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Abstract 

A laminar cortical model of stereopsis and 3D surface perception is developed and simulated.  

The model describes how monocular and binocular oriented filtering interact with later stages of 

3D boundary formation and surface filling-in in the LGN and cortical areas V1, V2, and V4. It 

proposes how interactions between layers 4, 3B, and 2/3 in V1 and V2 contribute to stereopsis, 

and how binocular and monocular information combine to form 3D boundary and surface 

representations. The model includes two main new developments: (1) It clarifies how surface-to-

boundary feedback from V2 thin stripes to pale stripes helps to explain data about stereopsis. 

This feedback has previously been used to explain data about 3D figure-ground perception. (2) It 

proposes that the binocular false match problem is subsumed under the Gestalt grouping 

problem. In particular, the disparity filter, which helps to solve the correspondence problem by 

eliminating false matches, is realized using inhibitory interneurons as part of the perceptual 

grouping process by horizontal connections in layer 2/3 of cortical area V2. The enhanced model 

explains all the psychophysical data previously simulated by Grossberg and Howe (2003), such 

as contrast variations of dichoptic masking and the correspondence problem, the effect of 

interocular contrast differences on stereoacuity, Panum's limiting case, the Venetian blind 

illusion, stereopsis with polarity-reversed stereograms, and da Vinci stereopsis. It also explains 

psychophysical data about perceptual closure and variations of da Vinci stereopsis that previous 

models cannot yet explain. 

 

Keywords: Visual cortical; Stereopsis; Depth perception; Binocular vision; Surface perception; 

Lightness perception; Monocular-binocular interactions; V1; V2; V4; LAMINART model 
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1. Introduction 

 Understanding how humans and other animals see the world in depth is an essential first 

step in understanding many visual behaviors. This article describes a model of how the LGN and 

cortical areas V1, V2 and V4 utilize both monocular and binocular visual information to produce 

three-dimensional (3D) surface percepts.  The article builds upon the 3D LAMINART model of 

Grossberg and Howe (2003), which was used to explain and simulate a wide range of data about 

stereopsis and 3D planar surface perception. This model, shown in Figure 1, went beyond 

previous analyses of stereopsis in several ways. First, it provided a refined laminar model of 

stereopsis in V1 which clarifies the role of cells in cortical layers 4, 3B, and 2/3A. In so doing, 

the model revised how the disparity energy model (Ohzawa, DeAngelis and Freeman, 1990) 

achieves stereopsis, in a manner that is more consistent with recent data. Second, the model 

showed how monocular and binocular information may be combined and selected in V2 to form 

3D boundary representations. Third, the model proposed how these 3D boundaries give rise to 

visible 3D surface percepts in V4. These model processes were used to explain and simulate a 

much larger set of neurophysiological, anatomical, and psychophysical data about stereopsis and 

3D surface perception than had previously been possible. The 3D LAMINART model achieved 

these explanatory successes without including some processes that had been needed to explain 

other data about visual perception and neuroscience in previous modeling studies. These 

processes include perceptual grouping and surface-to-boundary feedback. Perceptual grouping 

was modeled in a laminar model of V1 and V2, called the LAMINART model, that did not 

incorporate binocular interactions (Grossberg, 1999a, 1999b; Grossberg, Mingolla and Ross, 

1997; Grossberg and Raizada, 2000; Raizada and Grossberg, 2001; Grossberg and Williamson, 

2001), but rather focused on explaining data about perceptual development, learning, grouping, 

and attention. It was noted in Grossberg and Howe (2003) how perceptual grouping might 

consistently be added to the 3D LAMINART model, but since this refinement was not needed to 

explain the targeted data, it was not further pursued. Grossberg and Swaminathan (2004) did 

make such a generalization in order to simulate data about 3D perception of slanted and curved 

3D objects and 2D pictures of such objects, including a simulation of how a 2D image of a 

Necker cube causes rivalrous 3D boundary and surface representations of the cube. This advance 

required the introduction of neural circuits capable of 3D grouping. The Grossberg and 

Swaminathan study predicted how rules for 2D grouping using cells that obey a bipole property 

could be consistently generalized to carry out 3D groupings across depths, as well as at angles 

and smooth changes of curvature. The present version of the 3D LAMINART model also 

incorporates 3D bipole grouping laws, but refines them to clarify how 3D grouping helps to 

solve the classical correspondence problem.  

 The second innovation of the present work concerns the role of surface-to-boundary 

feedback in determining the 3D surfaces that are seen during stereopsis. Many experiments and 

modeling studies have supported the prediction of Grossberg and colleagues (e.g., Cohen and 

Grossberg, 1984; Grossberg, 1984; Grossberg and Mingolla, 1985a, 1985b) that visual 

perception is based on interacting percepts of boundaries and surfaces that obey complementary 

computational rules. This state of affairs raises the basic question: How can boundaries and 

surfaces interact to overcome their complementary deficiencies and generate a consistent 

percept? It has been proposed (e.g., Grossberg, 1994, 1997; Kelly and Grossberg, 2000) how 

feedback between cortical boundary and surface processing streams helps to transform 

boundary-surface complementarity into perceptual consistency and, in so doing, helps to separate 

figures from their backgrounds. Here we show how such surface-to-boundary feedback can help 
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to explain some basic stereopsis percepts, notably percepts that involve closure properties of 

figures and new variations of da Vinci stereopsis. 

 

 
 

Figure 1. A model circuit diagram (Grossberg and Howe, 2003). [Reproduced with permission 

from Grossberg and Howe (2003).] 

 

 The model achieves these goals by embodying seven basic constraints in its neural 

circuitry. Constraints 1-4 and 6 were articulated in Grossberg and Howe (2003). Constraints 5 

and 7 are needed to explain stereopsis data that go beyond the explanatory range of Grossberg 

and Howe (2003). Neurophysiological and anatomical data that support each of the hypotheses 

1-4 and 6 are summarized in Grossberg and Howe (2003). 

(1) Reconciles contrast-specific binocular fusion with contrast-invariant boundary 

perception. It is well known that only edges in the left and right retinal images that have the 

same contrast polarity (i.e., their luminance gradients have the same signs) can be binocularly 

fused to form a percept of depth (Howard and Rogers, 1995).  Otherwise expressed, binocular 

fusion obeys the same-sign hypothesis. See Figure 2. However, fused boundaries must also be 

able to form around objects whose contrast polarity with respect to the background can reverse 

along their perimeters (Grossberg, 1994). In other words, binocular boundaries need to be 
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represented in a contrast-invariant way. How can the brain reconcile contrast-specific fusion with 

the need to form contrast-invariant object boundaries? The model proposes that both constraints 

are realized by interactions between cells in layers 4, 3B, and 2/3A of cortical area V1 interblob. 

See Figure 1.  

 

 
 

Figure 2. (a) The same-sign hypothesis: only edges that have the same contrast polarity can be 

stereoscopically fused to produce a percept of depth; (b) As it is traversed, the boundary of the 

ellipse changes its contrast polarity relative to the background, thereby illustrating the need for 

object boundaries to be represented in a contrast-invariant manner. [Reproduced with permission 

from Grossberg and Howe (2003).] 

 

 (2) Implements the contrast magnitude constraint on binocular fusion. The brain needs 

to determine which of the many potential edges in the two retinal images should be binocularly 

fused, since veridical stereoscopic depth perception will occur only if the two edges belong to the 

same object. This is commonly referred to as the correspondence problem (Howard and Rogers, 

1995; Julesz, 1971). An early step in solving the correspondence problem is to binocularly fuse 

only edges with the same contrast polarity and approximately the same magnitude of contrast 

(McKee et al., 1994). This constraint naturally arises when the brain fuses edges that derive from 

the same objects in the world. The model satisfies this constraint through interactions between 

excitatory and inhibitory cells in layer 3B of V1 that endow the binocular cells there with an 

obligate property (Poggio, 1991), whereby they respond preferentially to left and right eye inputs 

of approximately equal contrast. See Figure 1. 

(3) Solves the correspondence problem. Even if all binocular matches are of the same 

contrast polarity and similar contrast magnitude, there can still exist many false binocular 

matches between edges that did not derive from the same objects. See Figure 3.  
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Figure 3. The V2 disparity filter.  The V1 binocular boundaries network matches an edge in one 

retinal image with every other edge in the other retinal image whose relative disparity is not too 

great, that has the same contrast polarity and whose magnitude of contrast is not too different.  In 

response to this image, the V1 boundary network creates four matches, with the two not in the 

fixation plane being false matches between edges that do not correspond to the same object.  As 

described in the text, these false matches are suppressed by the disparity filter in V2, wherein 

each neuron is inhibited by every other neuron that shares either of its monocular inputs (i.e., 

shares a monocular line-of-sight represented by the solid lines; “line-of-sight inhibition”). Note 

in particular that the solid lines that represent the monocular lines-of-sight also represent the 

allelotropic shifts: an edge in the left retinal image is shifted to the right for matches increasingly 

further away whereas an edge in the right retinal image is shifted in the opposite direction.  

 

This problem has often been approached by imposing a unique-matching rule, which states that 

any given feature in one retinal image is matched at most with one feature in the other retinal 

image (Grimson, 1981; Marr and Poggio, 1976). However, this rule fails in situations like 

Panum’s limiting case (Gillam et al., 1995; McKee et al., 1995; Panum, 1858) where a bar 

presented to one eye is simultaneously matched to two separate bars presented to the other eye. 

The 3D LAMINART model does not enforce unique matches. Rather, the model encourages 

them by using a disparity filter (Grossberg and McLoughlin, 1997; McLoughlin and Grossberg, 

1998). This disparity filter uses inhibition between active cells that represent different depths in 
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order to encourage unique matches. In Grossberg and Howe (2003), the disparity filter was 

located between layers 4 and 2/3 within the pale stripes of cortical area V2, and used a 

combination of line-of-sight inhibition and cyclopean inhibition, where cyclopean inhibition acts 

across depth between all cells at a given position. In the present study, the disparity filter is 

proposed to occur as part of the perceptual grouping process within layer 2/3 (see item (5) 

below). It was also found that the addition of surface-to-boundary feedback (see item (7) below), 

combined with the perceptual grouping process, made unnecessary the cyclopean inhibition that 

was also used in the Grossberg and Howe (2003) disparity filter. Thus, in the present model, 

line-of-sight inhibition helps to solve the correspondence problem as part of the perceptual 

grouping process. 

(4) Combines monocular and binocular information to form depth percepts.  Although 

Panum’s limiting case may seem to be a laboratory curiosity, many naturally occurring situations 

lead to visual input where there is only one edge seen by one eye and two possible edges with 

which to match it seen by the other eye. For example, due to the lateral displacement of the eyes, 

an object’s edge that is seen by one eye may be occluded in the other eye, as occurs during da 

Vinci stereopsis (Nakayama and Shimojo, 1990). Despite this lack of binocular information, the 

monocularly viewed region has a definite depth conferred to it by the binocularly viewed parts of 

the scene. The brain can thus utilize monocular information to build up seamless 3D percepts of 

the world. Indeed, in experiments involving Panum’s limiting case, varying the relative contrast 

of the bars alters the perception of depth in a manner that reveals clear monocular-binocular 

interactions (Smallman and McKee, 1995). Dichoptic masking, where an object presented to one 

eye is obscured (i.e., masked) by one presented to the other eye, illustrates a third way in which 

monocular and binocular information may interact (McKee et al., 1994). 

Once monocular information is included, the problem immediately arises of how to 

combine monocular and binocular boundaries. This is a problem because monocular boundaries 

do not have a definite depth associated with them. How, then, can we decide to which depth they 

should be assigned? A proposed approach to this Monocular-Binocular Interface Problem was 

suggested (Grossberg, 1994, 1997) in order to explain data about 3D figure-ground perception. 

The same hypothesis was shown by Grossberg and Howe (2003) to help explain many data about 

3D surface perception; namely, the model assumes that the outputs of the monocular boundary 

cells are added to all depth planes in the pale stripes of cortical area V2 along their respective 

lines-of-sight, possibly in layer 4. The disparity filter, which helps to solve the correspondence 

problem, also solves the Monocular-Binocular Interface Problem by automatically eliminating 

most of the monocular boundaries that are not at the correct depths. 

 (5) Forms 3D perceptual groupings that eliminate false matches. Perceptual grouping in 

the model is carried out by pyramidal cells in layer 2/3 of the V2 pale stripes. Interactions 

between these cells realize a bipole property, whereby cells that are (approximately) colinear and 

coaxial with respect to one another across space can excite each other via long-range horizontal 

connections. These long-range horizontal connections also activate inhibitory interneurons that 

inhibit each other and nearby pyramidal cells via short-range disynaptic inhibition. This balance 

of excitation and inhibition at target cells helps to implement the bipole property: When the 

inducing stimulus (e.g., a pacman that defines a Kanizsa square) is only on one side, it excites 

the corresponding oriented receptive fields of layer 2/3A cells, which send out long-range 

horizontal excitation onto the target cell. However, this excitation also activates a commensurate 

amount of disynaptic inhibition. This creates a case of “one-against-one”, and the target cell is 

not excited above-threshold. Suprathreshold cell activity can be modulated by input from long-
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range horizontal connections on one side if the cell also receives bottom-up input (Bringuier, 

Chavane, Glaeser and Frégnac, 1999; Crook, Engelmann and Lowel, 2002). The combined 

bottom-up and horizontal input from one side can overcome the disynaptic inhibition from the 

inhibitory interneurons and thus can activate the cell. These modulations play an important role 

in the spreading of attention (Grossberg and Raizada, 2000; Ito and Gilbert, 1999; Roelfsema, 

Lamme and Spekreijse, 1998; Roelfsema and Spekreijse, 1999), the grouping of 2D and 3D 

planar percepts (Bakin et al., 2000; Kapadia, Ito, Gilbert and Westheimer, 1995; Polat, Mizobe, 

Pettet, Kasamatsu and Norcia, 1998), and the grouping of 3D slanted and curved percepts, as 

discussed in Grossberg and Swaminathan (2004).  

When two colinearly aligned inducing stimuli are present, one on each side, a boundary 

grouping can form even without direct bottom-up input: Long-range excitatory inputs converge 

onto the cell from both sides and summate. These excitatory inputs also activate a shared pool of 

inhibitory interneurons, which as well as inhibiting the target cell, also inhibit each other, thus 

normalizing the total amount of inhibition emanating from the interneuron pool. This summating 

excitation and normalizing inhibition create a case of “two-against-one" and the target cell is 

excited above-threshold (cf., von der Heydt and Peterhans, 1989; von der Heydt, Peterhans and 

Baumgartner, 1984). Finally, when there is direct bottom-up input, it can activate the cell without 

horizontal interactions. 

Various modeling studies have suggested that the inhibitory interneurons may do more 

than realize the bipole grouping property. In particular, it has been proposed that inhibitory 

interneurons also inhibit the pyramidal cells that correspond to other orientations, notably 

perpendicular orientations. Here we propose that some of these inhibitory interneurons may also 

realize the disparity filter as part of the grouping process. Grossberg and Howe (2003) had 

suggested that the disparity filter needed to occur somewhere between layers 4 and 2/3 in V2. 

Our proposal puts it within layer 2/3. In other words, we propose that the selection of a correct 

3D grouping includes the suppression of false binocular matches. Thus the hypothesis links a 

solution of the correspondence problem to the Gestalt grouping problem. 

This hypothesis brings together several lines of psychophysical data. First, this 

hypothesis enables the precept model to simulate all of the stereopsis data that were explained in 

Grossberg and Howe (2003), as well as some data that were not explicable there. Second, this 

hypothesis explicates another important line of psychophysical data: It is often the case that the 

perceived depths of perceptual groupings covary with the disparities of the image contrasts from 

which they are generated. However, when this is not the case, then the perceived depth of 

emergent perceptual groupings can override local image disparities (Ramachandran and Nelson, 

1976; Tausch, 1953; Wilde, 1950). Said in another way, a winning 3D grouping can suppress 

“false matches” that are based on the real local disparities of their generating features in the 

outside world. Placing the disparity filter within the inhibitory interneurons of the 3D grouping 

process can explain these data as well as how the 3D grouping process can suppress false 

matches that do not correspond to the correct image matches from the outside world. 

 (6) Forms 3D surface percepts. The above constraints all concern how the brain 

constructs a 3D boundary representation of an object. Much evidence suggests that boundary 

representations on their own do not give rise to visible percepts, which rather are a property of 

surface representations (Grossberg, 1994). Indeed, boundary representations pool opposite-

polarity contrasts at the complex cell stage in order to be able to build boundaries of objects in 

front of textured backgrounds. Surface representations are proposed to derive from a filling-in 

process whereby lightness and color mark the depths at which the surfaces occur. Filling-in is 
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needed to recover lightness and color estimates in regions where they have been suppressed by 

the process of discounting the illuminant (Grossberg and Todorovic, 1988).  Boundaries control 

the depths at which particular lightnesses and colors can fill-in, a process called 3D surface 

capture. The present model considers only the filling-in of achromatic lightness. 

 

 
 

Figure 4. (a) Open and connected boundaries; (b) Filling-in of surface lightness is contained or 

not depending on the connectedness of the boundary. Note that the monocular boundaries (i.e., 

two horizontal boundaries and the right vertical boundary) have been added to all depth planes 

whereas the binocular boundary (i.e., the left vertical boundary) is present only in the near depth 

plane, thereby creating a connected boundary, and thus containment of filling-in, only in the near 

depth plane. [Reproduced with permission from Grossberg and Howe (2003).] 

 

How does the brain ensure that lightness fills-in at only the correct depths? Grossberg 

(1994) proposed properties of this boundary-surface interaction that helped to explain many data 

about 3D figure-ground perception, as part of his development of FACADE theory, of which the 

3D LAMINART model forms a part. In the 3D LAMINART model, one of these properties 

proved essential to explain 3D surface percepts that arise in stereopsis research. Namely, visible 

surfaces arise in cortical area V4 only if they are enclosed by connected boundaries. In 

particular, as diagrammed in Figure 4, a rectangular connected boundary may be composed of 

one vertical binocular boundary, one vertical monocularly viewed boundary, and two horizontal 

boundaries that code no disparity information. This connected boundary can support a visible 

surface percept at the depth corresponding to the binocular boundary if all other constraints are 

satisfied. Such a boundary can contain the filling-in process. However, if the vertical binocular 

boundary is missing, as it would be at a different depth plane, then the total boundary is not 

connected, and a visible percept will not be evident at that depth because filling-in can dissipate 
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out of the boundary gap. This example illustrates how the Monocular-Binocular Interface 

Problem (constraint (4) above), and thus the correspondence problem (constraint (3) above), 

influence visible percepts of 3D surfaces. 

 (7) Surface-to-boundary feedback ensures perceptual consistency and initiates figure-

ground separation. Another property of FACADE theory is also needed to explain the stereopsis 

data that are the target of the present article; namely, that successfully filled-in regions within the 

surface representations send feedback to the boundary system. The surface system does this by 

sensing whether or not a surface region is filled-in by using contrast-sensitive output circuits that 

can detect where the bounding contours of the filled-in region occur. Such circuits can sense 

whether a surface region contains its internal lightness or color within a connected boundary, or 

allows it to dissipate because it does not possess a connected boundary. These contrast-sensitive 

output signals are realized by on-center off-surround networks that operate within disparity and 

across position within the surface system. The outputs from the surface stream to the boundary 

stream strengthen, and thereby confirm, the boundaries that surround the successfully filled-in 

surface regions, at the same time that they inhibit, or prune, redundant boundaries at the same 

positions and further depths (Grossberg, 1994, 1997; Grossberg and McLoughlin, 1997). This 

strengthening-and-pruning operation is accomplished by on-center off-surround networks that 

operate across disparity and within position within the boundary system. Surface-to-boundary 

feedback hereby assures that the boundary and surface representations are consistent. In the 

present model, the boundary-enhancing property interacts with a developmental bias that favors 

the fixation plane to explain stereopsis data that cannot otherwise be explained by the 3D 

LAMINART model.  

The model laminar circuits that embody constraints 1-4 and 6 were used in Grossberg and 

Howe (2003) to simulate many challenging data about 3D vision, including: contrast variations 

of Panum’s limiting case, dichoptic masking  and the correspondence problem (McKee et al., 

1994; Smallman and McKee, 1995), the Venetian blind illusion (Howard and Rogers, 1995), 

four different examples of da Vinci stereopsis (Gillam et al., 1999; Nakayama and Shimojo, 

1990), stereopsis with opposite-contrast stimuli (Howard and Rogers, 1995; Howe and 

Watanabe, 2003; Julesz, 1971), the effect of interocular contrast differences on stereoacuities 

(Schor and Heckmann, 1989), and various lightness illusions. In so doing, it demonstrated the 

various roles that boundary and surface representations play in depth perception, and made a 

number of testable neurophysiological predictions.  Here we show that constraints 5 and 7 are 

also needed in order to explain various additional data about 3D perception of closure and da 

Vinci stereopsis. Grossberg and McLoughlin (1997) first used surface-to-boundary feedback to 

explain one variant of da Vinci stereopsis, before the 3D LAMINART model was introduced. 

Grossberg and Howe (2003) did not need surface-to-boundary feedback to simulate several 

variants of da Vinci stereopsis, but did require a disparity filter that included cyclopean 

inhibition, as noted in Section (3). The present model shows how the reintroduction of surface-

to-boundary feedback enables these and other variants of da Vinci stereopsis to be simulated, 

including variants that could not be simulated by Grossberg and Howe (2003), and does so 

without the use of cyclopean inhibition. An important part of this explanation concerns how 

constraints 5 and 7 expand the explanatory range of the 3D LAMINART model without 

undermining the explanations of the phenomena that do not seem to depend upon them. In other 

words, why does the dog bark only at the right times? 
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2. Model description 

The enhanced 3D LAMINART model consists of five component networks which 

process: V1 monocular boundaries, V1 binocular boundaries, V2 boundaries, V2 monocular 

surfaces and V4 surfaces. Figure 5a shows a laminar cortical circuit diagram of the enhanced 

model. See Figure 5b for a block diagram of the model. A mathematical description of the model 

is elaborated in the Appendix. A preliminary version of the model was reported in Cao and 

Grossberg (2004) and Grossberg and Cao (2004). In order to reduce the computational load, the 

model currently considers only horizontal and vertical contours and five depth planes. Although 

model cells and cells in vivo will be clearly distinguished in the text, model cells will be referred 

to by physiological labels because their properties so closely match those found in vivo. 

 2.1. V1 monocular boundaries. The network that processes the V1 monocular boundaries 

comprises the monocular cells in layers 4, 3B and 2/3 of the V1 interblob region. The left and 

right retinal images are first processed by LGN cells which have circularly symmetric on-center 

off-surround receptive fields. These LGN cells discount the illuminant and enhance the scenic 

contrast. The monocular simple cells in layer 4 receive inputs from LGN cells. These simple 

cells act as oriented filters (Hubel and Wiesel, 1968), which are sensitive to either dark-light or 

light-dark contrast polarity, but not both. Layer 2/3 consists of complex cells, which add inputs 

from simple cells at the same position that are sensitive to the same orientation but opposite 

contrast polarities. These complex cells therefore respond to both contrast polarities and so can 

respond all along an object's boundaries even if its contrast polarity, with respect to the 

background, reverses as its boundary is transversed. Layer 2/3 implements contrast-invariant 

boundary detection. This layer also implements an early stage of perceptual grouping: Complex 

cells in layer 2/3 with collinear, coaxial receptive fields excite each other via long-range 

horizontal axons, which also give rise to short-range, disynaptic inhibition via inhibitory 

interneurons. This balance of excitation and inhibition helps to control grouping by 

implementing the bipole property (Grossberg, 1999a, 1999b; Grossberg, Mingilla and Ross, 

1997; Grossberg and Raizada, 2000; Grossberg and Williamson, 2001). The boundary grouping 

process, together with contrast-invariant boundary detection, allows consistent and connected 

object boundaries to be formed even in response to noisy textured backgrounds. 

 2.2. V1 binocular boundaries. The network that processes V1 binocular boundaries is 

located in the interblob area and includes the binocular cells in layers 3B and 2/3. Layer 3B 

begins the process of stereoscopic fusion. As described in Section 2.1, inputs from the LGN 

activate monocular simple cells in layer 4 of the V1 interblob regions.  Left and right eye 

monocular simple cells then conjointly activate binocular simple cells in layer 3B whose depth 

sensitivity is determined by the relative retinal disparity of the layer 4 monocular cells that 

project to them. These binocular simple cells in layer 3B are sensitive to just one contrast 

polarity because only layer 4 simple cells with the same contrast polarity project to a single layer 

3B simple cell. This enables the same-sign hypothesis to be implemented, because layer 3B 

simple cells are selective for both binocular disparity and contrast polarity.  

 Layer 3B also contains inhibitory interneurons. The activity of a binocular simple cell is 

suppressed by these inhibitory interneurons if its left and right eye inputs differ too much in 

magnitude. These inhibitory interneurons thus ensure that the binocular simple cells act like the 

“obligate cells” of Poggio (1991), responding only when their left and right eye inputs are 

approximately equal in magnitude. These obligate cells help to solve the correspondence 

problem by ensuring that only similar stimuli with similar contrast amplitudes in the left and 

right eye retinal images are stereoscopically fused. 
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Figure 5 (a). The enhanced 3D LAMINART model circuit diagram. The model consists of a V1 

Interblob - V2 Pale Stripe stream (Boundary Stream) which computes 3D perceptual groupings 

and a V1 Blob - V2 Thin Stripe stream (Surface Stream) which computes 3D surface 

representations of depth, lightness, and color. The two processing streams interact to overcome 

their complementary deficiencies and create consistent 3D boundary and surface percepts.  
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Figure 5 (b). A block diagram of the enhanced 3D LAMINART model. 

 

 Layer 3B simple cells that are sensitive to the same position and disparity but opposite 

contrast polarities pool their signals at layer 2/3 binocular complex cells. As in the monocular 

cases in Section 2.1, layer 2/3 complex cells implement contrast-invariant boundary detection 

and perceptual grouping, but these groupings are disparity-selective. 

 2.3. V2 boundaries. The network that processes the V2 boundaries is located in the V2 pale 

stripe region and includes the binocular complex cells in V2 layers 4 and 2/3. Monocular and 

binocular inputs are combined in V2 layer 4. In other words, V2 layer 4 cells receive inputs from 

left and right monocular complex cells and binocular complex cells in V1 layer 2/3. Since the 

monocular cells are not associated with a particular depth plane, their outputs are added to all 

depth planes in layer 4 along their respective lines-of-sight (see the Appendix). The layer 4 cells 

also receive feedback signals from left and right V2 monocular surfaces that are formed in the 
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V2 thin stripe region. These surface-to-boundary feedback inputs modulate corresponding V2 

layer 4 cells in the following way: the activity of an active layer 4 cell is enhanced if it receives 

either a left or right surface-to-boundary excitatory feedback signal, or both. Its activity is 

suppressed otherwise. As shown in our simulations in Section 3, these surface-to-boundary 

feedback signals play an indispensable role in explaining percepts of some stereo displays. 

 V1 layer 3B binocular cells attempt to match every vertical edge in one retinal image with 

every other nearby vertical edge in the other retinal image within its disparity range that has the 

same contrast polarity and approximately the same magnitude of contrast. As a result, false 

matches may exist in V1. Figure 3 shows four possible matches if each eye sees two bars.  Only 

the two matches in the fixation plane are correct, and the other two are false.  Such false matches 

are suppressed in V2 via a disparity filter. Figure 3 illustrates how the disparity filter works.  To 

encourage unique-matching, the model assumes that each neuron inhibits all other neurons that 

share either of its monocular inputs; that is, shares one of its monocular lines-of-sight. This is 

represented by the solid lines between neurons in Figure 3. Furthermore, the disparity filter is 

symmetrical about the fixation plane (i.e., the near and far disparity planes equally inhibit and are 

equally inhibited by the fixation plane). The disparity filter favors the fixation plane in that this 

plane inhibits the near and far disparity planes more than they inhibit it (see Table 2). The line-

of-sight inhibition and the fixation plane advantage work together to ensure that the two matches 

in the fixation plane typically win, thereby helping to solve the correspondence problem. The 

model assumes that the disparity filter can be realized as part of the inhibitory interactions that 

control perceptual grouping by long-range horizontal connections in V2 layer 2/3, and thereby 

combines suppression of false matches with long-range Gestalt grouping processes (see Figure 

5a and equations (A30)-(A35) in the Appendix). 

 2.4. V2 monocular surfaces. The network that processes the V2 monocular surfaces is 

located in the V2 thin stripe region. The left (right) V2 thin stripe receives boundary signals from 

V2 layer 2/3 complex cells and lightness signals from left (right) LGN cells via the left (right) 

V1 blob region (see Figure 5a). It has been proposed how surface representations may be 

generated by a filling-in process (Grossberg, 1994; Grossberg and Todorovic, 1988). 

Psychophysical data (e.g., Paradiso and Nakayama, 1991; Pessoa and Neumann, 1998; Pessoa, 

Thompson and Noe, 1998) and neurophysiological data (e.g., Lamme, Rodriguez-Rodriguez and 

Spekreijse, 1999; Rossi, Rittenhouse and Paradiso, 1996) support the existence of such a filling-

in process. Surface filling-in has been used to explain many psychological phenomena, such as 

figure-ground separation (Kelly and Grossberg, 2000), 2D and 3D neon color spreading 

(Grossberg, 1994; Grossberg and Mingolla, 1985a; Grossberg and Swaminathan, 2004), and 

lightness perception (Grossberg and Hong, 2004; Grossberg and Kelly, 1999; Grossberg and 

Todorovic, 1988). As illustrated in Section 1 (item 5), a surface presentation can rise from 

filling-in only if it is enclosed by a connected boundary.  

 The LGN cells, which obey cell membrane equations and interact through on-center, 

off-surround circularly symmetric receptive fields, first discount the effects of a spatially non-

uniform illumination; the excitatory and inhibitory components of these receptive fields are 

balanced so that cell responses are attenuated to spatially uniform or slowly varying stimulation. 

Model LGN cells therefore respond preferentially to luminance borders. At the later filling-in 

stage, these luminant-discounted border signals propagate throughout surface regions that are 

completely enclosed by boundaries to complete the lightness representation. The filling-in 

process has often been modeled by a boundary-gated diffusion equation (Grossberg and 

Todorovic, 1988), as defined in the Appendix. Propagating signals can dissipate across space 
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unless the region is surrounded by a connected boundary which creates resistive barriers to limit 

signal spread (Figure 4). The connected boundaries received from layer 2/3 act as such barriers 

and, together with the lightness information received from LGN, can create monocular surface 

representations in V2 thin stripes via the filling-in process. Successfully filled-in monocular 

surfaces are predicted to send contour-sensitive surface-to-boundary feedback signals into V2 

layer 4 (Figure 5b). These surface-to-boundary signals modulate the activities of V2 boundary 

cells so that the boundaries that surround the successfully filled-in surfaces are enhanced and 

other boundaries are suppressed. See the Appendix for mathematical details.  

 2.5. V4 surfaces. Although monocular surfaces are formed in V2 thin stripes, they are 

predicted to be invisible there and hereby do not create visible 3D surface percepts. The visible 

3D surface percepts are proposed to be generated in cortical area V4. Area V4 receives boundary 

signals from V2 layer 2/3 and lightness signals from the LGN via V1 blobs and V2 thin stripes. 

The surface filling-in process is similar to the one described in Section 2.4, except V4 combines 

monocular lightness signals from both eyes.  

 

3. Model simulations  

 This section summarizes simulations that predict how monocular and binocular information 

interact in the visual cortex to generate 3D surface percepts.  As described in Section 1, one of 

main new developments of the current model is that it clarifies how surface-to-boundary 

feedback plays an essential role in this process. Below two such cases are considered: Variations 

of da Vinci stereopsis and an example of perceptual closure. Simulations also show the surface-

to-boundary feedback does not undermine explanations of any of the data that were simulated in 

Grossberg and Howe (2003). This cannot be taken for granted because surface-to-boundary 

signals can change the relative strength of boundaries across depth and thus the depthful surfaces 

that are perceived. 

 Each simulation figure includes two parts: (I) V1 and V2 boundaries and V4 surfaces and 

(II) V2 monocular surfaces and surface-to-boundary feedback signals. Like the model diagram 

shown in Figure 5a, Part (I) of each figure should be read from the bottom up, with the bottom 

two rows representing the input and the V1 boundary representations, the next two or three rows 

representing the V2 boundary representations, and the top row representing the V4 surface 

representations. In Part (II) of each figure, the bottom four rows represent, respectively, the 

initial and final V2 monocular surfaces and feedback signals for the left eye. The top four rows 

represent the same quantities for the right eye. Furthermore, for the top four rows of Part (I) and 

all rows of Part (II), depth increases from left to right, with the middle plot representing the 

fixation plane, the two leftmost plots representing the two near depth planes, and the two right 

plots representing the two far depth planes. 

3.1. Variations of da Vinci Stereopsis.  In the set of experiments of Nakayama and 

Shimojo (1990), a thick bar was presented to both eyes and a thin bar only to the right eye, as 

shown in the middle two plots of the first row of Figures 6a and 7a.  Subjects reported perceiving 

the thin bar behind the thick bar, at a depth that was consistent with the right edge of the thin bar 

of the right input being fused with the right edge of thick bar of the left input. Grossberg and 

Howe (2003) explained the experiments where the thin bar fusion occurred at a far depth plane 

(see the fourth plot in the second row in Figure 6a). Here we consider a variation where the right 

edge of the thin bar of the right input was fused with the right edge of thick bar of the left input 

at the fixation plane, while the left edge of the thin bar of the right input was fused with the left 

edge of thick bar of the left input at a far depth plane (see the second row in Figure 7a). This case  
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(a) 

 

 
(b) 

 

Figure 6. Simulation of the original da Vinci stereopsis display explained by Grossberg and 

Howe (2003) and reported experimentally by Nakayama and Shimojo (1990). (a) The first row 

represents the inputs (the middle two plots) and the V1 monocular boundaries (the outer two 
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plots), the second row the V1 binocular boundaries, the third row the V2 layers 4 and 2/3 initial 

boundaries, the fourth row the V2 layer 2/3 final boundaries when line-of-sight inhibition in the 

disparity filter is shut off (that is, all coefficients in Table 2 are set equal to zero), the fifth row 

the V2 layer 2/3 final boundaries in the full model, and the sixth row the V4 surface percepts. In 

the top four rows, depth increases from left to right for successive plots, with the middle plot 

representing the fixation plane. (b) The bottom four rows represent, respectively, the initial and 

final V2 monocular surfaces and surface-boundary feedback signals for the left eye. The top four 

rows represent the same quantities for the right eye. In all rows, depth increases from left to right 

for successive plots, with the middle plot representing the fixation plane. Increasing boundary 

strength is denoted by whiter lines at the boundary positions, since boundaries are plotted against 

a black background. More intense filling-in, and thus greater contrast, of the filled-in surface 

regions is denoted by darker or whiter surface regions on a grey background. All simulation plots 

use a similar format. 

 

will happen when moving the thin bar of the right input closer to the thick bar than in the original 

case shown in Figure 6a. 

 

 Let us first see what the model in Grossberg and Howe (2003) would predict for this new 

case. Figure 8 shows the simulation result by the Grossberg and Howe (2003) model. The 

vertical boundaries of the thick bar are registered binocularly in the near disparity plane in V1, as 

shown by the second plot of the second row of Figure 8. The right edge of the thin bar is 

matched with the right edge of the thick bar to be registered binocularly in the fixation plane in 

V1, as shown by the third plot. Finally, the left edge of the thin bar is matched with the left edge 

of the thick bar to be registered binocularly in the far disparity plane in V1, as shown by the 

fourth plot.  

 The monocular boundaries (displayed in the leftmost and rightmost plots of the first row) 

are added to all depth planes in the V2 disparity filter along their respective monocular 

lines-of-sight, as shown by the plots in the third row of Figure 8.  The binocular vertical 

boundaries in V1 (displayed in the second row) are also added to the disparity filter, overlapping 

with the vertical boundaries of the thick bar representation in the second plot, with the rightmost 

vertical boundary in the third plot, and with the third vertical boundary in the fourth plot.  These 

vertical boundaries, being much stronger, eliminate all other weaker vertical boundaries that 

share their lines-of-sight via the disparity filter line-of-sight inhibition.  As a result, the left edge 

in the fixation plane, the right edge in the far depth, and all vertical edges in other depths of the 

thin bar representations are eliminated, as shown in the fourth row. The thin bar thus has no 

connected boundary representation in any depth plane.  

 Since surfaces can successfully be filled in only for those regions that are completely 

enclosed by a connected boundary, the surface representation of the thin bar disappears in all 

depth planes. The thick bar boundaries in the near depth are much stronger and hereby not 

eliminated. The connected thick bar boundaries in the near depth can form a surface by filling-in. 

The final percept is shown in the top row. The thick bar appears in the near depth and the thin 

bar disappears. Note that the left vertical boundary in the third plot (the fixation plane) of the 

fourth row is not from the left edge of the thin bar. In contrast, it is from the right edge of the 

thick bar of the right input. Therefore, the surface created by the connected boundaries in the 

third plot, as shown in the third plot of the top row, is not the true surface representation of the 

thin bar. In fact, it is obviously much wider than the thin bar. The Grossberg and Howe (2003)  
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(a) 

 

 
(b) 

 

Figure 7. Simulation of a variation of the da Vinci stereopsis display of Figure 6. Surface-to-

boundary feedback plays a critical role in determining the final percept. See text for details. 
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model thus fails to make the correct prediction. The reason is that the left vertical boundary 

representation of the thin bar in the fixation plane is eliminated by its corresponding stronger 

boundary representation in the far depth plane. 

 

 
Figure 8. Simulation of the da Vinci stereopsis display of Figure 7 by the Grossberg and Howe 

(2003) model. 

 

Now let us see what the enhanced 3D LAMINART model that contains surface-to-

boundary feedback would predict. The simulation is shown in Figure 7. The initial stages (the 

bottom three rows of Figure 7a) of the model are basically the same as of the Grossberg and 

Howe (2003) model. The boundaries of the thick bar are registered binocularly in the near 

disparity plane in V1, the right edge of the thin bar is matched with the right edge of the thick bar 

to be registered binocularly in the fixation plane, and the left edge of the thin bar is matched with 

the left edge of the thick bar to be registered binocularly in the far disparity plane, as shown by 

the second, third and fourth plots of the second row of Figure 7a, respectively.  The monocular 

boundaries (displayed in the leftmost and rightmost plots of the first row) are added to all depth 

planes in V2 layer 4 along their respective monocular lines-of-sight, as shown by the plots in the 

third row of Figure 7a.  The binocular boundaries in V1 (displayed in the second row) are also 

added to the V2 layer 4 in their own disparity planes. These boundaries in V2 layer 4 then input 

into V2 layer 2/3. The V2 layer 2/3 acts as the disparity filter to solve the correspondence 

problem while also controlling perceptual grouping by horizontal connections. Furthermore, the 

boundaries in V2 layer 2/3 control the formation of left and right eye monocular surfaces in the 

V2 thin stripes, together with the inputs from the left and right LGNs. These monocular surfaces 

that are initially formed are shown in rows one and five of Figure 7b. These surfaces fill-in a 

subset of the initial boundaries shown in row three of Figure 7a, namely all the closed connected 

boundaries that receive contrastive surface inputs. 
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The monocular surfaces in the V2 thin stripes then send surface-to-boundary feedback 

signals, as shown in rows two and six of Figure 7b, to V2 layer 4 to modulate the activities of the 

corresponding boundary cells. The cells that receive surface-to-boundary feedback signals from 

left, right, or both eyes are enhanced, while cells that do not receive such surface-to-boundary 

signals are suppressed. Initially, the V2 boundaries that receive binocular inputs from V1 − 

namely, the vertical boundaries of the thick bar representation in the second plot of the third row, 

the rightmost vertical boundary in the third plot, and the third vertical boundary in the fourth plot 

− are much stronger than the others. These stronger boundaries would ordinarily eliminate other 

weaker boundaries that share their lines-of-sight via the disparity filter line-of-sight inhibition. 

However, they do not eliminate the vertical boundary originating from the left edge of the thin 

bar in the fixation plane due to the boundary-enhancing effect of surface-to-boundary feedback 

signals.  

The reasons are as follows: When the right vertical boundary representation (weaker one) 

of the thin bar in the far depth plane is eliminated, the left vertical boundary representation 

(weaker one) of the thin bar in the fixation plane still remains, since the fixation plane is favored. 

In other words, the disparity filter favors the fixation plane because this plane inhibits the near 

and far disparity planes more than they inhibit it. This property has proved to be essential in 

helping to explain many stereopsis phenomena, such as contrast variations of the correspondence 

problem that were studied by Smallman and McKee (1995) (see Grossberg and Howe, 2003). 

Once the right vertical boundary representation of the thin bar in the far plane is eliminated, its 

connected boundary representation in the far plane is destroyed. As a result, the V2 monocular 

surface of the thin bar that is associated with the far disparity plane cannot be formed, since the 

surface filling-in will then flow out (see the fourth plot in the seventh row of Figure 7b). As a 

result, the corresponding boundary cells in V2 layer 4 do not receive surface-to-boundary signals 

and hence become weaker compared to those boundary cells that do receive surface-to-boundary 

signals. This effect makes the left vertical boundary representations of the thin bar become 

stronger in the fixation plane and weaker in the far disparity plane. As a result, the left vertical 

boundary representation of the thin bar in the fixation plane is not eliminated. The final V2 

boundary representations are shown in the fifth row of Figure 7a. In comparison, the fourth row 

shows the result when line-of-sight inhibition in the disparity filter is shut off. As explained 

before, V4 fills in surfaces in those regions that are completely enclosed by a connected 

boundary. This produces a percept of a thick bar in a near disparity plane, represented by the 

second plot of the top row, and a thin bar in the fixation plane, represented by the third plot. The 

model therefore correctly predicts that the thin bar will appear behind the thick bar at a depth that 

is consistent with the right edge of the thin bar being stereoscopically fused with the right edge 

of the thick bar, as has been reported experimentally (Nakayama and Shimojo, 1990). The model 

hereby proposes how the surface-to-boundary feedback can play an essential role in making the 

correct prediction. 

 The enhanced 3D LAMINART model also consistently explains the original da Vinci 

Stereopsis case reported in Grossberg and Howe (2003). It is essential to realize how this 

happens, since it is as important to know when a mechanism does not change a percept as when 

it does. Why this "dog does not bark" is explained in the simulation summarized in Figure 6. The 

vertical boundaries of the thick bar are registered binocularly in the near disparity plane in V1, as 

shown by the second plot of the second row, and the right edge of the thin bar is matched with 

the right edge of the thick bar to be registered binocularly in the far disparity plane in V1, as 

shown by the fourth plot.  The left edge of the thin bar is registered only monocularly because it 
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cannot be matched with either of the edges of the left input.  As usual, the monocular boundaries 

are added to all depth planes in V2 layer 4 along their respective monocular lines-of-sight, as 

shown by the plots in the third row of this figure. The vertical binocular boundaries are also 

added to V2 layer 4, overlapping with the vertical boundaries of the thick bar representation in 

the second plot and with the rightmost vertical boundary in the fourth plot.  

 All boundaries in V2 layer 4 then input into V2 layer 2/3. Initially, the V2 layer 2/3 vertical 

boundaries which receive binocular inputs from V1 − namely, the vertical boundaries of the 

thick bar representation in the second plot of the third row and the rightmost vertical boundary in 

the fourth plot − are stronger and thus eliminate all other weaker vertical boundaries that share 

their lines-of-sight via the disparity filter line-of-sight inhibition. As a result, the boundary 

representation of the right edge of the thin bar in any depth plane other than the far depth is 

eliminated. Once this has happened, then only the far depth plane has connected boundaries of 

the thin bar and thus can continue to form a monocular surface via filling-in (see the seventh row 

of Figure 6b). In other words, the monocular surface representations of the thin bar that are 

associated with other depth planes cannot be filled in and hereby cannot send surface-to-

boundary feedback signals anymore. Therefore, the boundary representations of the left edge of 

the thin bar in all other depths than the far depth are depressed because they do not receive 

surface-to-boundary feedback signals. In particular, the left vertical boundary of the thin bar in 

the fixation plane is depressed. Therefore, even though the fixation plane is favored, the left 

vertical boundary of the thin bar in the far depth plane can win the competition.  

 The final V2 boundary representations are shown in the fifth row of Figure 6a. In 

comparison, the fourth row shows the result when line-of-sight inhibition in the disparity filter is 

shut off. As usual, V4 fills in surfaces in those regions that are completely enclosed by a 

connected boundary. This produces a percept of a thick bar in a near disparity plane, represented 

by the second plot of the top row, and a thin bar in a far disparity plane, represented by the fourth 

plot. The model therefore correctly predicts that the thin bar will appear behind the thick bar at a 

depth that is consistent with the right edge of the thin bar being stereoscopically fused with the 

right edge of the thick bar, as has been reported experimentally by Nakayama and Shimojo 

(1990).  

 3.2. Perceptual Closure. The closure case cannot be explained by the Grossberg and Howe 

(2003) model. Here, a rectangular frame is presented to both eyes and a single bar with the same 

thickness as the edges of the rectangular frame is presented only to the right eye, as shown in the 

middle two plots of the first row of Figure 9a. The single bar lies beside the rectangular frame at 

a distance such that the left and right edges of the rectangular frame of the left input respectively 

fuse with the right edge of the rectangular frame of the right input and the single bar. Subjects 

reported perceiving the rectangular frame in the front of a single bar that is seen in the fixation 

plane. 

Figure 10 shows by simulation why the Grossberg and Howe (2003) model cannot explain 

this result. The vertical boundaries of the rectangular frame are fused binocularly in a near 

disparity plane in V1, as shown by the second plot of the second row. The left edge of the 

rectangular frame of left input is matched with the right edge of the rectangular frame of right 

input and is registered binocularly in the fixation plane, as shown by the leftmost pair of vertical 

boundaries in the third plot. The right edge of the rectangular frame of the left input is fused 

binocularly with the single bar of the right input in the fixation plane, as shown by the rightmost 

pair of vertical boundaries in the third plot. The left edge of the rectangular frame of left input is 

matched binocularly with the single bar in a far depth plane, as shown by the fourth plot, and the  



 20

 
(a) 

 

 
(b) 

 

Figure 9. Simulation of perceptual closure case. Surface-to-boundary feedback plays a critical 

role in determining the final percept. See text for details. 
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right edge of the rectangular frame of the left input is matched binocularly with the left edge of 

the rectangular frame of the right input in a very near depth plane, as shown in the first plot. As 

usual, the monocular boundaries are added to all depth planes in the disparity filter in V2 along 

their respective monocular lines-of-sight, as shown by the plots in the third row of Figure 10.  

The vertical binocular boundaries in V1 (displayed in the second row) are also added to the 

disparity filter in their own disparity planes, overlapping with the vertical boundaries of the 

rectangular frame representation in the second plot of third row, with the rightmost two pairs of 

vertical boundaries in the third plot, with the third pair of vertical boundaries in the fourth plot, 

and with the second pair of vertical boundaries in the first plot.  

These vertical boundaries, being much stronger, quickly eliminate all other weaker vertical 

boundaries that share their lines-of-sight via the disparity filter line-of-sight inhibition. At the 

same time, the stronger vertical boundaries in different depth planes can also inhibit each other. 

Since the fixation plane is favored, the rightmost two pair of vertical boundaries in the fixation 

plane eliminate all vertical boundary representations in other depth planes which share either 

line-of-sight with them, as shown in the fourth row. In particular, the vertical boundary 

representations of the rectangular frame in the near depth plane are eliminated, as shown in the 

second plot of the fourth row. As a result, surfaces cannot be filled in there. The final prediction 

is shown in the top row. The rectangular frame disappears. Therefore, the Grossberg and Howe 

(2003) model fails to make the correct prediction. It is shown now how the correct percept 

obtains when the surface-to-boundary feedback process is included.  

 

 
Figure 10. Simulation of perceptual closure case by Grossberg and Howe model. 

 

 Figure 9 shows the simulation by the enhanced model. The initial stages (the bottom 

three rows of Figure 9a) of the model are basically the same as those of the Grossberg and Howe 

(2003) model. The boundaries of the rectangular frame are fused binocularly in a near disparity 

plane in V1, as shown by the second plot of the second row, while the left and right edges of the 
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rectangular frame of the left input are, respectively, matched with the right edge of the 

rectangular frame of right input and the single bar to be registered binocularly in the fixation 

plane, as shown by the third plot. The binocular fusions appearing in the very near depth plane 

and the far depth plane, as shown by the first and fourth plots, are less essential. As usual, the 

monocular boundaries are added to all depth planes in the V2 layer 4 along their respective 

monocular lines-of-sight, as shown by the plots in the third row of this figure.  The binocular 

vertical boundaries in V1 are also added to the V2 layer 4 in their own disparity planes. All 

boundaries in V2 layer 4 then input into V2 layer 2/3. As described before, V2 layer 2/3 acts as 

the disparity filter to solve the correspondence problem while also controlling perceptual 

grouping by horizontal connections, the boundaries in V2 layer 2/3 control the filling-in of left 

and right monocular surfaces in the V2 thin stripes, and the successfully filled-in monocular 

surfaces in the V2 thin stripes send surface-to-boundary feedback signals to V2 layer 4 to 

modulate the activities of the corresponding boundary cells.  

This modulation makes the cells that receive positive surface-to-boundary feedback 

signals get enhanced and other cells that do not receive surface-to-boundary signals get 

suppressed. In particular, the stronger vertical boundaries in V2 layer 2/3 eliminate other weaker 

boundaries that share their lines-of-sight via disparity filter line-of-sight inhibition. Since the 

fixation plane is biased, the boundary representations of the rectangular frame in any depth plane 

other than the fixation plane would be eliminated if there were no surface-to-boundary feedback 

modulation. However, because of the effect of surface-to-boundary modulation, the boundary 

representations of the rectangular frame in the near depth plane are not eliminated. The reason is 

that the strong connected boundary cells of the rectangular frame in the near disparity plane 

cause strong monocular surfaces to fill-in within the V2 thin stripes (see the second plots in the 

odd rows of Figure 9b), which then send strong surface-to-boundary feedback signals (see the 

second plots in the even rows of Figure 9b) to V2 layer 4 to enhance the corresponding boundary 

cells there. As a result, the boundary representations of the rectangular frame in the near depth 

plane become stronger and hence are not eliminated. The final V2 boundary representations are 

shown in the fifth row of Figure 9a. In comparison, the fourth row shows the result when line-of-

sight inhibition in the disparity filter is shut off. As usual, V4 fills in surfaces in those regions 

that are completely enclosed by a connected boundary. This produces the correct percept of a 

rectangular frame in a near disparity plane, represented by the second plot of the top row, and a 

single bar in the fixation plane, represented by the third plot, in Figure 9a. 

3.3. Cases explained in Grossberg and Howe (2003). The enhanced 3D LAMINART 

model can also explain all cases discussed in Grossberg and Howe (2003). It offers explanations 

as good as those in Grossberg and Howe (2003) for stereopsis cases such as contrast variations of 

dichoptic masking and the correspondence problem, the effect of interocular contrast differences 

on stereoacuity, Panum's limiting case, and the Venetian blind illusion. In all these cases, 

stronger boundaries receive stronger surface-to-boundary feedback signals, since they can better 

generate surfaces through filling-in. This feedback makes the stronger boundaries even stronger. 

They hereby eliminate weaker boundaries more efficiently via disparity filter line-of-sight 

inhibition. Therefore, the final results are the same as those in Grossberg and Howe (2003).  

The enhanced model can also produce consistent explanations for the da Vinci stereopsis 

experiments in Gillam et al. (1999) and the stereopsis cases with polarity-reversed stereograms 

that were discussed in Grossberg and Howe (2003). In all these cases, there is at least one input 

bar and one depth plane in which one vertical boundary of the input bar is binocularly fused and 

the other vertical boundary of the input bar is only monocularly viewed, while in other depth 
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planes, both vertical boundaries of the input bar are monocularly viewed. Since binocularly 

viewed boundaries are stronger than monocularly viewed boundaries, disparity filter line-of-sight 

inhibition may cause the boundary representations for one vertical edge of the input bar to be 

eliminated in some depth planes while the boundary representations for the other vertical edge 

remain. These remaining redundant vertical boundaries may hinder the correct percept in some 

cases (e.g., the variations of da Vinci stereopsis discussed in Section 3.1). The surface-to-

boundary feedback can suppress the remaining redundant boundaries and hereby help to create 

the correct prediction.  

3.3.1. Dichoptic masking. In the basic paradigm considered by McKee et al. (1994), a 

high contrast bar is presented to the left eye and a low contrast bar is presented to the right eye, 

as shown in the middle two plots in the bottom row of Figure 11a. Subjects reported perceiving 

that the high contrast bar masks the low contrast bar. The model explanation is as follows: Since 

their contrasts differ too much, these two bars cannot binocularly fuse in V1. As usual, 

monocular boundaries are added to all depth planes in V2 layer 4 along their respective 

monocular lines-of-sight, as shown in the third plot of Figure 11a. Note that the left and right 

monocular boundaries coincide in the near depth plane represented by the second plot of this 

row, and vertical boundaries in this depth plane are hereby stronger than those in other depth 

planes. All boundaries in V2 layer 4 then input into V2 layer 2/3, which controls the monocular 

surface filling-in within the V2 thin stripes.  

The successfully filled-in monocular surfaces then send surface-to-boundary signals to 

V2 layer 4. Initially all monocular surfaces are successfully filled-in. The boundaries in the near 

depth plane, being stronger, create stronger V2 monocular surfaces and thus stronger surface-to-

boundary feedback signals. As a result, the vertical boundaries in the near depth plane remain 

stronger than others after the surface-to-boundary feedback. They then eliminate boundaries in 

other depth planes via disparity filter line-of-sight inhibition. The final V2 boundary 

representations are shown in the fourth row of Figure 11a. As usual, V4 fills in surfaces in those 

regions that are completely enclosed by a connected boundary. This produces a percept of a 

single bar in a near disparity plane, represented by the second plot of the top row, as has been 

reported experimentally (McKee et al., 1994).   

Based on the same reasoning, the enhanced model can equally well explain other 

dichoptic masking cases including the Panum’s limiting case discussed in Grossberg and Howe 

(2003). In all these cases, surface-to-boundary feedback does not undermine the relative strength 

of V2 boundaries. The simulations that demonstrate this claim are shown in Figures 12-15. 

Figure 12 shows the model simulation of the release from dichoptic masking studied by McKee 

et al. (1995). Here a high contrast bar is presented to both eyes and a low contrast bar is 

presented to only the right eye. The model correctly predicts that the low contrast bar is released 

from masking by the high contrast bar, as reported experimently by McKee et al. (1995). Figure 

13 show the model simulation of a variation of the release from dichoptic masking studied by 

McKee et al. (1995). Here a low contrast bar is presented to both eyes and a high contrast bar is 

presented to only the left eye. The model again correctly predicts that the low contrast bar is 

released from masking by the high contrast bar. Figure 14 show the model simulation of the 

return to dichoptic masking studied by McKee et al. (1995). Here a high contrast bar is presented 

to the left eye and two low contrast bars are presented to the right eye. The model correctly 

predicts that the high contrast masks the left bar of the right input again. Figure 15 shows the 

model simulation of dichoptic masking in Panum’s limiting case studied by McKee et al. (1995). 

Here all three bars have the same contrast. The model correctly predicts that the left input bar is  
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Figure 11. Simulation of the basic dichoptic masking studied by McKee et al. (1994). In Figures 

11-25, surface-to-boundary feedback does not change the result determined by the other model 

mechanisms. See text for an explanation. 
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Figure 12. Simulation of the release from dichoptic masking studied by McKee et al. (1995).  
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Figure 13. Simulation of a variation of the release from dichoptic masking studied by McKee et 

al. (1995).  
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Figure 14. Simulation of the return to dichoptic masking studied by McKee et al. (1995).  
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Figure 15. Simulation of dichoptic masking in Panum’s limiting case studied by McKee et al. 

(1995).  
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simultaneously fused with the two right input bar and so masks them both equally as reported 

experimentally by McKee et al. (1995). 

 3.3.2. Contrast variations of the correspondence problem. In the control experiment by 

Smallman and McKee (1995), each eye was presented with two bars, all four bars having the 

same high contrast. Subjects reported seeing two bars, both in the far depth plane.  The model 

simulation is shown in Figure 16. The enhanced model explains this case as well as the 

Grossberg and Howe (2003) model since the relative strength of boundaries is not undermined 

by surface-to-boundary feedback. The explanation is as follows: The vertical edges of the two 

bars are binocularly fused in the far depth plane in V1, as shown by the fourth plot of the second 

row. In addition, there is a false match in the near depth plane of V1, shown in the second plot of 

this row, which is caused by the inappropriate fusion of the right bar of the left input with the left 

bar of the right input.  As usual, the monocular boundaries are added to all depth planes in V2 

layer 4 along their respective monocular lines-of-sight, as shown in the third row of this figure. 

The binocular boundaries are also added to V2 layer 4 in their own depth planes, coinciding with 

the middle bar representation in the second plot and both bar representations of the fourth plot. 

All boundaries in V2 layer 4 then input into V2 layer 2/3, which controls the monocular surface 

filling-in within the V2 thin stripes. Those boundaries that receive binocular input, being 

stronger, initiate stronger surface filling-in which then causes stronger surface-to-boundary 

feedback signals to V2 layer 4. Therefore, surface-to-boundary feedback does not undermine the 

relative strength of V2 boundaries. The stronger boundaries quickly eliminate all other weaker 

vertical boundaries receiving only monocular input via disparity filter line-of-sight inhibition. 

Because they share monocular inputs, the two sets of vertical boundaries in the fourth plot, both 

of which receive binocular input, cooperate via the disparity filter to inhibit the vertical 

boundaries of the middle bar representation of the second plot, which also receive binocular 

input. The final V2 boundary representations are shown in the fourth row of Figure 16a. The 

model correctly predicts that subjects see both bars in the far depth plane. 

 In a more complicated version, either eye was presented with three identical bars with the 

same high contrast. The simulation is shown in Figure 17. The explanation is similar and hereby 

omitted. 

 In the first contrast variation experiment by Smallman and McKee (1995), either eye was 

presented with two bars, but the left bar of the left input had a much lower contrast than the other 

three bars.  Subjects reported perceiving the lower contrast bar to lie in the fixation plane while 

also perceiving two high contrast bars, the left lying in a near depth plane and the right lying in a 

far depth plane. The explanation is similar to that of the Grossberg and Howe (2003) model since 

the relative strength of boundaries is still not undermined by surface-to-boundary feedback. A 

detailed explanation for this case will nonetheless be given because it shows that the bias in favor 

of the fixation plane is needed. The explanation is as follows: Because of its contrast difference, 

the left bar of the left input cannot be binocularly fused with either of the bars of the right input.  

Instead, the right bar of the left input binocularly matches with both bars of the right input in the 

near and far depth planes in V1, respectively, as shown by the second and fourth plots of the 

second row of Figure 18a.  As usual, the monocular boundary representations are added to all 

depth planes in V2 layer 4 along their respective lines-of-sight, as shown by the plots in the third 

row of this figure.  The V1 binocular boundary representations are also added to V2 layer 4, 

coinciding with the middle bar representation of the second plot and the right bar representation 

of the fourth plot. All boundaries in V2 layer 4 then input into V2 layer 2/3. The two sets of 

boundaries which receive binocular input from V1, being stronger, create stronger monocular  
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Figure 16. Simulation of the control experiment of the correspondence problem studied by 

Smallman and McKee (1995). 
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Figure 17. Simulation of a more complicated variation of Fig.16. 
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(b) 

 

Figure 18. Simulation of a contrast variation of the correspondence problem reported by 

Smallman and McKee (1995). 
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Figure 19. Simulation of another contrast variation of the correspondence problem reported by 

Smallman and McKee (1995). 

 



 34

surfaces in the V2 thin stripes via filling-in, which then send stronger surface-to-boundary 

feedback signals to these stronger V2 boundaries. Therefore, surface-to-boundary feedback does 

not undermine the relative strength of V2 boundaries. The two sets of boundaries which receive 

binocular input from V1 remains stronger, which then eliminate those weaker vertical boundary 

representations that share their lines-of-sight via disparity filter line-of-sight inhibition.   

 However, except in the far depth plane, where the lower contrast bar coincides with the left 

high contrast bar of the right input, they do not eliminate the vertical boundary representations of 

the lower contrast bar in all other depth planes because these boundaries do not share any of their 

lines-of-sight. Here is where the bias to the fixation plane is relevant. Since the fixation plane is 

favored, the vertical boundary representation of the lower contrast bar in the fixation plane 

eliminates its boundary representations in other depth planes via disparity filter line-of-sight 

inhibition. The final V2 boundary representations are shown in the plots of the fourth row in 

Figure 18a. As usual, V4 fills in those regions that are completely enclosed by connected 

boundaries, as shown in the top row. 

 In the second contrast variation experiment, Smallman and McKee (1995) studied the 

inverse situation where the left bar of the left input had a much higher contrast than the other 

three bars, which all had the same contrast. The model simulation is shown in Figure 19. The 

explanation is similar and therefore omitted. 

 3.3.3. The Venetian blind effect. A Venetian blind stereogram consists of two gratings, a 

low frequency one that is presented to the left eye, and a high frequency one presented to the 

right (Howard and Rogers, 1995). When fused, the frequency of the gratings are such that every 

second bar of the left grating is in retinal correspondence with every third bar of the right grating. 

The model simulation is shown in Figure 20, which shows the perceived Venetian blind effect in 

the fifth row of Figure 20a. As before, surface-to-boundary feedback does not undermine the 

relative strength of V2 boundaries. The enhanced model therefore explains this case as well as 

Grossberg and Howe (2003), and thus the detailed explanation is omitted. 

 3.3.4. Experiments of Gillam et al. (1999). As discussed in Section 3.1, the enhanced model 

correctly predict variations of da Vinci stereopsis in Nakayama and shimojo (1990). Now we 

consider the da Vinci stereopsis experiments in Gillam et al. (1999). These experiments were 

simulated in Grossberg and Howe (2003), but the enhanced model gives a more consistent 

explanation. 

 In Figure 21, the right eye sees two thin bars and the left eye a single thick bar. Subjects 

report seeing two thin bars, the left in the near disparity plane and other in the far disparity plane. 

The model explanation is as follows. The left edge of the thick bar fuses with the left edge of the 

left thin bar to appear in a near disparity plane in V1, represented by the second plot of the 

second row, while the right edge of the thick bar fuses with the right edge of the right thin bar to 

appear in a far disparity plane in V1, represented by the fourth plot of this row, since in both 

cases these edges have the same contrast.  The two other vertical edges of the thin bars of the 

right input are registered only monocularly because they cannot be matched to either of the edges 

of the left input.   

 As usual, the V1 monocular boundary representations are added to all depth planes in V2 

layer 4 along their respective lines-of-sight. The V1 binocular boundary representations are also 

added to V2 layer 4, overlapping with the leftmost vertical boundary in the second plot and the 

rightmost vertical boundary in the fourth plot. All boundaries in V2 layer 4 then input into V2 

layer 2/3 which acts as disparity filter. The boundaries in V2 layer 2/3 also control the formation 

of monocular surfaces in the V2 thin stripes, which generate surface-to-boundary feedback  
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Figure 20. Simulation of the Venetian blind effect in Howard and Rogers (1995). 
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(b) 

 

Figure 21. Simulation of the da Vinci stereopsis studied by Gillam et al. (1999). 
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Figure 22. Simulation of a variation of the original da Vinci stereopsis of Fig. 21. 

 



 38

signals. Initially all boundaries receive such signals. The stronger vertical boundaries, which 

receive binocular inputs from V1 − namely, the leftmost vertical boundary in the second plot and 

the rightmost vertical boundary in the fourth plot − eliminate all the other weaker vertical 

boundaries that share any of their lines-of-sight via the line-of-sight inhibition of the disparity 

filter. Although they do not inhibit those vertical boundary representations originating from the 

two monocularly viewed edges of the right input, because these vertical boundaries do not share 

any of their lines-of-sight, the vertical boundary representations of monocularly viewed edges in 

the near and far depth planes may be defeated by their corresponding representations in the 

fixation plane, which is biased.  

 This does not happen due to surface-to-boundary feedback. The reason is as follows. The 

boundary representations of binocularly viewed edges of the right input in the fixation plane are 

quickly eliminated by their stronger corresponding representations in the near and far planes. 

Once this happens, the connected boundaries for the two thin bars of the right input in the 

fixation plane are both destroyed, and hereby the corresponding monocular surfaces cannot be 

filled in. As a result, the boundary representations in the fixation plane of two monocularly 

viewed edges of the right input do not receive surface-to-boundary feedback signals and hereby 

are suppressed. The boundary representations of two monocularly viewed edges of the right 

input in the near and far depth planes thus survive. The final V2 boundary representations are 

shown in the fourth row. As usual, V4 fills-in surfaces in those regions that are completely 

enclosed by connected boundaries, resulting in the percept of a thin near bar and a thin far bar, as 

reported experimentally by Gillam et al. (1999). 

 In the previous display, at least one edge of each region could be binocularly fused. In 

contrast, Figure 22 depicts a variant of the original Gillam et al. display. Here, the left eye sees a 

single bar while the right eye sees three separate bars. The middle bar of the right eye stimulus 

cannot be binocularly fused with any vertical edge of the left bar. 

 The model explanation of this percept is as follows. The left edge of the bar of the left input 

again fuses with the left edge of the leftmost bar of the right input to form a binocular boundary 

in the second plot of the second row of Figure 22a. The right edge of the bar of the left input 

again fuses with the right edge of the rightmost bar of the right input to form a binocular 

boundary in the fourth plot of the second row. As usual, the monocular boundaries are added to 

V2 layer 4 along their respective lines-of-sight, as shown by the third row. The binocular V1 

boundaries are also added to V2 layer 4, overlapping with the first vertical boundary in the 

second plot and the last vertical boundary in the fourth plot of the third row. All boundary signals 

in V2 layer 4 then input into V2 layer 2/3. The boundary grouping in layer 2/3 controls 

monocular surface filling-in in the V2 thin stripes.  

 The successfully filled-in surfaces send surface-to-boundary feedback signals to V2 layer 

4. Initially, all monocular surfaces are successfully filled-in, and hereby all boundaries in V2 

layer 4 receive surface-to-boundary signals. The V2 vertical boundaries which receive binocular 

inputs from V1 − namely, the first vertical boundary in the second plot and the last vertical 

boundary in the fourth plot of the third row − being much stronger, eliminate all the other weaker 

vertical boundaries that share any of their lines-of-sight via the line-of-sight inhibition of the 

disparity filter. In particular, the first and last vertical boundaries in the fixation plane are 

eliminated. As a result, the monocular surface representations of the outer two thin bars of the 

right input associated with the fixation plane cannot be filled in. Therefore, the remaining 

boundaries of the two thin bars in the fixation plane are suppressed, since they do not receive 

surface-to-boundary signals any more, and hereby the corresponding vertical boundary 
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representations of monocularly viewed edges of the two thin bars in the near and far depth planes 

survive, even though the fixation plane is favored. The vertical boundary representations of the 

middle bar of the right input in the fixation plane win against their corresponding representations 

in other depth planes, since the fixation plane is favored. The final V2 boundaries are shown in 

the fourth row of Figure 22a. As usual, V4 fills-in surfaces in those regions that are completely 

enclosed by connected boundaries. The model therefore correctly predicts that three surfaces will 

be seen, each at a different depth, as reported experimentally by Gillam et al. (1999).  

 3.3.5. Stereopsis with opposite-contrast stimuli. A polarity-reversed stereogram studied by 

Grossberg and Howe (2003) is shown in the middle two plots in the bottom row of Figure 23a, 

where the left eye sees a black bar and the right eye a white bar both on the same gray 

background. Subjects reported perceiving a black bar abutting a white bar in a far depth plane. 

The enhanced model can give a better explanation of this percept than the Grossberg and Howe 

(2003) model. The initial stages of this explanation are similar to those of the Grossberg and 

Howe (2003) model. Since they have the same contrast polarity, the left edge of the white bar 

binocularly fuses with the right edge of the black bar to form a vertical boundary in the far depth 

plane of V1, as shown by the fourth plot of the second row. As usual, the monocular boundaries 

are added to V2 layer 4 along their respective lines-of-sight, as shown in the third row. The 

vertical binocular boundary in V1 is also added to V2, coinciding with the middle vertical 

boundary in the far depth plane, as shown in the fourth plot of the third row. All boundaries in 

V2 layer 4 then input into V2 layer 2/3, which controls monocular surface filling-in within the 

V2 thin stripes. The successfully filled-in surfaces then send surface-to-boundary feedback 

signals to V2 layer 4. Initially, all monocular surfaces are successfully filled-in and therefore all 

V2 boundaries receive surface-to-boundary feedback signals. The V2 boundary which receives 

input from the V1 binocular boundary − namely, the middle boundary in the fourth plot of the 

third row of Figure 23a − being much stronger, quickly eliminates the middle two vertical 

boundaries in all other depth planes via disparity filter line-of-sight inhibition. This destroys the 

connected boundary contours in all depth planes other than the far depth. As a result, the 

corresponding V2 monocular surfaces are no longer successfully filled-in. As a result, except for 

those in the far depth plane, all remaining boundaries in other depth planes are suppressed since 

they do not receive surface-to-boundary signals anymore. Therefore, even though the fixation 

plane is favored, the outer two vertical boundaries in the far depth plane can survive, as shown in 

the fourth plot of the fourth row of Figure 23a. As usual, V4 fills in those regions that are 

completely enclosed by connected boundaries, as shown in the top row. The model hereby makes 

the correct prediction. 

 A variation of the above polarity-reversed stereogram is shown in the middle two plots of 

the bottom row of Figure 24a, where the black bar and the white bar are in the corresponding 

retinal positions. Since the polarities are reversed, they cannot fuse in that position. Subjects 

correspondingly report no stable surface percepts (Grossberg and Howe, 2003). The model 

simulation is showed in Figure 24. Since surface-to-boundary feedback does not reduce the 

relative strength of the stronger boundaries, the model explanation is very similar to that in 

Grossberg and Howe (2003) model and is thus omitted. 

 Nakayama and Shimojo (1990) studied the polarity-reversed da Vinci stereopsis stimuli 

shown in the middle two plots in the bottom row of Figure 25a, where the binocularly viewed 

thick bar and monocularly viewed thin bar had opposite luminance polarities. The model 

simulation is shown in Figure 25.  
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Figure 23. Simulation of stereopsis with a polarity-reversed sterogram. 
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Figure 24. Simulation of a variation of Fig. 23. 



 42

 
(a) 

 

 
(b) 

 

Figure 25. Simulation of the polarity-reversed da Vinci stereopsis studied by Nakayama and 

Simojo (1990). 
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The explanation is the same as the original da Vinci stereopsis case in Figure 6, except here the 

right edge of thick bar of the left input fuses with left edge of thin bar since they have the same 

contrast polarity. 

 

4. Discussion 

The present article predicts how complementary boundary and surface processes work 

together to explain challenging psychophysical data about stereopsis and 3D planar surface 

perception. In so doing, it shows how mechanisms that have previously helped to explain data 

about 3D figure-ground separation, notably the separation in depth of occluding and occluded 

objects, also help to explain data about stereopsis per se.  

To realize this goal, the article develops a laminar model of visual cortex that embodies 

two major new hypotheses: (1) Grouping suppresses false matches: The model predicts how 

long-range grouping processes in layer 2/3 of V2 include inhibitory interneurons which realize a 

disparity filter that eliminates false matches. In other words, the Gestalt grouping problem 

subsumes the binocular false match problem. The model predicts that the disparity filter consists 

of line-of-sight inhibitory interactions in the pale stripes of V2; see Figure 5a. A disparity filter 

with line-of-sight inhibition was first introduced into the modeling literature to simulate 

stereopsis data in Grossberg and McLoughlin (1997) and McLoughlin and Grossberg (1998), but 

without a laminar interpretation. These inhibitory interactions include a fixation plane advantage, 

which may develop due to expansion of cortical receptive fields at the fixation plane. The model 

predicts that disparity filter inhibition is part of a network of inhibitory interactions that also 

includes inhibitory interneurons, which are predicted to interact with long-range excitatory 

horizontal connections to achieve a bipole property during perceptual grouping (Grossberg, 

Mingolla, and Ross, 1997; Grossberg and Raizada, 2000). Grossberg and Williamson (2001) 

simulated how the inhibitory interneurons that subserve the bipole property may develop in 

response to visual inputs. Similar developmental rules may also control development of the line-

of-sight inhibitory connections that form part of the disparity filter. Demonstrating this remains a 

task for future work. (2) Surface-to-boundary feedback modulates grouping strength: Reciprocal 

connections between the thin (surface) and pale (boundary) stripes in V2 have earlier been 

predicted to ensure that the boundaries and surfaces that emerge in conscious percepts are 

consistent, even though the rules whereby they are formed are complementary (Grossberg, 1994, 

2000). These reciprocal interactions are, we would suggest, one reason why the hypothesis that 

there are functionally separate cortical processing streams is continually challenged. Our results 

clarify how these complementary intra-stream rules may seem to be blended, at least as 

measured in neurophysiological recordings, due to reciprocal interactions between the streams. 

The simulations herein suggest that surface-to-boundary feedback makes unnecessary the 

cyclopean inhibition, or inhibition across depth but within position, that was needed by 

Grossberg and Howe (2003) to explain some stereopsis data. Hypothesis (1) is new. Hypothesis 

(2) has been used before to explain and simulate a wide range of data about 3D figure-ground 

perception (Grossberg, 1994, 1997; Kelly and Grossberg, 2000). It was also used to simulate one 

case of da Vinci stereopsis by Grossberg and McLoughlin (1997). Here it is shown how surface-

to-boundary feedback helps to explain a wider range of daVinci stereopsis cases than the 

Grossberg and Howe (2003) model could handle, and does so without the need for cyclopean 

inhibition within the disparity filter.  

One of the main predicted properties of surface-to-boundary feedback is that only 

connected boundaries, which can contain filling-in within the surface stream, can generate 
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feedback signals to the boundary stream at the contours of the filled-in surfaces, and that 

horizontal boundaries are added to all depth planes for this to happen (Figure 4). Yazdanbakhsh 

and Watanabe (2004) have successfully tested this prediction. 

The combination of FACADE figure-ground mechanisms and 3D LAMINART 

stereopsis mechanisms that were unified in this article have made it possible to explain an even 

wider range of data about 3D vision and figure-ground perception than was previously possible. 

These include stratification, transparency, and 3D neon color spreading (Grossberg and 

Yazdanbakhsh, 2003a, 2003b, 2005), 3D percepts of curved and slanted 2D pictures and 3D 

scenes, including bistable percepts such as the Necker cube and binocular rivalry (Grossberg and 

Swaminathan, 2004; Yazdanbakhsh and Grossberg, 2005), and the perception of sparse and 

dense textured Julesz stereograms (Fang and Grossberg, 2004).  

The work on transparency makes detailed predictions about how multiple parts of visual 

cortex work together to determine when surfaces appear opaque or transparent. In particular, the 

Grossberg and Yazdanbakhsh (2005) transparency simulations utilize the predicted mechanism 

that boundaries of occluded surfaces are broken when an occluding surface appears in front. 

Such a boundary gap predicts that contrasts can flow, of fill-in, between the surface regions that 

are separated by the broken boundary, thereby leading to a change of perceived brightness. Tse 

(2005) has demonstrated changes of perceived brightness that are consistent with this prediction 

during percepts of bistable transparency. The model predicts that color mixing should be 

perceivable across such a boundary gap in a bistable transparency display that is suitably 

constructed, say by using watercolor illusion stimuli (Pinna, Brelstaff, and Spillmann, 2001; 

Pinna and Grossberg, 2005). Multiple modeling and data constraints suggest that surface filling-

in occurs at more than one stage of cortical processing between V1, V2, and V4 (Grossberg, 

1994; Grossberg and Hong, 2004; Kelly and Grossberg, 2000). It remains to definitely test 

whether the predicted interactions between cells in different thin stripes of V2 support one level 

of this predicted surface filling-in process.  

The proposed explanations and simulations of slanted and curved surface perception, 

notably simulations of Necker cube bistability and binocular rivalry, consistently extend the 

mechanisms that are used to simulate the data herein. In particular, Grossberg and Swaminathan 

(2004) showed how bipole cells, angle cells, and disparity-gradient cells can all develop from the 

same developmental growth rules in response to different statistics of visual scenes. Grossberg 

and Sqaminathan (2004) summarize psychophysical and neurobiological evidence that supports 

the existence of these cell types. Angle and disparity-gradient cells are predicted to enable 

boundary groupings to form across multiple depths. For example, in a 2D picture of a 3D cube, a 

line that is neither horizontal nor vertical can often be part of a surface whose depth changes 

from near-to-far or from far-to-near, depending on where it is attached to the cube. The same line 

can be part of a flat 2D surface as well.  Contextual interactions between angle cells, disparity-

gradient cells, and bipole cells are predicted to determine which depth relations (flat, near-to-far, 

far-to-near) are perceived in the cube percept. In the Necker cube simulations, boundary gaps 

form in the weaker of two intersecting boundaries. As in the case of transparency, these gaps 

enable one surface to be seen in front of another, until the percept switches. The Tse (2005) 

experiment supports this explanation of bistable Necker cube percepts as well as those of bistable 

transparency.  

In addition to these expanding the cell types involved in perceptual grouping, the work on 

bistable percepts predicts that habituative transmitter gates (Grossberg, 1968, 1969, 1980; 
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Francis, Grossberg, and Mingolla, 1994), also called depressing synapses (Abbott et al., 1997), 

help to weaken an active perceptual representation and thereby enable a competing perceptual 

interpretation to supplant it. Earlier work predicted that these habituative transmitters play a 

basic role in controlling the development of visual cortex (Grossberg, 1976; Grossberg and Seitz, 

2003) and in controlling the form-sensitive reset of boundary groupings in response to changing 

scenes (Francis, Grossberg, and Mingolla, 1994). Necker cubes and binocular rivalry stimuli just 

happen to confront these mechanisms with an approximately balanced set of two or more 

perceptual representations. The fact that the habituative transmitters exist within recurrent 

cooperative and competitive circuits that are used in perceptual filtering, grouping, and attention 

is predicted to lead to the perceived switches in the two types of percepts. 

The work on Julesz stereograms provides the first simulations of how perceived 

lightnesses are lifted, via surface capture, to their correct surfaces in depth when, as in a dense 

stereogram, the correspondence problem is a serious challenge. This work also shows how 

surfaces can be perceived at different depths even if their inducers are sparse. Both of these 

explanations rely on the types of 3D boundary groupings that are simulated here, as well as upon 

how these 3D boundaries can selectively capture lightnesses on surfaces that are seen at different 

depths. One key stage of this depthful-surface capture process is predicted to occur in the thin 

stripes of cortical area V2; see Figure 5 and Grossberg (1994, 1997) for further discussion of the 

surface capture process. These stereogram simulations have brought the 3D LAMINART model 

to the threshold of being able to process natural 3D scenes.  

In all of these cases, detailed properties of the neurophysiology and anatomy of visual 

cortex are functionally linked to specific properties of conscious percepts. Given the range of 

phenomena that now have explanations, new types of experiments have been designed to further 

test the predicted processes. Some of the successfully tested predictions are summarized above. 

Every model neurophysiological property of an identified cell type, anatomical connection 

between identified cell types, and perceptual property that emerges from rigorously characterized 

model interactions among these neurobiologically identified elements constitutes a prediction 

that can be tested by multiple experimental methods using several different types of visual 

stimuli. Additional tests of these interdisciplinary predictions are eagerly awaited. 
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Appendix A. Model Equations 

 This section describes the model equations. Each neuron is typically modeled as a single 

voltage compartment in which the membrane potential, v(t), is given by 

  ),())(()())(())((
)(

tgtvEtgtvEgtvE
dt

tdv
C inhibinhibexcitexcitleakleakm −+−+−=      (A1) 

where parameters E denote reversal potentials, gleak is a constant leakage conductance, and the 

time-varying conductances gexcit(t) and ginhib(t) represent the total excitatory and inhibitory inputs 

to the cell (Grossberg, 1973; Hodgkin, 1964). By setting the capacitance term 1=mC , the 

leakage conductance Ag leak = , and the reversal potentials BEexcit = , CEinhib −= , and 0=leakE , 

the membrane equation (A1) can be rewritten in the form, 

 inhibexcit gvCgvBAv
dt

dv
)()( +−−+−= ,                            (A2) 

where A is a constant decay rate, B is the maximum membrane potential, C is the minimum 

membrane potential, gexcit is the total excitatory input, and ginhib is the total inhibitory input. In the 

following simulations, a single set of parameters was used. For simplicity, the same parameter 

symbol (e.g., α) in different equations may be used, but it does not always represent the same 

value. Its value in each equation is given below. Each eye's stimulus was presented on a grid 30 

units high and 60 units wide except Figure 17 which was presented on a 30 by 70 grid and Figure 

20 which was presented on a 30 by 115 grid. In all simulations, the background had a luminance 

value, in arbitrary units, of 2. In Figures 6-22, the light gray bars (if any) had a luminance of 0.4 

and the dark gray bars 0.1. In Figures 23-25, white bars were represented by a luminance of 40, 

and black by 0.1. Simulations were performed using the Matlab software package. 

 LGN. The LGN cells obey membrane equations that receive input from the retina and are 

assumed to have circularly symmetric on-center, off-surround receptive fields. When these fields 

are approximately balanced, the network discounts the illuminant and contrast-normalizes its cell 

responses (Grossberg and Todorović, 1988). The LGN cell membrane potentials, RL

ijx / , obey the 

following differential equation: 
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where L/R designates that the cell belongs to the left or right monocular pathway, indices i and j 

denote the position of the input on the retina, α is a constant (10
-5

) that represents the rate of 

decay of the cell membrane potential, β  is a constant (9.9) that represents the maximum 

membrane potential, RL

ijI /  is the luminance of the left or right retinal image that represents the 

excitatory on-center, and pqijG  is a Gaussian kernel that represents the inhibitory off-surround: 
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where σ  represents the size of the kernel (1.5).  The steady-state cell membrane potentials of 

these cells are given by: 
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The steady-state equation (A5) was used in the simulations.  

 V1 layer 4 simple cells. All cells in V1 layer 4 are modeled as monocular simple cells that 

are sensitive to either dark-light or light-dark contrast polarity, but not both, depending on their 

receptive field structure. At steady-state, the membrane potentials, +,/ RL

ijks , of simple cells that 

respond to dark-light contrast polarity are given by: 

 [ ]∑ +

++
+ Κ=

qp

RL

qjpipqk

RL

ijk xs
,

/

,

,/ .                           (A6)   

where the superscript L/R,+ means L+ or R+. L denotes left monocular, R denotes right 

monocular, + indicates that the simple cell responds to dark-light contrast polarity, and k denotes 

orientation. Two orientations (vertical (k=1) and horizontal (k=2)) were used in these 

simulations, the threshold linear function [ ] ( ),0,max xx =+
 and pqkΚ  is a Gabor function 

representing the simple cell receptive field kernel: 
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where φ ,τ ,
pσ ,

qσ  are constants (4.4, 3π, 0.6, 0.6) representing the amplitude and dimensions 

of this kernel; pr =  for cells that respond to vertical boundaries; and qr =  for those that 

respond to horizontal boundaries.  

 The cell membrane potentials of the simple cells with light-dark contrast polarity are the 

inverse of the previous cell membrane potentials:  

 [ ]∑ +
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 V1 Layer 3B monocular simple cells. At steady-state the membrane potentials, −+ /,/ RL

ijkb , of 

the layer 3B monocular simple cells are given by:  

 [ ]+−+−+ = /,//,/ 2 RL
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RL

ijk sb .                           (A9) 

where the multiplicative factor of 2 compensates for the fact that the monocular simple cells 

receive inputs from only one eye whereas the binocular simple cells, discussed in the next 

section, receive input from both eyes.  

 V1 Layer 3B binocular simple cells. The layer 3B binocular simple cells receive excitatory 

input from layer 4 and inhibitory input from the layer 3B inhibitory interneurons that correspond 

to the same position and disparity.  The membrane potentials, −+ /,B

ijkdb ,  of layer 3B simple cells 

obey the equation: 
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where 1γ , α  and θ  are constants (0.1, 7.2, 0.4) representing the rate of decay of the membrane 

potential, the strength of the inhibition and the signal threshold, −+ /,/ RL

ijkdq are the membrane 

potentials of inhibitory interneurons in layer 3B,  d is the disparity to which the model neuron is 

tuned and index s is the positional shift between left and right eye inputs that depends on the 

disparity and is defined in Table 1. Index k is the orientation. Here k is vertical since vertical left 

and right eye boundaries are matched. 

 

Table 1.  The allelotropic shift (s) is the amount that the left and right monocular contours must 

be displaced to form a single fused binocular contour.  It depends on the disparity.  It is zero for 

matches in the fixation plane because these matches are between contours at retinal 

correspondence.  Figure 3 illustrates the allelotropic shift and shows that a left monocular 

contour needs to be shifted more to the right for matches that are further from the observer, 

whereas a right monocular contour needs to be shifted in the opposite direction. 

 

Disparity  

(d) 

V. Near 

disparity 

Near 

disparity 

Zero 

disparity 

Far 

disparity 

V. Far 

disparity 

Allelotropic 

shift (s) 

-8 -4 0 +4 +8 

 

The layer 3B inhibitory interneurons receive excitatory input from layer 4 and inhibitory 

input from all other inhibitory interneurons that correspond to the same position and disparity.  

Their cell membrane potentials, −+ /,/ RL

ijkdq , are determined by the following equations:  
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and  
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where 2γ , β  and θ  are constants (4.5, 4, 0.4) representing the decay rate of the membrane 

potential, the strength of the inhibition and the signal threshold. 

 The exact values of parameters α , β , 1γ  and 2γ  are not critical. Under mild constraints 

on these parameters, the interactions of the binocular cells and interneurons make the binocular 

cells act like the “obligate cells” of Poggio (1991), responding vigorously only when their left 

and right inputs are approximately equal in magnitude. Equation (A10) was solved at 

equilibrium, using the equations described in the Obligate Theorem of Appendix B to speed up 

the simulations.  

 V1 Layer 2/3 monocular and binocular complex cells. V1 layer 2/3 consists of both 

monocular and binocular complex cells, which pool the cell membrane potentials of 

monocular/binocular layer 3B simple cells of like orientation and both contrast polarities at each 

position. These complex pyramidal cells also emit long-range, collinear, coaxial connections 

within layer 2/3 whereby they excite each other, as well as short-range, disynaptic interneurons 

that inhibit target complex cells as well as nearby inhibitory interneurons. This balance of 

excitation and inhibition helps to implement a bipole property that controls boundary grouping 

(Grossberg and Mingolla, 1985a, 1985b; Grossberg and Raizada, 2000). The monocular and 
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binocular collinear bipole cells obey the same dynamics but have different inputs. The equation 

for the membrane potential, ijkdc , of binocular collinear bipole cell in V1 layer 2/3 is: 
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where α , β, γ are constants ( ,20=α 7=β , 5.0,1,1 321 === γγγ ). In (A13), c

ijkdI  is the 

input from V1 layer 3B binocular simple cells and is given by: 

 [ ] [ ]( )+−++ −+−= θθμ ,, B

ijkd

B

ijkd

c

ijkd bbI ,                         (A14) 

where μ and θ are constants (20, 0.1). Term Ec

ijkdvH  in (A13) describes excitatory input from the 

long-range connections in V1 layer 2/3 to a complex cell at position (i,j), orientation k and 

disparity d (Grossberg and Swaminathan, 2004). Index v means that the input comes from side v 

of the complex cell. The term ∑
v

E

ijkdv
cH  in (A13) sums inputs from both sides v=1,2 of the 

complex cell. In particular: 
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where cζ  is a constant threshold (0), and c

pqijkvW is the long-range connection weight at 

orientation k and side v from the bipole cell at position (p,q) to the bipole cell at position (i,j). 

The connection weights for the horizontal orientation (k=2) are defined as follows (v=1 for left 

branch and v=2 for right branch): 
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and 
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where 1)( =xsign  if 0>x , -1 if 0<x , and 0 otherwise. The parameters 3.0,8 == qp σσ , and 

the spatial connection range (diameter) is 3. The connection weights for the vertical orientation 

are obtained by rotation.  

Term Ic

ijkdH  in (A13) is the inhibitory input from the inhibitory interneurons, defined by: 

 ∑ +=
v

c

ijkdv

Ic

ijkd sH ][ ,  (A18) 

where c

ijkdvs represents the activity of an inhibitory interneuron associated with the complex cell at 

position (i,j), orientation k, disparity d, and side v. There is an inhibitory interneuron associated 

with each side of a complex cell. This inhibition from the inhibitory interneurons helps to 
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maintain the balance between excitation and inhibition to enforce the bipole property. Potential 
c

ijkdvs is defined by 

 )][( +−+−= c

ijkdu

c

ijkdv

E

ijkdv

c

ijkdvI

c

ijkdv ssHss
dt

d
c ηδ ,  (A19) 

where u, v are the two branches of orientation k, Iδ is a large constant representing the rapid 

response of the inhibitory interneuron, and .1=η  Equations (A13), (A18), and (A19) say that 

inhibitory interneurons inhibit each other as well as their target complex cells. Solving both the 

equations for c

ijkdvs  and c

ijkdus together at steady state, one finds: 

 ηη 2/)4(
2 Ec

ijkdvvv

c

ijkdv HBBs ++−= , (A20) 

and 

 ηη 2/)4(
2 Ec

ijkduuu

c

ijkdu HBBs ++−= ,   (A21) 

 

where )(1 Ec

ijkdv

Ec

ijkduv HHB −+= η  and )(1 Ec

ijkdu

Ec

ijkdvu HHB −+= η .  These steady-state values are 

used in the simulations. 

 A collinear bipole cell has two orientation branches (e.g., left and right for the horizontal 

orientation), either of which is associated with one inhibitory interneuron. Therefore, there are 

two inhibitory interneurons associated with each collinear bipole cell. In (A19), only the related 

two inhibitory cells inhibit each other. A collinear bipole cell will not fire when it receives 

excitatory input from only one side of its long-range connection, but it can fire when it receives 

excitatory inputs from both sides. In (A19), for example, when Ec

ijkduH  equals zero, then c

ijkdus  

equals zero. As a result, c

ijkdvs  equals Ec

ijkdvH . Therefore, the total excitatory input from the long-

range connections equal the total inhibitory input from the inhibitory interneurons, and thereby 

together contribute nothing to fire a cell. But when both Ec

ijkduH  and Ec

ijkdvH  are far from zero, the 

total excitatory inputs are much larger than the inhibitory inputs, which helps to fire a bipole cell. 

In particular, a collinear bipole cell which receives large excitatory inputs from both sides of its 

long-range connection will fire if it is in V2. In V1, this model assumes that the excitatory inputs 

from long-range connections of a bipole cell are modulatory, which help to fire the bipole cell 

only if it also receives excitatory input from layer 4. 

 Term [ ]+− cijkdc βγ 3 in (A13) is self-excitatory feedback, with threshold .03.0=cβ  Term 

P

ijkdC is the inhibitory input at the same position and disparity from other bipole cells with 

different orientations, and is defined by 
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where 54 =γ . Term S

ijkdC is the inhibitory input from spatial competition across position and 

orientation but within disparity. Competition across position helps to sharpen the spatial 

positions of boundaries. Competition across orientation helps to prevent abutting lines from 

generating illusory contours that can penetrate interior lines of a different orientation (Spatial 

impenetrability; Grossberg and Mingolla, 1987; Grossberg and Williamson, 2001). S

ijkdC  is 

defined by 
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where 15 =γ , and pqijkW  is an elliptic Gaussian kernel elongated at the orientation perpendicular 

to orientation k. The kernel pqijkW for vertical orientation (k=1) is defined as follows 
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where qp σσ >  ( 8=pσ , 3.0=qσ ). The kernel for horizontal orientation is obtained by 

appropriate rotation. 

The membrane potential, RL

ijkc / , of a monocular complex cell obeys the same equation as 

binocular complex cell ijkdc : 
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where RLc

ijkI /, is the input from V1 layer 3B monocular simple cells that is defined by: 

 [ ] [ ]+−++ −+−= θθ ,/,//, RL
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RL
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ijk bbI .                         (A26) 

The parameters ,20=α 8=β , and 4.0=θ . The other parameter values are the same as in the 

binocular case. 

 V2 layer 4. In V2, virtually all cells are binocularly driven (Hubel and Livingstone, 1987) 

consistent with the model hypothesis that the left and right monocular inputs are combined in 

layer 4 of V2. Since the monocular inputs do not yet have a depth associated with them, they are 

added to all depth planes along their respective lines-of-sight. Initially, the membrane potential, 

ijkdv ,  of a V2 layer 4 cell is thus: 
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where s is the positional shift between left and right eye input that is defined in Table 1; h is the 

signal function with h(x)=1 if x>0, 0 otherwise; θ and mθ  are constants representing the signal 

thresholds (0.06, 0.3); and α and β  are constants (2.6, 0.8) representing the strength of the 

binocular and monocular connections. 

 The V2 layer 4 cells also receive feedback signals from the left and right V2 monocular 

surfaces (to be defined later) operating from V2 thin stripes to pale stripes. These are the surface-

to-boundary feedback signals that were discussed in constraint (7) of Section 1. These signals 

modulate the activities of V2 layer 4 boundary cells. At steady-state, ijkdv  is defined by: 
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where ijkdf  is the total surface-to-feedback signal, fα is a constant (1.1) that scales the strength 

of surface-to-boundary feedback signals, and α, β, h, θ and mθ  are the same as in (A27). The 

parameter δ is a constant (0.2) that scales the activities of layer 4 cells. A choice of 1<δ  implies 
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that the activities of layer 4 cells that do not receive surface-to-boundary feedback signals are 

suppressed to some degree. The surface-to-boundary feedback signal ijkdf  is given by  

 ++ −+−= ][][ f

R

ijkdf

L

ijkdijkd fff θθ ,  (A29) 

where L

ijkdf  and R

ijkdf  are the left and right eye surface-to-boundary feedback signals, respectively, 

and fθ is a constant signal threshold (0.03). 

 V2 layer 2/3 complex cells. The V2 layer 2/3 cells receive input from V2 layer 4. The 

bipole cells in V2 layer 2/3 implement perceptual grouping by long-range horizontal 

connections. The model also proposes the disparity filter can be realized as part of the inhibitory 

interactions that control perceptual grouping. See constraint (5) of Section 1. The membrane 

potential, ijkdg , of the bipole cell in V2 layer 2/3 at position (i,j) that codes orientation k and 

disparity d obeys the equation: 
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where α , β, γ1 and γ2 are constants ( ,30=α  10=β , 1,4.1
21 == γγ ). 

 Term g

ijkdI in (A30) is the input signal from V2 layer 4 that is given by: 

 += ][ ijkd

g

ijkd vI .  (A31) 

The V2 layer 2/3 collinear bipole cells receive long-range input from other (almost) collinear and 

coaxial bipole cells at nearby positions with the same disparity preference. Term gE

ijkdvH is the 

input from branch v of the bipole cell at position (i,j), orientation k and disparity d: 

 ∑ +−=
pq

gpqkd

g

pqijkv

Eg

ijkdv gWH ][ ζ .                                                  (A32) 

The long-range connection weight g

pqijkvW  is the same as c

pqijkvW  in (A16) and (A17), but with a 

larger spatial range (diameter = 7) and 15=pσ , 1.0=qσ , and 03.0=gζ . Term Ig

ijkdH  is the 

inhibitory input from the inhibitory interneurons, defined by: 
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with the activity, g

ijkdvs , of the inhibitory interneuron for branch v being defined by: 
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where u, v are the two branches of orientation k, and parameters Iδ  and η  are the same as in 

(A19). 

 Each V2 layer 2/3 bipole cell also receives inhibitory input from other bipole cells that 

share either of its monocular inputs (line-of-sight competition). Term P

ijkdG  in (A30) is the 

inhibition across disparities along the lines-of-sight: 
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where 3γ  is a constant (5) which scales the total inhibition that each cell receives; 'ddM  is the 

strength of line-of-sight inhibition from all other cells that share a monocular input between 

disparities d and d’ (see Table 2); and +
−+ − ][ ')'( gjkdssig β  and +

−+ − ][ ')'( gjkdssig β are V2 layer 2/3 

bipole cell inhibitory inputs along the left and right lines-of-sight with positional shifts s and s’ 

(see Table 1) and inhibitory signal threshold gβ (0.03). 

 

Table 2.  The inhibition coefficients 'ddM  that define line-of-sight inhibition. Each neuron is 

inhibited by every other neuron that shares either of its inputs by an amount that depends on the 

disparities of the inhibited and inhibiting neurons (cf. Figure 3). 

 

 V. Near Near Zero Far V. Far 

V. Near - 3 5 3 2 

Near 0.4 - 2.5 2 0.4 

Zero 0.3 1.5 - 1.5 0.3 

Far 0.4 2 2.5 - 0.4 

V. Far 2 3 5 3 - 

 

 The disparity filter ( PG ) in (A30) is robust in that its behavior is stable across a range of 

parameter values.  The key features of the disparity filter, as illustrated in Table 2, is that it is 

symmetrical about the fixation plane (i.e., the near and far disparity planes equally inhibit and are 

equally inhibited by the zero disparity plane) and that it favors the zero disparity plane in that 

this plane inhibits the near and far disparity planes more than they inhibit it.  

 V2 thin stripe monocular surface filling-in. V2 thin stripes receive lightness signals from 

LGN via V1 blobs and binocular boundary signals from V2 layer 2/3 bipole cells to generate 

monocular surface filling-in. The boundary signals received from V2 layer 2/3 create resistive 

barriers to the filling-in process. Following Grossberg and Todorović (1988), the filling-in is 

modeled by a diffusion equation as follows: 

 ∑
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where rate parameter 1<<ε , represents that the monocular surface filling-in process in the thin 

stripes is faster than the grouping process in V2 layer 2/3; α is the decay rate (1.0); RL

ijdF /  is the 

membrane potential of the left/right stripe cell at position (i,j) and disparity d; and ijN is the set 

of the nearest-neighbor locations of (i,j): 

 ( ) ( ) ( ) ( ){ }1,,,1,,1,1, ++−−= jijijijiN ij ; (A37) 

and RL

ijdx /  is the lightness signal from left/right LGN, given by: 
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and  
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where s is the positional shift defined in Table 1. The diffusion-gating coefficients, pqijdΦ , in 

(A36) represent the inhibition of the diffusion by the boundary signals from V2 layer 2/3. They 

are defined by: 
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where the spread scale parameter 2000=δ , and the blocking scale parameter 200=ρ . The 

boundary terms in these equations sum over all orientations of bipole cell activations: 

 ∑ +−=
k

gijkdijd gg ][ θγ , (A44) 

with 10=γ and signal threshold .03.0=gθ  Thus any large boundary value at the nearest 

neighbor locations reduces the diffusion coefficient pqijdΦ  and thereby blocks filling-in. 

 As shown by equations (A40)-(A43), the boundary lattice is offset by [0.5, 0.5] relative to 

the lightness lattice, corresponding to the idea that these two processing streams are spatially 

displaced with respect to one another in the cortical map. Spurious lattice edge effects were 

avoided by using the wrap-round technique according to which the last element of a row/column 

is adjacent to the first element of the same row/column (Grossberg and Howe, 2003). 

 Solving (A36) at steady-state yields: 
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This steady-state equation is used in the simulations.  

 In each time step of boundary grouping, monocular surfaces are filled-in and then generate 

surface-to-boundary feedback signals. 

 Surface-to-boundary feedback signals. The V2 monocular surfaces in the thin stripes 

generate surface-to-boundary feedback signals to the V2 pale stripes to modulate the activities of 

corresponding V2 layer 4 cells; see equation (A28). The simulations show how the surface-to-

boundary feedback signals play a key role in explaining some data.  

 Output signals from the filled-in activities in the V2 thin stripes are derived from oriented 

filters 
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where the Gabor kernel pqkΚ  is defined in equation (A7). 

 The surface-to-boundary signals RL

ijkdf /  are finally defined by 
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 V4. V4 receives lightness signals from the LGN via V1 blobs and V2 thin stripes, and 

boundary signals from V2 layer 2/3 via V1 interblob regions and V2 pale stripes.  It combines 

the monocular lightness signals from the two eyes that correspond to the same 3D location. Its 

binocular lightness input, ijdz , is given by: 

 [ ] [ ]+−
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L

jsiijd xxz )()( , (A49) 

where i, j are positional indices, d the disparity and s the positional shift defined in Table 1. The 

V4 cell membrane potentials, ijdw , undergo binocular surface filling-in that represents the visible 

percept. This process is modeled by a diffusion equation similar to (A36) that is solved at steady-

state: 
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α
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where parameter α=1; ijN is defined in (A37); and pqijdΦ  is defined in (A40)-(A43) with the 

spread scale parameter 1000=δ  and the blocking scale parameter 400=ρ . 
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Appendix B. Obligate Theorem 

 The enhanced model uses a different activation equation (see Equation (A10)) for layer 3B 

simple cells from Grossberg and Howe (2003) model. Here a self-normalized factor is added, 

which is closer to real cell activation. The following theorem shows that the obligate property 

holds at the binocular simple cells in layer 3B. 

Obligate Theorem. Consider the system: 
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where  
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jksis  being monocular simple cell activities that are defined by (A6) and (A8), 

0≥θ , 01 >γ  and 
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 Under these conditions, the system converges exponentially to the unique equilibrium 

specified by (1), (2), (3) and (4) provided that the inputs are constant. Let 
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(4) for all other values of ,, ,
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 The proof of the theorem is similar to the one described in Grossberg and Howe (2003) and 

thus omitted. 
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