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Abstract. We have continued the development of Lagrangian, cosmological perturbation
theory for the low-order correlators of the matter density field. We provide a new route to
understanding how the effective field theory (EFT) of large-scale structure can be formulated
in the Lagrandian framework and a new resummation scheme, comparing our results to earlier
work and to a series of high-resolution N-body simulations in both Fourier and configuration
space. The ‘new’ terms arising from EFT serve to tame the dependence of perturbation theory
on small-scale physics and improve agreement with simulations (though with an additional
free parameter). We find that all of our models fare well on scales larger than about two to
three times the non-linear scale, but fail as the non-linear scale is approached. This is slightly
less reach than has been seen previously. At low redshift the Lagrangian model fares as well
as EFT in its Eulerian formulation, but at higher z the Eulerian EFT fits the data to smaller
scales than resummed, Lagrangian EFT. All the perturbative models fare better than linear
theory.
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1 Introduction

The Universe we observe contains structure on essentially all scales, which is believed to
arise from a process of gravitational instability acting on small perturbations laid down in
the very early Universe. The theory of the evolution of these perturbations in their linear
phase is now well developed, and the exceptional agreement between theory and observation
for the anisotropies in the cosmic microwave background is one of the triumphs of modern
cosmology [1]. Studying these evolution of these perturbations in the modern Universe, when
linear perturbation theory is breaking down, is more difficult but can be a powerful probe of
cosmology [2, 3].

Traditionally perturbation theories in cosmology have been formulated primarily in ‘Eu-
lerian form’, wherein the matter is treated as a pressureless fluid and a perturbative solution
to the continuity, Euler and Poisson equations is obtained (see e.g. ref [4] for a review).
Zeldovich [5] proposed a ‘Lagrangian form’ of perturbation theory, in which one solves per-
turbatively for the displacement field between the initial and final positions of fluid elements
(or dark matter particles). Lagrangian theories tend to fare much better at describing the
large-scale advection of matter, and allow a simpler route to understanding redshift-space
distortions and the clustering of biased objects [6, 7]. Lagrangian perturbation theory (LPT)
has now been well developed in the literature [6–19] and it has been applied to understanding
the broadening and shifts of the baryon acoustic oscillation (BAO) peak [20–22], how recon-
struction removes these effects [23–26], to study higher order statistics [27, 28] and as the
base for a new version of the halo model [29].

One of the drawbacks of both the Eulerian and Lagrangian schemes in their classical
formulation is that they are only valid prior to shell crossing and that they treat non-linear
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scales as if they were perturbative. One method for treating these deficiencies is through
effective field theory techniques, in which ‘effective’ equations of motion which depend only
on smoothed fields are solved [30–35]. A description of a Lagrangian effective theory was
presented in [36], and used in [37] as a technique for doing IR resummation. An alternative
formulation specialized to the case of one spatial dimension was presented in [38].

In this paper we present a new derivation of the Lagrangian effective field theory, show
how it can be coupled with existing resummation schemes and compare our results to a series
of N-body simulations in both Fourier and configuration space. The outline of the paper
is as follows. In Section 2 we present some background on LPT and effective field theory,
introducing our notation and conventions. Section 3 shows how one can derive an effective
equation of motion for the Lagrangian displacement which can be iteratively solved and which
contains the effects of short-wavelength perturbations as a series of corrections to the usual
Lagrangian perturbation theory expansion. The cumulants of the Lagrangian displacement
are all that are needed to derive the correlation function and power spectrum of the mass, and
in section 4 we discuss the key cumulants and the counter terms which are introduced by EFT.
Section 5 introduces our main results, a resummed version of 1-loop Lagrangian perturbation
theory which incorporates the EFT corrections to lowest order. This is contrasted with the
Eulerian formulation in section 6 and to compared to N-body simulations in section 8. We
summarize our major findings in section 9, while some technical details are relegated to
appendices.

2 Background

We shall be primarily interested in the 2-point statistics of the fractional density perturba-
tion, δ = ρ/ρ̄ − 1, with the correlation function defined as ξ(r) = 〈δ(x)δ(x + r)〉, and its
Fourier transform, the power spectrum P (k), defined as 〈δ(k)δ(k′)〉 = (2π)3δD(k + k′)P (k)
where angled brackets signify an ensemble average. Here and throughout δD denotes the
3-dimensional Dirac delta function, and we use the Fourier transform convention

F (x) =

∫
d3k

(2π)3
F (k)eik·x. (2.1)

The Lagrangian approach to cosmological structure formation was developed in [5–9, 11,
13, 15, 19] and traces the trajectory of an individual fluid element through space and time.
For a fluid element located at position q at some initial time t0, its position at subsequent
times can be written in terms of the Lagrangian displacement field Ψ,

x(q, t) = q+Ψ(q, t), (2.2)

where Ψ(q, t0) = 0. Every element of the fluid is uniquely labeled by q and Ψ(q, t) fully
specifies the evolution. Once Ψ(q) is known, the density field at any time is simply

1 + δ(x) =

∫
d3q δD

[
x− q−Ψ(q)

]
⇒ δ(k) =

∫
d3q eik·q

(
eik·Ψ(q) − 1

)
(2.3)

The evolution of Ψ is governed by ∂2
tΨ+2H∂tΨ = −∇Φ(q+Ψ). We shall work throughout in

terms of conformal time, dη = dt/a, and write H = aH for the conformal Hubble parameter.
The equation of motion is thus

Ψ̈+HΨ̇ = −∇Φ(q+Ψ) (2.4)
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where overdots indicate derivatives w.r.t. conformal time. In section 3 we describe how we
account for small-scale structures in eq. 2.4 such that the remaining fields contain only small,
long-wavelength perturbations which are amenable to treatment via LPT. In LPT one finds
a perturbative solution for Ψ:

Ψ(q, t) = Ψ(1)(q, t) +Ψ(2)(q, t) +Ψ(3)(q, t) + · · · . (2.5)

with the first order solution, linear in the density field, being the Zel’dovich approximation
[5]. Higher order solutions are specified in terms of integrals of higher powers of the linear
density field [18, 19] (see eq. 3.7). To these perturbative terms are then added a series of
‘extra’ terms, which encapsulate the effect of the small-scale physics which is missing in the
perturbative treatment.

3 Effective equations of motion

The dynamics of our system are specified by the equations of motion eq. (2.4) for which we
shall attempt a perturbative solution. However on small scales the fluctuations are large
and not amenable to a perturbative treatment, which has led the community to investigate
effective field theory descriptions which can provide an accurate description of the long-
wavelength physics without detailed knowledge of the short-wavelength dynamics. Following
the philosophy of effective field theory as it is normally used in the cosmology community [30–
35] we shall smooth eq. (2.4) to remove small scales, accounting for the small-scale physics
with a series of counter terms each containing constants we are not be able to determine
from the theory itself. As emphasized by [35] this method has the drawback of removing too
many small-scale terms, including those generated by two long wavelength modes, however
for the low orders of interest to us it is sufficient. We shall also restrict ourselves to the
longitudinal degrees of freedom, since again at the orders we work the effects of vorticity can
be safely ignored. In this section we have tried to make explicit connection with the earlier
work of ref. [36], who presented an investigation of Lagrangian EFT, sometimes adopting
their notation to make the connections most clear.

We smooth eq. (2.4) in q-space using a filter WR(q,q
′), splitting the system into L−long

and S−short wavelength modes, e.g.

ΨL(q) =

∫
d3q′ WR(q,q

′)Ψ(q′) , ΨS(q,q
′) = Ψ(q′)−ΨL(q) (3.1)

from which it follows that the integral of WRΨS over q′ vanishes. By analogy we also define
δL as the long-wavelength component of the density perturbation (using eq. 2.3 with ΨL) and
ΦL as the gravitational potential sourced by δL

∇2ΦL =
3

2
H2ΩmδL (3.2)

(this is a different definition than ref. [36], who perform an additional expansion for the source
of the Poisson equation). The short-wavelength density and potential are then ΦS = Φ−ΦL

and δS = δ − δL
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Smoothing the equation of motion for Ψ

Ψ̈L(q) +HΨ̇L(q) = −

∫
d3q′ WR(q,q

′)∇Φ
(
q′ +Ψ(q′)

)

= −

∫
d3q′ WR(q,q

′)∇ΦL

(
q′ +Ψ(q′)

)
−

∫
d3q′ WR(q,q

′)∇ΦS

(
q′ +Ψ(q′)

)

= −∇ΦL(q+ΨL(q)) + aS
(
q,ΨL(q)

)
. (3.3)

Apart from the Φ dependence on ΨL we shall not need explicit expressions for the sources in
what follows, since their structure will be dictated by symmetry. However to make contact
with ref. [36] we note that the second term on the r.h.s. can be written as a multipole expansion
having contributions from ΦL and ΦS . The ΦL piece is

aS(q) ∋ ∇ΦL(q+ΨL(q))−

∫
d3q′ WR(q,q

′)∇ΦL

(
q′ +Ψ(q′)

)

=

∫
d3k

(2π)3
(ik)ΦL(k)e

ik·(q+ΨL(q))

∫
d3q′

(
WR(q,q

′)eik·ΨS(q,q
′) − δD(q− q′)

)
eik·δq

=

∞∑

n=2

in

n!

∫
d3k

(2π)3
(ik ki1 . . . kin)ΦL(k)e

ik·(q+ΨL(q))

×

∫
d3q′ WR(q,q

′)
[
δq+ΨS(q,q

′)
]
i1
. . .

[
δq+ΨS(q,q

′)
]
in

=
∞∑

n=2

in

n!
Qi1...in

S (q)

∫
d3k

(2π)3
(ik ki1 . . . kin)ΦL(k)e

ik·(q+ΨL(q))

= −
1

2
Qij

S (q)∇∇i∇jΦL(q+ΨL(q)) + . . . (3.4)

where we have defined multipole moments of the short displacement field

Qi1...in
S (q) =

∫
d3q′ WR(q,q

′)
[
δq+ΨS(q,q

′)
]
i1
. . .

[
δq+ΨS(q,q

′)
]
in
. (3.5)

and we note that the dipole moment is missing since the averages of ΨS and δq both vanish.
The acceleration due to the short wavelength modes follows a similar structure, aS(q) ∋
−∇ΦS(q + ΨL(q)) −

1
2Q

ij
S (q)∇∇i∇jΦS(q + ΨL(q)) + . . ., representing the contribution of

ΦS to the evolution of ΨL. Note that ΦS depends on the long-wavelength displacement (and
hence density) through its argument but there is no contribution to the center of mass so the
dependence is through tidal fields of ΦL.

Regardless of the particular form for the expansion we have

Ψ̈L +HΨ̇L = −∇ΦL(q+ΨL(q)) + aS
(
q,ΨL(q)

)
(3.6)

where the first term can be treated perturbatively and the “extra” term, aS , contains sources
of displacement that arise from small-scale modes which may not be well captured by per-
turbation theory.1 The contribution to ΨL which is nth order in the long-wavelength, linear
theory perturbation, δ0, is

Ψ
(n)
L (k) =

iDn

n!

∫
d3k1
(2π)3

· · ·
d3kn
(2π)3

(2π)3δD
(∑

j

kj − k
)
Ln(k1, · · · ,kn)δ0(k1) · · · δ0(kn) (3.7)

1In our approach all of the short-distance terms, including the multipole expansion of Φ, are absorbed in
aS in contrast to ref. [36]. Thus the ‘additional’ terms all arise from aS .
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with D the linear growth rate and the Ln given in e.g. [6, 18, 19] with the lowest order term
being simply L1(k) = k/k2.

The additional contributions to ΨL come from the source term, aS , which we must
integrate against the Green’s function. We cannot compute this term from first principles,
but we can parameterize its dependence on ΨL with a small number of terms which are
constrained by the symmetries of the problem. The first contribution is a ‘stochastic’ term,
S, which is independent of the long-wavelength modes. The first non-trivial dependence
on the long-wavelength density that transforms as a vector must2 be proportional to ∇δ0.
Grouping the contributions by their dependence on δ0 and the number of spatial derivatives
(see ref. [36, 38, 39] for similar expansions) and keeping only the lowest order terms we thus
have

ΨL ∋ S +
1

2
α1∇δ0 + · · · (3.8)

with α1 an undetermined coefficient and S uncorrelated with δ0. This is the same, lowest
order contribution as derived in [36, 38]. As we shall see, these terms lead to corrections to
the displacement power spectrum and additionally serve to tame contributions from high k
modes in the usual perturbative treatment.

Formally the expansion above is in powers of derivatives or k/Λ, with Λ some cut-off
scale chosen to render the perturbation theory integrals well behaved. The theory is Λ-
independent if all terms in the expansion are kept, but doing so introduces an infinite number
of undetermined constants. If we truncate the expansion at a fixed order, and if k < Λ, higher
order terms are suppressed by powers of k/Λ < 1 and thus should be numerically smaller than
the terms kept (unless some constants artificially make some terms numerically large while
being parametrically small). Unfortunately, if we keep only the lowest order terms in aS ,
while simultaneously cutting off the perturbation theory integrals at Λ ≃ knl, the theory
depends on the cut-off Λ unless we work at very small k (where all of the perturbation theory
corrections are anyway small). We shall follow the standard practice in the field and take
the limit Λ → ∞ when computing the perturbation theory integrals and keep only the lowest
order contributions to aS .

4 Cumulants

The arguments of section 3 lead us to our expression for the displacement:

Ψ(q) = Ψ
(1)
L (q) +Ψ

(2)
L (q) +Ψ

(3)
L (q) + · · ·+

1

2
α1∇δ0 + S + · · · (4.1)

where the first three terms come from the perturbative treatment of the long-wavelength
evolution and the last few terms parameterize the impact of the short-wavelength modes on
the evolution. The correlation function and power spectrum can now be defined through the
cumulants of the displacement. Defining [6, 15]

K(q,k) =
〈
eik·∆

〉
with ∆(q) = Ψ(q)−Ψ(0) (4.2)

the power spectrum is

P (k) =

∫
d3q eiq·k [K(q,k)− 1] (4.3)

2In terms of aS this term comes from taking Q
ij
S ∝ δij and noting that the long-wavelength modes

contribute to aS as tidal fields.
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and the correlation function

1 + ξ(r) =

∫
d3q d3k

(2π)3
eik·(q−r)K(q,k) (4.4)

If only terms quadratic in k are kept in the exponential, the k-integral in eq. (4.4) can be done
analytically (see e.g. appendix A). The expectation value of the exponential can be obtained
using the cumulant theorem [6, 7] so we can write

logK(q,k) = −
1

2
kikjAij(q) +

i

6
kikjkℓWijℓ(q) + · · · (4.5)

with

Aij(q) = 2 〈Ψi(0)Ψj(0)〉 − 2 〈Ψi(q1)Ψj(q2)〉 ≡ 2
(
Σ2δij − ηij

)
(4.6)

Wijℓ(q) =
〈
Ψ{i(q1)Ψj(q2)Ψℓ}(q2)

〉
−
〈
Ψ{i(q2)Ψj(q1)Ψℓ}(q1)

〉
(4.7)

where we have written q = q1 − q2 and followed the notation of [15]. Regular LPT can
be obtained by Taylor series expanding the exponential and collecting terms in powers of
the linear theory power spectrum (which we shall denote as P0, for 0-loop). The series
expansion so produced agrees with Eulerian perturbation theory [14, 18, 19, 38]. Various
useful resummation schemes can be introduced by keeping some of the pieces exponentiated
while expanding others (see section 5).

We now consider the contributions to Aij and Wijℓ arising from the various orders in
LPT and from the counter terms in eq. (4.1). We shall denote the terms arising from the
1st order in LPT (i.e. Zeldovich approximation) as with a superscript “lin” as we shall want
to treat these terms separately on occasion. The other terms we shall denote “lpt” and “eft”
depending on their source in eq. (4.1). Thus, e.g.,

Aij(q) = Alin
ij (q) +Alpt+eft

ij (q) (4.8)

In the Wijk term, products of two displacement fields appear evaluated at the same point in
space, so Wijk is a composite operator which introduces new counter terms. Even though
these counter terms can be formally derived from the source, aS , one can also obtain their
form based on symmetry arguments (see e.g. ref. [36] for extensive discussion). Considering
all two-index quantities which depend at most linearly on Ψ we thus have

Ψi(q)Ψj(q) = Ψ
(1)
i (q)Ψ

(1)
j (q) + Ψ

(1)
i (q)Ψ

(2)
j (q) + Ψ

(2)
i (q)Ψ

(1)
j (q) + · · ·

+
1

3
α0δij + ᾱ2δij∇ℓΨ

(1)
ℓ + ᾱ3

[
∇iΨ

(1)
j +∇jΨ

(1)
i

]
+ . . . (4.9)

If we were to restrict the perturbation theory integrals to k < Λ, the coefficients (and their
higher-order counterparts) would serve to make the final results Λ independent. The Λ
dependence of these terms is thus set by the structure of the high-k sensitivity in the theory.
There will also be a Λ-independent (or ‘finite’) piece which can in principle be different for
each term.

The terms coming from the small-scale modes, which we shall call the “EFT terms”,
contribute to Aij as simple integrals of the linear theory power spectrum. For example, the
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Figure 1. The terms entering into the cumulants of Ψ, evaluated at z = 0, divided into contributions
from the linear and 1-loop orders and the counter-terms. The Ξℓ are defined in section 4. Note that
they are very smooth functions. The linear pieces scale as D2(z) while the 1-loop terms scale as D4(z).
The counter terms have been plotted assuming αn = 1. The Ξℓ with ℓ > 0 all have a characteristic
scale.

cross-term arising from linear theory in ΨL and the ∇δ term gives

〈
Ψ

(1)
i (q1)∇jδ(q2)

〉
=

〈∫
d3p1 d

3p2
(2π)6

ei(p1·q1+p2·q2) ip1i

p21
δ0(p1)ip2jδ0(p2)

〉
(4.10)

=

∫
d3k

(2π)3
eik·qP0(k)

kikj
k2

(4.11)

=
1

3
ξ0(q)δij − ξ2(q)

(
1

3
δij − q̂iq̂j

)
(4.12)

with ξℓ being the usual moments of the linear theory correlation function:

ξℓ(q) ≡ iℓ
∫

k2 dk

2π2
P0(k)jℓ(kq) (4.13)

The final expressions can be cast in simple form if we introduce Ξℓ which are extensions
of the ξℓ above. If we write

Ξ0(q) =

∫
dk

2π2

[
P0(k) +

9

98
Q1(k) +

10

21
R1(k) + α1k

2P0(k)

]
j0(kq) (4.14)

Ξ1(q) =

∫
dk

2π2

(
−

3

7k

)[
Q1(k)− 3Q2(k) + 2R1(k)− 6R2(k) + α2k

2P0(k)
]
j1(kq)

Ξ2(q) =

∫
dk

2π2

[
P0(k) +

9

98
Q1(k) +

10

21
R1(k) + α1k

2P0(k)

]
j2(kq)

Ξ3(q) =

∫
dk

2π2

(
−

3

7k

)[
Q1(k) + 2Q2(k) + 2R1(k) + 4R2(k) + α3k

2P0(k)
]
j3(kq)

with Qi and Ri the mode-coupling integrals defined in appendix A and αi undetermined
constants, then we have

1

2
Aij =

1

3
δij (Ξ0(0) + α0 − Ξ0(q)) +

(
q̂iq̂j −

1

3
δij

)
Ξ2(q) (4.15)
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where α0 is a counter-term with contributions from the zero-lag correlator of S among other
places and we have dropped terms like 〈S(q)S(0)〉. A similar calculation gives

Wijℓ(q) =
2

5
q̂{iδjℓ}Ξ1(q) +

3

5

(
5q̂iq̂j q̂ℓ − q̂{iδjℓ}

)
Ξ3(q) (4.16)

and the coefficients α2 and α3 are linear combinations of the ᾱ2 and ᾱ3 we introduced previ-
ously. These terms lead to very small corrections and we shall set them to zero henceforth.
The common term in Ξ0 and Ξ2 above is the displacement power spectrum (more details on
the derivation of these terms can be found in appendix B of ref. [15] or appendix A of ref. [17]).
Note that the Wijℓ term does not have a linear theory contribution and so is expected to be
small on large scales. The ‘extra’ terms, proportional to α1, are moments of the linear theory
correlation function.

Figure 1 shows these Ξℓ at z = 0 as a function of the Lagrangian displacement, q. Note
that they are all smooth functions and Ξℓ for ℓ > 0 pick out a characteristic scale. The
figure shows the contributions from linear terms, scaling as D2(z), the 1-loop terms, scaling
as D4(z), and the EFT terms. If we integrate to finite k, or if P (k) has a high-k cut-off, the
only non-vanishing contribution as q → 0 is from Ξ0.

At this stage it appears that we have four different counter terms in the 1-loop predictions
(eq. 4.14 and α0 from eq. 4.16). However, the α0 and α1 terms are the same, so these two
parameters are completely degenerate. The α2 and α3 terms are not identical, but on large
scales (k < 0.15h−1Mpc) they are well approximated by the α0 term. At smaller scales the
differences between these terms becomes significant, but on these scales we may expect 2-loop
terms to be large and we leave the regime of validity of our calculation. For these reasons we
restrict ourselves henceforth to one free parameter (we choose α0) and set the other three to
zero.

5 Resummation schemes

Having derived the form for the cumulants we can now use eqs. (4.3, 4.4) to compute the
2-point function of the mass, in real space. We show in the next section that expanding the
exponentials in a Taylor series reproduces the standard, Eulerian EFT expressions to 1-loop
order. By keeping some or all of the terms in the exponential, i.e. (re)summing multiple or-
ders in perturbation theory, we can derive other approximations to the 2-point function. As
has been discussed in the literature previously [15, 16, 37, 38, 40] one particular advantage of
Lagrangian approaches over Eulerian ones is the ability to capture the main effects of advec-
tion of mass due to long-wavelength perturbations and to sum the terms in the perturbation
theory which scale as the displacement variance times the second derivative of the (linear)
correlation function. In ΛCDM models which contain BAO features even at high order such
terms can be numerically quite large, despite being parametrically small.

Unfortunately we are only computing the EFT terms as a series in derivatives, and we
need to keep the number of terms small in order to limit the number of free parameters. These
terms act to tame (or regularize) the behavior of the perturbation theory terms, so we would
like to consistently keep these terms together. Perhaps the simplest way to achieve these
goals is to keep in the exponential only Alin

ij while keeping only the 1st order expansion of the
other terms. This is also numerically straightforward and efficient. For the power spectrum,
for example, we would then have

P (k) =

∫
d3q eik·q−(1/2)kikjA

lin

ij

[
1−

1

2
kikjA

lpt+eft
ij +

i

6
kikjkkW

lpt+eft
ijk + · · ·

]
(5.1)
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z = 0.25 z = 0.50 z = 0.75 z = 1.00
LEFT −13.6 −7.8 −4.8 −2.7
ZEFT −28.5 −21.9 −16.2 −12.75

Table 1. The adopted values of α0 for LEFT (eq. 5.1) and ZEFT (eq. 7.4) in figure 2.

and the correlation function can be simplified using the formulae in appendix A as

1 + ξ(r) =

∫
d3q

(2π)3/2|Alin|1/2
e−(1/2)(r−q)TA

−1

lin
(r−q)

[
1−

1

2
GijA

lpt+eft
ij +

1

6
ΓijkW

lpt+eft
ijk + · · ·

]

(5.2)
One of the useful properties of this resummation is that the result on large scales is quite
insensitive to the details of the “lpt+eft” terms on small scales, where they are not well
constrained. If terms beyond linear are to be kept in the exponent, then care must be
taken to ensure the exponentiated matrix is well-behaved and that all of the eigenvalues are
positive. After some experimentation we found that the predictions for both P (k) and ξ(r)
were relatively insensitive to which terms we kept exponentiated, as long as we consistently
treated the zero-lag and q-dependent pieces, and we adopted the above procedure due to its
numerical and algebraic simplicity. We shall refer to this expression as “CLEFT”, since it is an
effective field theory in the same spirit as convolution Lagrangian perturbation theory (CLPT;
[15]). The integrals can be done, numerically, by simple quadratures. The azimuthal part of
the d3q integral gives 2π so one needs to do only the integrals over µq and |q|. Alternatively
one can expand the µ-dependence as in ref. [17] and reduce the remaining integral to a sum
of FFTs (see Appendix A for useful formulae).

In the above scheme both the IR-sensitive and UV-sensitive terms in Alin are kept expo-
nentiated. Other schemes have been put forth. Motivated in part by the poor performance of
‘standard’ EFT in describing the broadening of the acoustic peak in the correlation function,
Senatore and Zaldarriaga put forth an IR-resummation scheme [37] which is similar in spirit
to the schemes described above. We describe explicitly the relationship between our schemes
and theirs in Appendix B, where we show that their scheme results in resumming a subset of
the terms in eq. (5.1). McQuinn & White [38] put forth a scheme similar to ours except that
they resummed only the low-k parts of Alin while expanding the high-k pieces and the counter
terms. They found that the final results were relatively insensitive to the split between the
IR- and UV-sensitive pieces, and in fact keeping all of the contributions exponentiated was
almost identical to making the split. For this reason we have not attempted such a split here,
though it would also be numerically straightforward.

6 Comparison to Eulerian theory

It is instructive at this point to illustrate that our prescription regains the standard, Eulerian
result. To obtain this we simply expand the exponential in eq. (4.3) and keep terms to order
P 2
0 . A straightforward calculation (see [15, 17] for further details) gives

P (k) = P0(k) +
9

98
Q1(k) +

3

7
Q2(k) +

1

2
Q3(k) +

10

21
R1(k) +

6

7
R2(k)− αeftk

2P0(k) (6.1)

= P0(k) + PSPT
1−loop − αeftk

2P0(k) (6.2)
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where we have written αeft =
1
3α0 −α1 −

3
35(α3 −α2) and indicated the equivalence with the

expression for standard, 1-loop perturbation theory in the second line. In the EFT literature
this is often written

P (k) = P0(k) + PSPT
1−loop −

(
c2sk

−2
nl

)
k2P0(k) (6.3)

which is obviously of the same form. Note that the coefficient of the k2P0 term is a degenerate
combination of two different coefficients in the Lagrangian scheme.

7 Zeldovich EFT

At this point it is interesting to consider the combination of the lowest order terms in per-
turbation theory and the lowest order correction from the small-scale terms. Such terms
are almost trivial to compute, numerically, and could be expected to capture the essential
physics at large scales. The resulting form is also simple enough that generalizations to include
redshift-space distortions, bias and reconstruction are relatively straightforward.

In configuration space, keeping only the linear theory LPT terms and the ∇δ term all
of the required integrals are Gaussians and we have

1 + ξ(r) =

∫
d3q

(2π)3/2|A|1/2
e−

1

2
(r−q)TA−1(r−q)

[
1−

1

3
α0 trG+ · · ·

]
, (7.1)

where A ≡ Alin and we have used the notation of [15], reviewed in appendix A. We shall
refer to this as the “ZEFT” correlation function, since it is a combination of the Zeldovich
approximation and the lowest order EFT terms. The trG term scales as a second derivative
of ξ, and thus this term3 modifies the width of the BAO peak at r ≈ 110h−1Mpc. It also
leads to a slight increase in the amplitude to smaller r.

The expression for the power spectrum is similar

PZEFT(k) =
(
1− 1

3α0k
2
) ∫

d3q eik·qe−
1

2
kTAk (7.2)

≈ e−k2Σ2 (
1− 1

3α0k
2
)
P0(k) (7.3)

≈ e−k2Σ2

P0(k)−
1
3α0k

2P0(k) (7.4)

where the first term is of the form derived in [13], which can be approximated as an exponential
damping of P0(k) [6, 15]. The width of the damping term, Σ, is the 1D rms displacement
computed in linear theory. We give two approximate forms of the power spectrum, which are
equal up to terms higher order in P0.

8 Comparison to simulations

We shall now compare the models described above to the clustering of dark matter measured
from a series of N-body simulations. We use 10 simulations run with the TreePM code of
[41], each of the same (ΛCDM) cosmology but with a different random number seed chosen
for the initial conditions. These simulations have been described in more detail elsewhere
[42, 43], but briefly they were performed in boxes of size 1380h−1Mpc with 20483 particles
and modeled a ΛCDM cosmology with Ωm = 0.292, h = 0.69, ns = 0.965 and σ8 = 0.82. We

3A similar dependence arises to leading-order as the scale-dependent piece of peaks bias, thus this term
can do double duty in a theory of biased tracers.
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Figure 2. A comparison of the analytic models with N-body simulations at z = 0.25 (top left),
z = 0.5 (top right), z = 0.75 (bottom left) and z = 1 (bottom right). In each panel the black points
with error bars represent the mass power spectrum measured from the simulations described in the
text. The lines show the different analytical models, described previously and the dotted lines of each
color show the perturbation theory results without the EFT terms. The upper panels show k P (k)
while the lower panels, with a zoomed-in y-axis, show the ratio to a fiducial model (taken to be the
Zeldovich power spectrum plus a constant, adjusted as in [29]).

use outputs at z = 0.25, 0.50, 0.75 and 1.00 to sample the range of most interest for upcoming
large-scale structure surveys. For this cosmology Σ = 5.3h−1Mpc at z = 0.25, dropping to
4.6h−1Mpc by z = 0.5, 4.1h−1Mpc by z = 0.75 and 3.7h−1Mpc by z = 1.

Each of the EFT models has at least one free parameter, which we adjust by eye to
find the best fit. Since we have this additional freedom we expect the EFT models to fit
the N-body data better than the ‘standard’ perturbation theories. We fix the parameter in
Fourier space and use then the same value in configuration space. We compare the clustering
with both an absolute scale (chosen to be k P (k) in Fourier space and r2 ξ(r) in configuration
space) and as a ratio to a fiducial model to enable a better view of the level of agreement.
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We have chosen as our fiducial model a simplified version of the “Zeldovich halo model” of
ref. [29]. The fiducial model consists of the Zeldovich power spectrum (section 7) plus a
constant, A0 = 395, 240, 145, 92h−3Mpc3 at z = 0.25, 0.5, 0.75 and 1. The correlation
function of the fiducial model matches the Zeldovich correlation function except at zero lag,
which we shall ignore.

Figure 2 compares the Fourier space clustering predicted by the models to that measured
in our N-body simulations at various redshifts, i.e. the real-space, mass power spectra. For
each redshift the upper panels show the absolute clustering (as k P (k)) and the lower panels
the ratio to our fiducial model. In each panel we have fit the amplitude of the EFT terms by
eye to give agreement at the percent level or better at low k while improving the agreement at
intermediate scales. Different choices of these parameters can extend or decrease the range of
agreement at higher k at the expense of better or worse agreement at intermediate scales, so
this comparison depends upon the chosen metric (and thus is subjective). This is particularly
true for the Eulerian EFT lines, where much better agreement at high k can be obtained
with a slightly worse fit at low k. Since our N-body simulations are noisy at low k we have
chosen to de-emphasize those points when fitting the EFT model. We note that all of the
models fare quite well for scales up to half of the non-linear scale (knl ≡ Σ−1 ∼ 0.20hMpc−1

at z = 0.25, 0.22 at z = 0.5, 0.24 at z = 0.75 and k = 0.27hMpc−1 at z = 1) and all
of the perturbation schemes perform significantly better than linear theory (black dotted
line). The Lagrangian EFT appears to match the matter clustering as well as the Eulerian
EFT, with the same number of free parameters, at lower z but the Eulerian formulation
outperforms the Lagrangian one at higher z. Since we know that expanding the exponential
in CLEFT would reproduce Eulerian EFT (see section 6) this suggests the exponentiation
of Alin is overdamping the power at high k. Eulerian EFT tends to overshoot the N-body
points at high k while Lagrangian EFT undershoots. In EFT the k2 P (k) term comes in with
a negative sign, reducing the well-known overshoot of 1-loop perturbation theory so that it
better matches the N-body result (the standard perturbation theory result is shown as the
dotted green line). At high k the power goes negative. The addition of the k2 P (k) term
with a positive coefficient to the Zeldovich power spectrum to get the ZEFT model corrects
the well-known short-fall of power in the Zeldovich approximation at high k (the Zeldovich
approximation without the k2 P (k) term is shown as the dotted line in the lower panels for
each redshift). In fact, it appears this addition leads to an overestimate of power at high k.
The result is very similar whether we use the approximate forms eq. 7.3 or 7.4 and it persists
even at high z. Such a correction could obviously be tamed by including higher-order terms
of the EFT expansion at the cost of introducing further parameters. Figure 2 shows that the
1-loop terms present in the CLEFT but not ZEFT significantly improve the agreement with
simulations in the quasi-linear regime because they give more high k power than the Zeldovich
approximation and thus require less of the k2 P (k) term. At all redshifts the 1-loop CLEFT
model agrees with the N-body simulations better than ZEFT, but the agrement is limited to
scales sufficiently below knl. It is interesting that the fiducial model manages to agree with
the simulations to nearly as high k as any of the EFTs we have presented, even though it also
has only one parameter which could be tuned. We shall return to this comparison later.

Figure 3 makes the same comparison in configuration space, i.e. with the real-space,
mass correlation function. Again the boxes show the different redshifts with the upper panels
showing the absolute clustering and the lower panels the ratio to our fiducial model (which
in this case is simply the Zeldovich approximation). The N-body data are shown as the
points, which have significant and highly correlated error bars, while the lines show the same
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Figure 3. As for figure 2 but in configuration space and with only the z = 0.25 and z = 1 results.
The upper panels show r2 ξ(r) while the lower panels show the ratio to the fiducial model, which is
simply the Zeldovich approximation (which is thus not plotted). The error bars, obtained from the
scatter between the 10 N-body simulations, are highly correlated.

approximations as above. Here we present only the two end cases, z = 0.25 and z = 1, to
save space. The Eulerian theories do not make a meaningful prediction for the correlation
function, since the power spectrum diverges as k → ∞. The correlation function in the
Lagrangian theories is, however, quite well behaved. As before all of the models fare quite
well on scales a factor of ∼ 2 − 3 above the non-linear scale, Σ, and all of the perturbation
schemes perform significantly better than linear theory which misses important contributions
even at 100h−1Mpc. We note that the Zeldovich approximation does very well on large scales,
as has been noted previously [16, 40]. The CLEFT model is not a significant improvement over
ZEFT in configuration space, despite doing much better in Fourier space. The fact that the
Zeldovich approximation and ZEFT do so much better in configuration space than in Fourier
space indicates that the Fourier space error must transform to small lags in configuration
space (see refs. [16, 29] for further discussion).

9 Conclusions

Much of the development of perturbation theory in cosmology has focused on an Eulerian
description in Fourier space. In this paper we have continued the development of a Lagrangian
description, comparing the performance in both Fourier and configuration space. We have
extended the traditional perturbative approach using “effective field theory”, which amounts
to adding to the solution additional terms that are consistent with the symmetries of the
problem, are arranged in an expansion in derivatives (powers of k), and have free coefficients
which must be adjusted to fit the data.

Throughout we have tried to make connection with earlier work on this subject, espe-
cially refs. [36, 39]. We provide a slightly different route to the EFT corrections but find
the same functional form as these earlier works. Specifically, small-scale physics which is
neglected within the usual perturbative calculation gives rise to an additive contribution to
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the displacement field. The lowest order (in derivatives and powers of δ0) contribution to
Ψ (which transforms as a vector) is proportional to ∇δ0, with an undetermined coefficient.
There could also be an (unconstrained) ‘stochastic’ term, which is assumed to be small on
large scales. If we work at the lowest order, these additional terms modify only the 2-point
function of the Lagrangian displacement, adding terms proportional to moments of the linear
theory correlation function or closely related functions. These terms serve both to tame the
dependence of the perturbation theory on small-scale physics and to improve the agreement
with N-body simulations. We show explicitly that 1-loop, Lagrangian EFT is identical to
1-loop, Eulerian EFT if the Lagrangian solution is expanded in powers of the linear theory
power spectrum, P0. However, the Lagrangian formalism also lends itself to several natural
resummation schemes, one of which we adopt here because it is straightforward both alge-
braically and numerically (section 5). We make explicit comparison with the IR-resummation
scheme of ref. [37], showing how to derive their formulae within our framework in appendix
B. We choose to resum all of the linear pieces of Aij , rather than just the low k terms as in
[38]. This leads to little change in the final results.

Comparing the model predictions to the 2-point clustering of the mass in N-body sim-
ulations in both Fourier and configuration space, we find that all of the EFT models fare
quite well on scales larger than about twice the non-linear scale, but systematically fail as the
non-linear scale is approached. All of the perturbative schemes fare better than linear theory
on quasi-linear scales. In Fourier space the Lagrangian EFT matches the N-body simulations
as well as the Eulerian EFT at low redshifts, but fails at larger scales at high z. Since we
know that Lagrangian EFT reproduces Eulerian EFT if we expand to a fixed order in the
linear power spectrum (section 6) this suggests than our resummation scheme is overdamping
power at large k. Adding the k2 P (k) contribution to the Zeldovich approximation partially
corrects the well-known short-fall of power at high k for this model, but leads to an over-
prediction of power on small scales. Including the 1-loop contributions significantly improves
the agreement with the N-body results on quasi-linear scales. The Eulerian EFT does not
make a finite prediction for the correlation function, but the Lagrangian form does and the
agreement with the simulations is very good on large scales. In fact we find that all of the
Lagrangian schemes are in very good agreement with the N-body simulations: including the
1-loop corrections, going from ZEFT to CLEFT, leads to only a modest improvement in the
agreement with simulations. The fact that ZEFT does so much better in configuration space
than in Fourier space indicates that the Fourier space error must transform to small lags in
configuration space, i.e. it must consist primarily of ‘broad band’ power.

In this paper we have developed and tested a Lagrangian effective field theory to predict
the low order clustering of the matter field in real space (addressing many of the same themes
as ref. [36]). A C++ code to compute the formulae presented above given a linear theory
power spectrum is publicly available at https://github.com/alejandroaviles/CLEFT. One
of the advantages of the Lagrangian approach is the relative ease with which redshift-space
distortions and bias can be incorporated. We plan to consider these developments in a future
paper.
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A Useful identities

To simplify the mode coupling integrals we follow [7] and define

Rn(k) ≡
k3

(2π)2
P0(k)

∫ ∞

0
dr P0(kr)R̃n(r) (A.1)

with

R̃1 =

∫ 1

−1
dµ

r2(1− µ2)2

1 + r2 − 2rµ
, R̃2 =

∫ 1

−1
dµ

(1− µ2)rµ(1− rµ)

1 + r2 − 2rµ
(A.2)

we also use

Qn(k) ≡
k3

(2π)2

∫ ∞

0
dr P0(kr)

∫ +1

−1
dµ P0

(
k
√

1 + r2 − 2rµ
)
Q̃n(r, µ) (A.3)

with

Q̃1 =
r2(1− µ2)2

(1 + r2 − 2rµ)2
(A.4)

Q̃2 =
(1− µ2)rµ(1− rµ)

(1 + r2 − 2rµ)2
(A.5)

Q̃3 =
µ2(1− rµ)2

(1 + r2 − 2rµ)2
(A.6)

In the limit of high-k we have R1(k) → (8/5)(k2Σ2)P0(k) and R2(k) → (−2/5)(k2Σ2)P0(k).
In performing these calculations one frequently needs to do Gaussian integrals. Again

to simplify our notation, and make connection with earlier work, we define

G(k) = e−
1

2
kikjAij+ibiki , G(b) =

1

(2π)3/2|A|1/2
e−

1

2
bibjA

−1

ij (A.7)

in terms of which
∫

d3k

(2π)3
G(k) = Q(b) (A.8)

∫
d3k

(2π)3
G(k)ka = igaQ(b) (A.9)

∫
d3k

(2π)3
G(k)kakb = GabQ(b) (A.10)

∫
d3k

(2π)3
G(k)kakbkc = iΓabcQ(b) (A.11)

with Γijk =
(
A−1

)
ij
gk +

(
A−1

)
ki
gj +

(
A−1

)
jk
gi − gigjgk, Gij =

[(
A−1

)
ij
− gigj

]
and

g = A−1b using the notation of Ref. [15].
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Finally the following integrals are useful when evaluating the power spectrum, as they
allow the integral over d3q to be reduced to a sum of 1D integrals:

∫
dµ eiµA+µ2 B = 2eB

∞∑

ℓ=0

(
−
2B

A

)ℓ

jℓ(A) (A.12)

∫
dµ µ eiµA+µ2 B = 2ieB

∞∑

ℓ=0

(
−
2B

A

)ℓ

jℓ+1(A) (A.13)

∫
dµ µ2 eiµA+µ2 B = 2eB

∞∑

ℓ=0

(
1 +

ℓ

B

)(
−
2B

A

)ℓ

jℓ(A) (A.14)

∫
dµ µ3 eiµA+µ2 B = 2ieB

∞∑

ℓ=0

(
1 +

ℓ

B

)(
−
2B

A

)ℓ

jℓ+1(A) (A.15)

B IR resummation

Senatore and Zaldarriaga have put forth an IR-resummation scheme for EFT [37] which
appears different from the schemes we discussed in the main text. In this appendix we
show how to derive their scheme from ours. For simplicity we shall restrict ourselves to the
Zeldovich approximation, thus Aij , Σ

2 etc. are to be evaluated in linear theory. This already
captures all of the main features of the scheme (and indeed most of the main physical effects
[16, 40]) and the generalization to higher orders is straightforward.

We will focus on the power spectrum, which we can write following eq. (4.3) as

P (k) =

∫
d3q eik·q

(
e−(1/2)kikjAij − 1

)
(B.1)

=

∫
d3q eik·q e−k2Σ2

(
ekikjηij − 1

)
(B.2)

=

∫
d3q eik·q e−k2Σ2+kikjηij

(
1− e−kikjηij

)
(B.3)

=

∫
d3q eik·q e−k2Σ2+kikjηij

(
kikjηij −

1

2
[kikjηij ]

2 + · · ·

)
(B.4)

=

∫
d3q eik·q e−k2Σ2+kikjηij [kikjηij ]

(
1 +

[
k2Σ2 − kikjηij

])

+

∫
d3q eik·q e−k2Σ2+kikjηij

(
1

2
[kikjηij ]

2 − k2Σ2 [kikjηij ]

)
+ · · · (B.5)

where we remind the reader that Aij and ηij are functions of the Lagrangian displacement,
q. If we now define K(k, q) = exp

[
−k2Σ2 + kikjηij

]
we have

K−1(k, q) = exp
[
k2Σ2 − kikjηij

]
(B.6)

K−1(k, q)
∣∣
N

=
N∑

n=0

(k2Σ2 − kikjηij)
n

n!
(B.7)
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adopting the notation of [37]. It is useful to note that kikjηij Fourier transforms to P0(k).
Thus

P (k) =

∫
d3q eik·q K(k, q) K−1(k, q)

∣∣
1
[kikjηij ]

+

∫
d3q eik·q K(k, q)

(
1

2
[kikjηij ]

2 − k2Σ2 [kikjηij ]

)
+ · · · (B.8)

If carried through to infinite order this resummation scheme would reproduce the Zeldovich
approximation (which our resummation scheme naturally does), but at any finite order some
terms are missed.

Our scheme naturally sums all of the linear terms, which has proven to be practically
useful to match the broadening of the BAO feature in the correlation function. If we wish
to preserve the translation invariance of the theory, there are two obvious ways to do such
a resummation. One is to do a ‘linearization’, as in ref. [37], which includes terms based on
their perturbation theory order. The other is the one we have advocated above.
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