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Abstract

Kernel methods have great promise for learn-
ing rich statistical representations of large
modern datasets. However, compared to neu-
ral networks, kernel methods have been per-
ceived as lacking in scalability and flexibil-
ity. We introduce a family of fast, flexi-
ble, lightly parametrized and general purpose
kernel learning methods, derived from Fast-
food basis function expansions. We provide
mechanisms to learn the properties of groups
of spectral frequencies in these expansions,
which require onlyO(m log d) time andO(m)
memory, form basis functions and d input di-
mensions. We show that the proposed meth-
ods can learn a wide class of kernels, outper-
forming the alternatives in accuracy, speed,
and memory consumption.

1 Introduction

The generalisation properties of a kernel method are
entirely controlled by a kernel function, which repre-
sents an inner product of arbitrarily many basis func-
tions. Kernel methods typically face a tradeoff be-
tween speed and flexibility. Methods which learn a
kernel lead to slow and expensive to compute func-
tion classes, whereas many fast function classes are
not adaptive. This problem is compounded by the
fact that expressive kernel learning methods are most
needed on large modern datasets, which provide un-
precedented opportunities to automatically learn in-
tricate statistical representations.

For example, the recent spectral kernels proposed by
Wilson and Adams (2013) are flexible, but require
an arbitrarily large number of basis functions, com-
bined with many free hyperparameters, which can lead
to major computational restrictions. Conversely, the
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recent Random Kitchen Sinks of Rahimi and Recht
(2009) and Fastfood (Le et al., 2013) methods offer
efficient finite basis function expansions, but only for
known kernels, a priori hand chosen by the user. These
methods do not address the fundamental issue that it
is exceptionally difficult to know a priori which ker-
nel might perform well; indeed, an appropriate kernel
might not even be available in closed form.

We introduce a family of kernel learning methods
which are expressive, scalable, and general purpose.
In particular, we introduce flexible kernels, including
a novel piecewise radial kernel, and derive Fastfood ba-
sis function expansions for these kernels. We observe
that the frequencies in these expansions can in fact be
adjusted, and provide a mechanism for automatically
learning these frequencies via marginal likelihood opti-
misation. Individually adjusting these frequencies pro-
vides the flexibility to learn any translation invariant
kernel. However, such a procedure has as many free
parameters as basis functions, which can lead to over-
fitting, troublesome local optima, and computational
limitations. We therefore further introduce algorithms
which can control the scales, spread, and locations of
groups of frequencies. These methods are computa-
tionally efficient and flexible, with a minimal number
of free parameters requiring training. By controlling
groups of spectral frequencies, we can use arbitrar-
ily many basis functions with no risk of over-fitting.
Moreover, we do not require that the inputs have spe-
cial structure, such as regular sampling intervals.

Overall, we introduce four new kernel learning meth-
ods with distinct properties, and evaluate these meth-
ods on a wide range of real datasets. We show major
advantages in accuracy, speed, and memory consump-
tion. We begin by describing related work in more
detail in section 2. We then provide additional back-
ground on kernel methods, including basic properties
and Fastfood approximations, in section 3. In section 4
we introduce new tools for kernel learning. Section 5
contains an evaluation of the proposed techniques. We
conclude in section 6.
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2 Related Work

Rahimi and Recht (2008) introduced Random Kitchen
Sinks finite Fourier basis function approximations to
fixed stationary kernels, using a Monte Carlo sum ob-
tained by sampling from spectral densities. For greater
flexibility, one can consider a weighted sum of random
kitchen sink expansions of Rahimi and Recht (2009).
In this case, the expansions are fixed, corresponding
to a priori chosen kernels, but the weighting can be
learned from the data. Recently, Lu et al. (2014) have
shown how weighted sums of random kitchen sinks can
be incorporated into scalable logistic regression mod-
els. First, they separately learn the parameters of L
logistic regression models, each of which uses a sepa-
rate random kitchen sinks expansion, enabling paral-
lelization. They then jointly learn the weightings of
each expansion. Learning proceeds through stochas-
tic gradient descent. Lu et al. (2014) achieve promis-
ing performance on acoustic modelling problems, in
some instances outperforming deep neural networks.
Alternatively, Lázaro-Gredilla et al. (2010) considered
optimizing the locations of all spectral frequencies in
Random Kitchen Sinks expansions, as part of a sparse
spectrum Gaussian process formalism (SSGPR).

For further gains in scalability, Le et al. (2013) ap-
proximate the sampling step in Random Kitchen Sinks
by a combination of matrices which enable fast com-
putation. The resulting Fastfood expansions perform
similarly to Random Kitchen Sinks expansions (Le
et al., 2013), but can be computed more efficiently. In
particular, the Fastfood expansion requires O(m log d)
computations and O(m) memory, for m basis func-
tions and d input dimensions. Recently, the Doubly
Stochastic Kernel Machine of Dai et al. (2014) consid-
ered generating random features on the fly, allowing
Random Kitchen Sink based methods to scale up to
datasets with millions of points (such as ImageNet).

To allow for highly flexible kernel learning, Wilson
and Adams (2013) proposed spectral mixture kernels,
derived by modelling a spectral density by a scale-
location mixture of Gaussians. These kernels can be
computationally expensive, as they require arbitrar-
ily many basis functions combined with many free hy-
perparameters. Recently, Wilson et al. (2014) modi-
fied spectral mixture kernels for Kronecker structure,
and generalised scalable Kronecker (Tensor product)
based learning and inference procedures to incomplete
grids. Combining these kernels and inference proce-
dures in a method called GPatt, Wilson et al. (2014)
show how to learn rich statistical representations of
large datasets with kernels, naturally enabling extrap-
olation on problems involving images, video, and spa-
tiotemporal statistics. Indeed the flexibility of spec-
tral mixture kernels makes them ideally suited to large
datasets. However, GPatt requires that the input do-

main of the data has at least partial grid structure in
order to see efficiency gains.

In this paper, we consider weighted mixtures of Fast-
food expansions, where we propose to learn both the
weighting of the expansions and the properties of the
expansions themselves. We propose several approaches
under this framework. We consider learning all of the
spectral properties of a Fastfood expansion. We also
consider learning the properties of groups of spectral
frequencies, for lighter parametrisations and useful in-
ductive biases, while retaining flexibility. For this pur-
pose, we show how to incorporate Gaussian spectral
mixtures into our framework, and also introduce novel
piecewise linear radial kernels. Overall, we show how
to perform simultaneously flexible and scalable kernel
learning, with interpretable, lightly parametrised and
general purpose models, requiring no special structure
in the data. We focus on regression for clarity, but our
models extend to classication and non-Gaussian likeli-
hoods without additional methodological innovation.

3 Kernel Methods

3.1 Basic Properties

Denote by X the domain of covariates and by Y the
domain of labels. Moreover, denote X := {x1, . . . , xn}
and Y := {y1, . . . , yn} data drawn from a joint distri-
bution p over X × Y. Finally, let k : X ×X → R be a
symmetric positive semidefinite kernel (Mercer, 1909),
such that every matrix K with entries Kij := k(xi, xj)
satisfies K ⪰ 0.

The key idea in kernel methods is that they allow one
to represent inner products in a high-dimensional fea-
ture space implicitly, using

k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩ . (1)

While the existence of such a mapping ϕ is guaranteed
by the theorem of Mercer (1909), manipulation of ϕ
is not generally desirable since it might be infinite di-
mensional. Instead, one uses the representer theorem
(Kimeldorf and Wahba, 1970; Schölkopf et al., 2001)
to show that when solving regularized risk minimiza-
tion problems, the optimal solution f(x) = ⟨w, ϕ(x)⟩
can be found as linear combination of kernel functions:

⟨w, ϕ(x)⟩ =
⟨

n
∑

i=1

αiϕ(xi), ϕ(x)

⟩

=

n
∑

i=1

αik(xi, x).

While this expansion is beneficial for small amounts
of data, it creates an unreasonable burden when the
number of datapoints n is large. This problem can be
overcome by computing approximate expansions.

3.2 Fastfood

The key idea in accelerating ⟨w, ϕ(x)⟩ is to find an
explicit feature map such that k(x, x′) can be approx-
imated by

∑m
j=1 ψj(x)ψj(x

′) in a manner that is both
fast and memory efficient. Following the spectral ap-
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proach of Rahimi and Recht (2009), we exploit that
for translation invariant kernels k(x, x′) = κ(x − x′)
we have

k(x, x′) =

∫

ρ(ω) exp (i ⟨ω, x− x′⟩) dω . (2)

Here ρ(ω) = ρ(−ω) ≥ 0 to ensure that the imaginary
parts of the integral vanish. Without loss of generality
we assume that ρ(ω) is normalized, e.g. ∥ρ∥1 = 1. A
similar spectral decomposition holds for inner product
kernels k(x, x′) = κ(⟨x, x′⟩) (Le et al., 2013; Schoen-
berg, 1942).

Rahimi and Recht (2009) suggested to sample from the
spectral distribution ρ(ω) for a Monte Carlo approxi-
mation to the integral in (2). For example, the Fourier
transform of the popular Gaussian kernel is also Gaus-
sian, and thus samples from a normal distribution for
ρ(ω) can be used to approximate a Gaussian (RBF)
kernel.

This procedure was refined by Le et al. (2013) by ap-
proximating the sampling step with a combination of
matrices that admit fast computation. They show that
one may compute Fastfood approximate kernel expan-
sions via

k̃(x, x′) ∝ 1

m

m
∑

j=1

ϕj(x)ϕ
∗
j (x

′) (3)

where ϕj(x) = exp (i[SHGΠHBx]j) .

The random matrices S,H,G,Π, B are chosen so as
to provide a sufficient degree of randomness while also
allowing for efficient computation.

B Binary decorrelation The entries Bii of this di-
agonal matrix are drawn uniformly from {±1}.
This ensures that the data have zero mean in ex-
pectation over all matrices B.

H Hadamard matrix It is defined recursively via

H1 :=
[

1
]

and H2d :=

[

Hd Hd

Hd −Hd

]

The recursion shows that the dense matrix Hd

admits fast multiplication in O(d log d) time, i.e.
as efficiently as the FFT allows.

Π Permutation matrix This decorrelates the eigen-
systems of the two Hadamard matrices. Generat-
ing such a random permutation (and executing
it) can be achieved by reservoir sampling, which
amounts to n in-place pairwise swaps.

G Gaussian matrix G is a diagonal matrix with
Gaussian entries drawn iid via Gii ∼ N (0, 1).
The result of using it is that each of the rows
of HGΠHB consist of iid Gaussian random vari-
ables. Note, though, that the rows of this matrix
are not quite independent.

S Scaling matrix This diagonal matrix encodes the
spectral properties of the associated kernel. Con-
sider ρ(ω) of (2). There we draw ω from the spher-
ically symmetric distribution defined by ρ(ω) and
use its length to rescale Sii via

Sii = ∥ωi∥ ∥G∥−1
Frob

It is straightforward to change kernels, for example, by
adjusting S. Moreover, all the computational benefits
of decomposing terms via (3) remain even after ad-
justing S. Therefore we can customize kernels for the
problem at hand rather than applying a generic kernel,
without incurring additional computational expenses.

4 À la Carte

In keeping with the culinary metaphor of Fastfood,
we now introduce a flexible and efficient approach to
kernel learning à la carte. That is, we will adjust the
spectrum of a kernel in such a way as to allow for a
wide range of translation-invariant kernels. Note that
unlike previous approaches, this can be accomplished
without any additional cost since these kernels only
differ in terms of their choice of scaling.

In Random Kitchen Sinks and Fastfood, the frequen-
cies ω are sampled from the spectral density ρ(ω). One
could instead learn the frequencies ω using a kernel
learning objective function. Moreover, with enough
spectral frequencies, such an approach could learn any
stationary (translation invariant) kernel. This is be-
cause each spectral frequency corresponds to a point
mass on the spectral density ρ(ω) in (2), and point
masses can model any density function.

However, since there are as many spectral frequencies
as there are basis functions, individually optimizing
over all the frequencies ω can still be computationally
expensive, and susceptible to over-fitting and many
undesirable local optima. In particular, we want to
enforce smoothness over the spectral distribution. We
therefore also propose to learn the scales, spread, and
locations of groups of spectral frequencies, in a pro-
cedure that modifies the expansion (3) for fast kernel
learning. This procedure results in efficient, expres-
sive, and lightly parametrized models.

In sections 4.1 and 4.2 we describe a procedure for
learning the free parameters of these models, assum-
ing we already have a Fastfood expansion. Next we
introduce four new models under this efficient frame-
work – a Gaussian spectral mixture model in section
4.3, a piecewise linear radial model in section 4.4, and
models which learn the scaling (S), Gaussian (G), and
binary decorrelation (B) matrices in Fastfood in 4.5.

4.1 Learning the Kernel

We use a Gaussian process (GP) formalism for kernel
learning. For an introduction to Gaussian processes,
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see e.g., Rasmussen and Williams (2006). Here we
assume we have an efficient Fastfood basis function
expansion for kernels of interest; in the next sections
we derive such expansions.

A primary goal of this paper is to demonstrate how
Fastfood can be extended to learn a kernel, indepen-
dently of a specific kernel learning objective. Note
that there are many other choices for kernel learning
objectives. For instance, Ong et al. (2003) provide
a rather encyclopedic list of alternatives. However,
the marginal likelihood of a Gaussian process provides
a general purpose probabilistic framework for kernel
learning, particularly suited to training highly expres-
sive kernels (Wilson, 2014). For clarity, we focus on
regression, but we note our models can be used for clas-
sification and non-Gaussian likelihoods without addi-
tional methodological innovation.

Denote by X an index set with X := {x1, . . . xn}
drawn from it. We assume that the observations y
are given by

y = f + ϵ , where ϵ ∼ N
(

0, σ2
)

. (4)

Here f is drawn from a Gaussian process GP(0, kγ).
Eq. (4) means that any finite dimensional realization
f ∈ R

n is drawn from a normal distribution N (0,K),
where Kij = k(xi, xj) denotes the associated kernel
matrix. This also means that y ∼ N (0,K + σ2I),
since the additive noise ϵ is drawn iid for all xi. For
finite-dimensional feature spaces we can equivalently
use the representation of Williams (1998):

f(x) = ⟨w, ϕ(x)⟩ , where w ∼ N (0, σ2I)

hence f ∼ GP(0, k) , where k(x, x′) = σ2 ⟨ϕ(x), ϕ(x′)⟩
The kernel of the Gaussian process is parametrized by
γ. Learning the kernel therefore involves learning γ
and σ2 from the data, or equivalently, inferring the
structure of the feature map ϕ(x).

Our working assumption is that kγ corresponds to a
Q-component mixture model of kernels kq with asso-
ciated weights v2q . Moreover we assume that we have
access to a Fastfood expansion ϕq(x) for each of the
components into m terms. This leads to

f(x) =

Q
∑

q=1

m
∑

j=1

wqjϕqj(x|θq) where wqj ∼ N
(

0,m−1v2q
)

k(x, x′) =

Q
∑

q=1

v2q
m

m
∑

j=1

ϕqj(x|θq)ϕqj(x′|θq)

This kernel is parametrized by γ = {vq, θq}. Here vq
are mixture weights and θq are parameters of the (non-
linear) basis functions ϕqj .

4.2 Marginal Likelihood

We can marginalise the Gaussian process governing f
by integrating away the wqj variables above to express

the marginal likelihood of the data solely in terms of
the kernel hyperparameters v, θ and noise variance σ2.

Denote by Φθ ∈ R
Qm×n the design matrix, as

parametrized by θ, from evaluating the functions
ϕqj(x|θq) on X. Moreover, denote by V ∈ R

Qm×Qm

the diagonal scaling matrix obtained from v via

V := m−1diag(v1, . . . , v1, . . . , vQ, . . . vQ). (5)

Since ϵ and f are independent, their covariances are
additive. For n training datapoints y, indexed by X,
we therefore obtain the marginal likelihood

y|X, v, θ, σ2 ∼ N (0,Φ⊤
θ V Φθ + σ2I) (6)

and hence the negative log marginal likelihood is

− log p(y|X, γ, σ2) =
n

2
log 2π +

1

2
log

∣

∣Φ⊤
θ V Φθ + σ2I

∣

∣

+
1

2
y⊤

[

Φ⊤
θ V Φθ + σ2I

]−1
y (7)

To learn the kernel k we minimize the negative log
marginal likelihood of (7) with respect to v, θ and σ2.
Similarly, the predictive distribution at a test input x̄
can be evaluated using

ȳ|x̄, X, y, v, θ, σ2 ∼ N (µ̄, σ̄2) (8)

where µ̄ = k(x̄)⊤
[

Φ⊤V Φ+ σ2I
]−1

y

and σ̄2 = σ2
n + k(x̄)⊤

[

Φ⊤V Φ+ σ2I
]−1

k(x̄).

Here k(x̄) := (k(x̄, x1), . . . , k(x̄, xn))
⊤
denotes the vec-

tor of cross covariances between the test point x and
and the n training points in X. On closer inspection
we note that these expressions can be simplified greatly
in terms of Φ and ϕqj(x̄) since

k(x̄) = ϕ(x̄)⊤V Φ and hence

µ̄ =ϕ(x̄)⊤β for β = V
[

Φ⊤V Φ+ σ2I
]−1

y

with an analogous expression for σ̄2. More impor-
tantly, instead of solving the problem in terms of the
kernel matrix we can perform inference in terms of β
directly. This has immediate benefits:

• Storing the solution only requires O(Qmn) pa-
rameters regardless of X, provided ϕ(x) can be
stored and computed efficiently, e.g. by Fastfood.

• Computation of the predictive variance is also
efficient: Φ⊤V Φ has at most rank Qm, hence
the evaluation of σ̄2 can be accomplished via the
Sherman-Morrison-Woodbury formula, thus re-
quiring only O(Q2m2n) computations. Moreover,
randomized low-rank approximations of

V
1

2Φ
[

Φ⊤V Φ+ σ2
nI

]−1
Φ⊤V

1

2 ,

using e.g. randomized projections (Halko et al.,
2009) allow for even more efficient computation.

Overall, standard Gaussian process kernel representa-
tions (Rasmussen and Williams, 2006) require O(n3)
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computations and O(n2) memory. Therefore, when us-
ing a Gaussian process kernel learning formalism, the
expansion in this section, using Φ, is computationally
preferable whenever Qm < n.

4.3 Gaussian Spectral Mixture Models

For the Gaussian Spectral Mixture kernels of Wil-
son and Adams (2013), translation invariance holds,
yet rotation invariance is violated: the kernels satisfy
k(x, x′) = k(x + δ, x′ + δ) for all δ ∈ R

d; however, in
general rotations U ∈ SO(d) do not leave k invariant,
i.e. k(x, x′) ̸= k(Ux,Ux′). These kernels have the fol-
lowing explicit representation in terms of their Fourier
transform F [k]

F [k](ω) =
∑

q

v2q
2

[χ (ω, µq,Σq) + χ (−ω, µq,Σq)]

where χ(ω, µ,Σ) =
e−

1

2
(µ−ω)⊤Σ−1(µ−ω)

(2π)
d

2 |Σ| 12
In other words, rather than choosing a spherically sym-
metric representation ρ(ω) as typical for (2), Wilson
and Adams (2013) pick a mixture of Gaussians with
mean frequency µq and variance Σq that satisfy the
symmetry condition ρ(ω) = ρ(−ω) but not rotation
invariance. By the linearity of the Fourier transform,
we can apply the inverse transform F−1 component-
wise to obtain

k(x− x′) =
∑

q

v2q
|Σq|

1

2

(2π)
d

2

exp

(

−1

2

∥

∥

∥
Σ

1

2

q (x− x′)
∥

∥

∥

2
)

cos ⟨x− x′, µq⟩ (9)

Lemma 1 (Universal Basis) The expansion (9)
can approximate any translation-invariant kernel by
approximating its spectral density.

Proof This follows since mixtures of Gaussians
are universal approximators for densities (Silverman,
1986), and by the Fourier-Plancherel theorem, approx-
imation in the Fourier domain amounts to approxima-
tion in the original domain.

Note that the expression in (9) is not directly
amenable to the fast expansions provided by Fastfood
since the distributions are shifted. However, a small
modification allows us to efficiently compute kernels of
the form of (9). The key insight is that shifts in Fourier
space by ±µq are accomplished by multiplication by
exp (±i ⟨µq, x⟩). Here the inner product can be pre-
computed, which costs only O(d) operations. More-

over, multiplications by Σ
− 1

2

q induce multiplication by

Σ
1

2

q in the original domain, which can be accomplished
as preprocessing. For diagonal Σq the cost is O(d).

In order to preserve translation invariance we compute
a symmetrized set of features. We have the following

algorithm (we assume diagonal Σq — otherwise simply
precompute and scale x):

Preprocessing — Input m, {(Σq, µq)}
for each q generate random matrices Sq, Gq, Bq,Πq

Combine group scaling Bq ← BqΣ
1

2

q

Feature Computation — Input S,G,B,Π, µ,Σ
for q = 1 to Q do
ζ ← ⟨µq, x⟩ (offset)
ξ ← [SqHGqΠqHBqx] (Fastfood product)
Compute features

ϕq·1 ← sin(ξ + ζ) and ϕq·2 ← cos(ξ + ζ)

and ϕq·3 ← sin(ξ − ζ) and ϕq·4 ← cos(ξ + ζ)

end for

To learn the kernel we learn the weights vq, disper-
sion Σq and locations µq of spectral frequencies via
marginal likelihood optimization, as described in sec-
tion 4.2. This results in a kernel learning approach
which is similar in flexibility to individually learning
all md spectral frequencies and is less prone to over-
fitting and local optima. In practice, this can mean
optimizing over about 10 free parameters instead of
104 free parameters, with improved predictive perfor-
mance and efficiency. See section 5 for more detail.

4.4 Piecewise Linear Radial Kernel

In some cases the freedom afforded by a mixture of
Gaussians in frequency space may be more than what
is needed. In particular, there exist many cases where
we want to retain invariance under rotations while si-
multaneously being able to adjust the spectrum ac-
cording to the data at hand. For this purpose we in-
troduce a novel piecewise linear radial kernel.

Recall (2) governs the regularization properties of k.
We require ρ(ω) = ρ(∥ω∥) := ρ(r) for rotation invari-
ance. For instance, for the Gaussian RBF kernel we
have

ρ(∥ω∥2) ∝ ∥ω∥
d−1
2 exp

(

−∥ω∥2

2

2

)

. (10)

For high dimensional inputs, the RBF kernel suffers
from a concentration of measure problem (Le et al.,
2013), where samples are tightly concentrated at the
maximum of ρ(r), r =

√
d− 1. A fix is relatively easy,

since we are at liberty to pick any nonnegative ρ in
designing kernels. This procedure is flexible but leads
to intractable integrals: the Hankel transform of ρ, i.e.
the radial part of the Fourier transform, needs to be
analytic if we want to compute k in closed form.

However, if we remain in the Fourier domain, we can
use ρ(r) and sample directly from it. This strategy kills
two birds with one stone: we do not need to compute
the inverse Fourier transform and we have a readily
available sampling distribution at our disposal for the
Fastfood expansion coefficients Sii. All that is needed
is to find an efficient parametrization of ρ(r).
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ρi(r)

ri-1

1

ri ri+1

ρ(r) =
∑

i

αiρi(r)

||ω||r0 r1 r2 r3 r4

α1

α2

α3

Figure 1: Piecewise linear functions. Top: single ba-
sis function. Bottom: linear combination of three
functions. Additional degrees of freedom are fixed by
ρ(r0) = ρ(r4) = 0.

We begin by providing an explicit expression for piece-
wise linear functions ρi such that ρi(rj) = δij with dis-
continuities only at ri−1, ri and ri+1. In other words,
ρ(r) is a ‘hat’ function with its mode at ri and range
[ri−1, ri+1]. It is parametrized as

ρi(r) := max

(

0,min

(

1,
r − ri−1

ri − ri−1
,
ri − r

ri+1 − ri

))

By construction each basis function is piecewise linear
with ρi(rj) = δij and moreover ρi(r) ≥ 0 for all r.

Lemma 2 Denote by {r0, . . . , rn} a sequence of lo-
cations with ri > ri−1 and r0 = 0. Moreover, let
ρ(r) :=

∑

i αiρi(r). Then ρ(r) ≥ 0 for all r if and
only if αi ≥ 0 for all i. Moreover, ρ(r) parametrizes
all piecewise linear functions with discontinuities at ri.

Now that we have a parametrization, we only need to
discuss how to draw ω from ρ(∥ω∥) = ρ(r). We have
several strategies at our disposal:

• ρ(r) can be normalized explicitly via

ρ̄ :=

∫ ∞

0

ρ(r)dr =
∑

i

αi

2(ri+1 − ri−1)

Since each segment ρi occurs with probability
αi/(2ρ̄(ri+1 − ri−1) we first sample the segment
and then sample from ρi explicitly by inverting
the associated cumulative distribution function (it
is piecewise quadratic).

• Note that sampling can induce considerable vari-
ance in the choice of locations. An alternative is
to invert the cumulative distribution function and

pick m locations equidistantly at locations i
m

+ ξ
where ξ ∼ U [0, 1/m]. This approach is commonly
used in particle filtering (Doucet et al., 2001). We
choose this strategy, since it is efficient yet sub-
stantially reduces the variance of sampling.

The basis functions are computed as follows:

Preprocessing(m,
{

({αi}ni=1, {ri}n+1
i=0 ,Σ)

}

)
Generate random matrices G,B,Π
Update scaling B ← BΣ

1

2

Sample S from ρ(∥ω∥) as above
Feature Computation(S,G,B,Π)

ϕ1 ← cos([SHGΠHBx]) and ϕ2 ← sin([SHGΠHBx])

The rescaling matrix Σq is introduced to incorporate
automatic relevance determination into the model.
Like with the Gaussian spectral mixture model, we
can use a mixture of piecewise linear radial kernels to
approximate any radial kernel. Supposing there are Q
components of the piecewise linear ρq(r) function, we
can repeat the proposed algorithm Q times to generate
all the required basis functions.

4.5 Fastfood Kernels

The efficiency of Fastfood is partly obtained by ap-
proximating Gaussian random matrices with a product
of matrices described in section 3.2. Here we propose
several expressive and efficient kernel learning algo-
rithms obtained by optimizing the marginal likelihood
of the data in Eq. (7) with respect to these matrices:

FSARD The scaling matrix S represents the spec-
tral properties of the associated kernel. For the
RBF kernel, S is sampled from a chi-squared dis-
tribution. We can simply change the kernel by
adjusting S. By varying S, we can approximate
any radial kernel. We learn the diagonal matrix S
via marginal likelihood optimization. We combine
this procedure with Automatic Relevance Deter-
mination of Neal (1998) – learning the scale of the
input space – to obtain the FSARD kernel.

FSGBARD We can further generalize FSARD by
additionally optimizing marginal likelihood with
respect to the diagional matrices G and B in Fast-
food to represent a wider class of kernels.

In both FSARD and FSGBARD the Hadamard ma-
trix H is retained, preserving all the computational
benefits of Fastfood. That is, we only modify the
scaling matrices while keeping the main computational
drivers such as the fast matrix multiplication and the
Fourier basis unchanged.

5 Experiments

We evaluate the proposed kernel learning algorithms
on many regression problems from the UCI repository.
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We show that the proposed methods are flexible, scal-
able, and applicable to a large and diverse collection of
data, of varying sizes and properties. In particular, we
demonstrate scaling to more than 2 million datapoints
(in general, Gaussian processes are intractable beyond
104 datapoints); secondly, the proposed algorithms sig-
nificantly outperform standard exact kernel methods,
and with only a few hyperparameters are even com-
petitive with alternative methods that involve train-
ing orders of magnitude more hyperparameters.1 The
results are shown in Table 1 in the supplement. All ex-
periments are performed on an Intel Xeon E5620 PC,
operating at 2.4GHz with 32GB RAM. Details such as
initialization are in the supplement.

RBF and ARD On smaller datasets, with fewer
than n = 2000 training examples, where ex-
act methods are tractable, we use exact Gaus-
sian RBF and ARD kernels with hyperparame-
ters learned via marginal likelihood optimization.
ARD kernels use Automatic Relevance Determi-
nation (Neal, 1998) to adjust the scale of each in-
put coordinate. Since these exact methods are in-
tractable on larger datasets, we use Fastfood basis
function expansions of these kernels for n > 2000.

GM For Gaussian Mixtures we compute a mixture of
Gaussians in frequency domain, as described in
section 4.3. As before, optimization is carried out
with regard to marginal likelihood.

PWL For rotation invariance, we use the novel Piece-
wise Linear radial kernels described in section 4.4.
PWL has a simple spectral parametrization.

SSGPR Sparse Spectrum Gaussian Process Regres-
sion is a kitchen sinks (RKS) based model which
individually optimizes the locations of all spec-
tral frequencies (Lázaro-Gredilla et al., 2010). We
note that SSGPR is heavily parametrized. More-
over, SSGPR is a special case of the proposed GM
model if Q = m, and we set all GM bandwidths
to 0 and weigh all terms equally.

FSARD and FSGBARD See section 4.5.

We use the same number of basis functions for all
methods. We use Q to denote the number of compo-
nents in GM and PWL and m to denote the number
of basis functions in each component. For all other
methods, we use Qm basis functions. For the largest
datasets in Table 1 we favoured larger values of Q,
as the flexibility of having more components Q in GM
and PWL becomes more valuable when there are many

1GM, PWL, FSARD, and FSGBARD are novel contri-
butions of this paper, while RBF and ARD are popular
alternatives, and SSGPR is a recently proposed state of
the art kernel learning approach.

datapoints; although we attempted to choose sensi-
ble Q and m combinations for a particular model and
number of datapoints n, these parameters were not
fine tuned. We choose Qm to be as large as is prac-
tical given computational constraints, and SSGPR is
allowed a significantly larger parametrization.

Indeed SSPGR is allowed Qmd+2 free parameters to
learn, and we set Q ≪ m. This setup gives SSGPR a
significant advantage over our proposed models. How-
ever, we wish to emphasize that the GM, PWL, and
FSGBARD models are competitive with SSGPR, even
in the adversarial situation when SSGPR has many or-
ders of magnitude more free parameters than GM or
PWL. For comparison, the required numbers of hy-
perpararameters for each model are RBF (3), ARD
(d + 2), PWL (Q(d + 3) + 1), GM (Q(2d + 1) + 1),
FSARD (Qm+d+2), and FSGBARD (3Qm+d+2).

Gaussian processes are most commonly implemented
with exact RBF and ARD kernels, which we run on
the smaller (n < 2000) datasets in Table 1, where the
proposed GM and PWL approaches generally perform
better than all alternatives. On the larger datasets,
exact ARD and RBF kernels are entirely intractable,
so we compare to Fastfood expansions. That is, GM
and PWL are both more expressive and profoundly
more scalable than exact ARD and RBF kernels, far
and above the most popular alternative approaches.

In Figures 2a we investigate how RMSE performance
changes as we vary Q and m. The GM and PWL
models continue to increase in performance as more
basis functions are used. This trend is not present with
SSGPR or FSGBARD, which unlike GM and PWL,
becomes more susceptible to over-fitting as we increase
the number of basis functions. Indeed, in SSGPR, and
in FSGBARD and FSARD to a lesser extent, more
basis functions means more parameters to optimize,
which is not true with the GM and PWL models.

We further investigate the performance of all seven
methods, in terms of average normalised log predictive
accuracy, training time, testing time, and memory con-
sumption, shown in Figures 2b and 2c (higher accuracy
scores and lower training time, test time, and memory
scores, correspond to better performance). Despite the
reduced parametrization, GM and PWL outperform
all alternatives in accuracy, yet require similar mem-
ory and runtime to the much less expressive FARD
model, a Fastfood expansion of the ARD kernel. Al-
though SSGPR performs third best in accuracy, it re-
quires more memory, training time, testing runtime
(as shown in Fig 2c), than all other models. FSG-
BARD performs similar in accuracy to SSGPR, but is
significantly more time and memory efficient, because
it leverages a Fastfood representation. For clarity, we
have so far considered log plots. If we view the results

1104
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Figure 2: Fig. 2a and Fig. 2d illustrate how RMSE changes as we vary Q and m on the SML dataset. For
variable Q, the number of basis functions per group m is fixed to 32. For variable m the number of clusters Q
is fixed to 2. FRBF and FARD are Fastfood expansions of RBF and ARD kernels, respectively. Fig. 2b and
Fig. 2e compare all methods in terms of accuracy, training time and memory. The accuracy score of a method on
a given dataset is computed as accuracymethod = RMSEFRBF/RMSEmethod. For runtime and memory we take
the reciprocal of the analogous metric, so that a lower score corresponds to better performance. For instance,
timemethod = walltimemethod/walltimeFRBF. log denotes an average of the (natural) log scores, across all datasets.
Fig. 2c and Fig. 2f compares all methods in terms of log test and training time (Fig. 2f also includes the average
log training time for the exact ARD and RBF kernels across the smallest five medium datasets; these methods
are intractable on any larger datasets).

without a log transformation, as in Fig 4 (supplement)
we see that GM and SSGPR are outliers: on average
GM greatly outperforms all other methods in predic-
tive accuracy, and SSGPR requires profoundly more
memory than all other methods.

6 Discussion

Kernel learning methods are typically intractable on
large datasets, even though their flexibility is most
valuable on large scale problems. We have introduced
a family of flexible, scalable, general purpose and
lightly parametrized kernel methods, which learn the
properties of groups of spectral frequencies in Fastfood
basis function expansions. We find, with a minimal
parametrization, that the proposed methods have im-
pressive performance on a large and diverse collection
of problems – in terms of predictive accuracy, training
and test runtime, and memory consumption. In the fu-
ture, we expect additional performance and efficiency
gains by automatically learning the relative numbers
of spectral frequencies to assign to each group.

In short, we have shown we can have simultaneously

scalable and expressive kernel methods. We hope this
work will help unify efforts in enhancing scalability
and flexibility for kernel methods. In a sense, flexibil-
ity and scalability are one problem: we want the most
expressive methods for the biggest datasets.
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