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Abstract

The repeated replacement method (RRM) is a Lagrangian meshfree method which we have

previously applied to the Euler equations for compressible fluid flow. In this paper we pres-

ent new enhancements to RRM, and we apply the enhanced method to both linear and non-

linear elasticity. We compare the results of ten test problems to those of analytic solvers, to

demonstrate that RRM can successfully simulate these elastic systems without many of the

requirements of traditional numerical methods such as numerical derivatives, equation sys-

tem solvers, or Riemann solvers. We also show the relationship between error and compu-

tational effort for RRM on these systems, and compare RRM to other methods to highlight

its strengths and weaknesses. And to further explain the two elastic equations used in the

paper, we demonstrate the mathematical procedure used to create Riemann and Sedov-

Taylor solvers for them, and detail the numerical techniques needed to embody those solv-

ers in code.

Introduction

The repeated replacement method (RRM) [1] is a Lagrangian meshfree method for the simula-

tion of time-dependent systems of conservation laws. We previously used RRM to simulate the

one-dimensional Euler equations for compressible fluid flow to establish the basic functional-

ity of the method, and we compared the results to an exact Riemann solver for the Euler equa-

tions given by Toro [2]. In this paper, we enhance RRM to increase its speed and accuracy,

and apply it to the more challenging problems of one-dimensional linear and nonlinear elastic-

ity. This allows us to demonstrate that RRM works for a range of constitutive equations, while

maintaining good accuracy and error scaling behavior.

In this paper, we first motivate and derive our linear and nonlinear elastic constitutive

equations, to define the terms and symbols used in subsequent sections. Second, we give ano-

verview of the repeated replacement method with a detailed comparison to earlier work,

highlighting how the strengths and weaknesses of RRM differ from those of previous methods.

Third, we explain the improvements made to RRM in the course of adapting it to handle elas-

tic systems. Fourth, we present the derivation and explanation of our Riemann and Sedov-

Taylor solvers. Then we show the results of RRM for eleven test problems, validating the
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results against Riemann and Sedov-Taylor solvers, and show that RRM’s error convergence

behavior is somewhat super-linear. Finally, we present a summary and conclusion.

Elastic equations

For both linear and nonlinear cases, we assume a homogeneous, one-dimensional, elastic con-

tinuummaterial that is subject to finite strain, which is a strain large enough that we cannot

simplify our mathematical treatment by assuming it to be infinitesimal. The material’s refer-

ence (or undeformed) density is ρ0, and its spatial (or deformed) density at each point x is ρ(x).

We will express the deformation in terms of the stretch λ, which is written in terms of density

as λ(x) = ρ0/ρ(x). For a finite-sized piece of material, stretch is defined as λ � l/l0, where l0
and l are the undeformed and deformed lengths of the piece, respectively. Strain is defined as

�� (l − l0)/l0 = λ − 1.

We assume that the internal energy density of the material due to its state of strain and tem-

perature, per unit of reference length, can be expressed as some functionC(λ, T) =Cs(λ) +
Ct(λ, T), whereCs is the strain energy density, andCt is the thermal energy density.

The Cauchy stress in such a material has both an elastic and a thermal component, and can

be derived from the energy density as

sðl;TÞ ¼ seðlÞ þ stðl;TÞ ¼
@CsðlÞ
@l

þ @Ctðl;TÞ
@l

ð1Þ

Amaterial whose stress is derived from an energy density function in this way is called a

Green-elastic or hyperelastic material.

Linear elasticity

Linear elasticity is defined by the direct proportionality of stress to strain. The elastic part of

the stress is

seðlÞ ¼ E� ¼ Eðl� 1Þ ð2Þ

where E is the elastic modulus, which has the units (kg �m)/s2 in one dimension. To obtain the

strain energy density, we note that the integral of stress over distance is strain energy, and

strain energy density with respect to the reference length is simply strain energy/l0. So, making

use of the fact that λ = l/l0, the strain energy density is

CsðlÞ ¼
1

l
0

Z l

l0

sðlÞ dl ¼ E

2
ðl� 1Þ2 ð3Þ

To complete this simple model, we choose a thermal energy densityCt(T) = Cv T where Cv
is the heat capacity in J/(m � K). ThisCt has no dependence on λ, since it is difficult to form
such an expression that has the correct signs for both energy and stress equations without

making the stress nonlinear in λ. This results in a total stress of

sðlÞ ¼ @CsðlÞ
@l

þ @CtðTÞ
@l

¼ Eðl� 1Þ ð4Þ

Note that this stress does not model thermal expansion, and also allows the material to be

compressed down to zero length with finite workCs(λ)|λ = 0 = E/2, so we have sacrificed physi-

cality for the sake of linearity in this simple model.
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The total energy density in spatial coordinates, including kinetic energy, is

Ctotðl; u;TÞ ¼
ru2

2
þCðl;TÞ

l
¼ ru2

2
þ E

2l
ðl� 1Þ2 þ CvT

l
ð5Þ

where u is velocity, and the division of theC term by λ is needed to convert the energy density

from reference to spatial coordinates. Finally, making use of the fact that λ = ρ0/ρ, the speed of

sound in the material in terms of the density is

aðrÞ ¼
ffiffiffiffiffiffi

@s

@r

r

¼
ffiffiffiffiffiffiffiffi

Er
0

p

r
ð6Þ

Nonlinear elasticity

There are many existing models of nonlinear elasticity. Some, such as that of Ogden [3], are

complex enough to form an energy density from any desired polynomial in λ to better match

the behavior of real materials. In our case, we are merely trying to test a numerical scheme, not

model a specific material, so instead of adopting a general model, we modify the linear elastic

equation only as much as needed to prevent manifestly unphysical behavior. Specifically, if we

change the −1 in the linear elastic stress to −1/λ2, we obtain

seðlÞ ¼ E l� 1

l
2

� �

ð7Þ

This new nonlinear stress approaches −1 as the stretch approaches zero, which prevents the

material from being compressed to zero length with a finite amount of energy. Integrating this

stress the same way we did for linear elasticity, we obtain the strain energy density

CsðlÞ ¼ E
2l
ðl� 1Þ2ðlþ 2Þ.

To model the fact that real materials expand when heated, we add a thermal energy density

termCt(λ, T) = Cv T/λ. The division by λ is because we want the sign of this term to become

negative in the stress equation to reflect this expansion.

The total stress σ is again obtained from the energy density function by

sðl;TÞ ¼ @CsðlÞ
@l

þ @Ctðl;TÞ
@l

¼ E l� 1

l
2

� �

� CvT

l
2

ð8Þ

and the total energy density in spatial coordinates is again given by

Ctotðl; u;TÞ ¼
ru2

2
þCðl;TÞ

l
¼ ru2

2
þ E

2l
2
ðl� 1Þ2ðlþ 2Þ þ CvT

l
2

ð9Þ

Finally, the speed of sound in the material in terms of the density and temperature is

aðr;TÞ ¼
ffiffiffiffiffiffi

@s

@r

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Er
0

r2
þ 2ðE þ CvTÞr

r2

0

s

ð10Þ

Note that the dependence of the thermal stress σt on λ is what causes the T term to appear

in the speed of sound, without which the material would only support shock waves and not

rarefactions. We demonstrate this in the course of deriving our Riemann solvers.
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Overview of the repeated replacement method

RRM is based on the observation that when we model conservation laws using a field of piece-

wise-constant cells, the primitive values in the cells’ interiors do not change directly. Instead,

wavefronts of change expand out from the edges between adjacent, dissimilar cells, where the

spatial derivative is nonzero. These expanding wavefronts carry primitive value changes into

the cells’ interiors.

To motivate this statement, consider the following. As we will see in the section on the deri-

vation of Riemann solvers, we can write a system of conservation laws in the formWt + A(W)

Wx = 0, whereW denotes a vector of primitive variables, A(W) is a Jacobian matrix derived

from the constitutive equations, and the subscripts represent partial differentiation with

respect to t and x. From this equation, we can see that if the spatial derivativeWx of the field is

zero at a point, then the temporal derivativeWt of the field must also be zero at that point.

Since our cells are piecewise constant, the spatial derivative of the field is zero everywhere

except at the edges between cells, so time evolution can only begin at these edges.

In RRM, we track the expansion of these wavefronts over time. Once a wavefront reaches a

certain width, we chop out the cells and parts of cells it encompasses, and replace them with a

new piecewise-constant cell containing the same mass, momentum, and energy. The more dif-

ferent the adjacent cells are, and the lower the user has set the maximum allowable error, the

less a wavefront is allowed to expand before it is replaced by a new cell. Each new cell gives rise

to two new wavefronts, one at each edge.

To process these wavefronts, RRM uses an event-based simulator. Wavefronts are stored in

a queue, ordered by the wavefronts’ replacement time. Each simulation event consists of

updating the simulation time to the replacement time of the soonest wavefront in the queue,

removing that wavefront from the queue, using it to create a new cell in the field, and adding

the new cell’s two new wavefronts back into the queue. Continuing this process drives the time

evolution of the field. The following sections describe this process in greater detail.

Cells, wavefronts and tracer particles

RRM subdivides the domain into cells ci, each of which contains constant values of the primi-

tive variablesW = [ρ u T]T. A simple two-cell set of initial conditions is shown in Fig 1. At

the start of the simulation, the cells are typically chosen to have no gaps or overlaps between

them. But since this is a Lagrangian meshfree method, the cells are what moves, not a mesh, so

gaps and overlaps between cells will appear and disappear over the course of the simulation.

If we write a system of conservation laws asWt + A(W)Wx = 0, we can see that @W
@t

¼ 0 if
@W
@x

¼ 0, so no evolution takes place inside constant-valued cells. Instead, all evolution origi-

nates at the cell edges where the spatial derivative is nonzero. For the edges between c1 and c2,

Fig 1. Two-cell initial conditions.Domain subdivided into two constant-valued cells c1 and c2. The ρ, u, and
T variables are all shown on one axis for brevity, even though in general they have different values.

https://doi.org/10.1371/journal.pone.0186345.g001
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we trace out an expanding wavefront w12 using a pair of tracer particles p1r and p2lmoving at

the speed of sound in c1 and c2, respectively, as shown in Fig 2. We call these “tracer” particles

because they are just an aid to simulation, rather than a representation of real physical

particles.

For the tracer particles, we define an error metric

D
1;n ¼

X

n

i¼1

dijW i �W i�1
j ð11Þ

which gives a measure of the distance-weighted total variation in primitive values which the

tracer particle encounters as it moves from cell c1 to cell cn, where cell c0 is the cell on the oppo-

site side of the wavefront where the tracer particle was created, di is the distance traveled by the

tracer particle inside cell ci, andWi is the vector of primitive values for cell ci.

Fig 3 shows what that same wavefront expansion looks like as a spacetime diagram. In this

format, we make the cells implicit as white areas, and show wavefronts as colored triangles

Fig 2. Expandingwavefront.Wavefrontw12 and tracer particles p1r and p2l expanding from the edges
between cells c1 and c2. Tracer particle p1rmoves at speed a(W1), and tracer particle p2lmoves at speed a

(W2). The left and right bounds of the domain are inactive in this example, otherwise we would show
wavefronts expanding from them as well.

https://doi.org/10.1371/journal.pone.0186345.g002

Fig 3. Expandingwavefront as a spacetime diagram. Spacetime diagram showing wavefrontw12

expanding from the edges between cells c1 and c2, which are represented implicitly as white areas. The tracer
particles travel down the edges of the colored wavefront triangles, but are not explicitly shown on these
diagrams.

https://doi.org/10.1371/journal.pone.0186345.g003
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expanding in space as the time increases going downward. This format will allow us to repre-

sent many hundreds of events succinctly on one diagram.

Once a wavefront gets so wide that the error metric of one of its tracer particles exceeds

some user-defined limit Δmax, we chop out the cells and parts of cells under the wavefront,
accumulate all their conserved quantities, and replace that area with a new constant-valued

cell. This “flattening” process is shown in Fig 4. If our simulation includes multiple material

Fig 4. Wavefront chopping and flattening. A wavefront chopping off parts of two cells to replace themwith
a new cell. (A) Wavefrontw12 sends tracer particles p1r and p2l out into cells c1 and c2. (B) Wavefrontw12

reaches its error metric limitΔmax and chops piece c1c off of cell c1, and piece c2c off of cell c2. (C) Conserved
quantities from pieces c1c and c2c are added up and flattened to form new cell c3. The new cell has new
wavefrontsw13 andw32 at its left and right edges, respectively. Each new wavefront has two new tracer
particles.

https://doi.org/10.1371/journal.pone.0186345.g004
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types, the flattening process may produce multiple new constant-valued cells, one for each

connected area of a single material type. The same flattening process is shown as a spacetime

diagram in Fig 5.

Conversion between momentum, kinetic energy, and potential energy is modeled using the

stress momentum Pσ = σΔt and stress energy Eσ = σuΔt, which we store in each cell in addition

to the primitive values. Each cell ci initially contains Psci l
¼ si

wi
ai
and E

sci l
¼ siui

wi
ai
directed to

the left, and P
scir

¼ �si
wi
ai
and E

scir
¼ �siui

wi
ai
directed to the right, where wi is the width of the

cell and ai = a(Wi) is the speed of sound in the cell. These quantities sum to zero for each cell,

so they do not affect the overall amount of momentum and energy in the simulation. Tracking

Pσ and Eσ in this way allows conservation of momentum and energy to be checked at every

simulation event, even though the entire field is never updated simultaneously. Note that Pσ
and Eσ are not precisely fluxes, since they do not cross cell boundaries, but they do serve a sim-

ilar purpose in that they drive the time evolution of the field.

During flattening, each cell edge inside the wavefront contributes Pσ = ±σΔt and Eσ = ±σuΔt
to the flattening process, where Δt is the amount of time since the cell was created, or since

that side of the cell was last chopped. The total mass, momentum and energyM, P, E accumu-

lated by one wavefront chop of cells c1 through cn by wavefront w1n are

M ¼ Mc1c
þMc2

þ . . .þMcn�1
þMcnc

P ¼ Pc1c þ P
sc1r

þ P
sc2 l

þ Pc2 þ . . .þ Pcn�1
þ P

sn�1r
þ P

scn l
þ Pcnc

E ¼ Ec1c þ E
sc1r

þ E
sc2 l

þ Ec2 þ . . .þ Ecn�1
þ E

sn�1r
þ E

scn l
þ Ecnc

ð12Þ

whereMc1c
andMcnc

are the partial masses chopped from c1 and cn, respectively, by the wave-

front, andMc2
throughMcn − 1

are the entire masses of cells c2 through cn − 1 which are sub-

sumed by the wavefront. A similar notation holds for the momenta P and energies E, using the

energy densityCtot from the elastic model for the chopped energy. So for example Pσc1 r + Pσc2 l
is the net stress momentum across the edge between cells c1 and c2, and Eσc1 r + Eσc2 l is the net

stress energy across the edge between cells c1 and c2.

Fig 5. Wavefront expansion, chopping and replacement as a spacetime diagram.Wavefrontw12

expands until it reaches its error metric limit, then chops pieces off of cells c1 and c2 and replaces themwith a
new cell c3. The new cell has new wavefrontsw13 andw32 at its left and right edges, respectively.

https://doi.org/10.1371/journal.pone.0186345.g005
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Once we have accumulated the conserved quantities, we can determine the primitive values

of the new cell algebraically by

r ¼ M

ww

u ¼ P

M

KE ¼ 1

2
Mu2 PE ¼ E � KE

l ¼ r
0

r
l
0

¼ ww

l

T ¼ PE

l
0

�Cs

� �

1

CtjT¼1

� �

ð13Þ

where ww is the width of the wavefront at replacement time, KE and PE are the kinetic and

potential energies of the new cell, respectively, andCs andCt are taken from the appropriate

elastic model.

In the case where more than one type of material is present inside a wavefront during flat-

tening, we create a new cell for each contiguous area of each material type, and flatten those

areas separately, with the exception of stress momentum and stress energy, which are divided

among the new cells in proportion to their size.

Early replacement and wavefront merging

When two adjacent cells have very different primitive values, the wavefront created across

their shared edges will be replaced quickly, resulting in the creation of a relatively small new

cell and an overall increase in the number of cells in the simulation. This is called early replace-

ment, and is the case shown in Fig 4.

In areas where cells’ primitive values are similar, adjacent wavefronts will intersect before

the error metric grows large enough to require replacement. To reduce the number of tracer

particles we must track during simulation, we do not allow wavefronts to overlap, so we merge

intersecting wavefronts together unless their summed error metrics would exceed the user-

defined limit Δmax. This wavefront merging results in a decrease in the number of particles

and cells in the simulation, and is illustrated in Fig 6. Any number of wavefronts may be

merged together in this way, so long as the total error metric remains lower than Δmax.
Fig 7 shows an entire cycle of wavefront expansion, flattening, new wavefront creation, and

wavefront merging in one spacetime diagram. We will use this more succinct format when we

show long sequences of events.

The interaction between early replacement and wavefront merging is what makes RRM

adapt to local conditions across the field. And since replacement and merging are scheduled

by event-based simulation instead of a global time tick, greater activity in one area need not

affect other areas. The current implementation of RRM uses a single event queue, but events

are only dependent if their wavefronts are spatially adjacent, so this event queue could be bro-

ken up into separate queues for different regions of the field to parallelize the algorithm.

An intentional result of wavefront merging is that it allows RRM to preserve a constant-

valued field exactly. In other words, it allows RRM to satisfy the geometric conservation law

(GCL), so named by Thomas and Lombard [4] and more recently discussed by Guillard and

Farhat [5]. We can see that in a constant-valued field, stress momentum Pσ and stress energy

Eσ across any pair of cell edges will sum to zero, since the cells’ primitive values are equal. So

then Eqs (12) and (13) tell us that if we chop out any wavefront in a constant-valued field, it

will encompass an amount of material which, upon flattening, will yield a new cell with the

A Lagrangian meshfree method applied to linear and nonlinear elasticity
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same primitive values. However, this is only true if wavefronts are not allowed to overlap. If

they do overlap, it is possible for a wavefront in a constant-valued field to encompass unbal-

anced stress momentum and stress energy, unless all the overlapping wavefronts are unioned

and replaced as one, as mentioned in the section on improvements to RRM.

Positivity preservation

We say that a scheme is positivity-preserving if it is guaranteed never to produce a negative

value for a quantity which should not be negative, such as density, pressure, or temperature.

For density, RRM is always positivity-preserving, since new cells’ masses are added up from

chopped parts of other cells. And for the Euler equations, though we occasionally see a nega-

tive pressure upon flattening, those negative pressures are the result of numerical error and are

on the order of the machine precision. But for nonlinear elasticity, negative temperatures can

Fig 6. Two wavefronts merging to form one larger wavefront. (A) Wavefrontsw13 andw32 intersect at
time tm, before any of the tracer particles reaches the error metric limitΔmax. (B) No chopping is required yet,
but we do not want the wavefronts to overlap, because since only the outer particles would define the edges of
the eventual new cell, tracking the inner particles would be redundant. So we create a new wavefrontw12 by
merging wavefrontsw13 andw32, which removes the inner particles p3l and p3r.

https://doi.org/10.1371/journal.pone.0186345.g006
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occur because of the form of the energy density Eq (9), which is dependent upon both stretch

λ and temperature T. In the Euler equations, once a cell’s size, mass, and velocity have been

determined, any remaining energy can be assigned to potential energy simply by setting the

pressure p to the necessary value. But in nonlinear elasticity, for a specific cell stretch and

mass, a specific amount of strain potential energy is required, which may not leave enough

energy for the thermal potential energy at that same stretch. The result is a negative

temperature.

A positivity analysis shows that this effect is most pronounced at low temperatures, when

neighboring cells are very different in density and velocity. Interestingly, the effect does not

depend on how long a wavefront has been allowed to expand, so it cannot be remedied simply

by increasing the temporal precision. Instead, the effect seems to be inherent in the constitu-

tive equation itself, which may point to an additional constraint we should impose during the

construction of such equations.

In the test cases we examined, negative temperatures only occur near contacts of dissimilar

materials, since the lack of heat diffusion across the contact restricts the energy available to

each flattened cell. The solution is to add a small amount of thermal energy to bring the flat-

tened cell up to T = 0, and then to maintain energy conservation by adding a corresponding

negative strain energy to the flattened cell. This negative energy is carried forward a short time

into the future, until sufficient energy is encompassed by nearby wavefronts to cancel it out.

We use the same solution for the smaller numerical errors.

Flowchart

Fig 8 shows the processing of events during simulation. The initial events are those enqueued

for the wavefronts spanning the edges of the initial condition cells. The event queue is arranged

in order of increasing wavefront replacement time, so the soonest event is always the next one

in the queue, though new events may be inserted at any position.

To keep the flowchart readable, we omit a few optimizations that are present in the current

implementation of RRM. For example, if two wavefronts intersect, but their combined error

would be over the limit, they are chopped out into two adjacent new cells instead of being

merged. And at the edge between the two new cells, only one new wavefronts is created instead

of two, to avoid two identical new wavefronts on top of each other.

Fig 7. Wavefront life cycle as a spacetime diagram.Wavefrontw12 expands into cells c1 and c2, then
chops and flattens parts of them to form cell c3, which spawns two new wavefrontsw13 andw32 at its left and
right edges, respectively. The new wavefronts expand until they completely cover c3, then merge to leave only
one wavefront, which continues to expand.

https://doi.org/10.1371/journal.pone.0186345.g007
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Comparison to previous work

RRMwas designed for use on systems of conservation laws that are mathematically inconve-

nient, so it requires only that the system have conserved quantities that can be numerically

integrated, and that some expression for the speed of sound can be obtained. RRM does not

require the evaluation of a Riemann solver, so it may be applied to conservation equations for

which the Riemann solver derivation procedure is intractable. RRM also does not require the

evaluation of spatial or temporal derivatives, so it may be applied to equations where such

derivatives are expensive or not well defined at every point.

RRM was also designed to be adaptive. Temporally, it is unconditionally stable for time

steps of any length, though it loses accuracy as the time step length is increased. Spatially, it

does not require a mesh, and it can add or remove cells wherever they are needed to maintain

accuracy, without the requirement to stitch together or nest meshes of different resolutions.

Of course, advantages generally come paired with disadvantages. RRM’s main disadvan-

tages are its high computational intensity, high programming complexity, and low-order

reconstruction of solutions.

The largest difference between RRM and methods such as the finite difference (FD)

method, finite volume (FV) method, and the finite element method (FEM) is that RRM does

not assemble a system of explicit or implicit simultaneous equations for some area of the field

and then apply a solver to find the vector of unknown primitive values for that whole area at

each time step. Instead, RRM is a purely local method, where wavefronts are added and

removed only as required to meet the user’s accuracy goals, and the temporal and spatial steps

can be different for every wavefront.

Fig 8. Event flowchart. Summarizes the processing of events during simulation.

https://doi.org/10.1371/journal.pone.0186345.g008
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Another major difference is that RRM does not explicitly bound its time steps using the

Courant-Friedrichs-Lewy (CFL) condition, and such a condition is not required for stability.

RRM does track the intersection of wavefronts, but if the intersecting wavefronts are suffi-

ciently similar, they may simply be merged together, which causes a loss of accuracy, but does

not affect stability. Since wavefronts travel at the speed of sound, their intersection generally

happens at a time later than the “signal time” used in codes like Whitehurst’s FLAME [6],

which is based on the time taken for opposing shocks to traverse a cell and intersect within it.

RRM cannot use the signal time because it does not solve the Riemann problem across the cell

edges, so it does not know the shock speeds. However, RRM does track the motion of cell

edges, and in cases where two cells interpenetrate at a speed faster than the speed of sound, the

wavefront emanating from that pair of edges is broadened so that it always encompasses them.

RRM is probably most similar to cell-centered Lagrangian finite volume schemes such as

those described by Godunov [7], then later by Després and Mazeran [8], Maire et al. [9], Maire

[10], Carré et al. [11], Kluth and Després [12], Burton et al. [13] [14], and Vilar et al. [15],

among others. The main difference between these schemes and RRM is that instead of chang-

ing the primitive values and shapes of existing cells based on momentum and energy fluxes

across the cell faces, in RRM cells are unchanged after their creation, except for having parts

chopped off to form new cells. In RRM the stress momentum Pσ and stress energy Eσ play a

role similar to momentum and energy flux in Lagrangian finite volume schemes, but strictly

speaking they are not fluxes, since they do not cross from one existing cell to another. Instead,

they are one source of the conserved quantities used to form new cells, the other source being

the chopped-off parts of other cells.

As a Lagrangian method, RRM automatically achieves Galilean invariance, whereas in

some Eulerian methods the bulk velocity of the material may alter the simulation results, as

noted by Wadsley et al. [16]. And unlike other adaptive methods such as adaptive mesh refine-

ment (AMR) [17], RRM does not require cell sizes or time steps at different refinement levels

to be multiples of each other, and does not require grids of varying degrees of refinement to be

nested in any specific way.

Some variants of the finite element method such as those of Peraire et al. [18] and Rado-

vitzky and Ortiz [19] support fully Lagrangian operation. These methods use adaptive and fre-

quent remeshing to prevent the mesh from becoming tangled in areas of high deformation.

The remeshing methods used, such as the advancing front algorithm, are paired with refine-

ment indicators that attempt to evenly distribute quantities such as deformation among the

elements of the mesh. This permits simultaneous coarsening and refinement of the mesh in

different locations. However, remeshing the entire field is an expensive operation which must

be carefully designed to minimize impact on simulation speed, and the transfer of conserved

quantities from the old to the new mesh can introduce numerical diffusion. Such diffusion

may be minimized by arbitrary Lagrangian-Eulerian (ALE) methods (originated by Hirt et al.

[20] and recently reviewed by Barlow et al. [21]), which allow the mesh to move independently

of the material only where required to fix mesh tangling.

Moving-mesh codes which are based on Delaunay or Voronoi tessellations of a set of mov-

ing points (such as FLAME [6], Springel’s AREPO [22], Duffell and MacFadyen’s TESS [23],

and that of Gaburov et al. [24]) are similar to RRM in that a set of freely-moving objects serves

as the basis of the field. However, these tessellation-based methods may require some care to

insure that the point positions do not imply a degenerate mesh, and they may need to add

points, fuse points, or steer the trajectories of the points to keep them near the centers of mass

of their cells, thereby keeping the cells rounder and more tractable. Since RRM does not com-

pute any derivatives, it does not require any constraints on cell motion or position to avoid

degeneracy. However, RRM does need to prevent cells from being subdivided down to a size
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too close to machine precision, to insure that the edges of the cells remain distinguishable

from each other when subjected to numerical error.

RRM is similar to AREPO [22] in that it can incrementally add or remove cells in specific

areas of the field. In AREPO, these processes are called refinement (when a cell is split in two)

and de-refinement (where a cell is removed and its conserved quantities distributed among its

neighbors). The difference is that in RRM, cells are never enlarged, they are either nibbled

away by neighbors over multiple simulation events, or are removed all at once after their left

and right wavefronts intersect inside the cell.

RRM ensures the “manifestness” of conserved quantities by storing two extra quantities in

each cell, the stress momentum Pσ and the stress energy Eσ. As noted in the section on wave-

fronts and particles, these quantities insure that after each event, global momentum and energy

are still exactly conserved, even if, for example, the event introduces some change in momen-

tum or energy which has not yet been balanced by a corresponding event elsewhere in the

field. Other codes such as AREPO [22] and Hopkins’ GIZMO [25] solve the same problem by

requiring time steps to conform to a power-of-two hierarchy so that time steps at a given level

of the hierarchy may be synchronized without synchronizing the entire field, and by requiring

fluxes on both sides of a face to be updated in the same time step.

RRM is similar to discontinuous Galerkin (DG) methods [26] in that there is no global

enforcement of continuity across cell boundaries as there is in the finite element method. Dis-

continuous Galerkin methods do assemble a matrix of equations which must be solved, but

this matrix is typically block diagonal, so it may often be solved more simply than in the case

of FEM.

RRM is somewhat similar to the original Eulerian version of the Godunov method [27], in

that they both represent the field as piecewise-constant values, and both explicitly model time

evolution at cell edges. RRM is simpler in one way, because instead of solving an exact or

approximate Riemann problem at each set of edges, it only models a wavefront of two charac-

teristics expanding outward at the speed of sound. For shock waves, Godunov’s method

directly models the shock speed by recovering it from the underlying Riemann solver. As we

will see in the results for a nonlinear shock tube, RRM achieves the correct shock speed as a

dynamic phenomenon whereby a thin velocity and stress spike forms at the shock, but without

explicitly calculating the shock speed. RRM is also Lagrangian instead of Eulerian, which

makes it more complex to code than the original Godunov method since cells can move and

overlap.

Compared to Riemann-solver-based high-order reconstruction schemes such as MPWENO

(as used for nonlinear elasticity for example by Barton et al. [28]), RRM does not require slope

limiters, multiple weighted stencils, or other special care to avoid oscillation near steep gradi-

ents, since its solution reconstruction is currently only piecewise constant. RRM can also be

used in cases where solution of the Riemann problem is prohibitive, either mathematically or

computationally. However RRM does suffer from a one-way overshoot at shocks, as we will

see in the results for a nonlinear shock tube, so it could be argued that RRM could also benefit

from some special treatment to avoid creating new extrema of the solution in that case. In

principle, the cells of RRM could be made higher-order in a way similar to finite volume

schemes, but we have not yet investigated this possibility.

RRM bears many similarities to other meshfree methods such as smoothed-particle hydro-

dynamics (SPH) [29] [30] and more recent kernel-based methods such as those of Lanson and

Vila [31], Gaburov and Nitadori [32], and Hopkins [25]. The cells of RRM could be compared

to the particles of SPH, with the wavefronts of RRM playing a role similar to SPH’s kernel

functions. In SPH, for a locally-supported kernel function, the value of the field at a given

point is determined by the weighted contributions of some number of nearby particles. In
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RRM, the “support” of a wavefront is the set of cells and parts of cells that it encompasses, but

wavefronts never overlap, and the primitive values within a given wavefront depend only on

that wavefront. RRM’s maintenance of connections between wavefronts and cells is similar to

certain acceleration techniques used in SPH implementations to reduce the number of parti-

cles that must be examined to produce the field values at each point.

The Finite Mass Method (FMM) published by Gauger et al. [33] and Klingler et al. [34] is a

meshfree method that uses extended pieces of material in a way somewhat similar to the cells

of RRM. FMM divides the material being simulated into finite-sized “mass packets”, which are

modeled by differentiable functions with compact support such as cubic B-splines. FMM pack-

ets can interpenetrate, as cells can in RRM, but FMM packets can also deform and change in

size, whereas in RRM the cells are of fixed size and are chosen to be piecewise-constant specifi-

cally so their shape does not change over time. In FMM, packets are coupled by frictional

forces, where in RRM the cells are independent of each other. The solution procedure of FMM

is similar to that of FEM, where we assemble a system of differential equations containing the

packet locations, deformation matrices, and entropies, and solve the system with standard

techniques, as opposed to the event-based simulation of RRM. Finally, since FMM packets can

change shape, they can become degenerate, in which case they must be recreated and the simu-

lation continued, as noted by Klingler et al. [35].

RRM was partly inspired by work from computational geometry, specifically Chaikin’s cor-

ner-cutting algorithm [36] and Catmull’s subdivision surfaces [37]. Both algorithms start with

simple curves and progressively refine them by performing some repeated, local operations.

RRM adds the notion of conserving mass, momentum, and energy during the process, and

can de-refine as well as refine, but shares a similar basic idea.

Improvements to the repeated replacement method

There are several differences between the original version of RRM and the one described in

this paper. Originally, RRM was demonstrated only for the Euler equations. In the process of

adapting RRM to handle elasticity, we made a number of improvements.

The change that improved accuracy the most was the addition of support for multi-material

fields. In its original form, RRM is diffusive across contacts, since the chopping and replace-

ment process mixes together material which was initially at different temperatures. An exam-

ple of this behavior can be seen in the double rarefaction test in the results section. Arguably

this is physically accurate, since it models heat diffusion, but it is at odds with the analytic solu-

tions we obtain from Riemann solvers, which are adiabatic. So to make RRM adiabatic, we

added the option to mark cells as being of different material types. For initial conditions with

two different temperatures, if we use a different material type for each temperature, it allows

RRM to avoid mixing them together. This requires cell flattening to create as many new cells

as there are contiguous areas of each material type inside the wavefront. So flattening across a

contact will result in two adjacent cells, which keeps contacts sharp and removes the major

source of error versus a Riemann solver. Most of the other tests in the results section make use

of this feature. The error analysis section contrasts the error behavior with and without this

feature to quantify the improvement it brings.

Another change from the original version of RRM is in the improved handling of wavefront

intersection. Originally, tracer particles were allowed to cross each other and move from one

cell to another. Then at replacement time, all the wavefronts that overlapped the replacing

wavefront were unioned together and replaced as one. This unioning was needed to prevent

wavefronts from sometimes chopping out an unbalanced amount of stress momentum and

energy, which could cause large negative temperatures or violations of the geometric
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conservation law, as mentioned in the sections on wavefront merging and positivity preserva-

tion. But such unioning presented problems for shock-only systems like linear elasticity, where

indiscriminate unioning of wavefronts could destroy the shocks. It was also difficult to imple-

ment particle motion between cells properly for cases where multiple cells overlapped or inter-

penetrated at high speeds. So we changed to a system where wavefronts never overlap, and

must be explicitly merged together when they intersect. This gives us the option of wavefront

replacement before merge to preserve a shock or to keep error below the user threshold. It also

removes the requirement to track particle motion between cells or to support more than two

particles in a single cell.

The change that improved the speed of RRM the most was the reduction of the computa-

tional order of the wavefront-cell intersection operation. The previous implementation of

RRM wasOðN2Þ for this operation, because at replacement time it would intersect the wave-

front with every other wavefront to check for overlaps, and with every cell to determine which

cells were being removed from the field. The current implementation isOðNÞ, because a
replacing wavefront never overlaps another, and because we keep track of which cells each

wavefront has crossed so we can remove them from the field without intersecting wavefronts

against cells.

To demonstrate the speed improvement due to this change, we profiled the performance of

the same test problem for the old and new versions of the simulator. Since the old simulator

only supported the Euler equations, we chose a shock-tube problem with initial conditions

(ρl, ul, pl) = (1.0, 0.0, 100000.0), (ρr, ur, pr) = (0.01, 0.0, 1000.0), with the ratio of specific heats

set to γ = 1.4. The simulation domain is x 2 [−1.0, 1.0], and the simulation time runs from

t = 0.0 to t = 1.5 seconds. The precision settings were chosen such that the number of cells

would exceed 1000, and were set the same in both versions of the simulator. The solution con-

sists of a left rarefaction, a contact, and a right shock. Both tests were run on a single core of an

Intel Core i7-3820 running at 3.6 GHz.

First we check the number of cells used over the course of both simulations, to be sure our

performance numbers will be directly comparable across simulator versions. Fig 9 shows that

the number of cells used during both simulations follows a similar trajectory, so the results

Fig 9. Number of cells used in old vs. new simulator.A comparison of the number of cells used in the old
version of the simulator versus the new version, at the same simulation time point in the same problem (a
shock tube with precision set high to create many cells). The comparison shows that the two versions use
almost the name number of cells throughout the simulation, which is important to insure that performance
tests are comparable.

https://doi.org/10.1371/journal.pone.0186345.g009
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that follow should reflect the true differences in the simulation algorithm, rather than some

other change that alters the amount of work the simulator performs.

Fig 10 shows the increase in simulation rate that the new version of the simulator achieves

over the old version. We define simulation rate as the amount of simulation time we can pro-

cess per unit of wall-clock time. The speedup is the ratio of the simulation rate of the new ver-

sion to the simulation rate of the old version. Early in the simulation, when the number of cells

is still small, both simulators are fast, and the new version shows less than a 2× speedup. But by

the time the number of cells exceeds approximately 600, the new simulator is 6× as fast as the

old one, and the speedup continues to increase over the course of the simulation as the number

of cells increases.

A more human-centric measure of simulation performance is how the rate of wall-clock

time increase changes over the course of the simulation. Fig 11 shows that as the simulation

progresses, the amount of wall-clock time required to process a unit of simulation time goes

up superlinearly for the old version of the simulator, resulting in the perception that the simu-

lation is running more and more slowly. Some slowdown is to be expected of course, since the

number of cells is increasing, which requires more computational effort. But the superlinear

nature of it makes this expected behavior feel worse. In contrast, this quantity goes up only lin-

early for the new version of the simulator.

The final performance measure we explore is how much wall-clock time is required to pro-

cess each simulation event. Fig 12 plots this versus the number of cells, and we can see a clear

difference between the old and new versions of the simulator. Both versions are linear in the

number of cells, but the slopes differ by a factor of 12.6×, showing that the new version is con-

siderably faster on a per-event, per-cell basis.

Derivation of Riemann solvers

To validate our simulation results for both linear and nonlinear elasticity, we derive solvers

for the Riemann problem of left and right constant statesWL andWR separated by a disconti-

nuity at x = 0. The primitive variables we use are eitherW = [w1 w2 w3]
T = [ρ u T]T or

Fig 10. Simulation rate in old vs. new simulator. A comparison of the simulation rate achieved by the old
and new versions of the simulator over the course of the test. The simulation rate is defined as simulation time
(in seconds) per wall clock time (in milliseconds). We can see that once the number of cells grows sufficiently
large, the new simulator achieves a rate of approximately 6x that of the old simulator.

https://doi.org/10.1371/journal.pone.0186345.g010
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[ρ u σ]T, where ρ is density in spatial coordinates, u is velocity, T is temperature, and σ is

Cauchy stress, as discussed in the elastic equations section. We will use one set or the other of

primitive variables depending on which is more mathematically convenient for a given part

of the derivation, but we will always express initial conditions in terms of temperature instead

of stress, because we find the temperature values more intuitive.

In this section we use the theory of quasi-linear systems of hyperbolic partial differential

equations, and generally follow the notation of Toro [2] and more recently Titarev et al. [38]

But this section is meant only to outline the application of this procedure to these specific elas-

tic systems, not as a rigorous derivation of the procedure itself, so the reader is advised to con-

sult the cited references for more detailed information.

Fig 11. Wall-clock time as a function of simulation time. A comparison of the amount of wall-clock time
required to reach a given point in simulation time. A least-squares fit of this function for the old simulator is
f(x) = −155182 + 2.2971 × 106 x + 1.70013 × 106 x2, and for the new simulator is f(x) = −80049.3 + 777338x.

https://doi.org/10.1371/journal.pone.0186345.g011

Fig 12. Event time vs. the number of cells. The wall-clock time required to process a simulation event, as a
function of the number of cells. A least-squares fit of this function for the old simulator is f(x) = −0.0299517
+ 0.000697904x, and for the new simulator is f(x) = 0.0246154 + 0.0000552215x. Both are linear, but the old
simulator’s event time increases approximately 12.6×more rapidly with the number of cells.

https://doi.org/10.1371/journal.pone.0186345.g012
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Introduction to the Riemann solver derivation procedure

For both the linear and nonlinear elastic systems described above, we will initially write the

conservation equations in differential form

U t þ FðUÞx ¼ 0 ð14Þ

where the conserved variables U and the fluxes F(U) of mass, momentum, and energy are
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where definitions ofCtot(λ, u, T) and σ(λ, T) are given in the sections on linear and nonlinear

elasticity, and we use λ = ρ0/ρ to transformCtot(λ, u, T) toCtot(ρ, u, T) and σ(λ, T) to σ(ρ, T).
To convert the system to conservative quasi-linear form

U t þ AðUÞU x ¼ 0 ð16Þ

we use the Jacobian matrix
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To convert the system into non-conservative quasi-linear form

W t þ AðWÞWx ¼ 0 ð18Þ

we first write down Eq (14), then evaluate the partial derivatives of the primitive variables with

respect to t and x and rearrange terms to form the matrix A(W).

Once we have A(U) and A(W), we can use the eigenvalues λi and eigenvectors
Ki = [ki1 ki2 ki3]

T of these matrices, together with the generalized Riemann invariants across

rarefactions and contacts, and the Rankine-Hugoniot conditions across shocks, to derive a

complete solution f(x, t,WL,WR) to the Riemann problem.

The solution will consist of four constant statesWL,W�L,W�R,WR separated by three

waves which propagate at speeds given by the eigenvalues λ1, λ2, λ3. The left (1) and right (3)
waves can be either shocks or rarefactions; the center (2) wave is always a contact. The star left

stateW�L and star right stateW�R surround the contact; finding their unknown components

in terms of the initial conditionsWL andWR is the first part of solving a Riemann problem.
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To determine if a wave i is a shock, a contact, or a rarefaction, we check if its characteristics

are converging, parallel, or diverging, respectively, on the left (l) and right (r) sides of the wave:

liðW lÞ � Si � liðW rÞ shock ð19Þ

liðW lÞ ¼ Si ¼ liðWrÞ contact ð20Þ

liðW lÞ < liðW rÞ rarefaction ð21Þ

Note that contacts and degenerate shocks can both have parallel characteristics. The difference

is that velocity changes across shocks, but not across contacts.

We can derive generalized Riemann invariants from the eigenvectors of the three waves:

dw
1

ki1
¼ dw

2

ki2
¼ dw

3

ki3
ð22Þ

These ordinary differential equations allow us to form two invariants that hold across each

wave i. These invariants hold only for rarefactions and contacts.

A component kij of an eigenvector Ki will be zero where the corresponding variable does

not change across wave i. Note that for eigenvectors derived from non-conservative forms, this

may only be true for rarefactions, depending on which set of primitive variables is chosen.

The Rankine-Hugoniot conditions express the fact that mass, momentum and energy must

be conserved across shocks. They are written

FðU rÞ � FðU lÞ ¼ SiðU r � U lÞ ð23Þ

where Si is the speed of the shock at characteristic i, and the fluxes and conserved variables are

those on the left and right sides of the shock. In a coordinate system moving with the shock,

the Rankine-Hugoniot relations reduce to F(Ul) = F(Ur), since the local shock speed is zero.

Riemann solver for linear elasticity

Evaluating the Jacobian A(U) = @F/@U for our linear elastic system, we obtain
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The eigenvalues of this system are

l
1
¼ u� a l

2
¼ u l

3
¼ uþ a ð25Þ

where the speed of sound a ¼ ffiffiffiffiffiffiffiffi

Er
0

p
=r. This corresponds to a system with a shock or rarefac-

tion traveling left at speed u − a, a contact moving with the material at speed u, and a shock or

rarefaction traveling right at speed u + a.
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In non-conservative form, the matrix is

AðWÞ ¼
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where a0 = a|ρ = ρ0. The eigenvalues of this system are the same as those derived from the con-

servative formulation, which is a useful check. The eigenvectors of the non-conservative form

are

K
1
¼

k
11

k
12

k
13

2

6

6

6

4

3

7

7

7

5

¼

� E

a2a
0

1

0

2

6

6

6

6

6

4

3

7

7

7

7

7

5

K
2
¼

k
21

k
22

k
23

2

6

6

6

4

3

7

7

7

5

¼

0

0

1

2

6

6

6

4

3

7

7

7

5

K
3
¼

k
31

k
32

k
33

2

6

6

6

4

3

7

7

7

5

¼

E

a2a
0

1

0

2

6

6

6

6

6

4

3

7

7

7

7

7

5

ð27Þ

Looking at the zero components of the eigenvectors, we can see that the temperature is con-

stant across the left and right waves, and the density and velocity are constant across the con-

tact, which means the solution consists of the four states

WL ¼

rL

uL

TL

2

6

6

6

4

3

7

7

7

5

W�L ¼

r�

u�

TL

2

6

6

6

4

3

7

7

7

5

W�R ¼

r�

u�

TR

2

6

6

6

4

3

7

7

7

5

WR ¼

rR

uR

TR

2

6

6

6

4

3

7

7

7

5

ð28Þ

separated by the three waves traveling at speeds λ1, λ2, and λ3.
There are two ways of deriving expressions for ρ� and u�. The first is to use the generalized

Riemann invariants; the second is to use the Rankine-Hugoniot conditions. For this linear

elastic system, both methods give the same result for ρ� and u�, and our analysis of the charac-

teristic speeds will show that the waves are always degenerate shocks, so we will only show the

derivation of the Rankine-Hugoniot conditions here.

First, we transform the speeds uL, u�, and uR, to a coordinate system that moves with the

shock i by using

ûL ¼ uL � Si û� ¼ u� � Si ûR ¼ uR � Si ð29Þ

In a coordinate system moving with the shock, the Rankine-Hugoniot relations reduce to

F(Ul) = F(Ur), since the local shock speed is zero. So for each wave, we have two coordinate

transformation equations and three Rankine-Hugoniot equations, one each for mass, momen-

tum, and energy. Eliminating the hatted velocities and shock speeds and solving for u� for

waves 1 and 3, we obtain two expressions for u�

u� ¼ uL þ
ffiffiffiffiffiffiffiffi

Er
0

p ðrL � r�Þ
rLr�

¼ uR �
ffiffiffiffiffiffiffiffi

Er
0

p ðrR � r�Þ
rRr�

ð30Þ

Solving this for ρ�, we obtain

r� ¼
2

ffiffiffiffiffiffiffiffi

Er
0

p
rLrR

ffiffiffiffiffiffiffiffi

Er
0

p ðrL þ rRÞ þ rLrRð�uL þ uRÞ
ð31Þ
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Alternatively, using the same five equations per wave, but eliminating u� and solving for shock

speeds gives

S
1
¼ uL �

ffiffiffiffiffiffiffiffi

Er
0

p

rL

¼ uL � aL ð32Þ

S
3
¼ uR þ

ffiffiffiffiffiffiffiffi

Er
0

p

rR

¼ uR þ aR ð33Þ

which describes a left shock traveling at the speed of sound, and a right shock traveling at the

speed of sound.

We can see that both waves are shocks because

l
1
ðWLÞ ¼ S

1
¼ l

1
ðW�Þ ¼ uL � aL ð34Þ

l
3
ðW�Þ ¼ S

3
¼ l

3
ðWRÞ ¼ uR þ aR ð35Þ

Note that contacts can also have parallel characteristics, but we know these are shocks

because velocity changes across them, since uL 6¼ u� and u� 6¼ uR in general. We call these

shocks “degenerate” because they are discontinuous but travel only at the speed of sound,

whereas shocks in more complex systems can travel faster than sound.

Now that we can calculate ρ�, u�, S1, and S3, this completes the solution of the Riemann

problem for linear elasticity. Note that the temperature does not appear in any of these expres-

sions, and since this solution procedure does not model diffusion across the contact, the left

and right temperature states never mix. Sampling the solution requires simply finding the

shock positions at the desired time t, then outputting the correct one of the four constant states

WL,W�L,W�R, orWR that corresponds to the desired spatial coordinate x.

Riemann solver for nonlinear elasticity

Evaluating the Jacobian A(U) = @F/@U for our nonlinear elastic system, we obtain

AðUÞ ¼

0 1 0

1

2
�u2 þ 3E

r
0

þ 3Er0

r2

� �

u 1

uð�2CvTr
3 þ Eð�2r

3 þ 3r
2
r
0
þ 2r

3

0
ÞÞ

r2r2

0

1

2
�u2 þ

4CvTrþ E 4r� 3r
0
� r

3

0

r2

� �

r2

0

0

B

B

@

1

C

C

A

2u

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

ð36Þ

The eigenvalues of this system are

l
1
¼ u� a l

2
¼ u l

3
¼ uþ a ð37Þ

where the speed of sound a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Er0
r2

þ 2ðEþCvTÞr
r
2

0

q

. This corresponds to a system with a shock or

rarefaction traveling left at speed u − a, a contact moving with the material at speed u, and a

shock or rarefaction traveling right at speed u + a. Note that for nonlinear elasticity the speed

of sound depends on T, which will complicate the solution process.
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In non-conservative form, the matrix is

AðWÞ ¼

u r 0

a2

r
u

Cvr

r2

0

0 0 u

2

6

6

6

6

6

4

3

7

7

7

7

7

5

ð38Þ

The eigenvalues of this system are the same as those derived from the conservative formula-

tion, which is a useful check. The eigenvectors are

K
1
¼

k
11

k
12

k
13

2

6

6

6

4

3

7

7

7

5

¼

� r

a

1

0

2

6

6

6

6

4

3

7

7

7

7

5

K
2
¼

k
21

k
22

k
23

2

6

6

6

4

3

7

7

7

5

¼

�Cvr
2

a2r2

0

0

1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

K
3
¼

k
31

k
32

k
33

2

6

6

6

4

3

7

7

7

5

¼

r

a

1

0

2

6

6

6

6

4

3

7

7

7

7

5

ð39Þ

Looking at the zero components of the eigenvectors, it appears that the temperature is con-

stant across the left and right waves, and the velocity is constant across the contact, which

means that the solution would consist of the four states

WL ¼

rL

uL

TL

2

6

6

6

4

3

7

7

7

5

W�L ¼

r�L

u�

TL

2

6

6

6

4

3

7

7

7

5

W�R ¼

r�R

u�

TR

2

6

6

6

4

3

7

7

7

5

WR ¼

rR

uR

TR

2

6

6

6

4

3

7

7

7

5

ð40Þ

separated by the three waves λ1, λ2, and λ3.
However, it turns out this is only true for rarefactions. If we redo the above eigensystem

with the other set of primitive variablesW = [ρ u σ]T by using σ(ρ, T) to eliminate T in

favor of σ, we obtain

AðWÞ ¼

u r 0

0 u
�1

r

0 �a2r u

2

6

6

6

6

6

4

3

7

7

7

7

7

5

ð41Þ

which has the eigenvectors

K
1
¼

k
11

k
12

k
13

2

6

6

6

4

3

7

7

7

5

¼

� 1

a2

1

ar

1

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

K
2
¼

k
21

k
22

k
23

2

6

6

6

4

3

7

7

7

5

¼

1

0

0

2

6

6

6

4

3

7

7

7

5

K
3
¼

k
31

k
32

k
33

2

6

6

6

4

3

7

7

7

5

¼

� 1

a2

� 1

ar

1

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

ð42Þ

which imply a solution consisting of the four states

WL ¼

rL

uL

sL

2

6

6

6

4

3

7

7

7

5

W�L ¼

r�L

u�

s�

2

6

6

6

4

3

7

7

7

5

W�R ¼

r�R

u�

s�

2

6

6

6

4

3

7

7

7

5

WR ¼

rR

uR

sR

2

6

6

6

4

3

7

7

7

5

ð43Þ
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This is the more general solution structure, since it allows for differing temperatures T�L and

T�R inside shocks, and it conveniently incorporates the continuity of stress across the contact,

so we will use this structure below.

In the linear elastic case, we had only two unknowns ρ� and u�. In the nonlinear elastic

case we have four: ρ�L, ρ�R, u� and σ�. Our solution strategy will be to create two functions

u� = fL(σ�,WL) = fR(σ�,WR) which we will equate and solve iteratively for σ�. There will be one

form of u� = f(σ�,W) for rarefactions, which we will derive from the generalized Riemann

invariants, and another for shocks, which we will derive from the Rankine-Hugoniot

conditions.

Star region velocity function for rarefactions. Writing down the generalized Riemann

invariants using the eigenvectors from the first non-conservative form and integrating, we

have

R k
12

k
11

dr ¼
Z

du

Z

k
13
du ¼

Z

k
12
dT

R k
22

k
21

dr ¼
Z

du

Z

k
23
du ¼

Z

k
22
dT

R k
32

k
31

dr ¼
Z

du

Z

k
33
du ¼

Z

k
32
dT

ð44Þ

which yield the invariants

I
11
¼ uþ

Z

a

r
dr I

12
¼ T

I
21
¼ u I

22
¼ u

I
31
¼ u�

Z

a

r
dr I

32
¼ T

ð45Þ

Invariants I12, I21, I22, and I32 are obvious by inspection of zeros in the eigenvectors; the gener-

alized Riemann invariants just confirm them. Invariants I11 and I31 can be solved in terms of

elliptic functions, but we leave them unevaluated for brevity. In our Riemann solver, we evalu-

ate them by converting the integral to an initial value problem of an ordinary differential equa-

tion

dyðrÞ
dr

¼ aðrÞ
r

yð1Þ ¼ 0 ð46Þ

and integrating numerically. Applying invariants I11 and I31 across the left and right waves and

solving for u�, we obtain

u�L ¼ uL þ
Z

aðrL;TLÞ
r

dr�
Z

aðr�L;TLÞ
r

dr ð47Þ

u�R ¼ uR �
Z

aðrR;TRÞ
r

drþ
Z

aðr�R;TRÞ
r

dr ð48Þ
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Star region velocity function for shocks. Applying the same velocity-transforming Ran-

kine-Hugoniot procedure as we did for linear elasticity, we get

r
1

¼ Eðr3

0
� r

3

LÞ � rLðCvTLr
2

L þ r
2

0
s�Þ

r
2

¼ 5Er3

0
þ Er3

L þ CvTLr
3

L � 3r
2

0
rLs�

r
3

¼ E2ðr6

0
þ 34r

3

0
r
3

L þ r
6

LÞ

r
4

¼ ðCvTLr
3

L � 3r
2

0
rLs�Þ

2

r
5

¼ CvTLr
3

Lð17r3

0
þ r

3

LÞ

r
6

¼ 2Eðr
5
� 3r

2

0
rLðr3

0
þ r

3

LÞs�Þ

u�L ¼ uL �
1
ffiffiffi

6
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r
1
ðr

2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r
3
þ r

4
þ r

6

p Þ
Er5

0
r2

L

s

ð49Þ

with a similar expression for u�R which merely substitutes R for L and reverses the sign on the

right-hand term.

Root finder for star region velocity and stress. We now have the ingredients to write an

implicit equation u�L = u�R across the star region for the four possible solution cases: left

shock/right shock, left shock/right rarefaction, left rarefaction/right shock, and left rarefac-

tion/right rarefaction. We solve this implicit equation using a numerical root finder, whose

result is a value of σ� which makes u� invariant across the contact. During the root finding pro-

cess, we choose the shock or rarefaction u� function on each side depending on whether the

characteristics converge or diverge, respectively. Analysis of the shape of the u� function shows

that it has cusps at σ� = σL and σ� = σR which must not be stepped across during root finding,

but the function is otherwise tractable, sloping upward for increasing σ� with no local maxima

or minima.

Finding star region densities and shock speeds. The root finder gives us values of u� and

σ�. To find ρ�L and ρ�R for rarefactions, we use the fact that the temperature is constant across

rarefactions, as seen from the zeros of the eigenvectors. If we solve for temperature in the stress

equation, and equate it across a left rarefaction, we obtain

Eðr3

0
� r

3

�LÞ � r�Lr
2

0
s�

Cvr
3

�L
¼ Eðr3

0
� r

3

LÞ � rLr
2

0
sL

Cvr
3

L

ð50Þ

This can be solved explicitly for ρ�L as a cubic in σ�, but this solution is numerically prob-

lematic because it involves complex-valued intermediate calculations, though the result is

always real. So instead, we solve it numerically, which is simplified by the fact that T is a

smooth function of σ. The solution for a right rarefaction is the same, but with R substituted

for L.

For shocks, we use the Rankine-Hugoniot equations again, but this time solving for ρ�L and

ρ�R since we have the values of u� and σ� available. The result is

r�L ¼
rLðCvr

3

LTL þ Eðr3

L � r
3

0
Þ þ r

2

0
rLs�Þ

rLðrLðCvrLTL þ r2

0
ðuL � u�Þ

2Þ þ r2

0
s�Þ þ kðr3

L � r
3

0
Þ ð51Þ

for the left side, with ρ�R the same but with R substituted for L.
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Once ρ� is known for a shock, we can use the Rankine-Hugoniot equations one final time,

this time solving for the left shock speed S1 and the right shock speed S3:

S
1
¼ uL �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð3rL � r�LÞð4Cvr
3

Lr�LTL þ Eðr3

0
ð3rL � r�LÞ þ 4r3

Lr�LÞÞ
p

r
0
rLð3rL � r�LÞ

ð52Þ

S
3
¼ uR þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð3rR � r�RÞð4Cvr
3

Rr�RTR þ Eðr3

0
ð3rR � r�RÞ þ 4r3

Rr�RÞÞ
p

r
0
rRð3rR � r�RÞ

ð53Þ

Solutions inside rarefactions. Once we have values for ρ�L, ρ�R, u�, and σ�, the last step is

to derive expressions for ρ and u inside the rarefactions, since they change smoothly over some

distance instead of discontinuously as in shocks. We use the fact that all characteristics start at

point (x, t) = (0, 0) in the x-t plane. This means the slope of any characteristic on the left side is
x
t
¼ u� a, and on the right side is x

t
¼ uþ a. Using these equations and invariants I11 and I31

from Eq (45), we obtain for the left and right sides

x

t
¼ uL � aðr;TLÞ �

Z

aðr;TLÞ
r

drþ
Z

aðrL;TLÞ
r

dr ð54Þ

x

t
¼ uR þ aðr;TRÞ þ

Z

aðr;TRÞ
r

dr�
Z

aðrR;TRÞ
r

dr ð55Þ

We solve these using a root finder to determine ρ for a given point x
t
. Then we substitute that ρ

into these equations derived from the same invariants to get u at the same point

u ¼ uL �
Z

aðr;TLÞ
r

drþ
Z

aðrL;TLÞ
r

dr ð56Þ

u ¼ uR þ
Z

aðr;TRÞ
r

dr�
Z

aðrR;TRÞ
r

dr ð57Þ

With this, the Riemann solver for nonlinear elasticity is complete. As in the case of linear

elasticity, for any given point x
t
, we first determine which characteristics it falls between, then

sample the appropriate part of the solution. Note that this solver is somewhat numerically

intensive, since it nests root finders and integrators inside of root finders. This is acceptable

here, since our goal is merely to validate another numerical scheme with it. But this solver

would likely be too inefficient to incorporate inside another scheme such as a Godunov

method.

Derivation of a Sedov-Taylor solver

A Sedov-Taylor blast wave [39] [40] [41] is a blast wave formed by placing a large amount of

energy in a very small area of a stationary field whose ambient density and temperature are

small by comparison. Later in the results section we will present a test problem of this type as a

supplement to the other Riemann test problems.

The solution of this type of blast wave is symmetric around the blast center, and consists of

two very strong diverging shocks separated by two rarefactions. We can solve for the shock

positions and post-shock primitive values by using the strong-shock assumption that the speed

of sound au = aL = aR in the unshocked material is much less than the shock speed SL = SR. The

solution for the rarefactions is more involved, and is not presented here.
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We begin with the conserved variables U and the fluxes F(U) of mass, momentum, and

energy in terms of the stress σ instead of the temperature T.

U ¼

u
1

u
2

u
3

2

6

6

6

6

6

4

3

7

7

7

7

7

5

¼

r

ru

1

2
ru2 � 3Er

r
0

þ 3Er
0

r
� 2s

� �

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

FðUÞ ¼

f
1

f
2

f
3

2

6

6

6

6

6

4

3

7

7

7

7

7

5

¼

ru

ru2 � s

1

2
u ru2 � 3Er

r
0

þ 3Er
0

r
� 4s

� �

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

ð58Þ

Substituting these into the Rankine-Hugoniot conditions with initial velocity uR = 0, eliminat-

ing the velocity and stress variables, and taking the limit as aR! 0, we obtain an expression

for the right post-shock density ρ�R as a function of the right initial density ρR and right shock

speed SR:

r�R ¼
�3Er

0
rR þ 3S2Rr

3

R

�3Er
0
þ S2Rr

2

R

ð59Þ

Similar manipulations give us the right post-shock velocity uR�

u�R ¼ � 2S3Rr
2

R

3Er
0
� 3S2Rr

2

R

ð60Þ

and right post-shock stress σR�

s�R ¼
3Er

0
ð�2S2RrR þ sRÞ þ S2Rr

2

Rð2S2RrR þ sRÞ
3Er

0
� 3S2Rr

2

R

ð61Þ

By symmetry, the left post-shock values are the same as on the right, but with the sign of the

velocity reversed.

To get the shock speed SR, we first find the radius of the blast wave R(t) by dimensional

analysis. Our initial values are the density of the unshocked field ρu = ρL = ρR and the total

energy Ec deposited at the blast center. The unshocked velocity uu = uL = uR is zero, and the

unshocked stress σu = σL = σR is assumed to be small compared to that of the blast. So the

dimensional quantities available to us are

½ru� ¼ M

L

½Ec� ¼ M
L
2

T
2

½t� ¼ T

ð62Þ
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We can then construct a quantity with the dimension of length

Ect
2

ru

� �1

3

" #

¼ L ð63Þ

The final expression for the radius of the blast wave as a function of time also requires a

dimensionless factor ηs� 1 to set the scale of the result

RðtÞ ¼ Zs

Ect
2

ru

� �1

3

ð64Þ

And since

SLðtÞ ¼ SRðtÞ ¼
dRðtÞ
dt

¼ 2RðtÞ
3t

ð65Þ

we can substitute this shock speed into equations Eqs (59), (60) and (61) to obtain the post-

shock primitive values.

Results

Here we show the results of eleven numerical test cases. The first three tests are straightforward

shock tube problems, and are used to show the general nature of RRM’s solutions and to illus-

trate RRM’s operation using spacetime diagrams. The fourth through tenth tests are of more

specialized initial conditions which were chosen because they may cause difficulties for various

other types of numerical methods. The eleventh test case shows RRM’s handling of free bound-

ary conditions.

Where available, an analytic solution from an exact Riemann solver or a Sedov-Taylor

solver is shown for comparison to the simulated solution. The derivation of these solvers is

presented in a separate section. After the test cases, we analyze how the simulation error

decreases as we increase the computational effort by decreasing the user-specified maximum

tracer particle error metric Δmax.

Nonlinear elastic shock tube

Fig 13 shows a shock-tube-like evolution of left rarefaction, center contact, and right shock for

nonlinear elasticity. Normally the contact would be s-shaped, because RRM is not naturally

adiabatic across contacts, since the replacement process mimics heat diffusion. However, in

this test case we have specified in the initial conditions that the left and right cell are two differ-

ent materials with identical properties, which causes flattening across contacts to produce two

cells, which prevents heat diffusion and results in a sharp contact.

Note that there is a velocity and stress spike at the shock front which we do not see in the

linear elastic results. This is because when we model shocks in a nonlinear elastic medium

using RRM, the shock itself is a dynamic phenomenon. We do not explicitly calculate the

shock speed and use it in the simulation as Godunov methods do. The tracer particles in the

wavefronts spanning the shock front travel at the local speed of sound, the same as all the other

tracer particles in the system. The spike is analogous to the finite thickness that real physical

shocks possess, though its overshot profile differs from shocks in a real material, which are

approximately sigmoidal as shown by Alsmeyer [42].

Fig 14 shows a spacetime diagram of the shock tube problem, zoomed in to show the solu-

tion structure. Each expanding wavefront is represented by a colored triangle. When wave-

fronts collide and merge, the left wavefront in the merger is drawn under the right wavefront
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Fig 13. Nonlinear elastic shock tube. Two nonlinear elastic cells showing shock-tube-like evolution at
t = 0.2. The left and right cells are designated as two different materials (with identical properties) to avoid heat
diffusion across the contact, which is perfectly sharp. The velocity and stress spike at the shock is due to the
fact that RRM does not incorporate a Riemann solver, so the shock speed emerges from the simulation
instead of being explicitly calculated. Initial conditions are (ρl, ul, Tl) = (1.0, 0.0, 100.0), (ρr, ur, Tr) = (0.3, 0.0,
800.0), E = 1.0, ρ0 = 1.0, andCv = 0.01. The simulation domain is x 2 [−1.0, 1.0].

https://doi.org/10.1371/journal.pone.0186345.g013
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that it merges with. Any number of wavefronts may be merged together, either all at once if

multiple wavefronts collide simultaneously, or successively if wavefront collisions are spread

out in time.

The inverted white triangles are cells, which start at their maximum width and are progres-

sively encompassed by the wavefronts expanding out from their left and right edges. Usually

only one cell is created from a single wavefront, but along the contact, we can see single wave-

fronts flattening into two cells to prevent heat diffusion across the contact.

Linear elastic double shock

Fig 15 shows an asymmetric double shock for linear elasticity. We can see that RRM keeps per-

fectly sharp shocks, and this is the case even for very long simulations or cases where the

shocks reflect off the boundaries (which are not shown here). To prevent shocks from being

erroneously merged together, we disable wavefront merging in systems like linear elasticity

where we know that the solutions are always shocks, except in the case of wavefronts with very

small differences between them.

One interesting peculiarity shows up on the right side of the graph, where we can see that at

t = 0.5, the Riemann solver shows the shock slightly ahead of the simulation. This is not simply

an error in shock placement. Instead, it is a reflection of the fact that RRM does not update the

entire field at every time step, so the value of tmay be slightly different for every cell. The

shocks are only perfectly placed at the exact moment a replacement occurs for the wavefront

Fig 14. Nonlinear elastic shock tube as a spactime diagram. Shock-tube evolution from t = 0.0 to t = 0.005, with initial conditions the same as in Fig 13,
but zoomed in on the center of the simulation domain. Each colored triangle is an expanding wavefront, and each white triangle is a cell. We can see the
closely-spaced small triangles at left capturing the rarefaction, the line of small triangles down the middle following the contact, and the shock front using the
smallest triangles at the right side.

https://doi.org/10.1371/journal.pone.0186345.g014
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Fig 15. Linear elastic asymmetric double shock. Two linear elastic cells converging at different speeds to
form an asymmetric double shock at t = 0.5. The time value is chosen to highlight (at the right shock) how the
shock placement can be slightly behind the analytic value. Because the time steps in RRM only affect
individual cells rather than the entire field, the shock placement will be exact only at the moments when the
wavefront spanning the shock is replaced. This placement error does not accumulate over time, and can be
reduced to any desired degree by reducing the user-defined error metric limitΔmax. Initial conditions are (ρl, ul,
σl) = (1.0, 0.3, 0.0), (ρr, ur, σr) = (1.0, −0.2, 0.0), E = 1.0, and ρ0 = 1.0. The simulation domain is x 2 [−1.0, 1.0].

https://doi.org/10.1371/journal.pone.0186345.g015
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spanning the shock. If desired, we can increase this replacement frequency by decreasing the

user-defined error metric limit Δmax of the wavefronts. Or if we wish to take a synchronized

snapshot of the entire field, we could simply force all pending events to occur at the snapshot

time. This placement error does not accumulate over time, so it does not affect the overall

course of the simulation.

Figs 16 and 17 show spacetime diagrams of the same initial conditions, zoomed in to show

the solution structure at two different levels. Note how the pattern of triangles is asymmetric,

reflecting the asymmetric nature of the initial conditions. Note also the horizontally-striped

“rainbow triangles” on the left and right. These illustrate an optimization called “wavefront

spanning”, where we avoid creating adjacent cells with the same primitive values by expanding

existing wavefronts to cover them. The expansion process creates a new wavefront and merges

the old one onto it, which creates a new stripe of color since wavefronts are colored by modulo

indexing into a color table using the wavefront serial number. However, a single rainbow tri-

angle may be considered to be one expanding wavefront, albeit one where the left and right

tracer particles are changed over time.

Nonlinear elastic double rarefaction

Fig 18 shows a left rarefaction, center contact, and right rarefaction. Here we see the s-shaped

contact that is typical of RRM, since we have used only one material in the initial conditions in

order to demonstrate the behavior. The complex curves of the rarefactions match the Riemann

Fig 16. Linear elastic asymmetric double shock as a spacetime diagram. Evolution of the asymmetric double shock from t = 0.0 to t = 0.0008, with
initial conditions the same as in Fig 15, but zoomed in on the center of the simulation domain. The rainbow triangles at the bottom left and right illustrate an
optimization called “wavefront spanning”, where instead of creating a new cell adjacent to an older one with the same primitive values, the wavefront
crossing the old cell is simply expanded to cover the new cell. This avoids creating many identical-valued cells in flat areas of shock-only systems like linear
elasticity.

https://doi.org/10.1371/journal.pone.0186345.g016
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solver data closely. These initial conditions include a larger-than-normal value of Cv to make

the test harder by increasing the step size across the contact.

Fig 19 shows a spacetime diagram of the same initial conditions, zoomed in to show the

solution structure. Note how the cell sizes vary smoothly across both space and time in accord

with the local demands of the simulation, without any sharp demarcations for submeshes or

other stepwise adaptive techniques.

Stationary contact

Fig 20 shows a stationary contact in a nonlinear elastic material. These contacts are formed by

finding two (ρ, T) pairs that result in identical stresses, and using those for the initial condi-

tions. In Eulerian methods, contacts typically broaden over time due to numerical diffusion.

In some Lagrangian methods such as smoothed particle hydrodynamics, contacts can change

shape due to a numerical surface tension effect, depending on how those methods are imple-

mented [43] [25] [44]. Contacts in RRMmaintain their sharpness indefinitely, as long as we

make the simulation adiabatic. Moving-grid methods can also maintain sharp contacts, at the

cost of occasional remeshing operations when the grid becomes too deformed. RRM has the

same property, but with continuous rather than occasional remeshing.

Supersonic parallel contacts

Fig 21 shows a pair of parallel contacts moving to the right at supersonic speed in a nonlinear

elastic material, with Mach number in the rangeM = 2.67–4.0. Eulerian methods would

Fig 17. Linear elastic asymmetric double shock as a spacetime diagram (increased time span). Evolution of the asymmetric double shock from
t = 0.0 to t = 0.05, with initial conditions the same as in Fig 15, but zoomed in on the center of the simulation domain. Note how the cells in the center of the
flat area between the two shocks get larger and larger, whereas the cells at the shock fronts stay small to capture the time evolution at the specified
resolution.

https://doi.org/10.1371/journal.pone.0186345.g017
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typically broaden and eventually merge these contacts over time, and would require a small

time step due to the supersonic velocity. RRM can advect sharp flow features at high speeds

with large time steps, since the features do not have to be transferred through stationary cells

of the simulation domain.

Fig 18. Nonlinear elastic double rarefaction. Two nonlinear elastic cells diverging to show an asymmetric
double rarefaction at t = 0.05. This figure illustrates the s-shaped contact that is typical of RRMwhen we use
only one material type across the entire field, which allows heat diffusion across the contact. Initial conditions
are (ρl, ul, Tl) = (1.0, 7.0, 20.0), (ρr, ur, Tr) = (1.0, −7.0, 200.0), E = 1.0, ρ0 = 1.0, andCv = 0.3. The simulation
domain is x 2 [−1.0, 1.0].

https://doi.org/10.1371/journal.pone.0186345.g018
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Noh implosion

Fig 22 shows a Noh implosion [45] or impact test in a nonlinear elastic material. This is a test of

shock placement, symmetry, and the treatment of the trivial contact at x = 0.0. Even some recent

and sophisticated Lagrangian techniques such as those described by Hopkins [25] and Frontiere

et al. [44] can show a phenomenon known as wall-heating at the trivial contact, which causes

spurious dips or peaks in the primitive variables. RRM shows accurate shock placement and no

evidence of wall-heating, though it also displays a typical impulse-like overshoot at the shocks

where the primitive variables transition from their pre- to post-shock values.

Strong separation

Fig 23 shows a strong separation test, similar to the one demonstrated for a different type of

nonlinear elasticity by Titarev et al. [38], but at higher separation velocity. RRM shows a flat

solution across the trivial contact at x = 0.0, where some other methods may show dips in the

primitive values at this location [38]. This test also stresses our nonlinear elastic Riemann

solver, which required a more accurate numerical integrator for Eq 46 to handle these initial

conditions. These initial conditions are likely beyond the range of physical validity of our con-

stitutive equations, so we use them here merely to demonstrate numerical robustness.

Sonic point in rarefaction

Fig 24 shows a nonlinear elastic separation test which has been modified to have an expansive

sonic point in the left rarefaction. Expansive sonic points can cause spurious rarefaction shocks

Fig 19. Nonlinear elastic double rarefaction as a spacetime diagram. Evolution of the asymmetric double rarefaction from t = 0.0 to t = 0.0004, with
initial conditions the same as in Fig 18, but zoomed in on the center of the simulation domain. Note the adaptive distribution of cell sizes in both time and
space across the diagram. Note also that the tops of the white triangles (the cells) are all horizontal, since both ends of a cell are created at the same time,
but some of them appear slightly tilted due to an optical illusion.

https://doi.org/10.1371/journal.pone.0186345.g019
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Fig 20. Stationary contact. A stationary contact at time t = 100.0. After approximately 14,000 simulation
events, the contact is still perfectly sharp, since we used different material types for the left and right initial
states, which prevents replacement across a contact frommixing states with different temperatures. During
simulation, the domain is composed of anywhere from 2 to 12 cells. Initial conditions are (ρl, ul, Tl) = (2.0, 0.0,
50.0), (ρr, ur, Tr) = (1.0, 0.0, 550.0), E = 1.0, ρ0 = 1.0, andCv = 0.01. The simulation domain is x 2 [−1.0, 1.0].

https://doi.org/10.1371/journal.pone.0186345.g020
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Fig 21. Supersonic parallel contacts.A pair of parallel contacts, moving at supersonic speed, after having
traveled around the periodic simulation domain 10 times. The contacts are still sharp and separate, despite
traveling at high speed and close distance from t = 0.0 to t = 200.0. During simulation, the domain is
composed of anywhere from 3 to 12 cells. The speed of sound in the material ranges from a(ρ, T) = 2.5 to a(ρ,
T) = 3.74. Initial conditions are (ρh, uh, Th) = (2.0, 10.0, 50.0) in the high-density region (98% of the domain
width), and (ρl, ul, Tl) = (1.0, 10.0, 550.0) in the low-density region (2% of the domain width), with E = 1.0, ρ0 =
1.0, andCv = 0.01. The simulation domain is x 2 [−1.0, 1.0] with periodic boundary conditions.

https://doi.org/10.1371/journal.pone.0186345.g021
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Fig 22. Noh implosion. A Noh implosion or impact test. Note that the solution is flat across the trivial contact
in the center, which shows that RRM does not exhibit the wall-heating phenomenon that can be seen in some
other Lagrangian methods. Shocks show the impulse-like overshoot typical of RRM. Initial conditions are (ρl,
ul, Tl) = (1.0, 1.0, 100.0), (ρr, ur, Tr) = (1.0, −1.0, 100.0), E = 1.0, ρ0 = 1.0, andCv = 0.01. The simulation
domain is x 2 [−1.0, 1.0].

https://doi.org/10.1371/journal.pone.0186345.g022
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Fig 23. Strong separation. A strong separation test. The intent of this test is to show numerical robustness of
both RRM and the nonlinear elastic Riemann solver at high stress and supersonic speed. The simulated
solution is accurate except for some rounding of the inside corners. The density is pulled down to
approximately 1% of its initial value at the center, but cannot be pulled to zero regardless of the separation
velocity, because of the nonlinearity of the elastic material. The Mach number of the separation isM = 44.7.
Initial conditions are (ρl, ul, Tl) = (1.0, −100.0, 100.0), (ρr, ur, Tr) = (1.0, 100.0, 100.0), E = 1.0, ρ0 = 1.0, andCv

= 0.01. The simulation domain is x 2 [−1.0, 1.0].

https://doi.org/10.1371/journal.pone.0186345.g023
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Fig 24. Expansive sonic point in left rarefaction. This is a test of accuracy around expansive sonic points.
At t = 0.15, the sonic point is at x� −0.47, inside the left rarefaction fan. We can see that there are no spurious
jumps in ρ, u, or σ at this location. Initial conditions are (ρl, ul, Tl) = (1.0, −0.5, 400.0), (ρr, ur, Tr) = (1.0, 1.0,
100.0), E = 1.0, ρ0 = 1.0, andCv = 0.01. The simulation domain is x 2 [−1.0, 1.0].

https://doi.org/10.1371/journal.pone.0186345.g024
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in numerical methods for fluid dynamics [46], and the same can be true for nonlinear elasticity

[38]. In this test case, we see that at the location of the sonic point at x� −0.47, RRM does not

produce any spurious jumps in the primitive values.

Woodward-Colella-like blast wave

Fig 25 shows a blast wave in a nonlinear elastic material with a temperature ratio of 10,000:1

from left to right, which is similar to the pressure ratio across the left side of the Woodward-

Colella blast wave test [47]. The solution is a tall and narrow right shock, the trailing side of

which is a contact moving at the same speed. This tests a numerical method’s ability to resolve

parallel discontinuities of differing types, as well as general numerical robustness. RRM does

well on this test, with the exception of a small overshoot at the shock front.

Sedov-Taylor-like blast wave

Fig 26 shows a blast wave similar to a Sedov-Taylor blast wave [39] [40] [41], but in a nonlinear

elastic material instead of a gas. A large amount of energy Ec is placed in a narrow center

region of an otherwise stationary and uniform material. These initial conditions evolve into

two diverging stong shocks, separated by two rarefactions. This is a test of numerical robust-

ness, because a numerical method must be able to convert a very concentrated energy source

into a symmetrically expanding blast wave.

Comparison of the shock placement and post-shock values to an analytic solution shows

good agreement. An analytic solution is not currently available for the interior of this problem,

but the qualitative features of the solution are similar to those of the analytic solution for the

Euler equations [44], namely the convex-upward density curve, approximately linear diverging

velocity, and stress which is flat in the center. Unlike for the Euler equations, these nonlinear

elastic equations do not pull the density and stress very low in the center, due to the quadratic

term in the stress equation Eq (7).

Nonlinear elastic double shock with free boundaries

Fig 27 shows an asymmetric double shock in a nonlinear elastic rod with two free boundaries

(the two ends of the rod). The rod initially consists of two converging cells. We can see that the

length of the rod decreases initially as the two shocks propagate outwards from the center,

then the rod rebounds out to its maximum stretched length at approximately t = 8.0, then it

contracts and starts the cycle over at approximately t = 13.0. As the rod oscillates in and out,

the shocks gradually lose their sharpness as they cross each other and reflect off the ends of the

rod. Eventually the primitive values form smooth curves across the length of the rod as it con-

tinues to oscillate indefinitely.

The usual free boundary condition of an elastic substance is that σ = 0 at the boundaries.

RRM does not need to enforce this condition explicitly. Instead, it happens naturally because

at the ends of the rod, the stress momentum and stress energy are not balanced out by those of

an adjacent cell, so any stress at the ends is quickly converted to kinetic energy.

Error analysis

If we define the point error between a simulation and a Riemann solver as

e(x, t) =WRRM(x, t) −WRiemann(x, t), then we can define a useful measure of the error

of an entire simulation run as

emax ¼ max
t
ð
Z

jeðx; tÞj dxÞ ð66Þ
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Fig 25. Woodward-Colella-like blast wave. A blast wave test similar to the left side of theWoodward-
Colella test. This test demonstrates the ability of RRM to handle parallel contact-shock pairs moving in close
proximity. Initial conditions are (ρl, ul, Tl) = (1.0, 0.0, 10000.0), (ρr, ur, Tr) = (1.0, 0.0, 1.0), E = 1.0, ρ0 = 1.0, and
Cv = 0.01. The simulation domain is x 2 [−1.0, 1.0].

https://doi.org/10.1371/journal.pone.0186345.g025

A Lagrangian meshfree method applied to linear and nonlinear elasticity

PLOSONE | https://doi.org/10.1371/journal.pone.0186345 October 18, 2017 41 / 49

https://doi.org/10.1371/journal.pone.0186345.g025
https://doi.org/10.1371/journal.pone.0186345


Fig 26. Sedov-Taylor-like blast wave. A blast wave at time t = 7.0 × 10−3 after a large amount of energy Ec

was released at x = 0.0. The analytic solution plotted here shows the shock placement and the post-shock
values of the primitive variables, which are in good agreement with the simulation. An analytic solution is not
currently available for the interior of this problem, but the qualitative features of the interior of the simulated
solution are in good agreement with the similar blast wave problem for the Euler equations. Initial conditions
are (ρc, uc, Tc) = (1.0, 0.0, 1.0 × 108) in the center region (0.2% of the domain width), and (ρu, uu, Tu) = (1.0,
0.0, 10.0) in the unshockedmaterial elsewhere (99.8% of the domain width), with E = 1.0, ρ0 = 1.0, andCv =
0.01. The simulation domain is x 2 [−1.0, 1.0].

https://doi.org/10.1371/journal.pone.0186345.g026
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Fig 27. Double shock in a nonlinear elastic rod. A nonlinear elastic rod, initially made up of two cells which
are converging to create an asymmetric double shock, from t = 0.0 to t = 15.0. The rod converges, rebounds
out to its maximum stretched length, and converges again, showing how RRM handles free boundary
conditions. The rod’s left and right edges are the left and right edges of each surface in the figure. Initial
conditions are (ρl, ul, Tl) = (1.0, 1.0, 40.0), (ρr, ur, Tr) = (1.0, −1.0, 100.0), E = 1.0, ρ0 = 1.0, andCv = 0.01. The
simulation domain is x 2 [−10.0, 10.0], but no work is performed in areas where there are no cells.

https://doi.org/10.1371/journal.pone.0186345.g027
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where emax is the maximum value that the space integral of the absolute value of the error

takes for any time t during the simulation run. If we plot this quantity versus the maximum

number of cells n used at any time during the simulation run, this will show us how the

error decreases as the user decreases the tracer particle error metric limit Δmax, and will give

us a measure of the computational requirements of the simulation. The result, shown in Fig

28, is that the error is approximately proportional to n−1.4. And since the computational

effort of RRM scales asOðNÞ, where N is the number of cells, the error in the simulation

decreases slightly faster than linearly as we increase the computational effort.

Since RRM uses constant-valued cells, we might expect the error to decrease only linearly

as we add cells. However, since the cells are not evenly spaced, but instead are concentrated in

areas of higher primitive variable slope, we obtain this slightly superlinear behavior. We have

not yet performed an analysis of how alternative error metrics to Eq (11) might affect this

behavior.

To see what RRM’s error behavior looked like before its improvements for this paper, we

redo the error analysis on the same test case, but with a diffusive (non-adiabatic) contact

instead of a sharp contact. This gives the results shown in Fig 29. Note that emax, shown by the

three dashed lines, shows approximately 10x less reduction at 400 cells than it did in the sharp

contact case. In particular, the density component of the error emaxρ is much worse than

before. This is because in RRM, diffusive contacts converge to a sigmoidal density curve, not a

step, so RRM is unable to reduce the difference between its solution and that of the Riemann

solver. And since all the error reduction must come from the non-contact parts of the domain,

the system must work much harder, which is reflected in a sublinear behavior where the error

is approximately proportional to n−0.65.

Fig 28. Error versus computational effort, sharp contact. The three components emaxρ, emaxu, and emaxσ
of the maximum integral error emax versus the maximum number of cells, for the nonlinear elastic shock tube
test case from t = 0.0 to t = 0.4, with a sharp contact provided by using two material types. The error in all three
primitive values is approximately proportional to n−1.4where n is the maximum number of cells used in the
simulation run. The value α is an arbitrary constant chosen to put the proportion line below the others for ease
of comparison. Not shown on this graph, all three components ofΔmax, corresponding to the user-specified
error metric limit for ρ, u, and σ, are decreased from 10−1 to 10−5 from left to right.

https://doi.org/10.1371/journal.pone.0186345.g028
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Summary and conclusions

We have shown that RRM performs well on problems in linear and nonlinear elasticity, giving

results whose shocks and rarefactions match the Riemann and Sedov-Taylor solvers, with a

well-behaved error that decreases somewhat superlinearly with increased computational effort.

We have also shown how to motivate and construct a simple constitutive equation for nonlin-

ear elasticity, and have demonstrated in the derivation section how to create Riemann solvers

for both types of elastic system.

The derivative-free, solver-free nature of RRM was chosen for robustness when simulating

mathematically inconvenient systems. Now that RRM has been verified to work correctly for

the Euler equations, linear elasticity, and nonlinear elasticity, future work on RRM will con-

centrate on systems for which no analytic solution is known.

In addition to application to new systems, future work is also possible in extending the gen-

erality and speed of RRM within existing systems. This work is described below.

Extension to 2D and 3D

The current implementation of RRMmodels cells as finite elements. As simulation progresses,

these elements are chopped up and replaced with new cells. This approach could be directly

extended to higher dimensions, but it would likely prove cumbersome to implement, since it

Fig 29. Error versus computational effort, diffusive contact. The three components emaxρ, emaxu, and
emaxσ of the maximum integral error emax versus the maximum number of cells, for the nonlinear elastic shock
tube test case from t = 0.0 to t = 0.4, with a diffusive contact. The error in all three primitive values is
approximately proportional to n−0.65where n is the maximum number of cells used in the simulation run. This
is significantly sublinear because without sharp contacts turned on, RRM is unable to reduce the difference
between its solution and that of the Riemann solver around the contact. Note that the density component of
the error emaxρ is the worst of the three, since the density is what changes across a contact. The value α is an
arbitrary constant chosen to put the proportion line below the others for ease of comparison. Not shown on
this graph, all three components ofΔmax, corresponding to the user-specified error metric limit for ρ, u, and σ,
are decreased from 10−1 to 10−5 from left to right.

https://doi.org/10.1371/journal.pone.0186345.g029
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would require cells to increase in geometric complexity as they are chopped by other cells at

any angle or position. Complex cells of this type would require more work to test for intersec-

tion, since we could no longer assume convexity, and such cells could become degenerate in a

variety of ways.

To simplify the implementation, one possibility is “sampled RRM” (SRRM), which replaces

the cells with finite-mass points, and replaces numerical integration with discrete summation

over those points. This would take RRM’s implementation closer to that of point-based

Lagrangian methods like SPH. A kernel would also be needed in order to calculate the local

speed of sound used by the tracer particles. SRRM would still differ from SPH and similar

Lagrangian methods in that the velocities of the mass points would be unchanged from crea-

tion until chopping. The chopping out of wavefronts would also be performed in the same way

as in RRM, albeit against mass points instead of cells.

Extension to high-performance computing architectures

The current implementation of RRM is a single-threaded event-based simulator. To run on

HPC (high-performance computing) systems, which are typically made up of many thousands

of computing nodes connected by a high-performance network, RRM will require

parallelization.

Numerical methods based on vector and matrix operations are often amenable to intra-

node parallelization via vectorization libraries such as OpenMP (Open Multi-Processing) [48].

However, event-based simulators like RRM are harder to parallelize in this way, due to the

data-dependent nature of the branches in the code. So parallelization of RRM will likely take

place at the inter-core level using threads, and at the inter-node level using a library such as

MPI (Message Passing Interface) [49], which is widely used in the HPC community.

Previous work in the field of parallel discrete event simulators (PDES), including the semi-

nal works of Jefferson [50] and Fujimoto [51] as well as more recent work by Barnes et al. [52],

suggests how RRM could be parallelized at scale. We would divide the domain into regions,

each of which would have its own event queue and run in its own thread on a dedicated core.

Event queues of neighboring regions would maintain loose time synchronization, requiring a

tighter synchronization handshake only at the substitution of a wavefront that spans two or

more regions. The PDES literature also suggests optimizations such as the use of speculation

and rollback to permit looser coupling of event queues [50].

Additional optimizations are possible in the specific case of PDES applied to RRM. The

simulation domain of a physical system is simply-connected, unlike systems such as electronic

circuits which may be multiply connected. This simple connectivity should make it easier to

split the domain at low-activity areas to reduce the frequency of event synchronization opera-

tions. And since RRM simulates a physical system with conserved quantities, occasional non-

monotonicity in event times near region boundaries may be acceptable as long as conservation

is strictly maintained.
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