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ABSTRACT In order to reduce the computational complexity of multi-objective evolutionary

optimization-based clustering algorithms, a Kriging-assisted reference vector guided multi-objective robust

spatial fuzzy clustering algorithm (KRV-MRSFC) is proposed and then successfully applied to image

segmentation. We first construct objective functions with noise robust local spatial information derived from

the image to improve the robustness to noise and then use the Kriging model to approximate each objective

function to decrease the computational cost. Meanwhile, in order to improve the approximation accuracy of

the Kriging model, an angle-penalized distance-based expected improvement sampling criterion is presented

in the KRV-MRSFC, which can select individuals with better exploitation and exploration to update the

Kriging model. In addition, KRV-MRSFC adopts a clustering validity index with noise robust local image

spatial information to select the optimal solution from the final non-dominated solution set to perform image

segmentation. The experiments performed on Berkeley and real magnetic resonance images indicate that the

proposed method not only achieves satisfactory segmentation performance on noisy images but also requires

a low time cost.

INDEX TERMS Image segmentation, multi-objective optimization, fuzzy clustering, Kriging model,

reference vector guided evolutionary algorithm.

I. INTRODUCTION

Image segmentation aims to divide an image into multiple

heterogeneous regions according to some criteria so that

the pixels in the same region have finer similarity while

the pixels of different regions have greater differences [1].

It is one of the most challenging tasks in image analysis

because segmentation results can directly affect the quality

of image processing and recognition [2]. In recent years,

researchers have proposed many image segmentation meth-

ods, such as histogram threshold methods [3], region growing

algorithms [4], graph partitioning methods [5] and clustering

algorithms [6], [7]. Fuzzy c-means (FCM) [8] is one of the

The associate editor coordinating the review of this manuscript and
approving it for publication was Ran Cheng.

most popular clustering algorithms. It combines fuzzy set

theory with the clustering method so that the given data point

can belong to several groups with the degree of belonging-

ness. However, FCM fails to segment images corrupted by

noise, outliers and other imaging artifacts because it does not

consider any spatial information in the image.

To address the problem of noise sensitivity, many

researchers have incorporated the spatial information derived

from the image into the objective function of FCM.

Ahmed et al. [9] proposed a novel FCM algorithm with spa-

tial information (FCM-S) by incorporating a spatial neighbor-

hood term into the objective function of FCM. However, the

efficiency of FCM-S is low because the spatial neighborhood

term is computed in each iteration. In order to reduce the

computational complexity of FCM-S, Chen and Zhang [10]
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proposed two variants, FCM-S1 and FCM-S2, which apply

precalculated average filtering and median filtering image

to replace the neighborhood term, respectively. Krinidis and

Chatzis [11] presented a robust fuzzy local information

c-means clustering algorithm (FLICM) which generates a

novel local spatial fuzzy factor to make a tradeoff between the

noise immunity and preservation of image details. It should

be noted that these improved fuzzy clustering algorithms are

based on local search and may get into the local optimum

due to improper initialization of cluster centers. Further-

more, these approaches always perform image segmenta-

tion from one view due to only considering one objective

function.

In recent years, multi-objective evolutionary algorithm

(MOEA) has become popular in applying to fuzzy clustering

due to its heuristic search strategy. Some multi-objective evo-

lutionary fuzzy clustering algorithms have been developed to

solve the problems of fuzzy clustering algorithms [12], [13].

Mukhopadhyay et al. [14] utilized Jm, Xie-Beni (XB) and

PBM as objective functions and obtained the optimal solution

from the final non-dominated solution set by using the clus-

tering ensemble strategy. Mukhopadhyay and Maulik [15]

proposed a multi-objective variable string length genetic

fuzzy clustering algorithm (MOVGA), which uses a vari-

able string length coding strategy to automatically determine

the number of clusters and then simultaneously optimizes a

global fuzzy compactness function and a fuzzy separation

function. Furthermore, MOVGA utilizes I index to obtain the

optimal solution from the final non-dominated solution set.

Zhao et al. [16] incorporated a non-local spatial constrained

term into MOVGA and proposed a multi-objective spatial

fuzzy clustering algorithm (MSFCA) for image segmenta-

tion to overcome the sensitivity to image noise. However,

these multi-objective evolutionary fuzzy clustering algo-

rithms require numerous expensive function evaluations,

which result in long computation time.

In order to reduce the computational complexity of

evolutionary algorithms, researchers used surrogates or

metamodels to replace the real function evaluations

and proposed surrogate-assisted evolutionary algorithms

(SAEAs) [17]–[20]. Pan et al. [21] utilized surrogate to esti-

mate the dominance relationship between the candidate

solutions and the reference solutions and proposed a clas-

sification based surrogate-assisted evolutionary algorithm

(CSEA). Sun et al. [22] presented a surrogate assisted coop-

erative swarm optimization algorithm (SA-COSO) which

uses a single radial basis function network model to

assist the social learning-based particle swarm optimization

(SL-PSO) for solving high-dimensional multi-objective prob-

lems. Chugh et al. [23] used aKrigingmodel [24] to assist the

reference vector guided evolutionary algorithm (RVEA) [25]

and proposed a Kriging assisted RVEA called K-RVEA.

As the surrogate of K-RVEA, the Kriging model not only

approximates the values of objective function, but also gets

the uncertainty of approximation which is useful in managing

surrogates.

In view of the advantages of K-RVEA, this paper intro-

duces it into fuzzy clustering and proposes a Kriging-assisted

reference vector guided multi-objective robust spatial fuzzy

clustering algorithm (KRV-MRSFC) for noisy image seg-

mentation. The main contributions of KRV-MRSFC can be

summarized as follows: (1) A fuzzy separation function and a

global fuzzy compact function with noise robust local spatial

information are used as objective functions to improve the

robustness to image noise. (2) a Krigingmodel is employed to

approximate objective functions to reduce the running time of

multi-objective evolutionary fuzzy clustering algorithm. (3)

In order to improve the approximation accuracy of Kriging

model, KRV-MRSFC presents an angle penalized distance

(APD)-based expected improvement sampling criterion to

select individuals for updating the Kriging model. (4) After

obtaining the final non-dominated solution set, a clustering

validity index with noise robust local spatial information

is defined to select the final optimal solution. Experimen-

tal results on Berkeley and real magnetic resonance (MR)

images show that KRV-MRSFC obtains satisfactory segmen-

tation performance and meanwhile possesses a low time

cost.

The rest of this paper is organized as follows. Section II

introduces the related techniques used in the proposed

algorithm. Section III describes KRV-MRSFC in detail.

In Section IV, KRV-MRSFC is verified by segmentation

experiments on Berkeley images and MR images. Finally,

some concluding remarks and discussions are given in

Section V.

II. BACKGROUND

A. REFERENCE VECTOR GUIDED EVOLUTIONARY

ALGORITHM

Reference vector guided evolutionary algorithm (RVEA) is a

recently proposed efficient multi-objective evolutionary algo-

rithm. Compared with other traditional evolutionary algo-

rithms, e.g. NSGA-II [26], RVEA has two obvious differ-

ences: 1) using a set of reference vectors to separate the

objective space into several subspaces; 2) proposing a new

selection strategy, which is used to balance convergence and

diversity. The main framework of RVEA is presented in

Algorithm 1.

1) INITIALIZATION OF REFERENCE VECTORS

RVEA uses a set of reference vectors to split the objec-

tive space into multiple subspaces and guides the selection

process in each subspace. The distribution of the reference

vectors in the objective space directly affects the quality of the

selected new individuals. Therefore, it is necessary to gener-

ate uniformly distributed unit reference vectors in the objec-

tive space during initialization. RVEA adopts the approach

proposed in [27] to obtain a set of uniformly distributed

unit reference vectors. First, a set of uniformly distributed

reference points is generated on a unit hyperplane by using
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Algorithm 1 Reference Vector Guided Evolutionary Algo-

rithm (RVEA)

Input: a set of unit reference vectors V0, the maximal

number of generations T .

1: Initialize the population P0 and set the generation

counter t = 0.

2: while t < T do

3: Generate the offspring population Qt
4: Combine the parent and offspring populations:

Ct = Pt ∪ Qt
5: Select the parent population Pt+1 from Ct for the

next population

6: Update reference vectors Vt+1

7: t = t + 1

8: end while

Output: the final non-dominated solution set.

the simplex-lattice design method [28]:
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where h = 1, 2, · · · ,H and H is the number of uniformly

distributed points. M is the number of objective functions

and G is a positive integer. Then, in order to obtain the

corresponding reference vectors, these uniformly distributed

reference points need to be mapped from a hyperplane to a

hypersphere.

Vh =
lh

‖lh‖
(2)

where ‖lh‖ denotes the L2-norm of lh.

2) GENERATION OF OFFSPRING

In RVEA, traditional genetic operations, such as simulat-

ing binary crossover [29] and polynomial variations [30],

are used to generate the offspring population. At the same

time, RVEA adopts the elitism strategy which is the most

characteristic part in NSGA-II to preserve the information of

individuals among the parents and offspring populations.

3) ANGLE PENALIZED DISTANCE-BASED SELECTION

MECHANISM

Since the reference vectors generated by the simplex-lattice

design are unit vectors, the objective function values of all

individuals in the current generation need to be translated

before the reference vectors guiding the selection of new

individuals. The jth translated objective function value of the

ith individual is obtained as follows:

f̃
j
i = f

j
i − f

j
min (3)

where f
j
i is the j

th objective function value of the ith individual

and f
j
min represents the minimum value of the jth objective

function at the current generation.

After the translation, the acute angles between each indi-

vidual at the current generation and all reference vectors

are calculated. Then an individual is assigned to a refer-

ence vector if and only if the angle between the individual

and the reference vector is minimum among all reference

vectors. In this way, the population is divided into multiple

subpopulations. One individual is then selected from each

subpopulation based on specific selection criteria.

RVEA proposes a novel selection criterion known as angle

penalized distance (APD), which makes a better balance

between convergence and diversity. APD is defined as:

di = (1 + P (θi)) ·

∥

∥

∥
f̃i

∥

∥

∥
(4)

where f̃i =
(

f̃ 1i , f̃ 2i , · · · , f̃ Mi

)

represents the translated objec-

tive vector and

∥

∥

∥
f̃i

∥

∥

∥
is the distance from the translated objec-

tive vector to the origin. θi is the angle between the ith

individual and the reference vector vi to which it is assigned.

P (θi) is the penalty function defined as follows:

P (θi) = M ·

(

t

T

)χ

·
θi

γv
(5)

where t and T represent the current and themaximum number

of generations, respectively, and χ is a predefined parameter.

γv is the smallest angle between the closest reference vector

vi of the i
th individual and the other reference vectors in the

current generation, i.e. γv = minh∈{1,2,··· ,H},h6=i 〈vi, vh〉.

After computing APD of all individuals in each subpopula-

tion, one individual with the minimum APD value is selected

from each subpopulation and used for the next generation.

Therefore, the number of individuals selected for the next

generation is equal to the number of nonempty subpopula-

tions in the current generation.

4) ADAPTATION OF REFERENCE VECTORS

In RVEA, the role of uniformly distributed reference vectors

is to guide the selection of non-dominated individuals in the

objective space. However, the guidance of the reference vec-

tors becomes invalid when the objective function values of the

individuals are scaled to different ranges. One way to solve

the above problem is to normalize the values of functions in

the same range, which will affect the subsequent selection

process. To tackle this issue, an adaptation strategy of refer-

ence vectors is proposed in RVEA that dynamically adjusts

the distribution of reference vectors in the objective space

according to the values of individual objective functions. The

adaptation of reference vectors is defined as follows:

Vt+1,h =
V0,h ◦

(

zmax
t − zmin

t

)

∥

∥V0,h ◦
(

zmax
t − zmin

t

)∥

∥

(6)

where V0,h is the uniformly distributed reference vectors

generated at the initialized stage, zmax
t and zmin

t represent the

maximum and minimum values of each objective function in

t th generation and ◦ is the Hadamard product.
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B. KRIGING MODEL

Krigingmodel, also known as Gaussian process, has been fre-

quently used for surrogate techniques. It is a spatial interpola-

tionmodel that consists of a regressionmodel and a stochastic

process. Kriging model not only predicts the objective func-

tion value but also provides the uncertainty information of

the approximated values, which is very useful for managing

surrogates.

For a new individual ī, the approximated function value is

calculated as follows:

ȳ = µ + rT (ī)R−1(Y − µ1) (7)

and the estimated standard deviation is computed by

s =

√

σ 2(1 − rT (ī)R−1rT (ī) +
1 − 1TR−1r(ī)

1TR−11
(8)

where

µ =
(

1TR−11
)−1

1TR−1Y (9)

σ 2 =
1

L
(Y − µ1)TR−1(Y − µ1) (10)

where L represents the number of training data.Y represents a

column vector which contains the function values of training

data. 1 is a column vector filledwith ones.R and r(ī) represent

the correlation matrix and the correlation vector, respectively.

For more details about Kriging model, readers can refer

to [31]–[33].

C. KRIGING ASSISTED REFERENCE VECTOR GUIDED

EVOLUTION ALGORITHM

Kriging-assisted reference vector guided evolutionary algo-

rithm (K-RVEA) is a novel surrogate-assisted multi-objective

evolutionary algorithm that uses Kriging model as surrogate

and RVEA as the underlying evolutionary algorithm. The

flowchart of K-RVEA is shown in Fig. 1.

As we can see from Fig. 1, K-RVEA uses Kriging model

to predict the objective function values of the new individu-

als instead of calculating the expensive objective functions,

which can reduce the consumption of time and enhance

optimization efficiency. At the same time, K-RVEA proposes

a model management strategy to select individuals to be

re-evaluated using the original functions and then used to

retrain the surrogate to improve the accuracy of Kriging

model. In order to balance the convergence and diversity, this

strategy not only considers the information from the RVEA

algorithm, but also utilizes the uncertainty information from

Krigingmodel. The individual with themaximumuncertainty

is selected to satisfy the diversity while the individual with the

minimum APD is selected to ensure the convergence.

It should be noted that the computation time for training

surrogate model will dramatically increase with the increas-

ing number of training data. Therefore, the proposed model

management strategy should ensure that the number of train-

ing data is kept sufficiently small. The details of the manage-

ment strategy can be found in [23].

FIGURE 1. The flowchart of K-RVEA.

FIGURE 2. Chromosome representation.

III. KRIGING-ASSISTED REFERENCE VECTOR GUIDED

MULTI-OBJECTIVE ROBUST SPATIAL FUZZY CLUSTERING

ALGORITHM

Taking account of the above advantages of K-RVEA, this

paper applies K-RVEA to fuzzy clustering to solve the prob-

lem of image segmentation and proposes a Kriging-assisted

reference vector guided multi-objective robust spatial fuzzy

clustering algorithm (KRV-MRSFC). This algorithm com-

prises four main parts: initialization, evolutionary opera-

tion, model management and optimal solution selection. The

details of KRV-MRSFC are shown as follows.

A. POPULATION INITIALIZATION AND CHROMOSOME

ENCODING

In KRV-MRSFC, the chromosomes are composed of real

numbers which represent the values of cluster centers.

If a chromosome encodes the centers of K clusters in M

dimensional space, then its length will be K × M . For

instance, the chromosome i encoding two cluster centers in

three-dimensional space is demonstrated in Fig. 2.

In KRV-MRSFC, cluster centers in each chromosome of

the initialized population are randomly selected in the gray

level range [0, 255] by using the Latin hypercube sam-

pling [34].

B. OBJECTIVE FUNCTIONS FOR IMAGE SEGMENTATION

Let X = {x1, x2, · · ·, xN} denote an image with N pix-

els. Image segmentation is defined as the union of sev-

eral non-overlapping meaningful regions with homogeneous

characteristics. If this image is separated into K clusters, then

these clusters should satisfy ∪K
k=1�k = X and ∩K

k=1�k = ∅,
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FIGURE 3. Changing trends of SA against the number γ of reference vectors on images corrupted by Gaussian noise: (a) 3063; (b) 3096;
(c) 15088; (d) 42049; (e) 135069; (f) 238011.

FIGURE 4. Changing trends of SA against the number γ of reference vectors on images corrupted by Salt & pepper noise:
(a)3063;(b)3096;(c)15088;(d)42049;(e)135069;(f)238011.

FIGURE 5. SA against the radius r of window and the weighting exponent β on images corrupted by Gaussian noise under NV = 0.009: (a) 3063;
(b) 3096; (c) 15088; (d) 42049; (e) 135069; (f) 238011.

where �k represents the k th cluster. It is worth noting that

the segmentation criteria will directly affect the segmentation

performance. In order to improve the segmentation perfor-

mance and overcome the influence of noise, a global fuzzy

compactness function CNRL with noise robust local spatial

information and a fuzzy separation function FS are used as

two objective functions in KRV-MRSFC.

CNRL is calculated as:

CNRL =

K
∑

k=1

∑N
n=1 u

m
kn (‖xn − vk‖ + β ‖x̃n − vk‖)

∑N
n=1 ukn

(11)

where vk (1 ≤ k ≤ K ) represents the k th cluster center, and

ukn(1 ≤ k ≤ K , 1 ≤ n ≤ N ) denotes the membership degree

function value of the nth pixel belonging to the k th cluster.m is

the fuzzy factor that determines the amount of fuzziness of the

resulting partition, and β is the weighting exponent parameter

that controls the penalty effect of the spatial constraint term.

ukn is computed as follows:

ukn =
1

K
∑

l=1

(

‖xn−vk‖
2+β‖x̃n−vk‖

2

‖xn−vl‖
2+β‖x̃n−vl‖

2

)

(12)

In (11) and (12), xn and x̃n represent the gray level and

noise robust local spatial information values of the nth pixel,

respectively. The majority dominated suppressed similarity

strategy proposed in our previous work [35] is used to obtain

the noise robust local spatial information x̃n, which utilizes

the neighborhood statistics and the competitive learning. For

a neighboring window centered at the nth pixel, the pixels

which are not or less contaminated by noise should be the

majority for the normal noisy image. These pixels should play

big roles in obtaining the spatial information of the central

pixel. First, all pixels in the neighboring window Nn centered

at the nth pixel are sorted in ascending order according to the

gray level values. Then the middle ⌈0.618∗ (|Nn| − 1)⌉ pixels

with the minimum variance in the sorted set are considered

as the majority and called reward subset NR
n while the other

pixels in the sorted set are deemed as the minority and called

the punishment subset NP
n . x̃n is defined as follows:

x̃n =
∑

j∈Nn

wnj · xj (13)

|Nn| = r×r is the size of the neighboring windowNn where r

is the radius of Nn. xj represents the gray level value of the j
th

pixel in the neighboring window Nn. wnj is the weight factor

between the nth pixel and the jth pixel. wnj is computed by

wnj =
SSnj

∑

l∈Nn

SSnl
(14)
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FIGURE 6. SA against the radius r of window and the weighting exponent β on images corrupted by Salt & pepper noise under NP = 0.09: (a) 3063;
(b) 3096; (c) 15088; (d) 42049; (e) 135069; (f) 238011.

FIGURE 7. Segmentation results on #3063 with Gaussian noise: (a) original image; (b) noisy image; (c) benchmark image;
(d) FCM; (e) FCM-S1; (f) FCM-S2; (g) FLICM; (h) MOVGA; (i) MSFCA; (j) KRV-MRSFC.

FIGURE 8. Segmentation results on #3063 with Salt & pepper: (a) original image; (b) noisy image; (c) benchmark image;
(d) FCM; (e) FCM-S1; (f) FCM-S2; (g) FLICM; (h) MOVGA; (i) MSFCA; (j) KRV-MRSFC.

where SSnj represents the majority dominated suppressed

similarity and is defined as follows

SSnj =

{

(1 + α) Snj, j ∈ NR
n

(1 − α) Snj, j ∈ NP
n

(15)

where α is the suppressed factor. NR
n and NP

n represent the

reward subset and the punishment subset, respectively. Snj is

the local gray level similarity and defined as follows:

Snj =

{

exp
(

−
∥

∥xn − xj
∥

∥

2
/δ2n

)

, n 6= j

0, n = j
(16)

where δn =

√

√

√

√

∑

j∈Nn

∥

∥xn − xj
∥

∥

2

/

|Nn| is a scale factor.

The fuzzy separation function FS is defined as follows:

FS =

K
∑

p=1

K
∑

q=1,p6=q

µm
pq

∥

∥vp − vq
∥

∥ (17)

where µpq denotes the membership degree of the cluster

center vp with respect to the cluster center vq. It is computed

as:

µpq =
1

K
∑

l=1,l 6=p

(

‖vp−vq‖
‖vp−vl‖

)
1

m−1

, p 6= q (18)

C. EXPECTED IMPROVEMENT SAMPLING STRATEGY

BASED ON APD

In this paper, we use the MATLAB Kriging toolbox [36] to

train the Kriging model for all initialization data and then

use Kriging model to approximate each fitness function to

decrease the computational cost.
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FIGURE 9. Segmentation results on #3096 with Gaussian noise: (a) original image; (b) noisy image; (c) benchmark image;
(d) FCM; (e) FCM-S1; (f) FCM-S2; (g) FLICM; (h) MOVGA; (i) MSFCA; (j) KRV-MRSFC.

FIGURE 10. Segmentation results on #3096 with Salt & Pepper noise: (a) original image; (b) noisy image; (c) benchmark image;
(d) FCM; (e) FCM-S1; (f) FCM-S2; (g) FLICM; (h) MOVGA; (i) MSFCA; (j) KRV-MRSFC.

In order to improve the accuracy of the Kriging model

approximation, the Kriging model will be updated after fin-

ishing a fixed number of generations. The key to solving the

above problem is that sample points are selected to update the

Kriging model. A number of selection criteria, also known as

infill sampling criterion, have been proposed in recent years.

Commonly used infill criteria include the lower confidence

bound (LCB) [31], the probability of improvement (PI) [37]

and the expected improvement (EI) [38]. Due to addressing

the trade-off between the exploration and exploitation, EI cri-

terion is one of the most commonly used infilling criteria.

In order to well balance the convergence and diversity, this

paper introduces the angle penalized distance (APD) into the

EI criterion and further proposes a novel expected improve-

ment sampling criterion based on APD. The new criterion is

defined as follows:

EIAPDi = (dmin − di) × 8

(

dmin − di

s̃i

)

+ s̃i

×φ

(

dmin − di

s̃i

)

(19)

where di and dmin represent the APD value of the ith individ-

ual and the current minimum APD value, respectively. 8 (·)

is the normal cumulative distribution function and φ (·) is

the normal probability density function. s̃i is the estimated

uncertainty of ith individual. It is computed as:

s̃i =
1

M

M
∑

j=1

s
j
i (20)

where s
j
i is the estimated standard deviation for the jth objec-

tive function value of the ith individual and it is calculated

by (8).

The details of the strategy for selecting individuals to

update the Kriging model are presented in Algorithm 2. Fur-

thermore, in order to reduce the computational cost of retrain-

ing of the Kriging model, this paper adopts the approach

proposed in [23] to manage the training data.

D. OPTIMAL SOLUTION SELECTION

In the final generation, KRV-MRSFC produces a set of non-

dominant solutions, which are equally important from the

algorithm point of view. However, users may only need a

single solution in most cases. In order to solve this issue,

KRV-MRSFC introduces the noise robust local spatial infor-

mation into a cluster validity index I [15] and proposes a

novel cluster validity index INRL to select the optimal solution

from the final non-dominated solution set. INRL is computed

by

INRL =
1

K
×

ENRL (1)

ENRL (K )
× DNRL (K ) (21)
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Algorithm 2 Selecting Individuals to Update the Kriging

Model

Input: the active adaptive reference vector set Va
a and the

set J of individuals obtained from RVEA, the number nu

of individuals to be used for updating Kriging model.

1: Obtain the size
∣

∣Va
a

∣

∣ of active adaptive reference.

2: Cluster Va
a into min

{

nu,
∣

∣Va
a

∣

∣

}

groups.

3: Assign J to corresponding active adaptive reference

vectors.

4: Calculate the EIAPD of all individuals in each cluster

by using (19).

5: Select one individual from each cluster with the

maximum EIAPD.

Output:Individuals for updating the Kriging model.

Algorithm 3 Kriging-Assisted Reference Vector Guided

Multi-Objective Robust Spatial Fuzzy Clustering Algo-

rithm (KRV-MRSFC)

Input: the set of unit reference vectors V0, the size P

of the initialized population, the maximum number T of

iterations, the prefixed number ωmax of generations before

updating the Kriging model, the number nu of individuals

to be used for updating the Kriging model, the image X and

the number K of clusters.

1: Compute the noise robust local spatial information for

each pixel in the image X .

2: Initialize the population from the gray level range

[0, 255].

3: Decode each chromosome in the initialized

population.

4: Calculate the corresponding objective functions CNRL
and FS for each chromosome in the initialized

population.

5: Use individuals in the initialized population to train

the Kriging model for each objective function. Set

t = 0.

6: while t < T do

7: Set ω = 0

8: while ω < ωmax do

9: Run steps 3-6 of Algorithm 1 and use the Kriging

model to estimate the function values.

10: ω = ω + 1.

11: end while

12: Update the Kriging model using Algorithm 2.

13: t = t + 1.

14: end while

15: Decode each chromosome in the final non-

dominated solution set and compute the

corresponding index INRL .

Output: the final optimal solution which is the chromo-

some with the highest INRL .

where K is the number of clusters. ENRL (K ) represents the

fuzzy compactness of the partition andDNRL(K ) measures the

maximum fuzzy separation between any two clusters among

TABLE 1. Parameter settings.

all clusters. They are defined as follows:

ENRL (K ) =

K
∑

k=1

N
∑

n=1

ukn
[

‖xn − vk‖ + β ‖x̃n − vk‖
]

(22)

DNRL =
K

max
p,q=1

∥

∥vp − vq
∥

∥ (23)

where the membership degree function value ukn is calculated

by (12). It is obvious that ENRL (1) is a constant for a given

image. The larger value of INRL implies more compact and

well-separated clusters. Therefore, the solution with the high-

est value of INRL in the final non-dominated solution set is

considered as the optimal solution.

E. PROCEDURE OF KRV-MRSFC

Themain procedure of KRV-MRSFC is given in Algorithm 3.

IV. EXPERIMENTS AND ANALYSIS

In this paper, we demonstrate the performance of

KRV-MRSFC by performing segmentation experiments on

Berkeley images [39] and real magnetic resonance (MR)

images from IBSR [40]. Six state-of-the-art clustering algo-

rithms, such as FCM [8], FCM-S1 [10], FCM-S2 [10],

FLICM [11], MOVGA [15] and MSFCA [16], are adopted

as comparative methods. MOVGA and MSFCA can auto-

matically evolve the number of clusters for images while

other five methods need users to assign the cluster number in

advance. All the methods and their corresponding parameters

are presented in Table 1. In the next section, we focus on

analyzing the number γ of reference vectors, the radius r of

window and the weighting exponent β on the performance of

KRV-MRSFC.

A. ANALYSIS OF PARAMETERS OF KRV-MRSFC

We first evaluate the effect of the reference vector number γ .

It is tested from 5 to 100with the increment 5.We respectively
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TABLE 2. Segmentation accuracy values of KRV-MRSFC and State-of-Methods on Berkeley images corrupted by Gaussian noise.
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TABLE 3. Segmentation accuracy values of KRV-MRSFC and State-of-Methods on Berkeley images corrupted by salt & pepper noise.
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FIGURE 11. Segmentation results on #135069 with Gaussian noise: (a) original image; (b) noisy image; (c) benchmark image;
(d) FCM; (e) FCM-S1; (f) FCM-S2; (g) FLICM; (h) MOVGA; (i) MSFCA; (j) KRV-MRSFC.

FIGURE 12. Segmentation results on #135069 with Salt & Pepper noise: (a) original image; (b) noisy image; (c) benchmark
image; (d) FCM; (e) FCM-S1; (f) FCM-S2; (g) FLICM; (h) MOVGA; (i) MSFCA; (j) KRV-MRSFC.

FIGURE 13. Segmentation results on #238011 with Gaussian noise: (a) original image; (b) noisy image; (c) benchmark image;
(d) FCM; (e) FCM-S1; (f) FCM-S2; (g) FLICM; (h) MOVGA; (i) MSFCA; (j) KRV-MRSFC.

add White Gaussian noise (normalized variance (NV) equal

to 0.003, 0.009 and 0.015) and Salt & Pepper noise (noise

percentage (NP) equal to 3%, 9% and 15%) to Berkeley

images and employ these noisy images to investigate the

selection of γ . Figs. 3 and 4 present the curves of segmenta-

tion accuracy (SA) [41] with the variation of γ on these noisy

images. SA is defined as follows:

SA =

K
∑

k=1

Ak ∩ Ck

N
(24)

where K is the number of clusters and N is the number of

pixels. Ak and Ck represent the set of pixels belonging to

the k th cluster obtained by the corresponding algorithm and

the ground truth image, respectively. It can be found from

Figs. 3 and 4 that the values of γ have no obvious effect on

the performance of KRV-MRSFC. In this paper, the results

of the proposed method under γ = 45 are provided in the

following experiments.

Then we analyze the weighting exponent β and the

radius of window r . β and r are tested in the sets {5,

10, 15, 20, 25, 30, 35, 40, 45, 50} and {3, 5, 7, 9, 11},

respectively. We also adopt these noisy images to inves-

tigate r and β. Figs. 5 and 6 show the curved surfaces

of SA with the variations of r and β on these noisy

images. In the following experiments, the radius r of window

and the weighting exponent β are assigned to 7 and 25,

respectively.
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FIGURE 14. Segmentation results on #238011 with Salt & Pepper noise: (a) original image; (b) noisy image; (c) benchmark
image; (d) FCM; (e) FCM-S1; (f) FCM-S2; (g) FLICM; (h) MOVGA; (i) MSFCA; (j) KRV-MRSFC.

FIGURE 15. Segmentation results on #241004 with Gaussian noise: (a) original image; (b) noisy image; (c) benchmark image;
(d) FCM; (e) FCM-S1; (f) FCM-S2; (g) FLICM; (h) MOVGA; (i) MSFCA; (j) KRV-MRSFC.

FIGURE 16. Segmentation results on #241004 with Salt & Pepper noise: (a) original image; (b) noisy image; (c) benchmark
image; (d) FCM; (e) FCM-S1; (f) FCM-S2; (g) FLICM; (h) MOVGA; (i) MSFCA; (j) KRV-MRSFC.

B. SEGMENTATION EXPERIMENTS ON BERKELEY IMAGES

In this section, we utilize KRV-MRSFC and other compar-

ative methods to segment Berkeley images. White Gaussian

noise and Salt & Pepper noise with three different noise levels

are added to these Berkeley images. SA is used to quan-

titatively evaluate the segmentation performance of all the

methods. The corresponding results are shown in Tables 2 and

3. It can be found from these tables that KRV-MRSFC outper-

forms the other methods on most noisy images.

In addition, we select several Berkeley images corrupted

by White Gaussian noise with NV = 0.003 and Salt &

pepper noise with NP = 3% to visually compare the per-

formance of KRV-MRSFC and other comparative methods.

The segmentation results are shown in Figs. 7-16. These

results reveal that KRV-MRSFC can overcome the effect of

noise and meanwhile obtain satisfactory visual segmenta-

tion performance. Compared with MOVGA, KRV-MRSFC

introduces the noise-robust local spatial information into two

objective functions and the final optimal solution selection

criterion to overcome the impact of noise on segmentation

results. For instance, Fig. 7 shows that KRV-MRSFC can

completely segment the aircraft from the background while

MOVGA divide the clouds in the background into the object

region. Since the spatial information in KRV-MRSFC is more

robust than that in MSFCA, KRV-MRSFC obtains better seg-

mentation result than MSFCA. For example, Fig. 14 reveals
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TABLE 4. Segmentation Accuracy Values of KRV-MRSFC and State-of-Methods on MR Images from IBSR.

FIGURE 17. Segmentation results on the slice 12 of 12-3: (a) original image; (b) benchmark image; (c) FCM; (d) FCM-S1; (e) FCM-S2; (f) FLICM;
(g) MOVGA; (h) MSFCA; (i) KRV-MRSFC.

FIGURE 18. Segmentation results on the slice 5 of 111-2: (a) original image; (b) benchmark image; (c) FCM; (d) FCM-S1; (e) FCM-S2; (f) FLICM;
(g) MOVGA; (h) MSFCA; (i) KRV-MRSFC.

that KRV-MRSFC can not only well segment the moon

and the trees from the background, but also suppress the

effects of Salt & Pepper noise in the image compared to

MSFCA.

C. SEGMENTATION EXPERIMENTS ON MR IMAGES

Real MR images from IBSR are used to verify the perfor-

mance of KRV-MRSFC and comparative methods in this

section. We do not artificially add noise to MR images
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FIGURE 19. Segmentation results on the slice 7 of 191-3: (a) original image; (b) benchmark image; (c) FCM; (d) FCM-S1; (e) FCM-S2; (f) FLICM;
(g) MOVGA; (h) MSFCA; (i) KRV-MRSFC.

FIGURE 20. Running time comparison of MOVGA, MSFCA and KRV-MRSFC on Berkeley images corrupted by Gaussian noise:
(a) 3063; (b) 3096; (c) 8068; (d) 15088; (e) 24063; (f) 42049; (g) 55067; (h) 67079; (i) 86016; (j) 100007; (k) 101027; (l) 106047;
(m) 108004; (n) 118035; (o) 130014; (p) 135069; (q) 147091; (r) 167062; (s) 238011; (t) 241004.

because MR images are corrupted by Rician noise. The SA

values of all the methods are shown in Table 4. It demon-

strates that KRV-MRSFC behaves much better than the other

methods on most MR images.

SomeMR images are selected to show the visual segmenta-

tion performance of KRV-MRSFC and comparative methods.

The segmentation results are presented in Figs. 17-19. It can

be found from these figures that KRV-MRSFC can well seg-

ment the white and gray matter regions in the image. In con-

trast, the white matter regions in the results of FCM, FCM-

S1, FCM-S2 and FLICM are expanded too much. MOVGA

and MSFCA cannot obtain satisfactory segmentation results

due to failing to evolve a correct cluster number on these

images.

D. RUNNING TIME ANALYSIS

In this section, we compare the time efficiency of three

multi-objective evolutionary clustering algorithms,MOVGA,

MSFCA andKRV-MRSFC.All themethods are implemented

with MATLAB and performed on a computer with Inter Core

i5-6500 CPU, 8GRAMandWindows 7. Figs. 20 and 21 show

the running time of these three multi-objective evolutionary

clustering algorithms on several Berkeley images corrupted

by White Gaussian noise and Salt & pepper noise with three

different noise levels, respectively. Due to adopting Krig-

ing model to predict the values of objective functions of

new individuals instead of directly calculating the expen-

sive objective functions, KRV-MRSFC consumes the fewest

running time among all the multi-objective evolutionary
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FIGURE 21. Running time comparison of MOVGA, MSFCA and KRV-MRSFC on Berkeley images corrupted by Salt & Pepper
noise: (a) 3063; (b) 3096; (c) 8068; (d) 15088; (e) 24063; (f) 42049; (g) 55067; (h) 67079; (i) 86016; (j) 100007; (k) 101027;
(l) 106047; (m) 108004; (n) 118035; (o) 130014; (p) 135069; (q) 147091; (r) 167062; (s) 238011; (t) 241004.

clustering algorithms. Therefore, the optimization efficiency

of KRV-MRSFC is significantly better than MOVGA and

MSFCA.

V. CONCLUSION

A Kriging-assisted reference vector guided multi-objective

robust spatial fuzzy clustering algorithm (KRV-MRSFC)

for image segmentation is proposed in this paper.

To acquire satisfactory segmentation results on noisy images,

KRV-MRSFC introduces the noise robust local spatial infor-

mation into objective functions to be optimized.

Meanwhile, the noise robust local spatial information is

also introduced into a cluster validity index for selecting

the optimal solution from the final non-dominated solution

set. In addition, KRV-MRSFC uses the Kriging model to

approximate the original objective functions to reduce the

performing time. Moreover, an expected improvement sam-

pling criterion based on APD is proposed in KRV-MRSFC to

select individuals to update the Kriging model. This strategy

improves the approximation accuracy of the Kriging model.

Experimental results on Berkeley and real MR images indi-

cate that KRV-MRSFC outperforms state-of-the-art methods

in segmentation performance and meanwhile possesses a low

time cost.

Our future research includes automatically determining the

cluster number and designing more effective infilling criteria

to improve the accuracy of surrogate model. In addition,

how to obtain more effective image spatial information to

construct fitness functions deserves further research.
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