ðT Þ: Notice that the definition (11) of

process fZs; s 2 Dg allows writing:

CovA2ðYsi ;YsjÞ ¼ CovL2 Zsi ;Zsj

� �
;

VarA2ðYsi 	 YsjÞ ¼ VarL2 Zsi �Zsj

� �
:

Therefore, the trace-variogram and the trace-covariogram

of fYsg in the Aitchison geometry coincide with the cor-

responding quantities associated with fZsg with respect to

the L2 geometry.

The kriging prediction in A2ðT Þ can then be performed

by treating the transformed sample Zs1 ; . . .; Zsn in the L
2ðT Þ

geometry, as:
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Y

s0
¼an

i¼1
k
i � Ysi ¼ C

Yn

i¼1

Yk
i
si

" #

¼ C exp
Xn

i¼1

k
i logðYsiÞ
( )" #

¼ C exp
Xn

i¼1

k
iZsi

( )" #

¼ clr�1ðZ

s0
Þ:

The above isometric isomorphism enables one to per-

form the required calculation by exploiting efficient rou-

tines which are designed for data belonging to L2,

eventually back-transforming to A
2 the results. We note

that the integrals appearing in (11) and (13) can be com-

puted by matrix products when data are projected on typ-

ically employed bases (e.g., Fourier, B-splines) (Ramsay

and Silverman 2005), or by quadrature schemes otherwise.

We adopt the latter strategy in our application, which is

illustrated in Sect. 5.

4 Smoothing discrete particle-size data with Bernstein

Polynomials

A key assumption underlying the spatial prediction meth-

odology here proposed is that data are curves which can be

evaluated at any point t 2 T : If PSCs were already

observed in their functional form, the methodology illus-

trated in Sect. 3 could be directly applied, without any

particular data preprocessing. As detailed in Sect. 2, in the

present case study an estimate of the particle-size curve at a

given spatial location s is available only for a set of N = 12

sieve diameters.

As a way of example, Fig. 2a reports the raw datum

available at the location s1 (elevation = 301.03 m a.s.l.) for

the log-transformed diameters, t1, … , t12 (symbols). This

corresponds to N = 12 observations fvs1;mðt1Þ; . . .; vs1;m
ðt12Þg of the empirical cumulative distribution function

(ECDF) vs1;m; m being the number of particle diameters

measured within the soil sample. The ECDF, in turn, is an

estimate of the underlying CDF, i.e., the particle-size curve

vs1 (see also Appendix 2). In this case, which is typically

associated with several practical field situations, a prepro-

cessing of the raw data is required to obtain smooth esti-

mates of the PSCs and associated densities.

Here, we introduce a smoothing procedure for PSCs

based on Bernstein Polynomials. The use of Bernstein

Polynomials to provide a smooth estimate of a CDF is well

documented in the literature [e.g., (Vitale 1975), (Petrone

1999), (Leblanc 2010) and references therein] and is par-

ticularly suited for CDFs with compact support (Babu et al.

2002). We follow the approach of Babu et al. (2002), who

develop a smooth estimator for CDFs based on the ECDF.

To cope with the partial information available from grain

sieve analysis, we propose first to linearly interpolate the

available measurements to obtain a continuous approxi-

mation of the ECDF and then to smooth this through

Bernstein Polynomials. We remark that the estimator here

defined provides also a smooth estimate of the particle-size

density, unlike the linear interpolant of the available data.

We refer to Appendix 2 for the mathematical construction

of the estimator and the proof of the following properties:

(a) the obtained estimates range in [0,1] and are monoton-

ically non-decreasing (i.e., they fulfills the requirements of

a CDF); (b) the corresponding densities can be explicitly

computed and (c) the estimator is strongly consistent for the

underlying CDF under infill domain sampling (Theorem 1).

The proposed estimator has been applied to each raw

particle-size curve depicted in Fig. 1. Particle diameters are

log-transformed, as they are approximately uniformly dis-

tributed between log(0.063) and log(100) [log(mm)], when

considered on a log-scale. The support of the PSCs has

been assumed to be compact, upon setting the data support

as T ¼ ½logð0:001Þ; logð200Þ�; consistent with the type of

lithology at the site.

The number of Bernstein Polynomials employed for the

smoothing procedure has been selected according to the

median sum of squared error (SSE) between raw data and

smoothed PSCs evaluated at the 12 observed particle

diameters. Figure 3a depicts boxplots of the SSE against

the number of basis functions employed. No evident elbow

in the median SSE appears in the figure. Therefore, the

number of basis functions has been selected by setting a

tolerance threshold of 0.01 (corresponding to m = 140) on

the median SSE.

Figure 3b depicts the resulting smoothed curves (solid

lines) juxtaposed to the available data (symbols). These

results suggest that the overall features of the available

dataset are well represented by the smoothing procedure. It

can be noticed that the left tail of the distributions are

associated with a uniform behavior, since the PSCs appear
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Fig. 2 Available particle-size raw datum at elevation z = 301.03 m

a.s.l. (symbols), its interpolant (dashed curve) and PSC smooth

estimate (solid curve). Vertical dotted lines mark the N = 12 log-

transformed sieve diameters, t1, … , tN
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to display a linear dependence on the logarithm of the

diameter. Note that direct observations are virtually absent

at the left tails, as the smallest particle diameter recorded is

equal to 0.063 mm. Hence, the observed uniform behavior

of the smoothed curves can be considered as an artifact

chiefly due to lack of a priori information on the left tail,

leading to data censoring. This problem could eventually

be circumvented upon adopting an improved experimental

design, possibly based on the indications of Theorem 1 in

Appendix 2.

Finally, Fig. 3c depicts the vertical distribution of the

particle-size densities computed from the smoothed data

reported in Fig. 3b.

5 Results

5.1 Geostatistical analysis of the field data

Here, the notation introduced in Sect. 3 is employed as

follows: quantities vs1 ; . . .; vsn denote the smoothed version

of PSCs observed at locations s1; . . .; sn (solid lines in

Fig. 3b); Ys1 ; . . .;Ysn indicate the smoothed particle-size

densities depicted in Fig. 3c and obtained as in (26). The

functional dataset Ys1 ; . . .;Ysn has been embedded into the

space A2 endowed with the Aitchison geometry and the

methodology described in Sect. 3 has been coherently

applied.

Visual inspection of the empirical trace-semivariogram

depicted in Fig. 4 might indicate some degree of non-sta-

tionarity, even though it can be noted that the number of

data pairs decreases with increasing lag. Since the sta-

tionarity assumption along the vertical direction is sup-

ported by prior knowledge of the field site (Riva et al.

2006, 2008, 2010), non-stationarity has not been consid-

ered in the present study. The structure of spatial depen-

dence among the particle-size densities has been explored
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Fig. 3 Smoothing procedure by Bernstein Polynomials. a Boxplots

of the SSE for 10 B m B 150 (the threshold value of 0.01 is indicated

by a dotted line); b raw PSCs (symbols) and particle-size curves

smoothed by Bernstein Polynomials with m = 140 (solid lines); c

vertical distribution of smoothed densities
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Fig. 4 Estimated trace-semivariogram of the particle-size densities

shown in Fig. 3c: empirical trace-semivariogram (symbols), fitted

model (solid line) and sample variance (dotted line). The number of

pairs associated with each lag is reported
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through the trace-semivariogram. The latter has been esti-

mated from the data according to the discretized version of

(10). Figure 4 depicts the empirical trace-semivariogram

together with the selected fitted model. The empirical

estimate displays a rapid growth up to a separation distance

(lag) of about 0.6 m, where it stabilizes around a value of

2.4. The behavior displayed for the largest lags might be

due to the decreasing number of data pairs available. On a

cross-validation basis, an exponential structure (with cali-

brated partial sill of 2.09, practical range of 0.62 m and

nugget of 0.34) appeared to provide the most accurate

results in terms of cross-validation SSE among different

parametric semivariogram structures tested (spherical, hole

and nested combinations).

Figure 5 depicts the results of the leave-one-out cross-

validation procedure. Figure 5a shows the boxplot of the

cross-validation SSE. The SSE for each sample i = 1, …

, n has been computed as kYsi 	 Y
ðCVÞ
si

k2A2 ;Y
ðCVÞ
si

being

the kriging prediction at si obtained upon removing the i-th

datum (i.e., PSC) from the dataset. The overall cross-val-

idation error is very small when compared to the average

squared norm of the data. One can note that both the

median and the mean SSE are lower than 0.2 % of the

average squared norm of the data (median SSE: 0.986;

mean SSE: 0.998). The spatial distribution of the SSE does

not appear to be associated with a particular pattern, as

evidenced by the seemingly random vertical distribution of

the cross-validation SSE. Only one datum, corresponding

to the vertical elevation z = 307.53 m and indicated with a

dotted curve in Fig. 5c is associated with a cross-validation

SSE which is significantly larger than that of the remaining

curves. This is due to a kriging prediction which is asso-

ciated with a flattened peak of the particle-size density.

With this exception, the key features of the data appear to

be well reproduced by cross-validation predictions, with

only a moderate smoothing effect.

All data but the PSC mentioned above are associated

with a global prediction error which is lower than twice the

kriging standard deviation. This result suggests that the 75

% confidence bands constructed through the Chebyshev

inequality (9) tend to be quite conservative, being associ-

ated with an empirical level of 98.3 %. The prediction

provided by our proposed methodology appears to be

overall unbiased, as shown by the cross-validation residual

PSCs depicted in Fig. 5b, which are fairly spread across a

uniform CDF (i.e., a straight line).

Prediction of the PSCs over a fine vertical grid with

spacing of 1 mm has then been performed. Figure 6 depicts

selected predicted PSCs (Fig. 6a), particle-size densities

(Fig. 6b) and the associated kriging variance (Fig. 6c).

Figure 7 depicts a detailed view of the interpolation results

relative to the group of samples at elevations

307.1 B z B 308.3 m a.s.l included in Fig. 6. The spatial

prediction represents a smooth interpolation of the
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Fig. 5 Cross-validation results. a Boxplot of the SSE, reporting the

absolute and relative quartile values; b cross-validation residual

particle-size curves; c cross-validation prediction of particle-size

densities as a function of elevation (the size of the symbols is

proportional to the associated cross-validation SSE/kriging variance)
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available data. Predictions follow the behavior of neigh-

boring data for lags which are smaller than the calibrated

trace-variogram range. Kriged curves tend to coincide with

the estimated spatial mean (which is assumed to be con-

stant) for greater lags. Hence kriged curves at unsampled

locations which are far away from sampling points tend to

be representative of a soil type which is associated with the

mean particle-size curve.

5.2 Quantile assessment and hydraulic conductivity

estimates

Knowing the estimates of the PSCs spatial distribution pro-

vides an exhaustive characterization of soil features which can

be inferred fromthese curves.Our results enable one to provide

estimates of desired particle-size quantiles to be employed,

e.g., for facies identification, hydraulic conductivity assess-

ment and/or geochemical parameters, at locations of interest.

With reference to hydraulic conductivity estimates which can

be inferred from particle-based formulations, we compare the

results which can be obtained through our FCK approach

against those associated with a classical kriging technique

applied directly to quantiles of a PSC. These quantiles can be

either directly measured or, as in (Riva et al. 2010), estimated

through interpolation on the available measured particle sizes.

To this end, we remark that the proposed FCK technique

allows treating the complete set of information embedded

in the available particle-size data within a framework based
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Fig. 6 Vertical distribution of prediction results: a a sample of 100 of

the 7,190 predicted/kriged (solid curves) and observed (smoothed

data; dotted curves) particle-size curves; b a sample of 100 of the

7,190 predicted/kriged (solid curves) and observed (smoothed data;

dotted curves) particle-size densities; c kriging variance. Kriging

variance ranges between 0 (darkest shade) and 2.53 (lightest shade)
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Fig. 7 Vertical distribution of prediction results for the group of

samples at elevations 307.1 B z B 308.3 m a.s.l.: a a sample of 50

predicted/kriged (solid curves) and observed (smoothed data; dotted

curves) particle-size curves; b a sample of 50 predicted/kriged (solid

curves) and observed (smoothed data; dotted curves) particle-size

densities; c kriging variance. Kriging variance ranges between 0

(darkest shade) and 1.05 (lightest shade)
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on global definitions of spatial dependence. On the other

hand, classical approaches tend to characterize the spatial

dependence of selected quantiles of the particle-size curve.

In this sense, classical and functional approaches are

markedly different from a methodological and application-

oriented point of view. The functional approach allows

modeling a global variogram for the functional process and

the solution of the ensuing kriging system of equations is

performed only once yielding the prediction (and associ-

ated prediction variance) of the complete particle-size

curve at unsampled locations. On the other hand, typical

geostatistical analyses [e.g., Riva et al. (2006, 2008, 2010);

Bianchi et al. (2011) and references therein] treat each

quantile separately (possibly introducing estimated cross-

correlations in terms of cross-variograms) and project their

predictions through kriging on a computational grid. Such

an approach, besides being methodologically different

from the one we propose, can produce inconsistent results

(Tolosana-Delgado et al. 2008).

For the purpose of our application, we consider the log-

transformed 10th and 60th quantiles of the particle-size

distribution in s; respectively indicated as D10ðsÞ and

D60ðsÞ; i.e.
D10ðsÞ ¼ v�1

s ð0:10Þ; D60ðsÞ ¼ v�1
s ð0:60Þ; s 2 D ð14Þ

or, equivalently,

ZD10ðsÞ

tm

YsðtÞdt ¼ 0:10;

ZD60ðsÞ

tm

YsðtÞdt ¼ 0:60; s 2 D:

We remark that, for consistency, both classical and func-

tional compositional geostatistical analyses are here per-

formed on the quantities D10ðs1Þ; . . .;D10ðsnÞ and

D60ðs1Þ; . . .;D60ðsnÞ; i.e., the values associated with the

n = 60 smoothed PSCs vs1 ; . . .; vsn obtained according to

(14) (empty symbols in Fig. 8a).

A classical study of the structure of spatial dependence

of these log-quantiles is performed upon modeling the

variograms of D10 and D60. The cross-variogram has not

been modeled because of the lack of cross-correlation

between 10th and 60th log-quantiles at the site (Riva et al.

2010). Figure 8a and b depict the estimated empirical

semivariograms (full symbols) together with the fitted valid

models (solid curves). An exponential structure with nug-

get has been selected for both quantities. Variogram cali-

bration results highlight that D10 shows a much higher

variability than D60 (estimated partial sill of 0.58 and 0.04,

with estimated nugget of 0.13 and 0.015, respectively for

D10 and D60). On the other hand, the range of the vario-

gram of D10 appears to be about twice the one associated

with D60 (estimated practical range of 0.62 and 0.28,

respectively for D10 and D60). These results are consistent
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Fig. 8 Comparison of cross-validation results of classical one-

dimensional kriging (1D K) and functional compositional kriging

(FCK): empirical variogram (symbols) and fitted models (solid

curves) for a D10 and b D60; boxplots of cross-validation SSEs for

c D10 and d D60; e D10 and D60 data (empty circles) together with

cross-validation predictions with 1D K (crosses) and FCK (solid

circles)
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with those obtained by Riva et al. (2010) who performed a

geospatial analysis of D10 and D60 by considering all

boreholes at the site, having clustered the data into two

main soil types.

The fitted variogram structures reported in Fig. 8a and b

have been validated by means of a leave-one-out cross-

validation analysis. Cross-validation predictions are

reported in Fig. 8e (crosses) together with the log-quantiles

predictions obtained by the cross-validation predicted

PSCs, computed according to (14) (solid circles). Kriging

predictions obtained with the classical and functional

compositional approaches appear to be very similar, dis-

playing a moderate smoothing effect in both cases.

Table 1 lists the cross-validation SSEs associated with

classical one-dimensional (1D K) and FCK. For com-

pleteness and ease of reference, these are also depicted in

Fig. 8c, d. Cross-validation results, as expressed by SSEs,

appear to be comparable for the two approaches, as one can

also notice by visual inspection of Fig. 8e. The log-quantile

D10 proves to be much more difficult to be predicted than

D60, due to its higher spatial variability. In this case, FCK

yields slightly improved results in terms of SSEs. This

might be due to the global nature of the approach embed-

ded in FCK, which grounds its strength on the reliance on

the entire curve for the prediction of local behaviors.

Finally, the natural logarithm of hydraulic conductivities

has been computed from cross-validation predictions. We

recall that methods based on particle-size information to

provide estimates of hydraulic conductivity, K, rely on

formulations of the kind:

K ¼ g

v
C f ð/Þ d2e ð15Þ

where g is gravity, v is the fluid kinematic viscosity, f(/) is

a function of porosity, /, de is an effective particle diam-

eter, and C is defined as a sorting coefficient. The particular

values of C and de, and the form of f(/) depend on the

formulation one employs. Empirical formulations which

are usually adopted to obtain hydraulic conductivity from

quantiles of PSCs of soil samples are collected by e.g.,

Vukovic and Soro (1992); Fetter (2001); Carrier (2003);

Odong (2007).

Here, we consider two widely used formulations, cor-

responding to the Kozeny-Carman and Hazen equations.

According to the Kozeny-Carman equation:

C ¼ 8:3 � 10�3; f ð/Þ ¼ /3

ð1� /Þ2

" #

; de ¼ d10: ð16Þ

Here, d10 is the particle diameter (in mm) associated with

the 10 % quantile of the particle-size curve and K is given

in m/day. Estimates of / can be obtained by [e.g., Vukovic

and Soro (1992)]

/ ¼ 0:255ð1þ 0:83UÞ; U ¼ d60

d10

� �
ð17Þ

d60 being the 60 % quantile of the particle-size curve. The

Hazen equation is:

C ¼ 6 � 10�4; f ð/Þ ¼ 1þ 10ð/� 0:26Þ: ð18Þ

Note that the log-conductivity value at s 2 D can be

computed in both cases by a linear combination of the log-

quantiles D10ðsÞ and D60ðsÞ: Therefore, the BLU prediction

of the log-conductivities can be obtained on the basis of the

classical BLU prediction of D10 and D60, i.e., from the

(co)kriged log-quantiles.

The last rows of Table 1 reports the cross-validation

median and mean SSE related to log-conductivities com-

puted by the Kozeny-Carman (log(K[KC])) and Hazen

(log(K[H])) formulations. Functional compositional kriging

provides improved results with respect to classical one-

dimensional kriging in both cases. This might be due to the

structure of the formulations considered and implies that

the improvement in the D10 SSE is conducive to a corre-

sponding improvement in log-conductivities SSE, even

though D60 appears to be slightly better predicted by

classical kriging.

Finally, Fig. 9 shows the predictions of the log-quantiles

D10 and D60 (panel a) and the log-conductivities log(K[KC])

and log(K[H]) (panels b and c, respectively), computed by

traditional one-dimensional (dotted curves) and functional

compositional (solid lines) kriging approaches. Predictions

appear to be almost indistinguishable for quantiles and log-

conductivities. These results indicate that our proposed

methodology (a) leads to the complete characterization of

the soil textural properties and (b) proves to be fairly

precise in predicting the local features of particle-size

distributions, by means of a relatively simple procedure.

Table 1 Comparison between cross-validation results related to

quantile (D10 and D60) and log-conductivity assessment when con-

sidering Kozeny-Carman (log(K[KC])) or Hazen (log(K[H])) equations

Method Median SSE (%) Mean SSE (%)

D10 FCK 0.13 [9.5 %] 0.28 [20.99 %]

1D K 0.17 [12.40 %] 0.30 [22.15 %]

D60 FCK 1:62 � 10�2 [0.24 %] 3:76 � 10�2 [0.56 %]

1D K 1:38 � 10�2 [0.21 %] 3:67 � 10�2 [0.55 %]

log(K[KC]) FCK 0.50 [16.36 %] 1.10 [35.98 %]

1D K 0.63 [20.76 %] 1.16 [37.95 %]

log(K[H]) FCK 0.50 [13.59 %] 1.11 [30.02 %]

1D K 0.65 [17.61 %] 1.18 [32.70 %]
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6 Conclusions and further research

The main contributions of our work are both theoretical

and application-oriented and our research leads to the fol-

lowing key conclusions.

[1] We interpret PSCs, which constitute a typical infor-

mation content employed in hydrogeology, soil

science and geochemical applications, as functional

compositional data. An original and general geosta-

tistical methodology which enables one to treat

spatially dependent functional compositional data

has been proposed. Our approach rests on a kriging

technique which is developed for variables belonging

to general Hilbert spaces and that we have embedded

in the space A2 endowed with the Aitchison geometry.

We investigate the relationship between the spaces A2

and L
2 in view of bringing the theory to practical

applications.

[2] As PSCs are typically sampled at a discrete set of

particle diameters, a smoothing method based on

Bernstein Polynomials has been proposed (Sect. 4)

and its consistency has been proven (Appendix 2). In

practical applications, different choices might be

employed for data preprocessing or, in some

instances, this preliminary data treatment might not

be required. When the full PSC is available or is

sampled through a fine resolution, the methodology

we developed (Sect. 3) can be directly applied to the

available data, without resorting to the procedure

presented in Sect. 4 and Appendix 2.

[3] Our methodology is demonstrated through an appli-

cation relying on 60 PSCs sampled along a borehole

within an alluvial aquifer near the city of Tübingen,

Germany. On a cross-validation basis, the results

obtained through our FCK procedure proved to be

conducive to satisfactory predictions (and associated

uncertainty quantification) of PSCs at unsampled

spatial locations.

[4] Our approach enables one to provide estimates of

desired quantiles of PSCs to be employed for

hydraulic conductivity assessment at locations of

interest. We compared the results which can be

obtained with our FCK approach against those

associated with a classical kriging technique applied

directly to quantiles which are either observed

directly or, as in the current application, obtained

through interpolation of the available particle-size

data. We found the two methods to lead to consistent

results, with a slightly improved performance of the

FCK on the basis of cross-validation results.

[5] A key advantage of our functional approach to

compositional data lies in the possibility of obtaining

predictions of the entire particle-size curve at unsam-

pled locations, as opposed to classical or compositional

kriging techniques which allow only finite-dimen-

sional predictions, based on a set of selected features

(or synthetic indices) of the curve. The information

content provided by the full PSC is critical to the proper

modeling of several physical and chemical processes

occurring in heterogeneous earth systems and which

are affected by the local composition of the host soil/

rockmatrix. In the light of the theoretical developments

and results presented, further advancements include

three-dimensional extensions to provide kriging pre-

dictions and stochastic simulation of PSCs associated

with different soil types. In these scenarios, anisotropic
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Fig. 9 Comparison between kriging predictions obtained by 1D K (dotted curves) and FK (solid curves): a D10 and D60; hydraulic log-

conductivity based on b Kozeny-Carman [KC] and c Hazen [H] formulations. Data are indicated with symbols
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and (possibly) non-stationary approaches are likely to

be required to precisely characterize the heterogeneous

(stochastic) nature of the particle-size curves within a

given aquifer system.
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Appendices

Appendix 1: the non-stationary case

In Sect. 3.1, second-order stationarity has been assumed in

view of the particular application studied. The non-sta-

tionary case could be dealt with as well, by exploiting the

estimators and the algorithms proposed in (Menafoglio

et al. 2013).

In such a case, for any given s 2 D; we represent the

element Ys as:

Ys ¼ ms � ds; ð19Þ

ms ¼a
L

l¼0

flðsÞ � al;

EA2 ½ds� ¼ 1=g;

ð20Þ

where, for l ¼ 0; . . .. . .; L; al 2 A2 and flðsÞ 2 R: In model

(19), the drift ms is assumed to follow a linear model with

functional coefficients {al} independent of the spatial

location and scalar regressors fflðsÞ; s 2 Dg which are

assumed to be known over the entire domain D. The

residual process fds; s 2 Dg is supposed to be neutral-mean

and second-order stationary. This allows to define the

trace-covariogram C and the trace-variogram c as in (3)

and (4), but in terms of the residual process.

Given a sample Ys1 ; . . .;Ysn ; the Universal Kriging

predictor at a location s0 2 D is the BLUP, derived by

solving the minimization problem:

ðk
1; . . .; k
nÞ ¼ argmin
k1;...;kn2R:

Yks0
¼an

i¼1
ki�Ysi

VarA2ðYk

s0
	 Ys0Þ s:t:

EA2 ½Yk

s0
� ¼ ms0 :

ð21Þ

We remark that the unbiasedness constraint in problem

(21) is stronger that that of problem (6), since the drift in

s0;ms0 ; is governed by the linear model (20). Problem (21)

reduces to the linear system (in block matrix form):

ð22Þ

where f0; . . .; fL are L ? 1 Lagrange multipliers associated

with the unbiasedness constraint. System (22) admits a

unique solution provided that R ¼ ðCðhi;jÞÞ is positive

definite and the design matrix F ¼ ðflðsiÞÞ 2 R
n�ðLþ1Þ is of

full-rank.

The trace-semivariogram is required to be known or

properly estimated to solve the Universal Kriging system.

To this end, estimator (4) should not be used, because it can

be severely biased if the mean function ms is not spatially

constant. Indeed, the estimator bcðhÞ defined by (4) provides
an unbiased estimate of E½kvsþh 	 vsk2�; but the latter

coincides with cðhÞ if and only if the mean is spatially

constant. Instead, a natural estimator for the trace-semi-

variogram is the (possibly discretized) MoM estimator

from the residuals, i.e., following the notation introduced in

Sect. 3,

bcðhÞ ¼ 1

2jNðhÞj
X

ði;jÞ2NðhÞ
kdsi 	 dsjk2A2 :

In the general context of data belonging to Hilbert Spaces,

Menafoglio et al. (2013) propose to estimate the residuals

ds1 ; . . .; dsn as a difference between the observations and the

generalized least squares (GLS) estimates of the drift at the

sampled locations, i.e., in our setting, bdsi ¼ Ysi 	
bmGLS
si

; i ¼ 1; . . .; n: Furthermore, Menafoglio et al. (2013)

derive the explicit expression of the GLS drift estimator

and analyze its properties. Embedding those results within

our framework yields to the following expression of the

GLS drift estimator:

bmGLS
s ¼ FðFTR�1

FÞ�1
F
TR�1 �Ys; ð23Þ

where bmGLS
s ¼ ðbmGLS

s1
; . . .; bmGLS

sn
ÞT ;Ys ¼ ðYs1 ; . . .;YsnÞT

and having adopted the vectorial notation: ðA� f Þi ¼
an

j¼1
Ai;j � fj;A ¼ ðAijÞ 2 R n� n; f ¼ ðfiÞ; fi 2 A2; i ¼

1; 2; . . .; n: Note that the optimality of estimator (23) relies

on a proper account for the structure of spatial dependence

R; which is unknown. In order to cope with this problem,

an iterative algorithm starting from an ordinary least

squares estimate of the drift can be employed [Menafoglio

et al. (2013), Sects. 4–5].

Appendix 2: A smooth estimator for cumulative

distribution functions

In this Appendix, we report the technical details leading to

the construction of the smooth estimator for PSCs which

has been illustrated and applied in Sect. 4. For ease of

illustration, we adopt here a simplified notation by omitting

the subscript s indicating spatial location, since we consider

each particle-size curve separately.
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Consider the problem of estimating a continuous and

compactly supported CDF through a smooth estimator.

We denote with F the (true) underlying CDF and assume

it is supported on [0,1] (we invoke this assumption only

for convenience of notation since this can be easily

relaxed to consider a generic support T ¼ ½tm; tM � through
the transformation x ¼ ðt � tmÞ=ðtM � tmÞ 2 ½0; 1� for

t 2 T ). If a sample X1, … , Xm from F is available, the

ECDF Fm is defined as FmðxÞ ¼ 1
m

Pm
i¼1 I½0;x�ðXiÞ; I being

the indicator function. Fm is a (discontinuous) non-para-

metric estimator of F, which is strongly consistent

because of the Glivenko-Cantelli Theorem. In our setting,

the sample X1, … , Xm would represent the set of (trans-

formed) particle diameters measured within a soil sample

extracted at a given location in the aquifer. When such a

sample is available, the problem of smoothly estimating

the particle-size curve, i.e. the underlying CDF F, can be

solved by smoothing the ECDF by means of Bernstein

Polynomials.

The use of Bernstein Polynomials to approximate a

bounded continuous function, such as F, is supported by

the Bernstein-Weierstrass Approximation Theorem (Feller

(1965), Theorem 1, Section VII.2). This states that any

continuous function, u(x), on the closed interval [0,1] can

be uniformly approximated by:

u
mðxÞ ¼
Xm

k¼0

uðk=mÞbk;mðxÞ; x 2 ½0; 1�;

where bk;mðxÞ ¼ mkxkð1� xÞm�k; k ¼ 0; . . .;m: On these

premisses, Babu et al. (2002) propose and explore the

asymptotic properties of the smooth estimator Fm;m :

½0; 1� ! ½0; 1� defined as:

Fm;mðxÞ ¼
Xm

k¼0

Fmðk=mÞbk;mðxÞ; x 2 ½0; 1�: ð24Þ

As opposed to kernel smoothing estimators (Rosenblatt

1956; Parzen 1962; Silverman 1986), the estimator (24) is

well suited for distributions with compact support, of the

kind associated with the particle-size curves we analyze.

We do not observe the data X1, … , Xm, but only the value

of the ECDF Fm for given diameters {x1, ... , xN}.

Therefore, we propose to consider a modified smooth

estimator FN
m;m : ½0; 1� ! ½0; 1� based on a linear interpolant

of the observed values of the ECDF and defined as:

FN
m;mðxÞ ¼

Xm

k¼0

Fð1Þ
m ðk=mÞbk;mðxÞ; x 2 ½0; 1�; ð25Þ

Fm
(1) being the linear interpolant of Fm(x1), … , Fm(xN), i.e.,

for x 2 ½0; 1� :

Fð1Þ
m ðxÞ

¼
XNþ1

i¼1

Fmðxi�1Þþ
FmðxiÞ�Fmðxi�1Þ

xi�xi�1

ðx�xi�1Þ
� �

Iðxi�1;xi�ðxÞ;

with x0 = 0, xN?1 = 1 and Fm(x0) = 0, Fm(xN?1) = 1.

Adopting (25) enables one to estimate the CDF F through a

continuous approximation Fm
(1) of the ECDF Fm combined

with Bernstein Polynomials. Note that, while other approx-

imations for Fm could be employed, the linear approximation

we consider (a) provides a balance between the precision of

the approximation and the complexity of the function (and

thus the computational cost), and (b) allows deriving an

explicit expression of the corresponding PDF, say fm,m
N :

f Nm;mðxÞ ¼ m
Xm�1

k¼0

ðFð1Þ
m ððk þ 1Þ=mÞ � Fð1Þ

m ðk=mÞÞbk;m�1ðxÞ;

x 2 ½0; 1�:
ð26Þ

We remark that the smooth estimate Fm,m
N provided by (25)

is a monotonically increasing function, since its derivative

(26) is positive (Fm
(1) is monotonically non-decreasing with

Fm
(1)(0) = 0, Fm

(1)(1) = 1 and bk,m-1(x) is positive for all

m[ 1; k ¼ 0; . . .;m; x 2 ð0; 1Þ). Moreover, denoting with

k � kC0 the uniform norm on the space of continuous func-

tions, the following result holds.

Theorem 1 Let F be a continuous CDF on [0,1]. If

lim
N!1

max
i2f1;...;Nþ1g

ðxi � xi�1Þ ¼ 0;

then

lim
m;m;N!þ1

kFN
m;m � FkC0 ¼ 0; a:s: ð27Þ

Proof First, note that

k FN
m;m � FkC0 �k FN

m;m � Fm;mkC0 þ k Fm;m � FkC0 : ð28Þ

The last term of (28) vanishes as m;m ! þ1 [Babu et al.

(2002), Theorem 2.1]. Consider the second term and write

its argument as:

FN
m;mðxÞ � Fm;mðxÞ ¼

Xm

k¼0

ðFð1Þ
m ðk=mÞ � Fmðk=mÞÞbk;mðxÞ;

x 2 ½0; 1�:

It is straightforward to see that, for x 2 ½0; 1�;

Fð1Þ
m ðxÞ �FmðxÞ ¼

XNþ1

i¼1

ðFmðxiÞ �FmðxÞÞ
x� xi�1

xi � xi�1

�

� ðFmðxÞ �Fmðxi�1ÞÞ
xi � x

xi � xi�1

�
Iðxi�1;xi�ðxÞ:

ð29Þ
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Hence:

kFN
m;m�Fm;mkC0¼max

x2½0;1�
jFN

m;mðxÞ�Fm;mðxÞj� max
0�k�m

Fð1Þ
m ðk=mÞ

		

�Fmðk=mÞj� max
0�k�m

XNþ1

i¼1

ðFmðxiÞ�Fmðk=mÞÞ
k=m�xi�1

xi�xi�1

				

(

�ðFmðk=mÞ�Fmðxi�1ÞÞ
xi�k=m

xi�xi�1

				Iðxi�1;xi�ðk=mÞ


:

Fix e[0; consider m such that kF�FmkC0\e=3: such a m

exists because of Glivenko-Cantelli theorem. Furthermore,

since F is uniformly continuous by Heine-Cantor theorem,

let d be such that jFðxÞ�FðyÞj\e=3 for all x;y2½0;1�
such that |x - y|\ d. Finally, take N such that

maxi2f1;...;Nþ1gðxi�xi�1Þ\d: Then:

kFN
m;m � Fm;mkC0

� max
0� k�m

XNþ1

i¼1

2e

3
þ ðFðxiÞ � Fðk=mÞÞ k=m� xi�1

xi � xi�1

				

(

þðFðk=mÞ � Fðxi�1ÞÞ
xi � k=m

xi � xi�1

				Iðxi�1;xi�ðk=mÞ
)

\e:

The thesis then follows from the arbitrariness of e:
Theorem 1 states that Fm,m

N is a strongly consistent esti-

mator for F. We remark that Theorem 1 yields useful

indications about the design of an experiment, in the sense

that it is conducive to the identification of the most

appropriate curve sampling strategy yielding an optimal

smoothing. This is a feature which is not fully exploited in

this work but constitutes a critical application-oriented

element of our methodology, especially considering the

high level of precision associated with modern techniques

employed to record particle-size data.
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‘92, vol 2, Kluwer Academic, Dordrecht, pp 805–816

Guadagnini L, Guadagnini A, Tartakovsky DM (2004) Probabilistic

reconstruction of geologic facies. J Hydrol 294:57–67
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Nemes A, Schaap MG, Wösten JHM (2003) Functional evaluation of

pedotransfer functions derived from different scales of data

collection. Soil Sci Soc Am J 67:1093–1102
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