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Abstract. Among image restoration literature, there are mainly two
kinds of approach. One is based on a process over image wavelet coef-
ficients, as wavelet shrinkage for denoising. The other one is based on
a process over image gradient. In order to get an edge-preserving reg-
ularization, one usually assume that the image belongs to the space of
functions of Bounded Variation (BV). An energy is minimized, composed
of an observation term and the Total Variation (TV) of the image.
Recent contributions try to mix both types of method. In this spirit,
the goal of this paper is to define a unified-framework including together
wavelet methods and energy minimization as TV. In fact, for denoising
purpose, it is already shown that wavelet soft-thresholding is equivalent
to choose the regularization term as the norm of the Besov space B11

1 . In
the present work, this equivalence result is extended to the case of decon-
volution problem. We propose a general functional to minimize, which
includes the TV minimization, wavelet coefficients regularization, mixed
(TV+wavelet) regularization or more general terms. Moreover we give
a projection-based algorithm to compute the solution. The convergence
of the algorithm is also stated. We show that the decomposition of an
image over a dictionary of elementary shapes (atoms) is also included in
the proposed framework. So we give a new algorithm to solve this diffi-
cult problem, known as Basis Pursuit. We also show numerical results of
image deconvolution using TV, wavelets, or TV+wavelets regularization
terms.

1 Introduction

1.1 Image Restoration

Restoring images from blurred or/and noisy data is an important task of image
processing. In the important literature developed since twenty years, most
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approaches are based on an energy minimization. Such energy contains mainly
two terms: the first term models how the observed data is derived from the
original data one would like to reconstruct; the second term contains a priori
information on the regularity of this original data. At this point, two important
families of criteria emerge. In the first family the regularity criterion is a semi-
norm that is expressed in a “simple” way in terms of the wavelet coefficients of
the image (usually a Besov norm). This leads to a restoration process that is
performed through some processing of the wavelet coefficients, such as a wavelet
shrinkage (for example see [5] in denoising, [10] in deconvolution, [8] in Radon
transform inversion).
In the second family, the regularity criterion is a functional of the gradient of
the image, so that the resolution of the problem amounts to solving some more
or less complex PDE. In order to get an edge-preserving regularization, one
usually assumes that the image belongs to the space of functions of Bounded
Variation (BV) and the criterion which is minimized is the Total Variation
(TV) of the image (see [12] for example).

Recent contributions try to mix both types of method [9,14,6]. In this
spirit, the goal of this paper is to define a unified-framework including together
wavelet, TV, or a more general semi-norm. In fact, as it is shown in [2] for
denoising and compression purposes, wavelet soft-thresholding is equivalent
to choose the regularization term as the norm of the Besov space B11

1 . In the
present work, this equivalence result is extended to the case of deconvolution
problem. The proposed framework allows to include the TV minimization,
mixed (TV+wavelet) regularization or more general terms. Moreover we give a
projection-based algorithm to compute the solution in the more general case.
The convergence of algorithm is also stated.

Image restoration can be considered as the minimization of a functional writ-
ten as

1
2λ

‖g −Au‖2
X1

+ |u|sY (1)

A is a linear operator which can model the degradation during the observation
of the object u:

X −→ X1
u �−→ g = Au+ η

(2)

X is the space describing the objects to be reconstructed and X1 the space of
observations. η is the acquisition noise. Typically X = X1 = L2 or X = X1 a
finite-dimensional space. As in [2], |u|Y is a norm or a semi-norm in a smoothness
space Y . Standard example is Y = L2, s = 2 defining quadratic regularization
as proposed by Tikhonov [15]. Now, if Y is the BV space and s = 1, the solution
is the one such that Au best approximates g (in the sense of the norm ‖ ‖X1),
with minimal Total Variation [12]. This general functional includes also wavelet
shrinkage denoising/deconvolution methods by considering A = I (where I is the



A l1-Unified Variational Framework for Image Restoration 3

identity operator) or A is the Point Spread Function of the transfert function of
the optics and Y is the Besov space B11

1 and s = 1 [2]. Notice that if A defines
a decomposition over a dictionary of possible atoms from which the signal u is
built, (for example wavelet packets for textures, curvelets or bandlets for edges,
and so on), then solving (1) corresponds exactly to the Basis Pursuit DeNoising
algorithm (BPDN) by Chen, Donoho and Saunders [3].

1.2 Problem Statement

In this paper, we study the minimization of a functional of the form

1
2λ

‖g −Au‖2
X1

+ J(u) (3)

where J : X → R∪+{∞} is a semi-norm onX. For sake of simplicity, we assume
in the whole paper that u is a discrete image that is to say X = X1 = R

N×N

and the symbol ‖.‖ will denote any Hilbertian norm.
In order to minimize the functional (3), we describe a projection-based al-

gorithm which extends the one proposed by Chambolle for the denoising case
(A = I) with TV regularization [1].

The convergence of the algorithm is proved. This gives a new algorithm
to solve several kinds of image processing: image deconvolution with TV
regularization, with wavelet shrinkage, or with both kind of regularization;
BPDN problem as decribed by Donoho in [3]. During the review process of the
paper, our attention was drawn by S. Mallat to the independent works [7,4]
which derive, by different approaches, essentially the same iterative algorithm
as the one described in this paper. In [4], a strong convergence of the iterative
algorithm is shown in infinite dimension. One difference is that our algorithm
includes TV or mixed (TV+wavelet) regularization which seems not to be the
case in [7,4].
In section 2, we recall some basic tools in convex analysis. The main contri-
bution of this paper is detailed in section 3 where the minimization algorithm
is given for the general functional (3). In section 4, we show that several
standard methods in image restoration are special cases of the unified energy
(3), and numerical results are given for deconvolution with TV plus wavelet
regularization.

1.3 Notations

Let us fix some notations. A discrete image will be denoted by ui,j , i, j = 1 . . . N .
In order to define the TV of the discrete image u, we introduce the gradient
∇ : X → X ×X defined by:

(∇u)1i,j =
{
ui+1,j − ui,j if i < N
0 if i = N

and (∇u)2i,j =
{
ui,j+1 − ui,j if j < N
0 if j = N

We also introduce a discrete version of the divergence operator defined, by
analogy with the continuous case, by div = −∇∗ where ∇∗ is the adjoint of ∇.
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We have

(div(p))i,j =



p1
i,j − p1

i−1,j if 1 < i < N
p1
i,j if i=1

−p1
i−1,j if i=N

+



p2
i,j − p2

i,j−1 if 1 < j < N
p2
i,j if j=1

−p2
i,j−1 if j=N

(4)

The discrete TV denoted JTV is defined as the l1-norm of the vector ∇u by

JTV (u) = ‖∇u‖1 =
N∑

i,j=1

√{
(∇u)1i,j

}2 +
{
(∇u)2i,j

}2
. (5)

2 Some Tools of Convex Analysis

We recall in this section some usual tools in convex analysis which are used to
build our algorithm. We refer the reader to Rockafellar [11] for a more complete
introduction of convex analysis.

Definition 1 (Legendre-Fenchel Conjugate). Let φ be an application X →
R ∪ {+∞}. We assume that φ �≡ +∞. The conjugate function of φ is defined as
φ∗ : X → R ∪ {+∞} by:

φ∗(s) = sup
x∈X

{ 〈 s, x 〉 − φ(x) } (6)

φ∗ is convex and lower semi-continuous (lsc).

Definition 2 (Indicator function, support function).
Let K ⊂ X be a non empty closed convex subset of X. The indicator function of
K, called χK , is defined by:

χK(x) =
{

0 if x ∈ K
+∞ otherwise (7)

We call support function of K the function denoted δK , defined by:

δK(s) = sup
x∈K

〈 s, x 〉 (8)

The link between χK and δK is given by the following results

Theorem 1. Let K ⊂ X a non empty convex closed subset of X. Then the
functions χK and δK are convex, lsc and mutually conjugate.

Theorem 2. All support functions δK , associated to a non empty convex closed
subset K, is convex and one-homogeneous (e.g. ∀t > 0,∀x ∈ X, δK(tx) =
tδK(x)) and lsc. Conversely, each function φ �≡ +∞ convex, one-homogeneous
and lsc is the support function of a closed convex set Kφ defined by:

Kφ = { s ∈ X, ∀x ∈ X, 〈 s, x 〉 ≤ φ(x) } . (9)
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For example, in (3), we have supposed that J(u) is a semi-norm. Therefore,
it is a convex one-homogeneous and lsc function. So J(u) is the support function
of a closed convex set KJ defined by (9). If J(u) is the discrete TV semi-norm
given by (5), then

KTV = { div(p), p ∈ X ×X, |pi,j | ≤ 1 ∀i, j } . (10)

We now introduce the notion of sub-differential of a function which general-
izes the differential for convex functions.

Definition 3 (Sub-differential). Let φ a convex function. We define the sub-
differential ∂φ(x) of φ in x ∈ X by:

s ∈ ∂φ(x) ⇐⇒ ∀x′ ∈ X, φ(x′) ≥ φ(x) + 〈 s, x′ − x 〉 (11)

Note that if x is such that φ(x) < ∞ and if φ is differentiable in x, then:

∂φ(x) = { ∇φ(x) } . (12)

3 Algorithm and Convergence Result

This section is devoted to the main contribution of this paper, namely the de-
scription and the convergence of our algorithm for numerically solving the min-
imization problem (3). Before doing that, in order to justify our algorithm, we
need some preliminary results.

3.1 Preliminary Results

Theorem 3. Let B : X → X be a linear self-adjoint and positive operator
satisfying ‖B‖ < 1. Then

∀u ∈ X, 〈Bu, u 〉 = min
w∈X

{
‖u− w‖2 + 〈Cw, w 〉

}
(13)

where C = B (I −B)−1. Moreover, the minimum is reached at a unique point
wu which verifies:

wu = (I + C)−1 (u) = (I −B) (u) . (14)

Let us recall that the functional we want to minimize is given by

1
2λ

‖g −Au‖2 + J(u)

Let µ > 0 be such that

µ‖A∗A‖ < 1 (15)
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and

B = µA∗A (16)

B is a self-adjoint positive operator. From hypothesis(15), µ is such that ‖B‖ <
1. Thanks to Theorem 3, we will be able to write the data term of (3), ( 1

2λ ‖g−
Au‖2), as the result of a new minimization problem, w.r.t an auxiliary variable
w. We have

‖Au‖2 = 〈A∗Au, u 〉 (17)

=
1
µ

〈Bu, u 〉 (18)

=
1
µ

min
w∈X

{‖u− w‖2 + 〈Cw, w 〉} (19)

with C = B(I −B)−1. Therefore

1
2λ

‖g −Au‖2 = min
w∈X

H(u,w) (20)

where H is the convex differentiable function defined by:

H(u,w) =
1

2λµ

(
‖u− w‖2 + 〈Cw, w 〉

)
+

1
2λ

(
‖g‖2 − 2 〈Au, g 〉

)
. (21)

Let us denote

Ψ1 = I −B = I − µA∗A (22)

From relation (14), w minimizes H(u, . ) if and only if w = Ψ1u. Let us now
consider the function F defined by:

F (u,w) = H(u,w) + J(u) (23)

F is a convex continuous function, and we deduce from the previous prelim-
inary results, the following proposition:

Proposition 1. w minimizes F (u, . ) defined in (21) and (23) if and only if
w = Ψ1u where Ψ1 = I − µA∗A and we have:

∀w �= Ψ1u, F (u, Ψ1u) < F (u,w) (24)

Let us now show that computing the global minimizer of F reduces to
minimize each of its partial functions F (., w) and F (u, .). This is a non triv-
ial result even in the case of a strictly convex function (consider for instance
f(x, y) = (x2 + y2)/2 + |x− y| at x = y = 1/2).

Proposition 2. (u,w) minimizes F if and only if:
{
u minimizes F ( . , w)
w minimizes F (u, . ) (25)
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Proof. Since F is the sum of two convex continuous functions,

∂F (u,w) = ∂H(u,w) + ∂J(u,w). (26)

As H is differentiable and J does not depend on w, we deduce:

∂F (u,w) = ( ∇uH(u,w) , ∇wH(u,w) ) + ∂J(u) × {0} (27)

So

0 ∈ ∂F (u,w) ⇔
{

0 ∈ ∇uH(u,w) + ∂J(u)
0 = ∇wH(u,w) (28)

which is exactly what we want to show.

The last result we need in order to derive our algorithm is the following:

Proposition 3. Let us denote by Ψ2 : X → X the application defined by:

Ψ2(w) = (I −ΠλµKJ
) (w + µA∗g) . (29)

Here ΠλµKJ
(w) stands for the orthogonal projection of w on the convex set

λµKJ , where KJ is the convex set associated to J(u) (see (9)). Then u minimizes
F ( . , w) if and only if u = Ψ2(w).

The expression (29) is found by computing the dual problem of minu F (u,w),
for fixed w (see [1]).

3.2 The Algorithm for the Minimization of the Unified Functional

We are now able to describe the algorithm we propose to minimize the unified
functional (3). Based on results given in Propositions 1, 2 and 3, we propose the
following iterative algorithm to minimize (3)

wn = (I − µA∗A) (un) (30)
un+1 = (I −ΠλµKJ

) (wn + µA∗g) (31)

By a change of notation, using vn = wn + µA∗g, it results:

vn = un + µA∗ (g −Aun) (32)
un+1 = (I −ΠλµKJ

) (vn) (33)

In practice, we will use the algorithm (32)–(33) rather than the writting
(30)–(31) and we use the numerical algorithm (35)–(36) described in section 3.3
to compute ΠλµKJ

.
The first equation of this algorithm is a fixed-step descent algorithm, con-

sidering only the minimization of the data term ‖g−Au‖2. The step is fixed by
the parameter µ. The second equation corresponds to a denoising step over the
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current estimates vn. Remark that the parameter considered in the denoising
step is λµ rather than λ as it should be suggested looking at the functional (3).
We can also observe that in the case where A∗A is invertible then (32)–(33)
correspond to a contraction with a ratio 1−µλ0, where λ0 is the smallest eigen-
value of A∗A. In the case where A∗A is not invertible, then the transformation
(32)–(33) is 1–Lipschitz. In either situations the following theorem holds.

Theorem 4 (Convergence of the algorithm). Let µ > 0 and assume

µ ‖A∗A‖ < 1 (34)

Then the algorithm (32)–(33) converges to a global minimizer of (3).
Before ending this section, let us remark that we always have the existence

of a minimizer of the functional (3) in the discrete setting. However the difficult
point for the convergence proof comes from the fact that the minimum is non
necessarily unique.

3.3 Projection Algorithm of Chambolle

We give in this section the numerical algorithm to compute a projectionΠλKJ
, in

the case of a regularizing term expressed as J(u) = ‖Qu‖1 =
∑
θ |(Qu)θ|, where

Q is a linear operator Q : X → Θ and Θ is a product space (see section 4.3 for
more details on the notations). The projection onto the convex closed set λKJ ,
where KJ is associated to ‖Qu‖1 can be numerically computed by a fixed point
method, based on results in [1]. We build recursively a sequence in Θ of vectors
pn = (pn,θ)θ in the following way: we choose p0 ∈ BΘ = {p ∈ Θ : |pθ| ≤ 1 ∀θ}
and for each n ≥ 0 we let

qn = Q(Q∗pn − g

λ
) (35)

and for each θ

pn+1,θ =
pn,θ − τ(qn,θ)

1 + τ |qn,θ| (36)

We have a sufficient condition ensuring the convergence of the algorithm:

Theorem 5. Assume that the parameter τ in (36) verifies τ ≤ 1
κ2 where κ =

‖Q∗‖. Then for all initial condition p0 ∈ BΘ, the algorithm (35)–(36) is such
as:

λQ∗pn −→ λQ∗p̂ = ΠλKJ
(g) (37)

4 Applications

For TV regularization, one just needs to apply the algorithm (32)–(33) with K =
KTV , so that the projection algorithm is given by (35)–(36) with Θ = X ×X,
Q = ∇, Q∗ = −div (as described in [1]). Let us now look at regularization in
the wavelet domain.
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4.1 Wavelet Shrinkage

Let us consider the case where J(u) is the norm in the Besov space B11
1 . In [2],

it is shown that this norm is equivalent to the norm of the sequence of wavelet
coefficients cuj,k,ψ:

‖u‖B11
1

=
∑
j,k,ψ

|cuj,k,ψ| (38)

ψ ∈ {ψ(1), ψ(2)ψ(3)} = Ψ defines bi-dimensional wavelets from a one-dimensional
wavelet and a one-dimensional scaling function as usual. The set of functions
{ψj,k(x) = 2kψ(2kx − j)}ψ∈Ψ,k∈Z,j∈Z2 forms an orthogonal bases for L2(R2).
Then, for f ∈ L2(R2), we have

f =
∑
j,k,ψ

cfj,k,ψψj,k (39)

For sake of simplicity, the range of the indexes is omitted: we work with discrete
functions with bounded definition domain. Assume that our purpose is image
deconvolution that is to say A is a convolution operator representing the transfert
function of the optics. Then if we want to deconvolve the observed image g with
a wavelet regularization term, we have to minimize an energy of the form

1
2λ

‖g −Au‖2 + ‖u‖B11
1
. (40)

We know (see for example [2]), that if A = I, minimizing (40) is equivalent
to a soft-thresholding algorithm. Let us now see what happens with algorithm
(32)–(33) and a general operator A. The convex set K1 associated to the norm
in B11

1 is defined by (see (9))

K1 =
{
s ∈ X / ∀x ∈ X, < s, x >≤ ‖x‖B11

1

}
. (41)

We easily deduce that

K1 =
{
s ∈ X / ∀j, k, ψ, |csj,k,ψ| ≤ 1

}
. (42)

where cs are the wavelet coefficients of s
Therefore equation (33) is a denoising step by soft-thresholding with thresh-

old λµ. Then the algorithm iteratively computes a step of steepest gradient de-
scent only for the deconvolution and then a denoising step by soft-thresholding.
This algorithm is very easy to implement.

4.2 Basis Pursuit DeNoising (BPDN)

Representing a signal in terms of few high coefficients of a dictionary and a lot
of vanishing coefficients allows representation of an image ensuring better per-
formances of shrinkage methods or other restoration methods. The problem is
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to decompose a signal over a possibly large dictionary rather than one orthog-
onal basis. The dictionary should contain all possible atoms which can be used
to represent any images. For example we can use in the dictionary DCT, DST,
biorthogonal wavelets, wavelet packets, curvelets, and so on. Searching this rep-
resentation is an ill-posed problem, since such a decomposition is non unique.
In the Basis Pursuit DeNoising algorithm (BPDN) [3] the authors propose the
following regularizing functional

inf
α

1
2λ

‖g − Φα‖2 + ‖α‖1 (43)

The function g is the signal to be decomposed, α the unknown coefficients
and Φ the operator Φ : α �−→ y =

∑
i αiφi where φi are the elements of the

dictionary.
The minimization (43) can be performed by using algorithm (32)–(33). Since the
regularization is a l1-norm, the step (33) is simply a soft-thresholding.

In [3], is proposed the algorithm IP (Interior Point) to solve (43). This al-
gorithm is slow. A faster algorithm called BCR (Block Coordinate Relaxation)
has been proposed in [13]. As algorithm (32)–(33), BCR is based on a soft-
thresholding of the coefficients. In BCR, it is assumed that the dictionary is
composed of a union of orthogonal bases. Our algorithm is more general since it
can be applied by using any dictionary.
We have compared these three algorithms on some 1D-signals. The IP algorithm
is available on the web (http://www-stat.stanford.edu/̃atomizer). We have chosen
the same bases (wavelet transform, DCT and DST) for the three algorithms. On
a 1D signal of 4096 samples, it appears that the convergence is much faster for
algorithm (32)–(33) than the IP algorithm, and a little bit smaller than the BCR
one. We may loose in time what we gain in generality. Of course these are very
few results and much more experiments must be conducted for the comparison.

4.3 l1-Regularization

In this section, we show that our algorithm can be applied to a general class of
semi-norm J(u) which is relevant in real problems. We will consider what we call
l1-regularization, which consists in the minimization of the following functional

1
2λ

‖g −Au‖2 + ‖Qu‖1. (44)

Q is a linear application Q : X → Θ , where Θ is the product space defined as:

Θ =
∏

1≤θ≤r
R
nθ (45)

endowed with the norm

p ∈ Θ �−→ ‖p‖1 =
∑

1≤θ≤r
|p|θ (46)
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where |·| is the Euclidean norm on R
nθ and p = (pθ)1≤θ≤r , pθ ∈ R

nθ .

‖Qu‖1 is a semi-norm over X and is a norm when Q is injective.
For example, if Q is a wavelet transform, (Qu)θ are scalar coefficients and then

‖Qu‖1 =
∑
θ

| (Qu)θ | (47)

is a norm if the sum runs over all coefficients of the wavelet transform or a semi-
norm otherwise.
In the TV case we have

‖Qu‖1 = ‖∇u‖1 (48)

This general framework also includes a regularization composed of a sum of a
TV term and a wavelet term. For such a regularization, we will set Θ = X2 ×X,
and Q : X → Θ is defined as:

Q : X −→ X2 ×X (49)

u �−→
(

γ∇u
(1 − γ)Wu

)
(50)

where W stands for an orthonormal wavelet transform. We use the norm ‖ · ‖1
such that: ∀ (p1, p2) ∈ X2, ∀w ∈ X,

‖(p, w)‖1 = ‖p‖1 + ‖w‖1 (51)

=
∑

1≤i,j≤N

√(
p1
i,j

)2 +
(
p2
i,j

)2 +
∑

1≤i,j≤N
|wi,j | (52)

and the global regularization functional is

Jγ(u) = γ ‖∇u‖1 + (1 − γ) ‖Wu‖1 = ‖Qu‖1 (53)

Note that (53) defines a family of functional Jγ , which goes continuously from
l1-norm on the wavelet coefficient to the Total Varation as γ goes from 0 to 1.
We show restoration results for deconvolution by using this functional for three
values of γ. The Lena image has been blurred by a PSF (Point Spread Function)
corresponding to a synthetic aperture optical system, with vanishing coefficients
in the medium frequencies as well as in the high frequencies. A Gaussian white
noise has been added with standard deviation σ = 0.05 (for u values in [0, 1]).
This deconvolution problem is very difficult because of vanishing medium fre-
quencies of the degradation, and a large amount of noise. We retrieve for γ = 0
and γ = 1 the specific drawbacks of wavelets and TV restoration respectively:
blur and bad edges for the wavelets, loose of textures for TV. The value γ = 0.2
has been chosen by hand and gives a good compromise. The choice of this pa-
rameter is an open problem. The regularizing parameter λ is estimated following
the ideas of [1].
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Original image blurred image

Observations Deconvolution with γ = 0
(blurred image + noise, σ = 0.05)

Deconvolution with γ = 0.2 Deconvolution with γ = 1

Fig. 1. Results of the algorithm on a deconvolution problem
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5 Conclusion

We have presented a general functional unifying several approaches of image
restoration. A convergent and easy to implement algorithm has been proposed
for the minimization of this functional. For a good evaluation of our algorithm
in terms of quality and rapidity for several applications, much more results will
be conducted in each specific application as deconvolution or BPDN.
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