
Ann Oper Res (2013) 203:55–80
DOI 10.1007/s10479-011-0915-2

A Lagrangian relaxation approach to simultaneous
strategic and tactical planning in supply chain design

Ali Diabat · Jean-Philippe Richard ·
Craig W. Codrington

Published online: 9 July 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract We study a multi-echelon joint inventory-location model that simultaneously de-
termines the location of warehouses and inventory policies at the warehouses and retailers.
The model is formulated as a nonlinear mixed-integer program, and is solved using a La-
grangian relaxation-based approach. The efficiency of the algorithm and benefits of integra-
tion are evaluated through a computational study.

Keywords Supply chain management · Facility location · Joint inventory-location ·
Lagrangian relaxation

1 Introduction

Two important considerations that arise in supply chain design are facility location and in-
ventory management. Facility location decisions impact the firm over a significantly longer
time scale than inventory management decisions; hence the former are regarded as strategic
level decisions, whereas the latter are regarded as tactical level decisions. Facility location
decisions and inventory management decisions are interrelated in the sense that a change
in the location or number of warehouses can affect lead times and thereby affect inventory-
related costs, and likewise a change in warehouse or retailer inventory policy can affect as-
signment decisions and thereby affect location-related costs. However, supply chain design
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has traditionally considered facility location decisions and inventory management decisions
independently, leading to excess costs because the supply chain is managed sub-optimally
(Cavinato 1992; Chopra and Meindl 2006; Gunasekaran et al. 2001, 2004; Silver et al. 1998;
Simchi-Levi et al. 2007; Stevens 1993).

In this paper we study a model that addresses these concerns by simultaneously determin-
ing the locations of warehouses and the inventory policies at the warehouses and retailers so
as to minimize system-wide costs, and we develop a Lagrangian relaxation-based heuristic
approach to solving it. Much of the previous work on joint inventory-location models con-
sidered the inventory policy at warehouses, but not at retailers. However, there have been a
few exceptions: You and Grossman (2010), Romeijn et al. (2007), Teo and Shu (2004), and
Shu (2010) all consider the inventory policy of the retailers in their joint inventory-location
models. There are, however, important differences between our work and these previous
works: our inventory policy uses an Economic Order Quantity (EOQ) formulation, whereas
You and Grossman formulate their inventory policy in terms of guaranteed service levels;
we solve our model using a Lagrangian relaxation approach, whereas Romeijn et al. (2007),
Teo and Shu (2004), and Shu (2010) solve their models by formulating them as set-covering
problems.

This paper is organized as follows. In Sect. 2, we review the literature on joint inventory-
location models. In Sect. 3 we describe the Multi-echelon Joint Inventory-Location (MJIL)
problem. In Sect. 4 we describe a Lagrangian relaxation-based heuristic approach to solving
the MJIL problem. In Sect. 5, we evaluate the effectiveness and efficiency of our algorithm
through a computational study. Finally, in Sect. 6 we summarize our results and discuss
future research directions.

2 Literature review

The literature on supply chain network design has traditionally considered facility location
decisions and inventory management decisions independently: Amiri (2006), Daskin et al.
(2005), Hindi and Pienkosz (1999), Pirkul and Jayaraman (1998), and Tsiakis et al. (2001)
focus on location decisions, while Axsäter (2004), Jones and Riley (1987), Muckstadt and
Roundy (1987), Svoronos and Zipkin (1991), and Wee and Yang (2004) focus on inventory
management decisions.

Only recently have models that integrate these decisions been investigated. Barahona and
Jensen (1998) integrate an economic order quantity (EOQ) inventory model with a location
model, formulated as a large-scale integer program, and solve its linear programming relax-
ation using Dantzig-Wolfe decomposition. Erlebacher and Meller (2000) study an analyt-
ical joint location-inventory model that considers the fixed costs of operating warehouses,
inventory holding costs at the warehouses, and transportation costs, and develop heuristic
procedures to solve it. Teo et al. (2001) use an analytical modeling approach to study the
impact on facility investments and inventory costs of consolidating warehouses; their model
suggests that consolidation reduces costs when demands are independent and identically
distributed or are independent and Poisson distributed. Miranda and Garrido (2006) pro-
pose a joint inventory-location model featuring two capacity constraints: a limit on the lot
size for orders received from the warehouse, and a stochastic bound on the inventory capac-
ity of warehouses; they solve their model using Lagrangian relaxation in conjunction with
subgradient optimization.

Daskin et al. (2002) and Shen et al. (2003) study a location-inventory model with risk
pooling (Eppen 1979). Daskin et al. (2002) formulate the problem as a mixed-integer non-
linear program, and, for the special case in which the ratio of the variance of demand to
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the mean of demand is identical for all retailers, solve the problem using a Lagrangian
relaxation approach. Shen et al. (2003) formulate the problem as a set-covering prob-
lem, and solve the resulting problem using a column generation approach for two special
cases: (i) the case in which the ratio of the variance of the demand to the mean of the de-
mand is identical for all retailers, and (ii) the case in which the variance of the demand
at each retailer is zero. There has been considerable effort devoted to extending the ap-
plicability of this model and to improving the associated solution procedures. Such ex-
tensions include the introduction of capacity constraints (Ozsen et al. 2008), assuming a
specific functional form for the lead time (Sourirajan et al. 2007, 2009), stochastic lead
times (Tanonkou et al. 2008), and relaxing the constraint that the variance-to-mean ratio of
the random demands at each retailer are identical (Shu et al. 2005; Tanonkou et al. 2008;
You and Grossman 2008).

There has been increasing interest in multi-echelon location-inventory models that con-
sider inventory policy not only at warehouses, but also at retailers. You and Grossman (2010)
propose a multi-echelon location-inventory model that considers location and periodic re-
view inventory decisions simultaneously. Their formulation uses a guaranteed service level
model to manage inventory at each retailer and at each warehouse, and also incorporates risk
pooling at the warehouses. Romeijn et al. (2007) propose a generic modeling framework for
two-echelon supply chains that considers location-specific costs, inventory costs at ware-
houses and retailers, and safety stock costs; by formulating their model as a set-covering
problem, they obtain an efficient solution algorithm based on column generation. Teo and
Shu (2004), and Shu (2010) also consider inventory policy at the retailer level in their joint
inventory-location models, which are solved using a set-covering formulation.

3 Description and formulation of the problem

The multi-echelon joint inventory-location problem deals with the distribution of a single
commodity from a single manufacturer to a set of retailers I (indexed by i) through a set
of warehouses that can be located at various predetermined sites (indexed by j ), where J

is the set of possible sites. The retailers face deterministic demands and hold working in-
ventory, representing product that has been ordered from a warehouse but has not yet been
requested by end-customers. The warehouses order a single commodity from the manu-
facturer at regular intervals and distribute the product to the retailers. The warehouses hold
working inventory representing product that has been ordered from the manufacturer but has
not been yet requested by the retailers. Lateral supply among the warehouses is not allowed,
that is, warehouses are supplied only by the manufacturer, and shortages are not allowed.
Lead times are assumed to be negligible, although this restriction can easily be lifted to allow
fixed lead times without significant changes to the model. The four major cost components
in the system are:

– fixed order cost: the cost of placing an order regardless of the size of the order,
– unit-inventory cost: the cost of holding one unit of product for one unit of time,
– unit-shipping cost: the cost of shipping one unit of product between facilities, and
– fixed location cost: the cost of establishing and operating a warehouse.

The objective is to determine: (i) the number of warehouses to establish; (ii) their location;
(iii) the sets of retailers that are assigned to each warehouse; and (iv) and the size and timing
of orders for each facility, so as to minimize the sum of inventory, shipping, ordering, and
location costs, while satisfying end-customer demand.
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It has been shown for the one-warehouse multi-retailer inventory problem that if an op-
timal solution exists, then an optimal solution can be found that satisfies the following three
properties (Roundy 1985; Schwarz 1973):

– Zero-Inventory Ordering: Each warehouse or retailer orders only when its inventory level
reaches zero (Schwarz 1973).

– Last-Minute Ordering: The warehouse orders only when at least one of the retailers or-
ders.

– Stationarity-Between-Orders: For each retailer, the order quantities are identical for all
orders placed between two successive orders at the warehouse.

For the multi-warehouse, multi-retailer inventory problem we are considering, it is unknown
if the existence of an optimal solution implies that the above three properties hold. To sim-
plify the problem, we assume single-sourcing, in which each retailer is served by exactly
one warehouse; under this assumption, for a fixed assignment of retailers to warehouses,
the problem decomposes into independent one-warehouse multi-retailer problems, each of
which has an optimal solution satisfying the above three properties (if an optimal solution
exists at all).

In view of the above, the Stationarity-Between-Orders property suggests that it may be
reasonable to assume that the orders placed by a given retailer have identical sizes, which
suggests that a natural inventory policy to assume at the retailers is an Economic Order
Quantity (EOQ) policy, which features a fixed order size for each retailer. Furthermore, by
making use of the notion of system inventory, we can treat the demand at each warehouse
as constant, which suggests that an EOQ inventory policy may be appropriate for the ware-
houses as well. We therefore assume an EOQ inventory policy at the warehouses and at the
retailers. The EOQ inventory policy has the advantages that it is simple to implement, is
widely used, and tends to work well in practice.

The problem we are considering is a generalization of the one-warehouse multi-retailer
inventory problem, in that we are also considering multiple warehouses and the assign-
ment of retailers to warehouses. Given that even the one-warehouse multi-retailer inventory
problem is difficult to solve to optimality (Roundy 1985), we must make some simplifying
assumptions. We therefore assume power-of-two inventory policies, which have the desir-
able property of being 98% effective for the one-warehouse multi-retailer problem (Roundy
1985), meaning that the ratio of the average cost of the best policy to the average cost of the
power-of-two policy is at least 0.98. We will show later that a power-of-two inventory policy
is also 98% effective for our problem, for a fixed assignment of retailers to warehouses.

A power-of-two inventory policy is one in which the ratio of the time between orders at
the warehouse to the time between orders at each retailer it serves is a power of two. Let
̂Tj be the time between orders placed by warehouse j to the plant, and let Tij be the time
between orders placed by retailer i to warehouse j (assuming that retailer i is served by
warehouse j ). Then, assuming a power-of-two inventory policy,

̂Tj/Tij = 2Nij

where Nij ∈ Z for all i, j . We assume that ̂Tj and Tij are given in days.
Consider now the inventory problem faced by a single warehouse j and the retailers it

serves. Let �j be the set of retailers served by warehouse j , and let ĥj , ôj be respectively
the unit-inventory holding cost per unit time at warehouse j , and the fixed cost per order
at warehouse j . Let hi , oi be respectively the unit-inventory holding cost per unit time at
retailer i, and the fixed cost per order at retailer i. Since the number of orders placed by
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Fig. 1 An inventory-time plot for retailer i

warehouse j to the plant per base planning period is tb/̂Tj , and the cost per order is ôj ,
the ordering cost per base planning period at warehouse j is ôj tb/̂Tj . Let Ĉj denote the
total inventory and ordering costs over the base planning period for the system composed of
warehouse j and the retailers it serves. Then Ĉj , which is a function of ̂Tj and {Tij : i ∈ �j },
has the form

Ĉj (̂Tj , {Tij : i ∈ �j }) = ôj

̂Tj

tb +
∑

i∈�j

Cij (̂Tj , Tij ) (1)

where Cij represents the inventory and ordering costs imputable to retailer i. We next derive
an explicit form for Cij . Consider ̂Tj as fixed. Then the retailers i fall into two groups: those
for which Tij ≤ ̂Tj , and those for which Tij > ̂Tj .

Case 1: Tij > ̂Tj In this case, the warehouse places an order simultaneously with every or-
der placed by retailer i, hence the warehouse will not carry an inventory of goods to
be shipped to retailer i. It follows that the inventory cost at the warehouse for goods to
be shipped to retailer i is zero. We next determine the inventory and ordering costs at
retailer i. Let Qi be the order quantity for retailer i and Tij be the length of an order
cycle for retailer i (assumed to have units of days). Under our assumptions, the demand
at retailer i has the characteristic sawtooth pattern shown in Fig. 1. The average inventory
level at retailer i is the area under the time-inventory plot for one order cycle, or 1

2 QiTij ,
divided by the order cycle length Tij , or 1

2 Qi . Because the daily demand di is constant,
it follows from our assumptions that

Qi = diTij (2)

so that the average inventory level at retailer i is

AvgInvi = 1

2
Qi
︸︷︷︸

diTij

= 1

2
diTij . (3)

Then the total inventory holding cost at retailer i over the base planning period is the
holding cost per unit per day, hi , multiplied by the average daily inventory level at re-
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Fig. 2 Two possible inventory-time plots for warehouse j

tailer i, multiplied by the number of days per base planning period, tb , so that

TotalHoldingCosti = hi · AvgInvi
︸ ︷︷ ︸

1
2 diTij

·number of days per base planning period
︸ ︷︷ ︸

tb

= 1

2
hidiTij tb. (4)

To (4) we must add the ordering costs at the retailer. Since the number of orders placed
by retailer i to warehouse j is tb/Tij , and the cost per order is oi , the cost of orders placed
by retailer i over the base planning period is oitb/Tij . It follows that for this case

Cij (̂Tj , Tij ) = oi

Tij

tb + 1

2
hidiTij tb. (5)

Case 2: Tij ≤ ̂Tj For this case the inventory holding cost at the warehouse will be nonzero.
In general, an inventory vs. time plot for the warehouse can have an arbitrary shape, as
shown in Fig. 2, making it difficult to determine the average inventory level. To overcome
this problem, Roundy (1985) used the echelon method of computing holding costs (Clark
and Scarf 1960), and we shall do the same. Define the system inventory at a retailer i that
is served by warehouse j as the inventory at retailer i plus the inventory at the warehouse
that is destined for retailer i. Then the system inventory has a sawtooth pattern with an
order interval of ̂Tj (Roundy 1985), as shown in Fig. 3. We can therefore calculate the
contribution to the holding costs due to the system inventory using the same method that
was used in Case 1 to find the total inventory holding cost at retailer i over the base
planning period, except that ̂Tj is used in place of Tij , and the per-unit holding cost at the
warehouse, ĥj , is used in place of hi , thus obtaining

1

2
ĥj di

̂Tj tb. (6)

To (6) we must add the inventory holding cost at the retailer, which is calculated as in
Case 1, except that instead of using hi , we use the per-unit echelon holding cost at retailer
i, hi − ĥj , thus obtaining

1

2
(hi − ĥj )diTij tb. (7)
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Fig. 3 System inventory for retailer i served by warehouse j

We also must include the ordering cost at the retailer, which, by the same calculation
used in Case 1, is oitb/Tij . Adding these costs, we find that

Cij (̂Tj , Tij ) = oi

Tij

tb + 1

2
(hi − ĥj )diTij tb + 1

2
ĥj di

̂Tj tb

= oi

Tij

tb + 1

2
(hi − ĥj )diTij tb + 1

2
ĥj di max{̂Tj , Tij }tb. (8)

The expressions for Cij in Case 1 (5) and Case 2 (8) can be unified as

Cij (̂Tj , Tij ) = oi

Tij

tb + 1

2
(hi − ĥj )diTij tb + 1

2
ĥj di max{̂Tj , Tij }tb. (9)

Substituting (9) into (1), we find that the total inventory and ordering costs for warehouse j

and the retailers it serves over the base planning period are

Ĉj (̂Tj , {Tij : i ∈ �j }) = ôj

̂Tj

tb +
∑

i∈�j

Cij (̂Tj , Tij )

= ôj

̂Tj

tb +
∑

i∈�j

(

oi

Tij

tb + 1

2
(hi − ĥj )diTij tb + 1

2
ĥj di max{̂Tj , Tij }tb

)

.

(10)

To specify the open warehouses and the assignments of retailers to warehouses, we introduce
decision variables Xj and Yij as follows:

Xj =
{

1 if a warehouse is opened at candidate location j

0 otherwise
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Yij =
{

1 if retailer i is served by the warehouse at location j

0 otherwise.

Using these variables in (10) and summing over all warehouses j , we obtain

∑

j∈J

ôj tb

̂Tj

Xj +
∑

j∈J

∑

i∈I

(

oitb

Tij

+ 1

2
(hi − ĥj )di tbTij + 1

2
ĥj di tb max{̂Tj , Tij }

)

Yij . (11)

To (11), which only takes account of inventory and ordering costs, we must add the location
and shipping costs. Let fj be the fixed cost of opening and operating warehouse j , let sij be
the per-unit shipping cost from warehouse j to retailer i, and let ŝj be the per-unit shipping
cost from the plant to warehouse j . Adding the costs of opening and operating warehouses
and shipping costs to (11), we obtain:

∑

j∈J

∑

i∈I

(

oitb

Tij

+ 1

2
(hi − ĥj )di tbTij + 1

2
ĥj di tb max{̂Tj , Tij }

)

Yij

+
∑

j∈J

ôj tb

̂Tj

Xj +
∑

j∈J

fjXj +
∑

j∈J

ŝj

(

∑

i∈I

di tbYij

)

+
∑

j∈J

∑

i∈I

di tbsijYij (12)

where we have used the fact that the demand seen by retailer i over the base planning period
is ditb . Rearranging terms in (12), and introducing a weighting factor βtrn for transportation
costs and a weighting factor βinv for inventory and ordering costs gives

∑

j∈J

∑

i∈I

(

βinv
oitb

Tij

+ 1

2
βinv(hi − ĥj )di tbTij + 1

2
βinvĥj di tb max{̂Tj , Tij }

)

Yij

+
∑

j∈J

(

fj + βinv
ôj tb

̂Tj

)

Xj +
∑

j∈J

∑

i∈I

βtrnditb(ŝj + sij )Yij . (13)

For convenience we define

ki = βinvoitb

k̂j = βinvôj tb

bij = βtrn(ŝj + sij )di tb

cij = 1

2
βinv(hi − ĥj )di tb

eij = 1

2
βinvĥj di tb.

Then the total inventory, ordering, location, and shipping costs can be expressed as

∑

j∈J

(

fj + k̂j

̂Tj

)

Xj +
∑

j∈J

∑

i∈I

(

ki

Tij

+ bij + cijTij + eij max{̂Tj , Tij }
)

Yij . (14)

We can now formulate the Multi-echelon Joint Inventory-Location (MJIL) problem as
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min
X,Y,̂T ,T

∑

j∈J

(

fj + k̂j

̂Tj

)

Xj +
∑

j∈J

∑

i∈I

(

ki

Tij

+ bij + cij Tij + eij max{̂Tj , Tij }
)

Yij (15)

s.t.
∑

j∈J

Yij = 1 ∀i ∈ I (16)

Yij ≤ Xj ∀i ∈ I,∀j ∈ J (17)

Yij ∈ {0,1} ∀i ∈ I,∀j ∈ J (18)

Xj ∈ {0,1} ∀j ∈ J (19)

̂Tj/Tij = 2Nij ∀i ∈ I,∀j ∈ J (20)

Nij ∈ Z ∀i ∈ I,∀j ∈ J (21)

̂Tj > 0 ∀j ∈ J (22)

Tij > 0 ∀i ∈ I,∀j ∈ J. (23)

Constraints (16) require that each retailer be assigned to exactly one warehouse. Constraints
(17) prevent retailers from being assigned to warehouses that are closed. Constraints (18)
and (19) require that Yij and Xj be binary. Finally, Constraints (20) through (23) require a
power-of-two inventory policy at the retailers and the warehouses.

Next we reformulate (15)–(23) as a nonlinear uncapacitated facility location problem
by first optimizing over T and ̂T for any given X and Y satisfying (16)–(19), and then
optimizing over X and Y . We obtain:

min
X,Y

∑

j∈J

(

fjXj +
∑

i∈I

bijYij + Z∗
j (�j ,Xj )

)

(24)

s.t.
∑

j∈J

Yij = 1 ∀i ∈ I,∀j ∈ J (25)

Yij ≤ Xj ∀i ∈ I,∀j ∈ J (26)

Yij ∈ {0,1} ∀i ∈ I,∀j ∈ J (27)

Xj ∈ {0,1} ∀j ∈ J (28)

where

�j = {i ∈ I |Yij = 1}
and where

Z∗
j (�j ,Xj ) = min

̂Tj ,Tij

⎧

⎨

⎩

k̂j

̂Tj
Xj + ∑

i∈�j

(

ki

Tij
+ cijTij + eij max(Tij , ̂Tj )

)

s.t. ̂Tj/Tij = 2Nij where Nij ∈ Z, Tij > 0, and ̂Tj > 0

⎫

⎬

⎭

.

4 Solving the MJIL problem using Lagrangian relaxation

The MJIL problem is a generalization of the uncapacitated fixed-charge location problem,
which is known to be NP-hard (Daskin 1995); it follows that the MJIL problem is also NP-
hard. A number of algorithms have shown success in solving such problems, including La-
grangian relaxation (Chen and Chu 2003; Eskigun et al. 2005; Fisher 1981, 1985; Jayaraman
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and Pirkul 2001; Min et al. 2005; Pirkul and Jayaraman 1998; Putz 2007), column genera-
tion (Romeijn et al. 2007), and various heuristic methods such as genetic algorithms (Chan
et al. 2005), simulated annealing (Jayaraman and Ross 2003), and tabu search (Shiguemoto
and Armentano 2010); here we develop a Lagrangian relaxation approach to solving the
MJIL problem.

The first step in developing this approach is to consider the Lagrangian dual problem
obtained by relaxing Constraints (25):

max
λ≥0

min
X,Y

∑

j∈J

(

fjXj +
∑

i∈I

bijYij + Z∗
j (�j ,Xj )

)

+
∑

i∈I

λi

(

1 −
∑

j∈J

Yij

)

= max
λ≥0

∑

j∈J

min
Xj ,{Yij :i∈I }

(

fjXj +
∑

i∈I

(bij − λi)Yij + Z∗
j (�j ,Xj )

)

+
∑

i∈I

λi

s.t. Yij ≤ Xj ∀i ∈ I,∀j ∈ J (29)

Yij ∈ {0,1} ∀i ∈ I,∀j ∈ J (30)

Xj ∈ {0,1} ∀j ∈ J (31)

= max
λ≥0

∑

j∈J

S∗
j (λ) +

∑

i∈I

λi (32)

where

S∗
j (λ) = min

Xj ,{Yij :i∈I }

{

fjXj + ∑

i∈I (bij − λi)Yij + Z∗
j (�j ,Xj )

s.t. Yij ≤ Xj ∀i ∈ I , Xj ∈ {0,1}, and Yij ∈ {0,1} ∀i ∈ I

}

. (33)

Thus we see that the Lagrangian relaxation problem decomposes into |J | subproblems, one
for each warehouse j ∈ J . The subproblem corresponding to warehouse j is denoted Sj (λ),
and the value of the objective function of this subproblem at optimality is denoted S∗

j (λ).
The strategy we will use to solve the subproblems Sj (λ) is to alternate between optimiz-
ing over Xj and {Yij : i ∈ I } for fixed ̂Tj and {Tij : i ∈ I }, and optimizing over ̂Tj and
{Tij : i ∈ �j } for fixed Xj and {Yij : i ∈ I } until a convergence criterion is satisfied. For a
fixed assignment of retailers to warehouses, that is, for fixed Xj and Yij , Z∗

j (�j ,Xj ) is the
optimal value of a power-of-two multi-echelon inventory problem for warehouse j , and is
thus an instance of the problem considered by Roundy (1985). Roundy developed an algo-
rithm to solve this problem which relaxes the power-of-two constraints; the solution to this
relaxed problem, when appropriately rounded, gives a nearly optimal solution to the problem
with the power-to-two constraints in place. More specifically, Roundy showed that for one
warehouse serving multiple retailers, this approach to generating a power-of-two inventory
policy is at least 98% effective (Roundy 1985), meaning that if Z′

j (�j ,Xj ) is the contribu-
tion to the inventory costs, on average, of a single warehouse j and the retailers it serves
for the power-of-two inventory policy found using the above algorithm, and if Z̃j (�j ,Xj )

is the infimum of the average cost over all policies at warehouse j , then

100 × Z̃j (�j ,Xj )

Z′
j (�j ,Xj )

≥ 98. (34)
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However, the inventory term in our objective function (24) has the form
∑

j∈J Zj (�j ,Xj ),
so we need to bound

∑

j∈J Z̃j (�j ,Xj )
∑

j∈J Z′
j (�j ,Xj )

. (35)

Such a bound can be obtained as follows. From (34) it follows that

100 × Z̃j (�j ,Xj ) ≥ 98 × Z′
j (�j ,Xj ). (36)

Hence, summing over j , we obtain

100 ×
∑

j∈J

Z̃j (�j ,Xj ) ≥ 98 ×
∑

j∈J

Z′
j (�j ,Xj ) (37)

or

100 ×
∑

j∈J Z̃j (�j ,Xj )
∑

j∈J Z′
j (�j ,Xj )

≥ 98. (38)

If follows that the overall power-of-two inventory policy considering all warehouses j is
98% efficient for a fixed assignment of retailers to warehouses. As Roundy’s algorithm
provides a means of obtaining a near-optimal power-of-two inventory policy for fixed Xj

and {Yij : i ∈ I }, we use this method to obtain ̂Tj and {Tij : i ∈ �j } for fixed Xj and {Yij :
i ∈ I }.

We now turn to the optimization over Xj and {Yij : i ∈ I } for fixed ̂Tj and {Tij : i ∈ I } in
subproblem Sj (λ) (33). For fixed ̂Tj and {Tij : i ∈ I }, the coefficients of Xj and {Yij : i ∈ I }
in subproblem Sj (λ) become constant, so that the optimal values of Xj and {Yij : i ∈ I } can
be found by the following algorithm:

1. If the coefficient of Yij is positive and Yij is 1, set Yij = 0.
2. Fixing {Yij : i ∈ I }, and keeping ̂Tj and {Tij : i ∈ I } fixed, set Xj = 0 or 1 according to

whichever value minimizes the objective function (33). If a zero value results for Xj , go
back and set Yij = 0 for i ∈ I .

Solving the subproblems Sj (λ) (33) and substituting the result back into the objective
function (32) gives a lower bound on the objective function value for the MJIL problem,
provided the subproblems Sj (λ) are solved to optimality. If any of the subproblems are not
solved to optimality, then the “lower bound” on the optimal objective function value of the
original problem that results from a particular value of λ may not be a lower bound at all.
Since in our case the subproblems Sj (λ) are nonlinear and nonconvex in the decision vari-
ables, they are difficult to solve to optimality. Nevertheless, if the algorithm that carries out
the minimizations indicated by the subproblems Sj (λ) is sufficiently effective, the overall
process may still function as a useful heuristic for obtaining a good solution to the original
problem, but with no guarantee that the “lower bound” is a true lower bound.

An upper bound on the MJIL problem, which is useful for the optimization over the
λi ’s, is provided by any feasible solution. Our approach to constructing a feasible solution
uses the solution of (32) as a starting point. Retailers i that have not been assigned to any
warehouse are assigned to the warehouse j ′ having the smallest coefficient of Yij ′ in (15)
over all the warehouses that are open, while retailers i that have been assigned to multiple
warehouses j belonging to a set J ′ are assigned to the warehouse j ′ ∈ J ′ having the smallest
coefficient of Yij ′ in (15). This procedure produces a solution (X̃, Ỹ ) that satisfies (25)–(28).
Further details are provided in procedure CalculateFeasibleSolution (Algorithm 1).
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Data: Lower bound solution X, Y , T , ̂T ; matrices b, c, e; vectors k̂, k

Result: Feasible solution X̃, Ỹ to MJIL problem
begin1

Ỹ ←− Y2
for i ∈ I do // For each retailer i3

nwarehouses ←− 04
for j ∈ J do // For each warehouse j5

if Yij = 1 then6
nwarehouses ←− nwarehouses + 17

end8

end9
switch nwarehouses do10

case 011
Of the warehouses j ∈ J such that Xj = 1, find one, call it j ′ , with the smallest12

coefficient of Yij ′ in the objective function for the original problem at fixed ̂T and T

Ỹij ′ ←− 113

Ỹij ←− 0 for j 
= j ′14

end15
case 116

end17
otherwise18

Of the warehouses j ∈ J such that Yij = 1, find one, call it j ′ , with the smallest19

coefficient of Yij ′ in the objective function for the original problem at fixed ̂T and T

Ỹij ′ ←− 120

Ỹij ←− 0 for j 
= j ′21

end22

end23

end24
for j ∈ J do // For each warehouse j25

if Ỹij = 1 for at least one retailer i then26

X̃j ←− 127

else28

X̃j ←− 029

end30

end31

return (X̃, Ỹ )32

end33

Algorithm 1: CalculateFeasibleSolution

The overall Lagrangian relaxation procedure consists of an outer loop and inner loop.
The outer loop maximizes over the λi ’s using a subgradient optimization procedure (see
Putz 2007), while the inner loop minimizes over X, Y , T , and ̂T . The subgradient optimiza-
tion uses an “agility” parameter π , which is initially set to 2, and is reduced by dividing
by an “agility reduction factor” (denoted α) every time Nπ iterations are performed without
improvement in the solution. We experimented with several different values of α and Nπ ,
and chose values for these parameters that gave the best results; in particular, we set α = 1.2
and Nπ = 100. Since the lower bound obtained is not necessarily a true lower bound, the
algorithm includes a test to ensure that the best upper bound at a given point in the optimiza-
tion is greater than the best lower bound to this point; if not, the best lower bound solution
is discarded. Details of the Lagrangian relaxation are provided in procedure SolveMJIL
(Algorithm 2).
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Data: Matrices b, c, e; vectors k̂, k
Result: Solution (X,Y,T , ̂T ) to MJIL problem
begin1

π ←− 22
IterationsWithoutImprovement ←− 03
repeat // Loop to optimize over λ4

for j ∈ J do // For each warehouse j5
Yij ←− 1 for each i ∈ I6
Xj ←− 17

[{Tij : i ∈ I }, ̂Tj ] ←− SolveRoundyProblem(Xj , {Yij : i ∈ I })8

repeat // Loop to optimize over X, Y, T , and ̂T9
if Yij = 1 for at least one retailer i ∈ I then10

for i ∈ I do // For each retailer i11
if Yij = 1 and the coefficient of Yij in the objection function to12
subproblem Sj (λ) is positive then

Yij ←− 013
end14

end15
if Objective function for subproblem Sj (λ) is negative then16

Xj ←− 117
else18

Xj ←− 019
Yij ←− 0 for all i ∈ I20

end21

[{Tij : i ∈ I }, ̂Tj ] ←− SolveRoundyProblem(Xj , {Yij : i ∈ I })22
end23

until No change in Xj or {Yij : i ∈ I }24
end25

CurrentLowerBound ←− CalculateObjectiveFunctionValue(X,Y,T , ̂T )26

[X̃, Ỹ ] ←− CalculateFeasibleSolution(X,Y,T , ̂T )27
for j ∈ J do // For each warehouse j28

[{T̃ij : i ∈ �j }, ˜̂T j ] ←− SolveRoundyProblem(X̃j , {Ỹij : i ∈ �j })29
end30

CurrentUpperBound ←− CalculateObjectiveFunctionValue(X̃, Ỹ , T̃ , ˜̂T )31
δi ←− 1 − ∑

j∈J Yij for i ∈ I32

� ←− π(|BestUpperBound − CurrentLowerBound|)
∑

i∈I δ2
i33

λi ←− max[0, λi + � · δi ]34
if CurrentUpperBound < BestUpperBound then35

BestUpperBound ←− CurrentUpperBound36

X∗ ←− X̃, Y ∗ ←− Ỹ , T ∗ ←− T̃ , ̂T ∗ ←− ˜̂T37
end38
if BestUpperBound < BestLowerBound then39

BestLowerBound ←− −109940
end41
if CurrentLowerBound > BestLowerBound and42

CurrentLowerBound ≤ BestUpperBound then43
BestLowerBound ←− CurrentLowerBound44

else45
IterationsWithoutImprovement ←− IterationsWithoutImprovement + 146
if IterationsWithoutImprovement > 100 then47

IterationsWithoutImprovement ←− 048
π ←− π/1.249

end50
end51

until (|BestUpperBound − BestLowerBound| < .000001) or (π < .005)52

return (X∗, Y ∗, T ∗, ̂T ∗)53
end54

Algorithm 2: SolveMJIL
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5 Computational study

We tested our algorithm on the following data sets, derived from Daskin (1995):

– a 49-node data set (48 continental US state capitals plus Washington, DC; 1990 census
data);

– an 88-node data set (49-node dataset plus the 50 largest US cities minus duplicates; 1990
census data); and

– a 150-node data set (150 largest US cities; 1990 census data).

The Lagrangian relaxation algorithm described in Sect. 4 was implemented in C#, and com-
puter experiments were run on a 2.8 GHz dual core processor with 8 GB of RAM.

In order to determine the value of integrating location and inventory decisions, we gener-
ated 36 scenarios for each data set by varying the values of the transportation cost weighting
factor βtrn and the inventory cost weighting factor βinv such that

βtrn ∈ {0.001,0.01,0.1,1,10,100} and βinv ∈ {0.001,0.01,0.1,1,10,100}.
These values allow the benefits of integration to be evaluated for different relative weightings
of transportation costs and inventory costs.

We computed the Value of Integration (VOI), which measures the benefit obtained from
integrating location, transportation, and inventory decisions, as follows:

Value of Integration = 100 × (Best UB for Sequential Opt.) − (Best UB for Joint Opt.)

Best UB for Joint Opt.
.

In the above expression, “Best UB for Joint Opt.” refers to the best upper bound obtained
by integrating location, transportation, and inventory decisions, while “Best UB for Sequen-
tial Opt.” refers to the best upper bound obtained by first solving a transportation-location
problem to obtain an assignment of retailers to warehouses, and then solving an inventory
problem at each warehouse based on these assignments.

Table 1 provides results for a small problem with 11 retailers and 5 warehouses that
is derived from the 49-city data set for which the optimal solution can be calculated by
exhaustive search; this table shows that the algorithm found an optimal solution in 36 out of
36 scenarios. On this problem, there was only one positive VOI, with all other VOI being
zero, indicating that over much of the (βtrn, βinv) parameter space, there is little benefit to
integration. The positive VOI occurred at (βtrn, βinv) = (0.1,100), indicating a clear benefit
to integration in this region of the parameter space.

Tables 2–4 provide results for the 49-city, 88-city, and 150-city data sets, in which every
city represents a retailer location as well as a candidate warehouse location. Again, most
of the VOI were zero, indicating that there is little benefit to integration over much of the
(βtrn, βinv) parameter space. However, there were some positive VOI: for the 49-city data
set, positive VOI occurred at (βtrn, βinv) = (0.1,10), (0.1,100), (1,10), (1,100); for the 88-
city data set, positive VOI occurred at (βtrn, βinv) = (0.01,10), (0.01,100), (.1,1), (.1,10),
(.1,100); and for the 150-city data set, positive VOI occurred at (βtrn, βinv) = (0.1,100),
(1,100). These positive VOI reveal a clear benefit to integration over the corresponding
regions of the parameter space.

Tables 1–4 also reveal that in some cases the VOI was negative, indicating that sequen-
tial (non-integrated) optimization gave a better solution than joint (integrated) optimization.
One of the reasons that this can occur is that the joint optimization approach uses Lagrangian
relaxation to solve a combined transportation-location-inventory problem. In this case the
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Table 1 Results for 11 retailers and 5 candidate warehouse locations chosen from the 49-city data
set (retailers in cities {1 − 11}, candidate warehouse locations in cities {4,11,24,35,47}), for βtrn ∈
{0.001,0.01,0.1,1,10,100}, βinv ∈ {0.001,0.01,0.1,1,10,100}. The plant is at a location near Atlanta,
Georgia, at longitude 84 and latitude 33. Per-unit shipping costs between the plant and warehouses were
obtained by multiplying the great-circle distances between the locations by .04, and per unit shipping costs
between the warehouses and the retailers were obtained by multiplying the great-circle distances between
the locations by .05. Demand at a retailer was obtained by multiplying the 5th column in the 49-city dataset
by .0001. The fixed order cost at a warehouse was obtained by multiplying the 6th column in the 49-city
dataset by 2.5. For each retailer, the unit inventory cost and the fixed order cost were respectively $4.30 and
$2.10, while for each warehouse, the unit inventory cost and the fixed order cost were respectively $2.60
and $1.80. The base planning period was taken as 365 days. DCs = Number of open warehouses, Gap =
BestUpperBound − BestLowerBound, VOI = Value of Integration

No. βtrn βinv DCs Time Obtained Gap VOI Optimal

(sec.) value value

1 0.001 0.001 1 0.031 216368.057 2.910E−11 0.0000 216368.057

2 0.001 0.010 1 0.016 217119.219 2.910E−11 0.0000 217119.219

3 0.001 0.100 1 0.016 224630.836 8.731E−11 0.0000 224630.836

4 0.001 1 1 0.016 299747.009 0.000E+00 0.0000 299747.009

5 0.001 10 1 0.031 1050908.738 0.000E+00 0.0000 1050908.738

6 0.001 100 1 0.078 8562526.023 1.863E−09 0.0000 8562526.023

7 0.010 0.001 1 0.062 538565.345 0.000E+00 0.0000 538565.345

8 0.010 0.010 1 0.062 539316.507 0.000E+00 0.0000 539316.507

9 0.010 0.100 1 0.640 546828.124 0.000E+00 0.0000 546828.124

10 0.010 1 1 0.047 621944.297 0.000E+00 0.0000 621944.297

11 0.010 10 1 0.078 1373106.025 2.328E−10 0.0000 1373106.025

12 0.010 100 1 0.031 8884723.311 1.863E−09 0.0000 8884723.311

13 0.100 0.001 2 0.000 3333735.921 0.000E+00 0.0000 3333735.921

14 0.100 0.010 2 0.031 3334522.496 0.000E+00 0.0000 3334522.496

15 0.100 0.100 2 0.031 3342388.244 0.000E+00 0.0000 3342388.244

16 0.100 1 2 0.016 3421045.732 0.000E+00 0.0000 3421045.732

17 0.100 10 2 0.031 4207620.605 0.000E+00 0.0000 4207620.605

18 0.100 100 1 0.016 11904627.672 1.863E−09 1.4174 11904627.672

19 1 0.001 3 0.000 27890684.715 0.000E+00 0.0000 27890684.715

20 1 0.010 3 0.047 27891499.912 3.725E−09 0.0000 27891499.912

21 1 0.100 3 0.016 27899651.890 0.000E+00 0.0000 27899651.890

22 1 1 3 0.000 27981171.665 0.000E+00 0.0000 27981171.665

23 1 10 3 0.016 28796369.420 0.000E+00 0.0000 28796369.420

24 1 100 3 0.000 36948346.963 0.000E+00 0.0000 36948346.963

25 10 0.001 4 0.000 271799222.557 0.000E+00 0.0000 271799222.557

26 10 0.010 4 0.000 271800052.834 0.000E+00 0.0000 271800052.834

27 10 0.100 4 0.000 271808355.606 0.000E+00 0.0000 271808355.606

28 10 1 4 0.000 271891383.318 0.000E+00 0.0000 271891383.318

29 10 10 4 0.000 272721660.437 0.000E+00 0.0000 272721660.437

30 10 100 4 0.000 281024431.628 0.000E+00 0.0000 281024431.628

31 100 0.001 4 0.000 2710237895.296 0.000E+00 0.0000 2710237895.296

32 100 0.010 4 0.000 2710238725.573 0.000E+00 0.0000 2710238725.573

33 100 0.100 4 0.000 2710247028.344 0.000E+00 0.0000 2710247028.344

34 100 1 4 0.000 2710330056.056 0.000E+00 0.0000 2710330056.056

35 100 10 4 0.000 2711160333.175 0.000E+00 0.0000 2711160333.175

36 100 100 4 0.016 2719463104.366 0.000E+00 0.0000 2719463104.366
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Table 2 Results for 49 retailers and 49 candidate warehouse locations chosen from the 49-city
data set (retailers in cities {1 − 49}, candidate warehouse locations in cities {1 − 49}), for βtrn ∈
{0.001,0.01,0.1,1,10,100}, βinv ∈ {0.001,0.01,0.1,1,10,100}. The plant is at a location near Atlanta,
Georgia, at longitude 84 and latitude 33. Per-unit shipping costs between the plant and warehouses were
obtained by multiplying the great-circle distances between the locations by .04, and per unit shipping costs
between the warehouses and the retailers were obtained by multiplying the great-circle distances between
the locations by .05. Demand at a retailer was obtained by multiplying the 5th column in the 49-city dataset
by .0001. The fixed order cost at a warehouse was obtained by multiplying the 6th column in the 49-city
dataset by 2.5. For each retailer, the unit inventory cost and the fixed order cost were respectively $4.30 and
$2.10, while for each warehouse, the unit inventory cost and the fixed order cost were respectively $2.60
and $1.80. The base planning period was taken as 365 days. DCs = Number of open warehouses, Gap =
BestUpperBound − BestLowerBound, VOI = Value of Integration

No. βtrn βinv DCs Time Obtained Gap VOI

(sec.) value

1 0.001 0.001 1 0.078 224371.213 2.910E−10 0.0000

2 0.001 0.010 1 0.078 227205.891 2.328E−10 0.0000

3 0.001 0.100 1 0.094 255552.669 2.619E−10 0.0000

4 0.001 1 1 0.078 539020.450 2.328E−10 0.0000

5 0.001 10 1 0.484 3373698.259 1.397E−09 0.0000

6 0.001 100 1 1.420 31720476.352 0.000E+00 0.0000

7 0.010 0.001 1 1.420 1142877.451 0.000E+00 0.0000

8 0.010 0.010 1 0.936 1145712.129 0.000E+00 0.0000

9 0.010 0.100 1 0.281 1174058.907 0.000E+00 0.0000

10 0.010 1 1 0.764 1457526.688 0.000E+00 0.0000

11 0.010 10 1 1.498 4292204.498 0.000E+00 0.0000

12 0.010 100 1 1.778 32638982.591 0.000E+00 0.0000

13 0.100 0.001 4 0.281 8699402.387 0.000E+00 0.0000

14 0.100 0.010 4 0.218 8702356.867 0.000E+00 0.0000

15 0.100 0.100 4 1.030 8731901.667 0.000E+00 0.0000

16 0.100 1 4 0.437 9027349.664 0.000E+00 0.0000

17 0.100 10 4 0.312 11981282.406 1.863E−09 0.0046

18 0.100 100 3 6.131 41456373.509 0.000E+00 0.1695

19 1 0.001 12 4.384 77858549.481 2.980E−08 0.0000

20 1 0.010 12 4.586 77861692.825 0.000E+00 0.0000

21 1 0.100 12 2.902 77893126.262 0.000E+00 0.0000

22 1 1 12 1.186 78207460.629 2.980E−08 0.0000

23 1 10 11 2.434 81336317.615 1.490E−08 0.0178

24 1 100 8 0.952 112593155.815 0.000E+00 0.1697

25 10 0.001 20 1.326 756654372.395 1.192E−07 0.0000

26 10 0.010 20 1.357 756657660.527 1.192E−07 0.0000

27 10 0.100 20 0.796 756690541.847 1.192E−07 0.0000

28 10 1 20 0.406 757019355.053 0.000E+00 0.0000

29 10 10 19 1.466 760337964.728 0.000E+00 −0.0040

30 10 100 15 0.702 793237736.173 2.384E−07 −0.0062

31 100 0.001 25 0.359 7528209253.929 9.537E−07 0.0000

32 100 0.010 25 4.306 7528212631.264 0.000E+00 0.0000

33 100 0.100 25 2.465 7528246404.605 0.000E+00 0.0000

34 100 1 25 0.359 7528584138.016 9.537E−07 0.0000

35 100 10 25 0.764 7531961472.129 0.000E+00 0.0000

36 100 100 25 18.018 7565734813.262 3.815E−06 0.0000
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Table 3 Results for 88 retailers and 88 candidate warehouse locations chosen from the 88-city
data set (retailers in cities {1 − 88}, candidate warehouse locations in cities {1 − 88}), for βtrn ∈
{0.001,0.01,0.1,1,10,100}, βinv ∈ {0.001,0.01,0.1,1,10,100}. The plant is at a location near Atlanta,
Georgia, at longitude 84 and latitude 33. Per-unit shipping costs between the plant and warehouses were
obtained by multiplying the great-circle distances between the locations by .04, and per unit shipping costs
between the warehouses and the retailers were obtained by multiplying the great-circle distances between
the locations by .05. Demand at a retailer was obtained by multiplying the 5th column in the 88-city dataset
by .0001. The fixed order cost at a warehouse was obtained by multiplying the 6th column in the 88-city
dataset by 2.5. For each retailer, the unit inventory cost and the fixed order cost were respectively $4.30 and
$2.10, while for each warehouse, the unit inventory cost and the fixed order cost were respectively $2.60
and $1.80. The base planning period was taken as 365 days. DCs = Number of open warehouses, Gap =
BestUpperBound − BestLowerBound, VOI = Value of Integration

No. βtrn βinv DCs Time Obtained Gap VOI

(sec.) value

1 0.001 0.001 1 9.391 312002.081 4.075E−10 0.0000

2 0.001 0.010 1 10.842 316751.106 3.492E−10 0.0000

3 0.001 0.100 1 7.675 364241.359 1.746E−10 0.0000

4 0.001 1 1 7.441 839143.891 2.328E−10 0.0000

5 0.001 10 1 7.067 5588169.212 1.863E−09 0.0000

6 0.001 100 1 52.541 53078422.423 1.490E−08 0.0000

7 0.010 0.001 2 10.842 1960400.948 2.328E−10 0.0000

8 0.010 0.010 2 9.064 1965201.525 4.657E−10 0.0000

9 0.010 0.100 2 4.586 2013207.293 2.328E−10 0.0000

10 0.010 1 2 2.465 2493264.972 0.000E+00 0.0000

11 0.010 10 1 6.037 7293438.913 2.794E−09 0.0055

12 0.010 100 1 4.727 54783692.124 0.000E+00 0.9417

13 0.100 0.001 8 120.058 15848529.133 2.025E+04 −0.0270

14 0.100 0.010 9 109.419 15849285.880 1.595E+04 0.0000

15 0.100 0.100 8 108.077 15903490.744 1.936E+04 −0.0247

16 0.100 1 9 109.419 16399879.504 7.646E+03 0.0155

17 0.100 10 6 33.353 21326184.292 7.451E−09 0.4908

18 0.100 100 3 41.075 70017159.835 1.490E−08 2.4252

19 1 0.001 18 74.537 141735536.003 2.737E+02 0.0000

20 1 0.010 18 49.718 141740765.059 0.000E+00 0.0000

21 1 0.100 18 26.863 141793055.611 0.000E+00 0.0000

22 1 1 18 11.591 142315961.138 2.980E−08 0.0000

23 1 10 17 22.495 147568926.917 0.000E+00 −0.0162

24 1 100 12 28.127 199923982.852 5.960E−08 −0.0442

25 10 0.001 37 23.166 1380140957.773 9.537E−07 0.0000

26 10 0.010 37 51.340 1380146507.479 7.153E−07 0.0000

27 10 0.100 37 7.114 1380202004.539 2.384E−07 0.0000

28 10 1 37 6.365 1380756975.131 0.000E+00 0.0000

29 10 10 34 15.616 1386331075.279 2.384E−07 −0.0018

30 10 100 22 16.037 1441817222.979 7.153E−07 −0.0009

31 100 0.001 47 71.542 13731509847.074 1.907E−06 0.0000

32 100 0.010 47 4.930 13731515513.398 0.000E+00 0.0000

33 100 0.100 47 19.048 13731572176.638 0.000E+00 0.0000

34 100 1 47 5.242 13732138809.040 0.000E+00 0.0000

35 100 10 47 75.286 13737805133.056 5.722E−06 0.0000

36 100 100 47 15.912 13794526343.888 0.000E+00 −0.0004
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Table 4 Results for 150 retailers and 150 candidate warehouse locations chosen from the 150-city
data set (retailers in cities {1 − 150}, candidate warehouse locations in cities {1 − 150}), for βtrn ∈
{0.001,0.01,0.1,1,10,100}, βinv ∈ {0.001,0.01,0.1,1,10,100}. The plant is at a location near Atlanta,
Georgia, at longitude 84 and latitude 33. Per-unit shipping costs between the plant and warehouses were
obtained by multiplying the great-circle distances between the locations by .04, and per unit shipping costs
between the warehouses and the retailers were obtained by multiplying the great-circle distances between the
locations by .05. Demand at a retailer was obtained by multiplying the 5th column in the 150-city dataset
by .0001. The fixed order cost at a warehouse was obtained by multiplying the 6th column in the 150-city
dataset by 2.5. For each retailer, the unit inventory cost and the fixed order cost were respectively $4.30 and
$2.10, while for each warehouse, the unit inventory cost and the fixed order cost were respectively $2.60
and $1.80. The base planning period was taken as 365 days. DCs = Number of open warehouses, Gap =
BestUpperBound − BestLowerBound, VOI = Value of Integration

No. βtrn βinv DCs Time Obtained Gap VOI

(sec.) value

1 0.001 0.001 1 459.205 491872.382 5.187E−05 0.0000

2 0.001 0.010 1 250.678 499184.009 1.746E−10 0.0000

3 0.001 0.100 1 299.272 572300.284 1.048E−09 0.0000

4 0.001 1 1 348.600 1303463.028 9.313E−10 0.0000

5 0.001 10 1 473.291 8615090.468 9.454E−01 0.0000

6 0.001 100 1 562.430 81731364.870 7.261E+01 0.0000

7 0.010 0.001 1 67.658 2661412.190 0.000E+00 0.0000

8 0.010 0.010 1 81.011 2668723.818 4.657E−10 0.0000

9 0.010 0.100 1 153.474 2741840.092 0.000E+00 0.0000

10 0.010 1 1 196.904 3473002.836 1.397E−09 0.0000

11 0.010 10 1 165.938 10784630.276 7.451E−09 0.0000

12 0.010 100 1 50.794 83900904.678 0.000E+00 0.0000

13 0.100 0.001 7 151.586 20339529.745 0.000E+00 0.0000

14 0.100 0.010 7 133.131 20347043.995 1.118E−08 0.0000

15 0.100 0.100 7 317.150 20422186.494 2.428E+00 0.0000

16 0.100 1 7 339.474 21173611.490 2.892E+02 0.0000

17 0.100 10 6 158.310 28740242.602 1.490E−08 −0.1823

18 0.100 100 3 160.463 103748227.856 4.470E−08 0.0792

19 1 0.001 20 218.620 179924475.758 2.086E−07 0.0000

20 1 0.010 20 186.967 179932325.925 3.278E−07 0.0000

21 1 0.100 20 255.467 180010827.588 3.874E−07 0.0000

22 1 1 20 222.582 180795844.222 5.960E−08 0.0000

23 1 10 18 199.712 188699514.211 2.980E−08 −0.0284

24 1 100 13 218.573 266773048.368 5.960E−08 0.1404

25 10 0.001 51 310.458 1733699031.838 1.082E−02 0.0000

26 10 0.010 51 150.432 1733707380.707 7.153E−07 0.0000

27 10 0.100 51 77.673 1733790869.406 7.153E−07 0.0000

28 10 1 51 335.075 1734625756.392 2.214E+01 0.0000

29 10 10 49 137.140 1743034093.294 4.768E−07 −0.0034

30 10 100 32 80.169 1828811509.177 0.000E+00 −0.1284

31 100 0.001 67 285.341 17208714121.291 2.289E−05 0.0000

32 100 0.010 67 275.935 17208722684.855 1.144E−05 0.0000

33 100 0.100 67 37.752 17208808320.494 0.000E+00 0.0000

34 100 1 67 243.580 17209664676.884 3.815E−06 0.0000

35 100 10 67 240.741 17218228240.787 7.629E−06 0.0000

36 100 100 59 239.727 17305227383.997 7.629E−06 −0.0079
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joint optimization algorithm is not guaranteed to find the optimal solution to the subprob-
lems Sj (λ); if it does not solve all such subproblems to optimality, then the “lower bound”
obtained by Lagrangian relaxation is not necessarily a true lower bound. In contrast, the se-
quential optimization approach uses Lagrangian relaxation to solve a transportation-location
problem. In this case, the subproblems Sj (λ) can be solved to optimality, and as a result a
it is more likely that a true lower bound will be obtained. Thus negative VOI highlight a
fundamental tradeoff between the benefits gained from integration versus the costs associ-
ated with using a Lagrangian-relaxation-based algorithm that is not guaranteed to solve the
associated subproblems to optimality.

It should be mentioned that it is possible to modify the joint optimization algorithm
SolveMJIL (Algorithm 2) so that negative VOI do not arise. The modification is simply
to first obtain a solution using SolveMJIL (Algorithm 2), then obtain a solution using the
sequential optimization algorithm, and finally to take whichever of these solutions gives the
smallest value for the objective function (15) as the solution to the MJIL problem. Since the
value of this solution cannot be larger than the value obtained by sequential optimization
alone, the VOI cannot be negative. While the resulting algorithm would perform no worse
than either the current SolveMJIL or the sequential optimization algorithm, and would yield
non-negative VOI, there is no guarantee that the resulting solution would be optimal.

Based on the results in Tables 1–4, the region of the (βtrn, βinv) parameter space in which
there appears to be a clear benefit to integration is a subset of

{(βtrn, βinv) : βtrn ≤ 1, βinv large}.
We therefore decided to investigate this region further for each data set by varying the values
of the transportation cost weighting factor βtrn and the inventory cost weighting factor βinv

such that

βtrn ∈ {0.001,0.01,0.05,0.1,0.5,1} and βinv ∈ {100,150,225,337.5,506.25,759.375}.
These results, provided in Tables 5–8, reveal many positive VOI (along with some that are
non-positive), demonstrating a clear benefit to integration over much of this region. The
regions of the (βtrn, βinv) parameter space in which there is a benefit to integration will
likely be problem-dependent.

Another pattern that emerged is that the number of opened warehouses tended to increase
as the transportation cost weighting factor βtrn was increased. This effect was particularly
evident in Tables 1–4, which include larger values of βtrn than Tables 5–8. An explanation for
this behavior is that as transportation costs increase, the fixed cost of opening and operating
a warehouse becomes less of a barrier to opening a warehouse.

6 Conclusions and future research directions

In this paper we developed a Lagrangian relaxation-based heuristic for solving an integrated
supply chain model that simultaneously considers facility location decisions as well as in-
ventory policies at warehouses and retailers. We observed that, while over much of the
(βtrn, βinv) parameter space there was no discernible benefit to integration for these particu-
lar datasets and parameter values, over specific regions of this space there was a clear benefit
to integration. We further observed that the number of opened warehouses tended to increase
as the transportation cost weighting factor βtrn was increased.

There are a number of ways in which these results can be extended:
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Table 5 Results for 11 retailers and 5 candidate warehouse locations chosen from the 49-city data
set (retailers in cities {1 − 11}, candidate warehouse locations in cities {4,11,24,35,47}), for βtrn ∈
{0.001,0.01,0.05,0.1,0.5,1}, βinv ∈ {100,150,225,337.5,506.25,759.375}. The plant is at a location near
Atlanta, Georgia, at longitude 84 and latitude 33. Per-unit shipping costs between the plant and warehouses
were obtained by multiplying the great-circle distances between the locations by .04, and per unit shipping
costs between the warehouses and the retailers were obtained by multiplying the great-circle distances be-
tween the locations by .05. Demand at a retailer was obtained by multiplying the 5th column in the 49-city
dataset by .0001. The fixed order cost at a warehouse was obtained by multiplying the 6th column in the
49-city dataset by 2.5. For each retailer, the unit inventory cost and the fixed order cost were respectively
$4.30 and $2.10, while for each warehouse, the unit inventory cost and the fixed order cost were respectively
$2.60 and $1.80. The base planning period was taken as 365 days. DCs = Number of open warehouses, Gap
= BestUpperBound − BestLowerBound, VOI = Value of Integration

No. βtrn βinv DCs Time Obtained Gap VOI Optimal

(sec.) value value

1 0.001 100.000 1 0.047 8562526.023 1.863E−09 0.0000 8562526.023

2 0.001 150.000 1 0.078 12735646.737 0.000E+00 0.0000 12735646.737

3 0.001 225.000 1 0.062 18995327.808 0.000E+00 0.0000 18995327.808

4 0.001 337.500 1 0.125 28384849.415 3.725E−09 0.0000 28384849.415

5 0.001 506.250 1 0.140 42469131.825 0.000E+00 0.0000 42469131.825

6 0.001 759.375 1 0.281 63595555.440 7.451E−09 0.0000 63595555.440

7 0.01 100.000 1 0.031 8884723.311 1.863E−09 0.0000 8884723.311

8 0.01 150.000 1 0.047 13057844.025 0.000E+00 0.0000 13057844.025

9 0.01 225.000 1 0.062 19317525.096 3.725E−09 0.0000 19317525.096

10 0.01 337.500 1 0.062 28707046.703 0.000E+00 0.0000 28707046.703

11 0.01 506.250 1 0.078 42791329.113 0.000E+00 0.0000 42791329.113

12 0.01 759.375 1 0.078 63917752.727 1.490E−08 0.0000 63917752.727

13 0.05 100.000 1 0.047 10267650.841 0.000E+00 3.1582 10267650.841

14 0.05 150.000 1 0.047 14440771.555 1.863E−09 3.6079 14440771.555

15 0.05 225.000 1 0.218 20700452.626 0.000E+00 3.9425 20700452.626

16 0.05 337.500 1 0.140 30089974.233 3.725E−09 4.1834 30089974.233

17 0.05 506.250 1 0.359 44174256.643 2.025E+02 4.3527 44174256.643

18 0.05 759.375 2 0.484 68441978.742 3.143E+06 −0.3251 65300680.258

19 0.10 100.000 1 0.016 11904627.672 1.863E−09 1.4174 11904627.672

20 0.1 150.000 1 0.047 16077748.386 3.725E−09 2.2732 16077748.386

21 0.1 225.000 1 0.031 22337429.457 0.000E+00 2.9573 22337429.457

22 0.1 337.500 1 0.031 31726951.064 0.000E+00 3.4773 31726951.064

23 0.1 506.250 1 0.078 45811233.474 0.000E+00 3.8577 45811233.474

24 0.1 759.375 1 0.047 66937657.089 0.000E+00 4.1281 66937657.089

25 0.5 100.000 3 0.000 23337424.895 3.725E−09 0.0000 23337424.895

26 0.5 150.000 3 0.000 27866301.308 0.000E+00 0.0000 27866301.308

27 0.5 225.000 3 0.062 34659615.928 0.000E+00 0.0000 34659615.928

28 0.5 337.500 2 0.109 44630208.831 0.000E+00 0.4915 44630208.831

29 0.5 506.250 1 0.000 58805778.450 0.000E+00 2.2596 58805778.450

30 0.5 759.375 1 0.000 79932202.065 1.490E−08 3.9155 79932202.065

31 1 100.000 3 0.000 36948346.963 0.000E+00 0.0000 36948346.963

32 1 150.000 3 0.000 41477223.376 0.000E+00 0.0000 41477223.376

33 1 225.000 3 0.000 48270537.996 0.000E+00 0.0000 48270537.996

34 1 337.500 3 0.000 58460509.926 0.000E+00 0.0000 58460509.926

35 1 506.250 3 0.016 73745467.820 0.000E+00 0.0000 73745467.820

36 1 759.375 1 0.016 96175383.285 0.000E+00 0.5173 96142080.591
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Table 6 Results for 49 retailers and 49 candidate warehouse locations chosen from the 49-city
data set (retailers in cities {1 − 49}, candidate warehouse locations in cities {1 − 49}), for βtrn ∈
{0.001,0.01,0.05,0.1,0.5,1}, βinv ∈ {100,150,225,337.5,506.25,759.375}. The plant is at a location near
Atlanta, Georgia, at longitude 84 and latitude 33. Per-unit shipping costs between the plant and warehouses
were obtained by multiplying the great-circle distances between the locations by .04, and per unit shipping
costs between the warehouses and the retailers were obtained by multiplying the great-circle distances be-
tween the locations by .05. Demand at a retailer was obtained by multiplying the 5th column in the 49-city
dataset by .0001. The fixed order cost at a warehouse was obtained by multiplying the 6th column in the
49-city dataset by 2.5. For each retailer, the unit inventory cost and the fixed order cost were respectively
$4.30 and $2.10, while for each warehouse, the unit inventory cost and the fixed order cost were respectively
$2.60 and $1.80. The base planning period was taken as 365 days. DCs = Number of open warehouses, Gap
= BestUpperBound − BestLowerBound, VOI = Value of Integration

No. βtrn βinv DCs Time Obtained Gap VOI

(sec.) value

1 0.001 100.000 1 1.388 31720476.352 0.000E+00 0.0000

2 0.001 150.000 1 1.685 47468686.404 1.490E−08 0.0000

3 0.001 225.000 1 2.402 71091001.482 0.000E+00 0.0000

4 0.001 337.500 1 3.557 106524474.099 0.000E+00 0.0000

5 0.001 506.250 1 6.131 159674683.024 0.000E+00 0.0000

6 0.001 759.375 1 8.003 239399996.411 5.960E−08 0.0000

7 0.01 100.000 1 1.794 32638982.591 0.000E+00 0.0000

8 0.01 150.000 1 6.287 48387192.643 1.490E−08 0.0000

9 0.01 225.000 1 0.967 72009507.720 0.000E+00 0.0000

10 0.01 337.500 1 1.061 107442980.337 1.490E−08 0.0000

11 0.01 506.250 1 2.262 160593189.262 0.000E+00 0.0000

12 0.01 759.375 1 2.496 240318502.649 5.960E−08 0.0000

13 0.05 100.000 1 0.234 36721232.540 1.490E−08 2.0264

14 0.05 150.000 1 0.780 52469442.592 7.451E−09 2.6867

15 0.05 225.000 1 0.889 76091757.669 1.490E−08 3.1646

16 0.05 337.500 1 1.092 111525230.286 0.000E+00 3.5019

17 0.05 506.250 1 1.076 164675439.211 0.000E+00 3.7357

18 0.05 759.375 1 0.920 244400752.598 0.000E+00 3.8958

19 0.10 100.000 3 5.803 41456373.509 0.000E+00 0.1695

20 0.1 150.000 2 4.789 57513461.829 2.980E−08 0.7423

21 0.1 225.000 1 0.421 81194570.105 0.000E+00 1.6830

22 0.1 337.500 1 1.248 116628042.722 0.000E+00 2.4557

23 0.1 506.250 1 1.045 169778251.647 0.000E+00 3.0100

24 0.1 759.375 1 1.061 249503565.034 2.980E−08 3.3987

25 0.5 100.000 6 2.761 73766781.604 2.980E−08 0.7125

26 0.5 150.000 4 0.515 90420915.658 0.000E+00 1.2179

27 0.5 225.000 4 0.998 115036293.380 1.490E−08 2.0258

28 0.5 337.500 4 3.557 151954798.213 0.000E+00 2.7501

29 0.5 506.250 4 4.633 207303994.956 0.000E+00 3.3671

30 0.5 759.375 2 5.039 289400438.709 0.000E+00 4.1842

31 1 100.000 8 0.998 112593155.815 0.000E+00 0.1697

32 1 150.000 8 4.914 129619641.268 0.000E+00 0.4842

33 1 225.000 6 2.839 154901908.397 0.000E+00 0.9941

34 1 337.500 4 2.153 192573020.176 0.000E+00 1.6412

35 1 506.250 4 4.087 247957620.051 0.000E+00 2.7076

36 1 759.375 4 4.774 331011123.971 5.960E−08 3.6454
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Table 7 Results for 88 retailers and 88 candidate warehouse locations chosen from the 88-city
data set (retailers in cities {1 − 88}, candidate warehouse locations in cities {1 − 88}), for βtrn ∈
{0.001,0.01,0.05,0.1,0.5,1}, βinv ∈ {100,150,225,337.5,506.25,759.375}. The plant is at a location near
Atlanta, Georgia, at longitude 84 and latitude 33. Per-unit shipping costs between the plant and warehouses
were obtained by multiplying the great-circle distances between the locations by .04, and per unit shipping
costs between the warehouses and the retailers were obtained by multiplying the great-circle distances be-
tween the locations by .05. Demand at a retailer was obtained by multiplying the 5th column in the 88-city
dataset by .0001. The fixed order cost at a warehouse was obtained by multiplying the 6th column in the
88-city dataset by 2.5. For each retailer, the unit inventory cost and the fixed order cost were respectively
$4.30 and $2.10, while for each warehouse, the unit inventory cost and the fixed order cost were respectively
$2.60 and $1.80. The base planning period was taken as 365 days. DCs = Number of open warehouses, Gap
= BestUpperBound − BestLowerBound, VOI = Value of Integration

No. βtrn βinv DCs Time Obtained Gap VOI

(sec.) value

1 0.001 100.000 1 52.526 53078422.423 1.490E−08 0.0000

2 0.001 150.000 1 16.474 79461896.430 2.980E−08 0.0000

3 0.001 225.000 1 17.831 119037107.439 1.490E−08 0.0000

4 0.001 337.500 1 15.663 178399923.953 2.980E−08 0.0000

5 0.001 506.250 1 110.714 267444148.723 0.000E+00 0.0000

6 0.001 759.375 1 15.787 401010485.879 2.384E−07 0.0000

7 0.01 100.000 1 4.774 54783692.124 0.000E+00 0.9417

8 0.01 150.000 2 91.183 80963661.514 4.172E−07 1.2423

9 0.01 225.000 1 26.333 120742377.140 4.470E−08 1.0203

10 0.01 337.500 2 89.966 179972333.836 6.557E−07 1.1164

11 0.01 506.250 1 13.010 269149418.424 1.192E−07 1.0563

12 0.01 759.375 2 146.423 402691359.709 2.236E+05 1.0721

13 0.05 100.000 2 31.278 62094610.315 0.000E+00 1.9244

14 0.05 150.000 2 47.237 88455382.626 1.788E−07 2.5742

15 0.05 225.000 1 24.399 128320664.905 2.980E−08 2.7868

16 0.05 337.500 2 33.244 187503021.556 2.980E−08 3.2747

17 0.05 506.250 2 13.572 276615024.033 0.000E+00 3.4878

18 0.05 759.375 2 30.904 410051151.535 2.384E−07 3.6925

19 0.10 100.000 3 41.262 70017159.835 1.490E−08 2.4252

20 0.1 150.000 4 29.297 97372745.387 2.980E−08 2.3397

21 0.1 225.000 2 29.469 137023470.036 0.000E+00 3.3068

22 0.1 337.500 1 9.454 197081513.297 2.980E−08 3.7185

23 0.1 506.250 1 5.210 286125738.068 0.000E+00 4.3923

24 0.1 759.375 2 26.629 419348533.378 0.000E+00 4.9528

25 0.5 100.000 8 18.237 129231346.394 0.000E+00 0.4719

26 0.5 150.000 6 17.269 157117644.737 5.960E−08 0.9119

27 0.5 225.000 9 19.157 199875015.158 0.000E+00 0.8702

28 0.5 337.500 5 38.111 260300056.607 0.000E+00 2.2704

29 0.5 506.250 5 39.187 352190293.579 5.960E−08 3.0987

30 0.5 759.375 3 53.618 487216376.367 0.000E+00 4.3569

31 1 100.000 12 28.813 199923982.852 5.960E−08 −0.0442

32 1 150.000 10 16.879 229956681.455 8.941E−08 −0.4657

33 1 225.000 9 33.727 270457669.429 0.000E+00 0.7408

34 1 337.500 6 80.543 332832804.368 1.490E−06 1.4998

35 1 506.250 4 22.355 428439003.124 0.000E+00 1.7343

36 1 759.375 5 27.051 565073529.393 0.000E+00 3.1612
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Table 8 Results for 150 retailers and 150 candidate warehouse locations chosen from the 150-city
data set (retailers in cities {1 − 150}, candidate warehouse locations in cities {1 − 150}), for βtrn ∈
{0.001,0.01,0.05,0.1,0.5,1}, βinv ∈ {100,150,225,337.5,506.25,759.375}. The plant is at a location near
Atlanta, Georgia, at longitude 84 and latitude 33. Per-unit shipping costs between the plant and warehouses
were obtained by multiplying the great-circle distances between the locations by .04, and per unit shipping
costs between the warehouses and the retailers were obtained by multiplying the great-circle distances be-
tween the locations by .05. Demand at a retailer was obtained by multiplying the 5th column in the 150-city
dataset by .0001. The fixed order cost at a warehouse was obtained by multiplying the 6th column in the
150-city dataset by 2.5. For each retailer, the unit inventory cost and the fixed order cost were respectively
$4.30 and $2.10, while for each warehouse, the unit inventory cost and the fixed order cost were respectively
$2.60 and $1.80. The base planning period was taken as 365 days. DCs = Number of open warehouses, Gap
= BestUpperBound − BestLowerBound, VOI = Value of Integration

No. βtrn βinv DCs Time Obtained Gap VOI

(sec.) value

1 0.001 100.000 1 564.708 81731364.870 7.261E+01 0.0000

2 0.001 150.000 1 268.696 122351517.315 1.490E−08 0.0000

3 0.001 225.000 1 288.025 183281745.983 2.980E−08 0.0000

4 0.001 337.500 1 209.541 274677088.985 5.960E−08 0.0000

5 0.001 506.250 1 151.212 411770103.488 5.960E−08 0.0000

6 0.001 759.375 2 454.603 616026540.447 8.225E−06 0.2245

7 0.01 100.000 1 50.544 83900904.678 0.000E+00 0.0000

8 0.01 150.000 1 64.896 124521057.123 1.490E−08 0.0000

9 0.01 225.000 2 107.032 185404599.316 5.960E−08 0.0252

10 0.01 337.500 1 149.480 276846628.793 1.192E−07 0.0000

11 0.01 506.250 2 149.667 413545996.317 1.192E−07 0.0952

12 0.01 759.375 1 217.263 619579165.052 0.000E+00 0.0000

13 0.05 100.000 2 167.779 93096591.526 5.960E−08 0.5399

14 0.05 150.000 2 90.933 134005590.661 2.980E−08 0.7209

15 0.05 225.000 1 89.155 195093684.939 5.960E−08 0.9927

16 0.05 337.500 2 124.317 285922148.012 0.000E+00 1.4677

17 0.05 506.250 2 170.493 422711633.832 0.000E+00 1.6652

18 0.05 759.375 2 213.004 627813675.457 2.384E−07 1.8135

19 0.10 100.000 3 160.151 103748227.856 4.470E−08 0.0792

20 0.1 150.000 3 175.002 144271633.002 8.941E−08 0.9042

21 0.1 225.000 3 126.610 206718960.827 1.192E−07 0.7140

22 0.1 337.500 2 101.572 297902111.214 1.192E−07 1.4169

23 0.1 506.250 2 146.797 434992899.268 1.788E−07 1.8442

24 0.1 759.375 2 192.599 640473088.339 7.153E−07 2.1672

25 0.5 100.000 9 172.085 178028959.356 5.960E−08 0.1314

26 0.5 150.000 7 138.763 221314308.622 0.000E+00 0.0040

27 0.5 225.000 5 195.204 283462239.451 5.960E−08 0.8648

28 0.5 337.500 6 131.056 379562720.758 5.960E−08 0.8527

29 0.5 506.250 4 186.858 517284660.791 2.384E−07 2.0962

30 0.5 759.375 4 143.225 725642613.659 0.000E+00 2.8221

31 1 100.000 13 218.916 266773048.368 5.960E−08 0.1404

32 1 150.000 16 180.212 312670947.200 1.192E−07 −0.6113

33 1 225.000 9 161.227 374386660.913 0.000E+00 0.4784

34 1 337.500 10 92.883 473053801.682 1.788E−07 0.2645

35 1 506.250 7 90.605 615337768.698 0.000E+00 1.0007

36 1 759.375 5 138.732 822957880.079 2.384E−07 2.3481
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1. The model, which assumes the movement and storage of a single product, can be ex-
tended to consider multiple products.

2. Capacity constraints at the warehouses can be introduced. Stochastic capacity constraints
can also be considered.

3. The single sourcing restriction can be relaxed to allow a single retailer to be supplied
by more than one warehouse, which may be advantageous in capacitated models or in
models with multiple products.

4. The assumption that lead times are negligible can be relaxed, and can be generalized to
the case of stochastic lead times.

5. The inventory policy can be extended to include consideration of safety stock.
6. The model can be extended to allow lateral shipments between warehouses, which can

result in substantial cost savings when the warehouses are owned by the same firm.
7. The assumption of direct shipments from warehouses to retailers can be relaxed, thus

allowing routing decisions to be incorporated into the model, resulting in a model that
combines location, inventory, and routing decisions.

8. The algorithm used to optimize the model can be improved.

Acknowledgements This work was supported by the Masdar Institute of Science and Technology (MIST).
This support is gratefully acknowledged.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

References

Amiri, A. (2006). Designing a distribution network in a supply chain system: Formulation and efficient solu-
tion procedure. European Journal of Operational Research, 171, 567–576.

Axsäter, S. (2004). Simple evaluation of echelon stock (R,Q) policies for two-level inventory systems. IIE
Transactions, 29, 661–669.

Barahona, F., & Jensen, D. (1998). Plant location with minimum inventory. Mathematical Programming, 83,
101–111.

Cavinato, J. L. (1992). A total cost/value model for supply chain competitiveness. Journal of Business Logis-
tics, 13(2), 285–291.

Chan, F. T. S., Chung, S. H., & Wadhwa, S. (2005). A hybrid genetic algorithm for production and distribu-
tion. Omega, 33(4), 345–355.

Chen, H., & Chu, C. (2003). A Lagrangian relaxation approach for supply chain planning with order/setup
costs and capacity constraints. Journal of Systems Science and Systems Engineering, 12(1), 98–110.

Chopra, S., & Meindl, P. (2006). Supply chain management: strategy, planning, & operations (3rd ed.). New
York: Prentice-Hall.

Clark, A. J., & Scarf, H. (1960). Optimal policies for a multi-echelon inventory problem. Management Sci-
ence, 6(4), 475–490.

Daskin, M. S. (1995). Network and discrete location: models, algorithms, and applications. New York: Wi-
ley.

Daskin, M. S., Coullard, C. R., & Shen, Z.-J. M. (2002). An inventory-location model: formulation, solution
algorithm and computational results. Annals of Operations Research, 110, 83–106.

Daskin, M. S., Snyder, L. V., & Berger, R. T. (2005). Facility location in supply chain design. New York:
Springer.

Eppen, G. D. (1979). Effects of centralization on expected costs in a multi-location newsboy problem. Man-
agement Science, 25(5), 498–501.

Erlebacher, S. J., & Meller, R. D. (2000). The interaction of location and inventory in designing distribution
systems. IIE Transactions, 32, 155–166.

Eskigun, E., Uzsoy, R., Preckel, P. V., Beaujon, G., Krishnan, S., & Tew, J. D. (2005). Outbound supply chain
network design with mode selection, lead times and capacitated vehicle distribution centers. European
Journal of Operational Research, 165(1), 182–206.



Ann Oper Res (2013) 203:55–80 79

Fisher, M. L. (1981). The Lagrangian relaxation method for solving integer programming problems. Man-
agement Science, 27(1), 1–18.

Fisher, M. L. (1985). An applications-oriented guide to Lagrangian relaxation. Interfaces, 15, 10–21.
Gunasekaran, A., Patel, C., & Tirtiroglu, E. (2001). Performance measures and metrics in a supply chain

environment. International Journal of Operations & Production Management, 21(1/2), 71–87.
Gunasekaran, A., Patel, C., & McGaughey, R. E. (2004). A framework for supply chain performance mea-

surement. International Journal of Production Economics, 87, 333–347.
Hindi, K. S., & Pienkosz, K. (1999). Efficient solution of large scale, single-source, capacitated plant location

problems. Journal of the Operational Research Society, 50, 268–274.
Jayaraman, V., & Pirkul, H. (2001). Planning and coordination of production and distribution facilities for

multiple commodities. European Journal of Operational Research, 133, 394–408.
Jayaraman, V., & Ross, A. (2003). A simulated annealing methodology to distribution network design and

management. European Journal of Operational Research, 144(3), 629–645.
Jones, T. C., & Riley, D. W. (1987). Using inventory for competitive advantage through supply chain man-

agement. International Journal of Physical Distribution & Logistics Management, 17, 94–104.
Min, H., Ko, H. J., & Park, B. I. (2005). A Lagrangian relaxation heuristic for solving the multi-echelon,

multi-commodity, close-loop supply chain network design problem. International Journal of Logistics
Systems and Management, 1(4), 382–404.

Miranda, P. A., & Garrido, R. A. (2006). A simultaneous inventory control and facility location model with
stochastic capacity constraints. Networks and Spatial Economics, 6(1), 39–53.

Muckstadt, J. A., & Roundy, R. O. (1987). Multi-item, one-warehouse, multi-retailer distribution systems.
Management Science, 33(12), 1613–1621.

Ozsen, L., Coullard, C. R., & Daskin, M. S. (2008). Capacitated warehouse location model with risk pooling.
Naval Research Logistics, 55, 295–312.

Pirkul, H., & Jayaraman, V. (1998). A multi-commodity, multi-plant, capacitated facility location problem:
formulation and efficient heuristic solution. Computers & Operations Research, 25, 869–878.

Putz, P. (2007). Subgradient optimization based Lagrangian relaxation and relax-and-cut approaches for the
bounded-diameter minimum spanning tree problem. Master’s thesis, Technical University of Vienna,
October.

Romeijn, H. E., Shu, J., Teo, C.-P. (2007). Designing two-echelon supply networks. European Journal of
Operations Research, 178, 449–462.

Roundy, R. (1985). 98%-Effective integer-ratio lot-sizing for one-warehouse multi-retailer systems. Manage-
ment Science, 31(11), 1416–1430.

Schwarz, L. B. (1973). A simple continuous review deterministic one-warehouse n-retailer inventory prob-
lem. Management Science, 19(5), 555–566.

Shen, Z.-J. M., Coullard, C. R., & Daskin, M. S. (2003). A joint location-inventory model. Transportation
Science, 37, 40–55.

Shiguemoto, A., & Armentano, V. A. (2010). A tabu search procedure for coordinating production, inventory
and distribution routing problems. International Transactions in Operational Research, 17(2), 179–195.

Shu, J. (2010). An efficient greedy heuristic for warehouse retailer network design optimization. Transporta-
tion Science, 44(2), 183–192.

Shu, J., Teo, C.-P., & Shen, Z.-J. M. (2005). Stochastic transportation-inventory network design problem.
Operations Research, 53(1), 48–60.

Silver, E. A., Pyke, D. F., & Peterson, R. (1998). Inventory management and production planning and
scheduling (3rd ed.). New York: Wiley.

Simchi-Levi, D., Kaminsky, P., & Simchi-Levi, E. (2007). Designing & managing the supply chain (3rd ed.).
New York: McGraw-Hill/Irwin.

Sourirajan, K., Ozsen, L., & Uzsoy, R. (2007). A single-product network design model with lead time and
safety stock considerations. IIE Transactions, 39, 411–424.

Sourirajan, K., Ozsen, L., & Uzsoy, R. (2009). A genetic algorithm for a single product network design
model with lead time and safety stock considerations. European Journal of Operational Research, 197,
599–608.

Stevens, G. C. (1993). Integrating the supply chain. International Journal of Physical Distribution & Logistics
Management, 19(8), 3–8.

Svoronos, A., & Zipkin, P. (1991). Evaluation of one-for-one replenishment policies for multiechelon inven-
tory systems. Management Science, 37(1), 68–83.

Tanonkou, G.-A., Benyoucef, L., & Xie, X. (2008). Design of Stochastic distribution networks using La-
grangian relaxation. IEEE Transactions on Automation Science and Engineering, 5(4), 597–608.

Teo, C.-P., & Shu, J. (2004). Warehouse-retailer network design problem. Operations Research, 52(3), 396–
408.



80 Ann Oper Res (2013) 203:55–80

Teo, C.-P., Ou, J., & Goh, M. (2001). Impact on inventory costs with consolidation of distribution centers.
IIE Transactions, 33, 99–110.

Tsiakis, P., Shah, N., & Pantelides, C. C. (2001). Design of multi-echelon supply chain networks under
demand uncertainty. Industrial & Engineering Chemistry Research, 40, 3585–3604.

Wee, H. M., & Yang, P. C. (2004). The optimal and heuristic solutions of a distribution network. European
Journal of Operational Research, 158(3), 626–632.

You, F., & Grossman, I. E. (2008). Mixed-integer nonlinear programming models and algorithms for large-
scale supply chain design with stochastic inventory management. Industrial & Engineering Chemistry
Research, 47, 7802–7817.

You, F., & Grossman, I. E. (2010). Integrated multi-echelon supply chain design with inventories under un-
certainty: MINLP models, computational strategies. AIChE Journal, 56(2), 419–440.


	A Lagrangian relaxation approach to simultaneous strategic and tactical planning in supply chain design
	Abstract
	Introduction
	Literature review
	Description and formulation of the problem
	Solving the MJIL problem using Lagrangian relaxation
	Computational study
	Conclusions and future research directions
	Acknowledgements
	References


