
MATHEMATICS OF COMPUTATION
Volume 69, Number 232, Pages 1577–1601
S 0025-5718(99)01163-1
Article electronically published on May 20, 1999

A LANCZOS-TYPE METHOD
FOR MULTIPLE STARTING VECTORS

J. I. ALIAGA, D. L. BOLEY, R. W. FREUND, AND V. HERNÁNDEZ

Abstract. Given a square matrix and single right and left starting vectors,
the classical nonsymmetric Lanczos process generates two sequences of bior-
thogonal basis vectors for the right and left Krylov subspaces induced by the
given matrix and vectors. In this paper, we propose a Lanczos-type algorithm
that extends the classical Lanczos process for single starting vectors to mul-
tiple starting vectors. Given a square matrix and two blocks of right and left
starting vectors, the algorithm generates two sequences of biorthogonal basis
vectors for the right and left block Krylov subspaces induced by the given
data. The algorithm can handle the most general case of right and left start-
ing blocks of arbitrary sizes, while all previously proposed extensions of the
Lanczos process are restricted to right and left starting blocks of identical sizes.
Other features of our algorithm include a built-in deflation procedure to detect
and delete linearly dependent vectors in the block Krylov sequences, and the
option to employ look-ahead to remedy the potential breakdowns that may
occur in nonsymmetric Lanczos-type methods.

1. Introduction

1.1. The Lanczos process for single starting vectors. Given a square matrix
A ∈ CN×N and two nonzero starting vectors r, l ∈ CN , the classical nonsymmetric
Lanczos process [27] is an algorithm that uses three-term recurrences to generate
two sequences of biorthogonal basis vectors for the right Krylov subspace induced
by A and r, and the left Krylov subspace induced by AT and l. Furthermore, the
coefficients of the three-term recurrences define a sequence of n× n matrices T(s)

n ,
n = 1, 2, . . . , that constitute approximations to the given matrix A. More precisely,
the n-th Lanczos matrix T(s)

n represents the oblique projection of A onto the n-th
right Krylov subspace and orthogonal to the n-th left Krylov subspace.

In the Lanczos process in its original form [27], breakdowns or near-breakdowns—
triggered by division by zero or a number close to zero—cannot be excluded. Fortu-
nately, the problem of potential breakdowns and near-breakdowns can be remedied
by incorporating so-called look-ahead techniques into the Lanczos process. The
possibility of such a remedy was first observed by Taylor [38] and Parlett, Taylor,
and Liu [33], who also coined the term “look-ahead”. Since then, there has been

Received by the editor October 10, 1996 and, in revised form, September 22, 1998.
1991 Mathematics Subject Classification. Primary 65F10, 65F15; Secondary 65F25, 65F30.
Key words and phrases. Lanczos algorithm, nonsymmetric matrix, block Krylov subspaces,

biorthogonalization, oblique projection, deflation, breakdown, look-ahead.
The first and the last author were supported in part by the European ESPRIT III Basic

Research Project GEPPCOM #9072. The second author was supported in part by the U.S. NSF
Grants #CCR-9405380 and #CCR-9628786.

c©2000 Lucent Technologies

1577

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1578 J. I. ALIAGA, D. L. BOLEY, R. W. FREUND, AND V. HERNÁNDEZ

extensive research activity in this area, and as a result, the look-ahead Lanczos
process is now well understood; see, e.g., [6, 14, 17, 24] and the references given
therein. The basic principle of the look-ahead Lanczos process is to continue the
algorithm in the event of a breakdown or near-breakdown by relaxing the vector-
wise biorthogonality of the Lanczos basis vectors to a cluster-wise biorthogonality
and by resorting, for the next few iteration steps, to recurrences that are slightly
longer than the three-term recurrences in the classical algorithm.

When applied to large N ×N matrices A, the n× n Lanczos matrices T(s)
n are

often very good approximations to A already for n� N , and this makes the Lan-
czos process a powerful tool for various computational tasks for large matrices A.
We now briefly mention three such applications in large-scale matrix computations.

The first application is the computation of approximate eigenvalues of A. Start-
ing with arbitrary (for example, random) nonzero vectors r and l, one runs the
Lanczos process for n steps to obtain T(s)

n . The eigenvalues of T(s)
n are then used

as approximate eigenvalues of the matrix A; see, e.g., [11].
The second application is the solution of large systems of linear equations,

A x = b.(1.1)

The biconjugate gradient (BCG) algorithm [28] and the quasi-minimal residual
(QMR) algorithm [19, 20] are iterative methods that generate approximations xn
for the solution of (1.1), starting from an arbitrary initial guess x0 and an arbitrary
nonzero left vector l. Both algorithms are intimately connected to the Lanczos
process applied to the matrix A, with starting vectors r := b−A x0 and l. For BCG,
the n-th iterate xn is defined by a Galerkin-type condition that is mathematically
equivalent to solving a small n×n linear system with coefficient matrix T(s)

n , instead
of the large N ×N system (1.1). For QMR, xn is defined by a quasi-minimization
of the residual norm that is mathematically equivalent to solving a small (n+1)×n
least-squares problem whose matrix is T(s)

n , extended by one more row.
A third application is Padé approximation of transfer functions describing large

single-input single-output time-invariant linear dynamical systems. Such transfer
functions are rational functions H : C 7→ C ∪ {∞} of the form

H(s) = lT (I− sA)−1 r,(1.2)

where A ∈ CN×N , r, l ∈ CN are given, and I denotes theN×N identity matrix. An
n-th Padé approximant, Hn, of the function (1.2) is defined as a rational function
with numerator and denominator of degree at most n− 1 and n, respectively, such
that the Taylor expansions of Hn and H about s = 0 match in as many leading
Taylor coefficients as possible. The Padé approximant Hn can be directly obtained
from the Lanczos process applied to A, r, and l; see, e.g., [12, 22, 23]. Indeed,
assuming for simplicity that no look-ahead steps occur in the Lanczos algorithm,
the n-th Padé approximant is simply given by

Hn(s) = lTr eT
1

(
In − sT(s)

n

)−1

e1,(1.3)

where In is the n× n identity matrix and e1 is the first unit vector of length n. A
formula similar to (1.3) holds when look-ahead steps do occur.

1.2. Handling multiple starting vectors. All three applications described in
§1.1 have extensions that involve multiple starting vectors.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

A LANCZOS-TYPE METHOD FOR MULTIPLE STARTING VECTORS 1579

For eigenvalue computations of a matrix A with multiple eigenvalues or clusters
of eigenvalues, it is usually preferable to employ a Lanczos-type method that iterates
on blocks of, say m, vectors, rather than on single vectors; see, e.g., [10, 21, 35].
Such a procedure then involves m right and m left starting vectors.

Some applications require the repeated solution of linear systems (1.1) with the
same matrix A, but different right-hand sides, b1,b2, . . . ,bm, that are all available
simultaneously. These m systems can be summarized in block form:

A X = B, where B :=
[
b1 b2 · · · bm

]
.(1.4)

Applying a block version of an iterative method to (1.4) is often significantly more
efficient than solving the m linear systems individually; see, e.g., [18, 29, 30, 31].
Block versions of BCG and QMR involve a block of m right starting vectors, namely
R := B−A X0, where X0 ∈ CN×m is an arbitrary initial guess for (1.4).

Time-invariant linear dynamical systems with m inputs and p outputs are char-
acterized by matrix-valued transfer functions H : C 7→ (C ∪ {∞})p×m of the form

H(s) = LT (I− sA)−1 R,(1.5)

where A ∈ CN×N , R ∈ CN×m, L ∈ CN×p. Such transfer functions arise in control
theory [5, 36, 37] and in circuit simulation [13]. For functions (1.5), H, one can again
define n-th Padé approximants, Hn, which are now also matrix-valued functions,
i.e., Hn : C 7→ (C ∪ {∞})p×m. Extending the Lanczos-Padé connection (1.3) for
the single-input single-output case, m = p = 1, to the general m-input p-output
case, m, p ≥ 1, requires a Lanczos-type process that can handle m right and p left
starting vectors, namely the columns of R and L, respectively.

These three applications clearly show the need for a Lanczos-type algorithm
for multiple starting vectors. Such an algorithm should be an extension of the
classical Lanczos process for single starting vectors, and generate two sequences of
basis vectors for the right and left block Krylov subspaces induced by the given
matrix and the blocks of right and left starting vectors. In order to obtain a robust
algorithm, the following three key difficulties need to be resolved.

(i) The algorithm needs to include a deflation procedure in order to detect and
delete linearly dependent vectors in the right and left block Krylov subspaces.
This is an issue arising only when using multiple starting vectors. In the
Lanczos process for single starting vectors, encountering a linearly dependent
right or left vector simply means that the corresponding right or left Krylov
subspace is exhausted, i.e., it reached its maximal dimension. The algorithm
terminates normally in this situation.

(ii) The algorithm needs to be able to handle different block sizes in the right
and left block Krylov subspaces. These different block sizes may be due to
different sizes of the starting blocks, i.e., m 6= p, or due to deflation.

(iii) As in the classical Lanczos algorithm for single starting vectors, it cannot be
excluded that breakdowns or near-breakdowns occur. As a result, in general,
look-ahead techniques need to be incorporated.

In this paper, we propose a Lanczos-type algorithm that extends the classical
Lanczos process for single starting vectors to multiple starting vectors, and that can
handle all three difficulties (i)–(iii) listed above. Given a matrix A ∈ CN×N , and
right and left starting blocks R ∈ CN×m and L ∈ CN×p, the algorithm generates
two sequences of biorthogonal basis vectors for the right and left block Krylov
subspaces induced by the given data. The algorithm includes a simple built-in

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1580 J. I. ALIAGA, D. L. BOLEY, R. W. FREUND, AND V. HERNÁNDEZ

deflation procedure, and it can handle the most general case of right and left block
Krylov subspaces with arbitrary sizes m and p of the starting blocks.

The key property of the algorithm, which allows us to resolve the issues (i)–(iii), is
the vector-wise construction of the basis vectors for the block Krylov subspaces. The
vector-wise approach appears to originate with Ruhe [35], where it was applied to
Hermitian matrices. However, we stress that, for Hermitian matrices, the problem
of handling multiple starting vectors is a lot easier for the following two reasons.
First, the right and left block Krylov subspaces are (up to complex conjugation if
A is complex) identical, and thus the complication due to different right and left
block sizes does not arise. Second, the possibility of breakdowns can be excluded,
and hence no look-ahead is needed. We note that, to the best of our knowledge, we
seem to be the first to extend Ruhe’s vector-wise construction of basis vectors for
the Hermitian case to the general case of non-Hermitian matrices.

We remark that early versions of the Lanczos-type algorithm described in this
paper had been developed independently by Aliaga, Boley, and Hernández, and by
Freund, and were presented by Boley [3] and Freund [16] at the same Oberwolfach
meeting in 1994. It was then that we decided to write this joint paper. However,
we would like to stress that the algorithm presented in this paper has evolved quite
a bit from the versions we had in 1994. We also note that, in his doctoral thesis [1],
Aliaga investigated variants of the algorithm that are tailored to parallel computers.

1.3. Related work on block Lanczos methods. The problem of extending the
Lanczos process from single to multiple starting vectors is, of course, not new, and
a number of algorithms have been developed over the years. With the exception
of Ruhe’s algorithm [35] for the Hermitian case, all previously proposed algorithms
use a block-wise construction of block-biorthogonal basis vectors for the underlying
block Krylov subspaces. It is easy to see that any such block-wise approach requires
all right and left blocks to have the same size. In particular, block Lanczos algo-
rithms are restricted to the special case when p = m and possible deflation occurs
simultaneously in the right and left block Krylov subspaces.

Block Lanczos algorithms for Hermitian matrices were first proposed by Cullum
and Donath [9], and Golub and Underwood [21, 39]. Further and more recent work
for the Hermitian case is described in [10, 30, 35] and the references given therein.
We remark that only the algorithms in [9, 10, 30] and Ruhe’s algorithm [35] include
a proper deflation procedure.

For non-Hermitian matrices, O’Leary—with her block BCG algorithm [31]—was
the first to develop a block Lanczos-type method. A block version of the original
three-term Lanczos algorithm [27] was first presented in [25, 26], and a more recent
variant was proposed in [4]. As already pointed out above, all these algorithms are
restricted to the case p = m. Furthermore, none of the existing block Lanczos-
type methods for non-Hermitian matrices has a built-in deflation procedure, nor
are there any look-ahead variants to remedy possible breakdowns.

1.4. Outline. The remainder of this article is organized as follows. In §2, we
introduce our notion of block Krylov subspaces associated with multiple starting
vectors. In §3, we state some basic properties of the Lanczos vectors. In §4, we
describe the construction of the Lanczos vectors. In §5, we present a complete
statement of our Lanczos-type algorithm for multiple starting vectors and discuss
a few implementation issues. In §6, we establish some properties of the algorithm.
In §7, we make some concluding remarks.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

A LANCZOS-TYPE METHOD FOR MULTIPLE STARTING VECTORS 1581

1.5. Notation. Throughout this article, all vectors and matrices are allowed to
have real or complex entries. We use boldface letters to denote vectors and matrices.
As usual, M =

[
mjk

]
, MT =

[
mkj

]
, and MH = M

T
=
[
mkj

]
denote the complex

conjugate, transpose, and the conjugate transpose, respectively, of the matrix M =[
mjk

]
. The vector norm ‖x‖ :=

√
xHx is always the Euclidean norm, and ‖M‖ :=

max‖x‖=1 ‖M x‖ is the corresponding matrix norm. The sets of real and complex
numbers are denoted by R and C, respectively, and N is the set of positive integers.

2. Block Krylov subspaces

From now on, it is always assumed that A ∈ CN×N is a given N ×N matrix,

R =
[
r1 r2 · · · rm

]
∈ CN×m

is a given matrix of m right starting vectors, r1, r2, . . . , rm, and

L =
[
l1 l2 · · · lp

]
∈ CN×p

is a given matrix of p left starting vectors, l1, l2, . . . , lp. We stress that m ≥ 1 and
p ≥ 1 are arbitrary integers, and in particular, m and p need not be identical.

In this section, we introduce our notion of block Krylov subspaces induced by
the data A, R, and L. We start by defining the right and left block Krylov matrix

K(A,R) :=
[
R A R A2 R · · · AN−1 R

]
and

K(AT,L) :=
[
L AT L (AT)2 L · · · (AT)N−1 L

]
,

(2.1)

respectively. The Lanczos-type algorithm constructs biorthogonal basis vectors for
the ascending n-dimensional subspaces, n = 1, 2, . . . , spanned by the first n linearly
independent columns of the matrices K(A,R) and K(AT,L), respectively. To
properly define these subspaces, we need to delete the linearly dependent columns
in (2.1). This is done by scanning the columns of each of the matrices K(A,R)
and K(AT,L) from left to right and deleting each column that is linearly depen-
dent on earlier columns within the same matrix. This process of deleting linearly
dependent columns is referred to as exact deflation in the sequel. Applying ex-
act deflation to (2.1), we obtain the deflated right and left block Krylov matrices
Kdl(A,R) and Kdl(AT,L), respectively. By the structure (2.1) of K(A,R), a col-
umn Aj−1 ri being linearly dependent on earlier columns implies that all columns
Ak ri, j ≤ k ≤ N − 1, are also linearly dependent on earlier columns. An analo-
gous statement holds for the matrix K(AT,L) in (2.1). Consequently, the deflated
Krylov matrices have the following form:

Kdl(A,R) =
[
R1 A R2 A2 R3 · · · Ajmax−1 Rjmax

]
,

Kdl(AT,L) =
[
L1 AT L2 (AT)2 L3 · · · (AT)kmax−1 Lkmax

]
.

(2.2)

Here, for each j = 1, 2, . . . , jmax, Rj is a submatrix of Rj−1, with Rj 6= Rj−1 if,
and only if, exact deflation occurred within the j-th right Krylov block Aj−1 R
in (2.1). (For j = 1, we set R0 = R.) Similarly, for each k = 1, 2, . . . , kmax, Lk is a
submatrix of Lk−1, with Lk 6= Lk−1 if, and only if, exact deflation occurred within
the k-th left Krylov block (AT)k−1 L in (2.1). (For k = 1, we set L0 = L.)

We denote by Kn(A,R) the subspace of CN spanned by the first n columns of
the deflated right block Krylov matrix Kdl(A,R) in (2.2). We call Kn(A,R) the
n-th right block Krylov subspace (induced by A and R). Similarly, the n-th left
block Krylov subspace (induced by AT and L), denoted by Kn(AT,L), is defined

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1582 J. I. ALIAGA, D. L. BOLEY, R. W. FREUND, AND V. HERNÁNDEZ

as the subspace of CN spanned by the first n columns of the matrix Kdl(AT,L)
in (2.2). By construction, the columns of each matrix Kdl(A,R) and Kdl(AT,L)
are linearly independent, and thus both Kn(A,R) and Kn(AT,L) are subspaces of
dimension n.

Note that in our construction of block Krylov subspaces, we have only used
exact deflation. In an actual algorithm for constructing basis vectors for Kn(A,R)
and Kn(AT,L) in finite-precision arithmetic, one also needs to delete vectors that
are in some sense “almost” linearly dependent on earlier vectors. We will refer to
the deletion of such almost linearly dependent vectors as inexact deflation. Our
Lanczos-type algorithm has a simple built-in procedure for both exact and inexact
deflation. While inexact deflation is crucial in practice, a concise definition of the
corresponding block Krylov subspaces is necessarily quite involved. For the sake of
simplicity, in this paper, we use only the notion of block Krylov subspaces based
on exact deflation. Finally, in the sequel, “deflation” always means that both exact
and inexact deflation are performed.

3. Biorthogonality of the Lanczos vectors

In this section, we formulate some basic properties of the vectors generated by
our Lanczos-type algorithm.

3.1. The Lanczos vectors. The algorithm generates two sequences of vectors,

v1,v2, . . . ,vn, . . . ,vnmax and w1,w2, . . . ,wn, . . . ,wnmax .(3.1)

We will refer to (3.1) as the right and left Lanczos vectors, respectively.
In the case of exact deflation only, for n = 1, 2, . . . , nmax, the first n vectors in

each sequence (3.1) span the n-th right and left block Krylov subspaces:

span{v1,v2, . . . ,vn } = Kn(A,R),

span{w1,w2, . . . ,wn } = Kn(AT,L).
(3.2)

Moreover, the integer nmax in (3.1) is defined as

nmax := min{ rankK(A,R), rank K(AT,L) }.(3.3)

In the presence of inexact deflation, instead of (3.2), we have inclusions of the
following form (provable by induction using the equations (4.6) below):

span{v1,v2, . . . ,vn } ⊆ Kn+dr(n)(A,R),

span{w1,w2, . . . ,wn } ⊆ Kn+dl(n)(AT,L).
(3.4)

Here, dr(n) and dl(n) depend on the number of inexact deflations that have occurred
up to stage n. Moreover, the integer nmax in (3.1) is now given by

nmax := min{ rankK(A,R)−max
n≥1

dr(n), rank K(AT,L)−max
n≥1

dl(n) },

instead of (3.3). We note that it is also possible to derive a more quantitative
version of (3.4). However, for the sake of brevity, such a result is not included in
this paper.

As in the classical Lanczos process for single starting vectors, the Lanczos vec-
tors (3.1) are computed in pairs. At pass n of the algorithm, the n-th pair vn and
wn is built, where vn is the vector that advances the right block Krylov subspace,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

A LANCZOS-TYPE METHOD FOR MULTIPLE STARTING VECTORS 1583

and wn advances the left block Krylov subspace. Clearly, this pair-wise construc-
tion has to be terminated as soon as one of the two block Krylov subspaces is
exhausted. If only one of the subspaces is exhausted, it would be possible to con-
tinue the construction of single basis vectors for the non-exhausted block Krylov
subspace. However, this is not done in our algorithm, and we simply stop the
process as soon as one of the two block Krylov subspaces is exhausted.

3.2. Vector-wise biorthogonality. As in the classical Lanczos process, the goal
is to construct vectors (3.1) that are vector-wise biorthogonal, i.e.,

wT
i vn =

{
δn if i = n,

0 if i 6= n,
for all i, n = 1, 2, . . . , nmax.(3.5)

However, enforcing (3.5) is only possible if δn 6= 0 for all n = 1, 2, . . . , nmax − 1.
Indeed, constructing biorthogonal vectors (3.1) involves division by δn. In the
general case, it cannot be excluded that

δn = wT
nvn = 0 for some n < nmax,(3.6)

and thus any algorithm that tries to enforce (3.5) may break down due to division
by zero. The event (3.6) will be referred to as an exact breakdown of the Lanczos
type-algorithm. In finite-precision arithmetic, one also needs to deal with so-called
near-breakdowns due to division by nonzero numbers

δn = wT
nvn ≈ 0, δn 6= 0, for some n < nmax,(3.7)

that are in some sense close to zero.
The key to dealing with possible exact and near-breakdown in the general case is

to relax the biorthogonality (3.5) of individual Lanczos vectors to a biorthogonality
of clusters of Lanczos vectors.

3.3. Cluster-wise biorthogonality. In the general case, the right and left Lan-
czos vectors (3.1) are grouped into clusters

V(1),V(2), . . . ,V(l), . . . ,V(lmax),

W(1),W(2), . . . ,W(l), . . . ,W(lmax),
(3.8)

respectively. Here, for each l,

V(l) :=
[
vnl vnl+1 . . . vnl+1−1

]
,

W(l) :=
[
wnl wnl+1 . . . wnl+1−1

](3.9)

are N × (nl+1 − nl) matrices. Furthermore,

n1 := 1 < n2 < · · · < nl < · · · < nlmax < nlmax+1 := nmax + 1(3.10)

are the cluster indices. Note that nl is just the index of the first vector in the l-th
pair of clusters (3.9). The size of the l-th pair of clusters is given by nl+1 − nl. We
call V(l) and W(l) true look-ahead clusters if they contain more than one Lanczos
vector, i.e., if nl+1−nl > 1. The clusters V(l) and W(l) are built as true look-ahead
clusters if, and only if, an exact breakdown (3.6) or a near-breakdown (3.7) occurs
at step n = nl. Furthermore, the next cluster index nl+1 is chosen as the smallest
integer bigger than nl such that the matrices ∆(l) :=

(
W(l)

)T
V(l) are “sufficiently”

nonsingular, except the last matrix, ∆(lmax), which may be singular.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1584 J. I. ALIAGA, D. L. BOLEY, R. W. FREUND, AND V. HERNÁNDEZ

The Lanczos vectors (3.1) are constructed to be cluster-wise biorthogonal, i.e.,

(
W(k)

)T
V(l) =

{
∆(l) if k = l,

0 if k 6= l,
for all k, l = 1, 2, . . . , lmax.(3.11)

Note that, in the absence of exact or near-breakdowns, all clusters (3.8) consist
of single Lanczos vectors only. In particular, in this case,

nl = l, V(l) = vl, W(l) = wl, ∆(l) = δl for all l = 1, 2, . . . , lmax = nmax,

and the cluster-wise biorthogonality (3.11) reduces to (3.5).
In the algorithm, we use the cluster indices (3.10) to keep track of the structure

of the clusters (3.8). Occasionally, we will need to determine the index, denoted by
l(n), of the clusters Vl(n) and Wl(n) that contain the n-th pair of Lanczos vectors
vn and wn. In view of (3.9) and (3.10), for n = 1, 2, . . . , nmax, l(n) is given by

l(n) = max{ i ∈ N | ni ≤ n }.(3.12)

3.4. Matrix formulation. It turns out to be convenient to use the notation

Vn :=
[
v1 v2 · · · vn

]
and Wn :=

[
w1 w2 · · · wn

]
(3.13)

for the N×n matrices whose columns are the first n right and n left Lanczos vectors,
respectively. Moreover, we define ∆n as the n × n leading principal submatrix of
the block-diagonal matrix, partitioned conformally with the clusters (3.8),

∆nmax := diag
(
∆(1),∆(2), . . . ,∆(lmax)

)
.(3.14)

With (3.13) and ∆n, we can state the cluster-wise biorthogonality relations (3.11)
in compact matrix form as follows:

WT
n Vn = ∆n for all n = 1, 2, . . . , nmax.(3.15)

3.5. Normalization. The biorthogonality relations determine the Lanczos vec-
tors only up to scalar normalization factors. In an actual implementation, proper
normalization is important in order to avoid possible over- and underflow in finite-
precision arithmetic. Furthermore, the usual strategies to decide when to perform
a look-ahead step assume that the Lanczos vectors are normalized; see, e.g., [17].
Following [17], we normalize the Lanczos vectors to have unit Euclidean length:

‖vn‖ = ‖wn‖ = 1 for all n.(3.16)

4. The construction of the Lanczos vectors

In this section, we describe the construction of the Lanczos vectors in our algo-
rithm for multiple starting vectors, by analogy with the Lanczos process for single
starting vectors.

4.1. Review of the case of single starting vectors. The Lanczos process [27]
for single starting vectors r and l obtains v1 and w1 by normalizing r and l so
that (3.16) (for n = 1) is satisfied. For n > 1, vn is obtained by first comput-
ing v = A vn−1 to advance the right Krylov subspace, then biorthogonalizing v
against the previous left Lanczos vectors wi, i < n, and finally normalizing the
biorthogonalized vector v. In exact arithmetic and in the absence of look-ahead, v
is already biorthogonal to wi, i < n−2, and so v only needs to be biorthogonalized
against wn−2 and wn−1. In the case of look-ahead, v is biorthogonalized against

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

A LANCZOS-TYPE METHOD FOR MULTIPLE STARTING VECTORS 1585

the previous two clusters; see, e.g., [17]. Similarly, wn is obtained by first comput-
ing w = AT wn−1, then biorthogonalizing w against vn−2 and vn−1, respectively
the two previous clusters, and finally normalizing the biorthogonalized vector w.
Using the matrix notation (3.13), all these recurrences for the first n right and n
left Lanczos vectors can be summarized as follows:

Vn Tn−1 =

{
r if n = 1,

A Vn−1 if n > 1,

Wn T̃n−1 =

{
l if n = 1,

AT Wn−1 if n > 1.

(4.1)

Here, for n = 1, T0 and T̃0 are scalars that record the normalization of the starting
vectors r and l, respectively. For n > 1, Tn−1 and T̃n−1 are n×(n−1) matrices that
contain the recurrence coefficients. Both matrices are tridiagonal if no look-ahead
is necessary, and they are simultaneously upper Hessenberg and block tridiagonal
if look-ahead steps are performed; see, e.g., [17].

4.2. Multiple starting vectors, but no deflation or look-ahead. We now
turn to the Lanczos-type algorithm for multiple starting vectors. In this subsec-
tion, we describe the procedure for the simplest case, where neither deflation nor
look-ahead occurs. For n ≤ m, the vector vn is generated from the n-th right
starting vector v = rn by first biorthogonalizing v against wi, 1 ≤ i < n, and
then normalizing the biorthogonalized vector v to unit length. For n > m, the
vector vn is obtained by first computing v = A vn−m to advance the right block
Krylov subspace, then biorthogonalizing v against the previous left Lanczos vectors
wi, n −m − p ≤ i < n, and finally normalizing the biorthogonalized vector v to
unit length. Similarly, for n ≤ p, the vector wn is obtained by first biorthogonal-
izing w = ln against vi, 1 ≤ i < n, and then normalizing the biorthogonalized
vector w to unit length. For n > p, the vector wn is obtained by first computing
w = AT wn−p, then biorthogonalizing w against the previous right Lanczos vectors
vi, n−m− p ≤ i < n. In analogy to (4.1), the resulting recurrences for the first n
right and n left Lanczos vectors can be summarized as follows:

Vn Tn−m =

{
[r1 r2 · · · rn] if 1 ≤ n ≤ m,

A Vn−m if n > m,

Wn T̃n−p =

{
[l1 l2 · · · ln] if 1 ≤ n ≤ p,

AT Wn−p if n > p.

(4.2)

Here, the matrices Tn−m and T̃n−p again contain the recurrence coefficients used
in the biorthogonalization of the Lanczos vectors. For n ≤ m, respectively n ≤ p,
the matrix Tn−m, respectively T̃n−p, is an upper triangular n×n matrix, recording
the biorthogonalization of the right, respectively left, starting vectors. For n > m,
Tn−m is a banded n× (n−m) matrix with lower and upper bandwidth m and p,
respectively. For n > p, T̃n−p is a banded n× (n− p) matrix with lower and upper
bandwidth p and m, respectively.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1586 J. I. ALIAGA, D. L. BOLEY, R. W. FREUND, AND V. HERNÁNDEZ

0) Initialization; in particular, set µ = µ0 = −m and φ = φ0 = −p.
For n = 1, 2, . . . , build the n-th pair of Lanczos vectors vn and wn :

1) Build the unnormalized right Lanczos vector v.
1a) Set µ = µ+ 1.
1b) If the right block Krylov subspace is exhausted, then stop.
1c) Advance the right block Krylov subspace.
1d) Determine against which clusters v needs to be biorthogonalized.
1e) Biorthogonalize v against these clusters.
1f) Decide if v should be deflated; if so, deflate it and repeat all of Step 1).

2) Build the unnormalized left Lanczos vector w.
2a) Set φ = φ+ 1.
2b) If the left block Krylov subspace is exhausted, then stop.
2c) Advance the left block Krylov subspace.
2d) Determine against which clusters w needs to be biorthogonalized.
2e) Biorthogonalize w against these clusters.
2f) Decide if w should be deflated; if so, deflate it and repeat all of Step 2).

3) Normalize v and w to obtain vn and wn, and add them to current clusters.
4) Record the n-th history indices µn = µ and φn = φ.
5) Check for end of look-ahead clusters.

Figure 1. Structure of Lanczos-type algorithm.

4.3. Deflation. We now begin our discussion of the algorithm in the general case,
where deflation and look-ahead may occur. In Figure 1, we show the basic structure
of the algorithm; a complete statement of the algorithm is given in §5.1 below. In
the following, we use the step numbers from Figure 1 to describe the algorithm.

We use n as the counter for the main loop of the algorithm. During the n-th
pass through the main loop, the Lanczos vectors vn and wn are being computed.
This is done by first constructing, in Steps 1) and 2), candidate vectors v and w
that satisfy the required biorthogonality conditions for vn and wn. In the proof
of Theorem 6.3 in §6, we will show that v = 0 or w = 0 is equivalent to an exact
deflation in the right or left block Krylov subspace, respectively. Therefore, in the
algorithm, we check for exact deflation by simply testing if v = 0 or w = 0. If
inexact deflation is included, we choose a small deflation tolerance dtol, and then
check for deflation by testing if

‖v‖ ≤ dtol or ‖w‖ ≤ dtol.(4.3)

If ‖v‖ ≤ dtol, then v is deflated and all of Step 1) of the algorithm is repeated.
If ‖w‖ ≤ dtol, then w is deflated and all of Step 2) is repeated. Once Steps 1)
and 2) have produced vectors v and w with ‖v‖ > dtol and ‖w‖ > dtol, the n-th
Lanczos vectors vn and wn are obtained by normalizing v and w in Step 3). Note
that deflation reduces to exact deflation only by setting dtol = 0 in (4.3).

Every time a v vector is deflated, the effective right block size, which was m
initially, is reduced by 1. Similarly, each deflation of a w vector reduces the effective
left block size by 1. If only exact deflation is performed, then the effective right
and left block sizes could be recorded by keeping track of the sizes of the blocks
Aj−1 Rj and (AT)k−1 Lk in (2.2), together with pointers for the positions of vn and
wn relative to the current blocks in (2.2). However, this approach cannot easily

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

A LANCZOS-TYPE METHOD FOR MULTIPLE STARTING VECTORS 1587

be extended to include inexact deflation. Instead, we use a different encoding
that properly describes the effective block sizes even when both exact and inexact
deflation are performed. This encoding is based on history indices for the individual
Lanczos vectors. Next, we describe these indices.

4.4. History indices. In the algorithm, the indices µ and φ are used to record
the number of passes through Steps 1) and 2), respectively; see Figure 1. At the
beginning of the n-th pass through the main loop of the algorithm, µ = µn−1

and φ = φn−1, where, initially, we set µ0 = −m and φ0 = −p. The value of µ
is incremented by 1 in every pass through Step 1), and φ is incremented by 1 in
every pass through Step 2). The values of µ and φ after Steps 1) and 2) have been
performed the last time within the n-th pass through the main loop are recorded as
the n-th history indices, µn and φn, in Step 4) of the algorithm. Recall from §4.3
that Steps 1) or 2) are repeated within each n-th pass through the main loop if, and
only if, a deflation of a v or w vector has occurred. If follows that µn − µn−1 − 1
is the number of deflations of consecutive v vectors in between the construction of
vn−1 and vn. Similarly, φn − φn−1 − 1 is the number of deflations of consecutive
w vectors in between the construction of wn−1 and wn. In particular,

µn = µn−1 + 1 and φn = φn−1 + 1(4.4)

if no deflation of a v or w vector occurred during the n-th pass.
It turns out that µn and φn are just the indices of the vectors from which vn and

wn, respectively, were generated. More precisely, if µn ≤ 0, then vn was obtained by
biorthogonalizing and normalizing one of the right starting vectors, namely rµn+m.
If µn > 0, then vn was generated from the A-multiple A vµn of the previously
constructed vector vµn . Similarly, an index φn ≤ 0 means that wn was generated
from the left starting vector lφn+p, while φn > 0 means that wn was generated
from AT wφn . It will also be convenient to set µnmax+1 := φnmax+1 := nmax + 1.

Note that, by construction, the history indices are strictly increasing:

µ0 < µ1 < · · · < µn−1 <µn < · · · < µnmax+1,

φ0 < φ1 < · · · < φn−1 <φn < · · · < φnmax+1.
(4.5)

Furthermore, we have n−m ≤ µn < n and n− p ≤ φn < n for all n ≤ nmax.
The following example illustrates the concept of the history indices.

Example 4.1. Suppose that {µ0, µ1, µ2, µ3, µ4, µ5, . . . } = {−2,−1, 0, 1, 3, 4, . . .}.
This means v1 and v2 came from the m = −µ0 = 2 starting vectors, while v3, v4,
and v5 came from the A-multiples A v1, A v3, and A v4. Since µ4 − µ3 = 2 > 1,
there was one deflation in between the construction of v3 and v4. More precisely,
the vector that would have resulted from A v2 was deflated.

Remark 4.2. If no deflation occurred during the construction of the first n pairs of
Lanczos vectors, then µn = n−m and φn = n− p. This readily follows from (4.4).

Remark 4.3. In the case of only exact deflation, the history indices (4.5) can be
used to determine the sizes of the blocks Rj and Lk in the deflated block Krylov
matrices (2.2). In [2], we show how to do this for the right blocks Rj; the case of
the left blocks is analogous.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1588 J. I. ALIAGA, D. L. BOLEY, R. W. FREUND, AND V. HERNÁNDEZ

4.5. Recurrence relations for the general case. After having introduced the
history indices, we are now in a position to state the recurrence relations for the
most general version of our algorithm with both deflation and look-ahead.

We continue to use the matrix notation Vn and Wn introduced in (3.13). More-
over, for n = 0, we set V0 = W0 := ∅. In analogy to (4.2), the recurrences for the
construction of the first n right and n left Lanczos vectors can then be summarized
as follows. For all n = 0, 1, . . . , nmax, we have

Vn Tµ + Vdl
µ =

{
[r1 r2 · · · rµ+m] if µ ≤ 0,

A Vµ if µ > 0,
µn ≤ µ < µn+1,

Wn T̃φ + Wdl
φ =

{
[l1 l2 · · · lφ+p] if φ ≤ 0,

AT Wφ if φ > 0,
φn ≤ φ < φn+1.

(4.6)

Here, Vdl
µ and Wdl

µ are N ×µ matrices that contain the vectors v and w that were
not turned into Lanczos vectors due to deflation, together with lots of zero vectors.
More precisely, these matrices are built up as follows:

Vdl
µ =

[
Vdl
µ−1 v

]
if v 6= 0 and v is deflated,[

Vdl
µ−1 0

]
otherwise,

Wdl
φ =

[
Wdl

φ−1 w
]

if w 6= 0 and w is deflated,[
Wdl

φ−1 0
]

otherwise,

(4.7)

where Vdl
0 = Wdl

0 := ∅. In particular, if no deflation or only exact deflation occurs,
then Vdl

µ = Wdl
φ are zero matrices. If inexact deflation occurs, then Vdl

µ and Wdl
φ

are no longer zero matrices, but they are still small in norm. At any stage of our
algorithm, the number of v and w vectors that have been deflated so far is given
by m−n+µ and p−n+φ, respectively. Thus Vdl

µ and Wdl
φ have at most m−n+µ

and p−n+φ, respectively, nonzero columns. In view of the deflation criterion (4.3),
these nonzero columns have Euclidean norm at most dtol. It follows that∥∥Vdl

µ

∥∥ ≤ dtol
√
m− n+ µ and

∥∥Wdl
φ

∥∥ ≤ dtol
√
p− n+ φ.

As in (4.2), the matrices Tµ and T̃φ in (4.6) contain the recurrence coefficients
used to enforce the biorthogonality conditions for the Lanczos vectors. For µ ≤ 0
and φ ≤ 0, the columns of Tµ and T̃φ are obtained by biorthogonalizing the columns
of the starting blocks R and L, respectively. For µ > 0 and φ > 0, the columns of
Tµ and T̃φ contain the recurrences used to advance the right and left block Krylov
subspaces by multiplications with A and AT, respectively.

If no deflation occurs, then Vdl
µ = 0, Wdl

φ = 0, µ = n−m, φ = n− p, and hence
the recurrences (4.6) reduce to (4.2). If, in addition, no look-ahead occurs, then
the matrices Tµ and T̃φ in (4.6) are identical to those in (4.2). Recall from §4.2
that Tµ and T̃φ in (4.2) are banded matrices with lower and upper bandwidth m
and p, respectively p and m.

In the general case where deflation and look-ahead may occur, the structure of
Tµ and T̃φ is more complicated. As before, Tµ and T̃φ still have lower bandwidth

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

A LANCZOS-TYPE METHOD FOR MULTIPLE STARTING VECTORS 1589

m and p, respectively. However, after each deflation of a v or w vector, the lower
bandwidth for the successive columns of Tµ or T̃φ, respectively, is reduced by one.
As before, Tµ and T̃φ have nonzero elements within a band of upper bandwidth p
and m, respectively. After each deflation of a v or w vector, the upper bandwidth
for the successive columns of T̃φ or Tµ, respectively, is reduced by one. Look-
ahead and inexact deflation result in some additional nonzero elements above the
upper bands of Tµ and T̃φ. More precisely, look-ahead steps result in “bulges”
in Tµ and T̃φ above their upper bands. The cluster indices lv and lw describe the
beginning of the upper band, including any look-ahead bulges, in the µ-th and φ-th
column of Tµ and T̃φ, respectively; see Algorithm 5.1 below. Each inexact deflation
of a v vector requires that all successive left Lanczos vectors need to be explicitly
biorthogonalized against a certain earlier vector vi, and in the look-ahead case,
against the entire cluster containing vi. Similarly, inexact deflation of a w vector
requires explicit biorthogonalization of all successive right Lanczos vectors against
a certain earlier vector wi, and in the look-ahead case, against the entire cluster
containing wi. The indices of the look-ahead clusters against which one needs to
biorthogonalize due to inexact deflation of v and w vectors are stored in the sets Iw
and Iv, respectively; see Algorithm 5.1 below. These biorthogonalizations caused
by inexact deflation result in nonzeros in rows of Tµ and T̃φ whose row indices
correspond to Iv and Iw, respectively. However, these nonzeros only appear to the
right of the bands.

4.6. An example. In this subsection, we present a specific example to illustrate
how deflation and look-ahead affect the zero structure of Tµ and T̃φ.

This is an example with m = 3 and p = 2. We assume that three deflations
of v vectors and one deflation of a w vector occur. More precisely, the v vectors
obtained by biorthogonalizing A v8, A v19, and A v20 and the w vector obtained
by biorthogonalizing AT w12 are deflated. The corresponding history indices are
shown in the second and third columns of Table 1, where the values of µ and φ in
parentheses indicate the repeated executions of Steps 1) and 2), respectively, due to
deflation. Note that n = µ at pass n = 21. This means that the right block Krylov
subspace is exhausted, and thus the algorithm stops in Step 1b) at pass n = 21,
after having generated 20 pairs of Lanczos vectors, namely

v1,v2, . . . ,v20 and w1,w2, . . . ,w20.(4.8)

If no look-ahead occurred, the vectors (4.8) are constructed to be vector-wise bior-
thogonal. We also consider a case where true look-ahead clusters occur, with the
values of the cluster indices (3.10) given in the ninth column of Table 1. Note that
there are two true look-ahead clusters of length three, starting at n5 = 5 and at
n6 = 8, respectively. Thus, the vectors (4.8) are grouped into clusters

V(1),V(2), . . . ,V(16) and W(1),W(2), . . . ,W(16),(4.9)

where V(5) =
[
v5 v6 v7

]
, V(6) =

[
v8 v9 v10

]
, W(5) =

[
w5 w6 w7

]
,

W(6) =
[
w8 w9 w10

]
, and the remaining clusters consist of single vectors only.

In the look-ahead case, the vectors (4.8) are constructed such that the clusters (4.9)
are biorthogonal.

For both the no-look-ahead and the look-ahead case, the zero structure of the
matrices ∆20, T20, and T̃20 are shown in Figures 2 and 3. The following convention
is used: guaranteed zeros are marked by “·”, while potential nonzeros are marked

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1590 J. I. ALIAGA, D. L. BOLEY, R. W. FREUND, AND V. HERNÁNDEZ

Table 1. Indices and sets used in Algorithm 5.1 for the example in §4.6.

History indices No look-ahead With look-ahead

n µn φn lv Iv lw Iw l nl lv Iv lw Iw
0 -3 -2
1 -2 -1 1 ∅ 1 ∅ 1 1 1 ∅ 1 ∅
2 -1 0 1 ∅ 1 ∅ 2 2 1 ∅ 1 ∅
3 0 1 1 ∅ 1 ∅ 3 3 1 ∅ 1 ∅
4 1 2 1 ∅ 1 ∅ 4 4 1 ∅ 1 ∅
5 2 3 1 ∅ 1 ∅ 5 5 1 ∅ 1 ∅
6 3 4 1 ∅ 1 ∅ 1 ∅ 1 ∅
7 4 5 2 ∅ 2 ∅ 2 ∅ 2 ∅
8 5 6 3 ∅ 3 ∅ 6 8 3 ∅ 2 ∅
9 6 7 4 ∅ 4 ∅ 3 ∅ 2 ∅
10 7 8 5 ∅ 5 ∅ 3 ∅ 5 ∅
11 (µ = 8) 6 ∅ {8} 5 ∅ {6}
11 9 9 7 ∅ 6 {8} 7 11 5 ∅ 5 {6}
12 10 10 8 ∅ 7 {8} 8 12 5 ∅ 5 {6}
13 11 11 9 ∅ 9 {8} 9 13 6 ∅ 6 {6}
14 (φ = 12) {12} 10 {8} {8} 6 {6}
14 12 13 10 {12} 11 {8} 10 14 6 {8} 7 {6}
15 13 14 11 {12} 12 {8} 11 15 7 {8} 8 {6}
16 14 15 13 {12} 13 {8} 12 16 9 {8} 9 {6}
17 15 16 14 {12} 14 {8} 13 17 10 {8} 10 {6}
18 16 17 15 {12} 15 {8} 14 18 11 {8} 11 {6}
19 17 18 16 {12} 16 {8} 15 19 12 {8} 12 {6}
20 18 19 17 {12} 17 {8} 16 20 13 {8} 13 {6}
21 (µ = 19) 18 {8,19} 14 {6,15}
21 (µ = 20) 19 {8,19,20} 15 {6,15,16}
21 (µ = 21)

by “+”, “x”, “c”, “d”, or “b”. The distinction between the potential nonzeros is
as follows: diagonal entries are marked by “+”, other elements within the bands
of T20 and T̃20 are marked by “x”, entries due to look-ahead are marked by “c”,
entries due to inexact deflation are marked by “d”, and entries resulting from the
combined effects of look-ahead and deflation are marked by “b”.

Note that, by (3.14) and (3.15), the biorthogonality properties of the vectors (4.8)
translate into a block-diagonal structure of the matrix ∆20. Indeed, as shown in
Figure 2, in the no-look-ahead case, ∆20 is diagonal, reflecting the vector-wise
biorthogonality of the vectors (4.8). In the look-ahead case, ∆20 has two 3 × 3
diagonal blocks, reflecting the cluster-wise biorthogonality of the clusters (4.9).

Figure 3 shows the zero structure of T20 and T̃20. First, consider the no-look-
ahead case. Here the structure of T20 and T̃20 is completely described by the data
listed in the first seven columns of Table 1. At the n-th pass through the main
loop of the algorithm, the µ-th column of T20 for all µn−1 < µ ≤ µn and the
φ-th column of T̃20 for all φn−1 < φ ≤ φn are constructed. Recall that, by (4.4),
we have µ = µn and φ = φn if, and only if, no deflation occurs during the n-th
pass. From Table 1, the zero structure of the columns of T20 and T̃20 that are
constructed at the n-th pass can be read off directly from the row(s) of Table 1
starting with the value of n. Note that there are multiple rows starting with the
same value of n and corresponding to multiple values of µ or φ if deflation occurs
during the n-th pass. For example, in Table 1, there are two rows associated with

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

A LANCZOS-TYPE METHOD FOR MULTIPLE STARTING VECTORS 1591

∆20 =

+ · · · · · · · · · · · · · · · · · · ·
· + · · · · · · · · · · · · · · · · · ·
· · + · · · · · · · · · · · · · · · · ·
· · · + · · · · · · · · · · · · · · · ·
· · · · + c c · · · · · · · · · · · · ·
· · · · c + c · · · · · · · · · · · · ·
· · · · c c + · · · · · · · · · · · · ·
· · · · · · · + c c · · · · · · · · · ·
· · · · · · · c + c · · · · · · · · · ·
· · · · · · · c c + · · · · · · · · · ·
· · · · · · · · · · + · · · · · · · · ·
· · · · · · · · · · · + · · · · · · · ·
· · · · · · · · · · · · + · · · · · · ·
· · · · · · · · · · · · · + · · · · · ·
· · · · · · · · · · · · · · + · · · · ·
· · · · · · · · · · · · · · · + · · · ·
· · · · · · · · · · · · · · · · + · · ·
· · · · · · · · · · · · · · · · · + · ·
· · · · · · · · · · · · · · · · · · + ·
· · · · · · · · · · · · · · · · · · · +

Figure 2. Zero structure of the matrix ∆20 for the example in §4.6.

n = 11. The first row records the structure of column µ = 8 of T20, as well as
the deflation of the v vector obtained from A v8. More precisely, the banded part
of the 8-th column of T20 starts with the entry in row lv = 6, and since Iv = ∅,
there are no nonzero entries due to earlier deflations outside the banded part. The
deflation of the v vector obtained from A v8 has the effect that µ = 8 is added to
Iw. This means that all later w vectors will have to be biorthogonalized against
v8, resulting in potentially nonzero entries in row 8 of T̃20; see Figure 3. However,
due to the deflation of the v vector, from column µ = 8 on, the lower bandwidth
of T20 is reduced by one, which compensates for the “spike” in row 8 of T̃20. In

T20 T̃20

+ x x · · · · · · · · · · · · · · · · ·
x + x x · · · · · · · · · · · · · · · ·
x x + x x c c · · · · · · · · · · · · ·
x x x + x x c · · · · · · · · · · · · ·
· x x x + x x c c c · · · · · · · · · ·
· · x x x + x x c c · · · · · · · · · ·
· · · x x x + x x c · · · · · · · · · ·
· · · · x x x + x x c c · · · · · · · ·
· · · · · x x x + x x c · · · · · · · ·
· · · · · · x x x + x x · · · · · · · ·
· · · · · · · · x x + x x · · · · · · ·
· · · · · · · · · x x + x d d d d d d d
· · · · · · · · · · x x + x · · · · · ·
· · · · · · · · · · · x x + x · · · · ·
· · · · · · · · · · · · x x + x · · · ·
· · · · · · · · · · · · · x x + x · · ·
· · · · · · · · · · · · · · x x + x · ·
· · · · · · · · · · · · · · · x x + x ·
· · · · · · · · · · · · · · · · x x + x
· · · · · · · · · · · · · · · · · x x +

+ x x x · · · · · · · · · · · · · · · ·
x + x x x c c · · · · · · · · · · · · ·
x x + x x x c · · · · · · · · · · · · ·
· x x + x x x · · · · · · · · · · · · ·
· · x x + x x x c c · · · · · · · · · ·
· · · x x + x x x c · · · · · · · · · ·
· · · · x x + x x x · · · · · · · · · ·
· · · · · x x + x x x d d d d d d d d d
· · · · · · x x + x x c b b b b b b b b
· · · · · · · x x + x x b b b b b b b b
· · · · · · · · x x + x x · · · · · · ·
· · · · · · · · · x x + x x · · · · · ·
· · · · · · · · · · x x + x x · · · · ·
· · · · · · · · · · · · x + x x · · · ·
· · · · · · · · · · · · · x + x x · · ·
· · · · · · · · · · · · · · x + x x · ·
· · · · · · · · · · · · · · · x + x x ·
· · · · · · · · · · · · · · · · x + x x
· · · · · · · · · · · · · · · · · x + x
· · · · · · · · · · · · · · · · · · x +

Figure 3. Zero structure of the Lanczos matrices T20 and T̃20

for the example in §4.6.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1592 J. I. ALIAGA, D. L. BOLEY, R. W. FREUND, AND V. HERNÁNDEZ

Table 1, the second row associated with n = 11 records the nonzero structure of
column µ11 = 9 of T20 and of column φ11 = 9 of T̃20. The banded parts of these
columns start at position lv = 7 and lw = 6, respectively; see Figure 3.

If no deflation occurred at the n-th pass, then, in Table 1, there is only a single
row associated with n. For example, consider row n = 18. The history indices
µ18 = 16 and φ18 = 17 record that, at pass n = 18, column 16 of T20 and column
17 of T̃20 were constructed. The banded part of both these columns starts with
entries in row lv = lw = 15. Furthermore, since Iv = {12} and Iw = {8}, there
are potential nonzeros in row 12 of T20 and row 8 of T̃20, due to earlier deflations.

In the general case, where look-ahead may occur, the structure of T20 and T̃20 is
completely described by the data listed in the first three and the last six columns of
Table 1. Recall from §4.5 that, in the look-ahead case, lv, lw, Iv, and Iw record the
indices of look-ahead clusters. For example, consider again row n = 18 in Table 1.
In the look-ahead case, we have lv = lw = 11. This means that the banded part
of both column µ18 = 16 of T20 and column φ18 = 17 starts with entries in row
n11 = 15. Furthermore, since Iv = {8} and Iw = {6}, there are additional potential
nonzero entries in row n8 = 11 of T20 and rows n6 = 8, 9, 10 of T̃20; see Figure 3.
Note that since the 6-th cluster corresponds to a true look-ahead cluster of length
3, the “spike” in row 8 of T̃20 in the no-look-ahead case has spread to “spikes” in
rows 8, 9, and 10 in the look-ahead case.

5. The Lanczos-type algorithm with deflation and look-ahead

In this section, we present a statement of the algorithm in its most general form,
with deflation and look-ahead, and discuss a few implementation issues.

5.1. A complete statement of the algorithm. Recall that, in Figure 1, we
showed the basic structure of the algorithm. The step numbers from Figure 1
match those used in the following statement of the algorithm.

Algorithm 5.1. (Lanczos-type method with deflation and look-ahead.)
INPUT: Matrix A ∈ CN×N ;

m right starting vectors r1, r2, . . . , rm ∈ CN ;
p left starting vectors l1, l2, . . . , lp ∈ CN ;
Deflation tolerance dtol ≥ 0. (Set dtol = 0 for exact deflation only.)

INDICES AND INDEX SETS:
• µ is the index of the v vector currently being expanded; φ is the index of the

w vector currently being expanded. (A non-positive µ or φ means we are still
fetching starting vectors.)
• Iv and Iw record indices of clusters that must be preserved due to inexact

deflation. If k ∈ Iv or k ∈ Iw, then v or w needs to be biorthogonalized
against the entire earlier clusters W(k) or V(k), respectively.
• l is the index of the currently constructed clusters V(l) and W(l). nl is the

index of the first pair of Lanczos vectors in V(l) and W(l).
0) (Initialization)

Set µ = µ0 = −m and φ = φ0 = −p.
Set Iv = ∅ and Iw = ∅.
Set l = 1, nl = 1, and V(l) = W(l) = ∅.

For n = 1, 2, . . . , build n-th pair of Lanczos vectors vn and wn :

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

A LANCZOS-TYPE METHOD FOR MULTIPLE STARTING VECTORS 1593

1) (Build the unnormalized right Lanczos vector v.)
1a) Set µ = µ+ 1.
1b) If µ = n, then stop. (The right block Krylov subspace is exhausted.)
1c) (Advance the right block Krylov subspace.)

Set

v =

{
rµ+m if µ ≤ 0,

A vµ if µ > 0.
(5.1)

If V(l) 6= ∅, optionally set

v = v −V(l)
[
ti,µ
]
nl≤i<n

, with arbitrary ti,µ ∈ C.(5.2)

(We may add arbitrary combinations of vectors in the current cluster V(l), if
nonempty.)

1d) (Determine against which clusters v needs to be biorthogonalized.)
If µ > 0, set l(µ) = max{ i ∈ N | ni ≤ µ }.
Set

lv =

{
max{ i ∈ N | ni ≤ φnl(µ) } if µ > 0 and φnl(µ) > 0,

1 otherwise,
(5.3)

and define the temporary index set

I = { lv, lv + 1, . . . , l − 1 } ∪
⋃
k∈Iv
k<lv

{k}.(5.4)

1e) (Biorthogonalize v against these clusters.)
Compute the coefficient vectors[

ti,µ
]
nk≤i<nk+1

=
(
∆(k)

)−1 (
W(k)

)T
v for all k ∈ I.(5.5)

Set

v = v −
∑
k∈I

V(k)[ti,µ]nk≤i<nk+1 .(5.6)

1f) (Decide if v should be deflated.)
(i) (If nl ≤ n− 1, the current cluster V(l) is nonempty, and we first orthog-

onalize, in the ordinary one-sided sense, v against V(l).)
If nl ≤ n− 1, then for i = nl, nl + 1, . . . , n− 1, set

τi,µ =
vH
i v
‖vi‖2

, v = v − vi τi,µ, and ti,µ = ti,µ + τi,µ.(5.7)

(ii) Check if ‖v‖ ≤ dtol.
If no, continue with Step 2).
If yes, deflate v by doing the following :

(iii) If µ > 0 and v 6= 0, then set Iw = Iw ∪ { l(µ) }, and save the clus-
ters V(l(µ)) and W(l(µ)).
(The vector v is the µ-th column of the matrix Vdl

µ in (4.6).)
(iv) Repeat all of Step 1).

2) (Build the unnormalized left Lanczos vector w.)
2a) Set φ = φ+ 1.
2b) If φ = n, then stop. (The left block Krylov subspace is exhausted.)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1594 J. I. ALIAGA, D. L. BOLEY, R. W. FREUND, AND V. HERNÁNDEZ

2c) (Advance the left block Krylov subspace.)
Set

w =

{
lφ+p if φ ≤ 0,

AT wφ if φ > 0.
(5.8)

If W(l) 6= ∅, optionally set

w = w −W(l)
[
t̃i,φ
]
nl≤i<n

, with arbitrary t̃i,φ ∈ C.(5.9)

(We may add arbitrary combinations of vectors in the current cluster W(l),
if nonempty.)

2d) (Determine against which clusters w needs to be biorthogonalized.)
If φ > 0, set l(φ) = max{ i ∈ N | ni ≤ φ }.
Set

lw =

{
max{ i ∈ N | ni ≤ µnl(φ) } if φ > 0 and µnl(φ) > 0,

1 otherwise,

and define the temporary index set

I = { lw, lw + 1, . . . , l − 1 } ∪
⋃
k∈Iw
k<lw

{k}.(5.10)

2e) (Biorthogonalize w against these clusters.)
Compute the coefficient vectors[

t̃i,φ
]
nk≤i<nk+1

=
(
∆(k)

)−T (
V(k)

)T
w for all k ∈ I.(5.11)

Set

w = w −
∑
k∈I

W(k)
[
t̃i,φ
]
nk≤i<nk+1

.

2f) (Decide if w should be deflated.)
(i) (If nl ≤ n− 1, the current cluster W(l) is nonempty, and we first orthog-

onalize, in the ordinary one-sided sense, v against W(l).)
If nl ≤ n− 1, then for i = nl, nl + 1, . . . , n− 1, set

τ̃i,φ =
wH
i w
‖wi‖2

, w = w −wi τ̃i,φ, and t̃i,φ = t̃i,φ + τ̃i,φ.(5.12)

(ii) Check if ‖w‖ ≤ dtol.
If no, continue with Step 3).
If yes, deflate w by doing the following :

(iii) If φ > 0 and w 6= 0, then set Iv = Iv ∪ { l(φ) } and save the clus-
ters V(l(φ)) and W(l(φ)).
(The vector w is the φ-th column of the matrix Wdl

φ in (4.6).)
(iv) Repeat all of Step 2).

3) (Normalize v and w to obtain the n-th pair of Lanczos vectors vn and wn,
and add them to the current clusters.)
Set

tn,µ = ‖v‖ , t̃n,φ = ‖w‖ , vn =
v
tn,µ

, and wn =
w
t̃n,φ

.(5.13)

Set V(l) = V(l) ∪ {vn} and W(l) = W(l) ∪ {wn}.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

A LANCZOS-TYPE METHOD FOR MULTIPLE STARTING VECTORS 1595

4) (Record the n-th history indices.)
Set µn = µ and φn = φ.

5) (Compute ∆(l) and check for end of look-ahead clusters.)
Form ∆(l) =

(
W(l)

)T
V(l).

If ∆(l) is “sufficiently” nonsingular, then set

l = l + 1, nl = n+ 1, and V(l) = W(l) = ∅.

(The current clusters are complete, so start new clusters in the next pass.)

Remark 5.2. Recall from (4.6) that the entries of the matrices Tµ and T̃φ contain
the recurrence coefficients used to generate the Lanczos vectors. The nonzero en-
tries ti,j and t̃i,j of these matrices are given by equations (5.2), (5.5)–(5.7), (5.9),
and (5.11)–(5.13) in Algorithm 5.1. The matrices Tµ and T̃φ are given by

Tµ =

[ti,j]1≤i≤n, 1−m≤j≤µ if µ ≤ 0,

[ti,j]1≤i≤n, 1≤j≤µ if µ > 0,

T̃φ =

[
t̃i,j
]
1≤i≤n, 1−p≤j≤φ if φ ≤ 0,[

t̃i,j
]
1≤i≤n, 1≤j≤φ if φ > 0,

(5.14)

where all elements ti,j and t̃i,j that are not explicitly defined in Algorithm 5.1 are
set to be zero.

Remark 5.3. For µ > 0, Tµ is an n×µ matrix, where n > µ. In some applications,
such as the BL-QMR method for the solution of linear systems with multiple right-
hand sides, the rectangular matrix Tµ is used; see [18]. For eigenvalue computations
and Padé approximation of matrix-valued transfer functions, only the µ×µ square
part T(s)

µ := [ti,j]1≤i,j≤µ of Tµ is used.

Remark 5.4. Algorithm 5.1 simplifies considerably if no deflation and/or no look-
ahead occurs. In the absence of look-ahead, all clusters consist of single vectors
only, and thus nl = l for all l. If, in addition, no deflation occurs, then the index
sets (5.4) and (5.10) are identical and given by

I = { lv, lv + 1, . . . , n− 1 }, where lv = max{ 1, n−m− p }.

This means that in the special case of no deflation and no look-ahead, each Lanczos
vector has to be explicitly biorthogonalized only against the last m+ p vectors; see
the discussion in §4.2. A detailed statement of a version of Algorithm 5.1 with
deflation, but without look-ahead, is given in [2].

5.2. Implementation details. In this section, we discuss a few implementation
details for Algorithm 5.1.

Steps 1e) and 2e) implement a classical two-sided Gram-Schmidt biorthogonal-
ization, but in practice a “modified” two-sided Gram-Schmidt process would be
preferred; see, e.g., [32]. For example, for the “modified” version of Step 1e), one
simply replaces (5.5) and (5.6) by the following block-by-block update.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1596 J. I. ALIAGA, D. L. BOLEY, R. W. FREUND, AND V. HERNÁNDEZ

For all k ∈ I (in increasing order), set[
ti,µ
]
nk≤i<nk+1

=
(
∆(k)

)−1 (
W(k)

)T
v and v = v −V(k)

[
ti,µ
]
nk≤i<nk+1

.

The “modified” version of Step 2e) is analogous.
The computational work for obtaining the recurrence coefficients ti,µ and t̃i,φ in

Steps 1e) and 2e) is dominated by the vector products
(
W(k)

)T
v and

(
V(k)

)T
w.

Roughly half of these vector products can be eliminated by exploiting relations that
connect the coefficient matrices Tµ and T̃φ. For example, in the simplest case of
no deflation and no look-ahead, the square parts T(s)

µ and T̃(s)
µ of these matrices

are connected by
(
T̃(s)
µ

)T = ∆µ Tµ ∆−1
µ , where ∆µ is a diagonal matrix. A similar

relation holds in the general case. Exploiting the connection between Tµ and T̃φ

not only halves the number of vector products required in Steps 1e) and 2e), but,
as in the case of the classical Lanczos algorithm, it usually also enhances the overall
numerical stability of Algorithm 5.1.

In Step 5), one needs to decide if the current look-ahead cluster can be closed.
In view of the nonsingularity of the ∆(k) in (3.11), a necessary condition for closing
the look-ahead cluster is that the matrix ∆(l) is nonsingular. It is thus tempting to
base the look-ahead strategy solely on a measure of singularity of ∆(l), such as the
smallest singular value. However, as was illustrated in [17] for the Lanczos algorithm
with single starting vectors, such a look-ahead strategy is not appropriate and does
not lead to a robust algorithm. Instead, a reliable look-ahead strategy needs to
check the singularity of ∆(l), as well as the sizes of the recurrence coefficients ti,µ
and t̃i,φ in (5.5) and (5.11) relative to some estimate, nest(A), for ‖A‖. More
precisely, the current look-ahead cluster should only be closed if

|ti,µ| ,
∣∣t̃i,φ∣∣ ≤ fac× nest(A) for all i.(5.15)

Here, fac is an appropriate constant, typically fac = 10, and if not available
a priori, the norm estimate nest(A) can be obtained easily during the first few
passes through the algorithm. The check (5.15) guarantees that the component
A vµ or AT wφ (respectively) of the new Lanczos vector is not dominated by the
previous Lanczos vectors. Note that A vµ and AT wφ are the only parts of v and w,
respectively, that advance the block Krylov subspaces.

6. Properties of the algorithm

In this section, we establish some theoretical properties of the Lanczos vectors.
Throughout this section, we assume that the Lanczos vectors are generated by run-
ning Algorithm 5.1 in exact arithmetic. A round-off error analysis of the algorithm
is beyond the scope of this paper.

First we show that the Lanczos vectors are indeed cluster-wise biorthogonal, as
stated in §3.3, and satisfy the recurrences stated in §4.5.

Theorem 6.1. The Lanczos-type Algorithm 5.1 generates two sequences (3.1) of
right and left Lanczos vectors that satisfy the cluster-wise biorthogonality condi-
tion (3.11). The algorithm also generates matrices of coefficients Tµ and T̃φ such
that the recurrences (4.6) are satisfied.

Proof. The recurrences (4.6) follow directly by summarizing equations (5.1), (5.2),
(5.5)–(5.9), and (5.11)–(5.13), which are used to generate the Lanczos vectors, in
compact matrix form, using the notation introduced in (3.13), (4.7), and (5.14).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

A LANCZOS-TYPE METHOD FOR MULTIPLE STARTING VECTORS 1597

Next, we prove the cluster-wise biorthogonality condition (3.11) by showing that
each n-th pair of Lanczos vectors vn and wn satisfies(

W(j)
)T

vn = 0 and
(
V(j)

)T
wn = 0 for all j = 1, 2, . . . , l(n)− 1.(6.1)

Recall that, by (3.12), l(n) is defined as the index of the clusters that contain vn
and wn. We prove (6.1) by induction on n. Since l(1) = 1, there is nothing to show
for n = 1. Now let n ≥ 2, and assume, as induction hypothesis, that (6.1) holds
true for all i-th Lanzcos vectors with i ≤ n − 1. We need to show that the n-th
Lanzcos vectors satisfy (6.1). We will only establish the conditions for vn in (6.1);
the proof of the conditions for wn is completely analogous and thus omitted. Note
that, in view of (5.2), (5.6), (5.7), and (5.13), we have

vn =
1
tn,µ

(
v −

n−1∑
i=nl

vi ti,µ −
∑
k∈I

V(k)
[
ti,µ
]
nk≤i<nk+1

)
,(6.2)

where v is given by (5.1) and
[
ti,µ
]
nk≤i<nk+1

by (5.5). Here, for simplicity, we have
set µ := µn. Using the induction hypothesis and (5.5), it follows from (6.2) that(

W(j)
)T

vn =
1
tn,µ

((
W(j)

)T
v −

(
W(j)

)T
V(j)

(
∆(j)

)−1 (
W(j)

)T
v
)

= 0(6.3)

for all j ∈ I. Here, I is the set of cluster indices given by (5.4) (with l = l(n)).
By (6.3), we have established (6.1) for all j ∈ I. If I contains all the cluster indices
1 ≤ j < l(n), the proof is complete. Otherwise, it remains to show that(

W(j)
)T

vn = 0(6.4)

for all indices 1 ≤ j < l(n) with j 6∈ I. Let j be any such index. By (5.4), j 6∈ I
implies that lv > 1. By (5.3) and (5.1), it follows that µ > 0 and v = A vµ.
Inserting v = A vµ into (6.2) and using the induction hypothesis, we get

tn,µ
(
W(j)

)T
vn =

(
W(j)

)T
A vµ =

(
AT W(j)

)T
vµ.

It follows that (6.4) is satisfied if, and only if,

vT
µ

(
AT wi

)
= 0 for all nj ≤ i < nj+1.(6.5)

In view of (5.8), each of the vectors AT wi in (6.5) is used as a candidate w for
a left Lanczos vector in Algorithm 5.1. After w has been biorthogonalized, the
resulting vector w is either deflated in Step 2f), or normalized to become a left
Lanczos vector, say wq, where q is the unique index such that i = φq. However,
since j 6∈ I, the first case can be excluded. Indeed, if w was deflated, then the
cluster index j would have been added to Iv in Step 2f), and by (5.4), it would
follow that j ∈ I. In the second case, in view of the recurrences (4.6), we have

AT wi = AT wφq =
q∑

k=1

wk t̃k,φq .(6.6)

By (5.4), j 6∈ I implies j + 1 ≤ lv. Using the definition of lv in (5.3), we obtain
φq = i < nj+1 ≤ φnl(µ) . It follows that q < nl(µ) and, further, l(q) ≤ l(µ)−1, where
µ ≤ n−1. We can thus employ the induction hypothesis to deduce that wT

k vµ = 0
for all k ≤ q. Finally, inserting (6.6) into (6.5), we get

vT
µ

(
AT wi

)
=

q∑
k=1

vT
µ wk t̃k,φq =

q∑
k=1

(
wT
k vµ

)
t̃k,φq = 0,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

1598 J. I. ALIAGA, D. L. BOLEY, R. W. FREUND, AND V. HERNÁNDEZ

which shows that (6.5) holds. Therefore, the proof of the theorem is complete.

Remark 6.2. The result of Theorem 6.1 is correct independent of the choice of the
deflation tolerance dtol and the look-ahead strategy. In fact, Algorithm 5.1 will
work even if a large dtol is chosen and if look-head is carried out when unnecessary.

Next, we show that for exact deflation, the Lanczos vectors indeed span the right
and left block Krylov subspaces.

Theorem 6.3. If the Lanczos-type Algorithm 5.1 is run with exact deflation only,
i.e., with deflation tolerance dtol = 0, then the generated Lanczos vectors (3.1)
span the right and left block Krylov subspaces, i.e., they satisfy (3.2).

Proof. We use induction on n to show that

span{v1,v2, . . . ,vn } = Kn(A,R) for all n ≥ 0.(6.7)

The proof of the corresponding property of the left Lanczos vectors is analogous,
and is therefore omitted. For n = 0, there is nothing to show. Now let n ≥ 1,
and assume, as induction hypothesis, that (6.7) holds true for n − 1. We denote
by v̂ the vector (5.1) in Algorithm 5.1, and by v the vector that has resulted from
v̂ after the biorthogonalization in Step 1e) and the possible orthogonalization in
Step 1f)(i) has been performed. Note that, by (5.6) and (5.7), v is of the form

v = v̂ +
n−1∑
i=1

vi αi, where αi ∈ C.(6.8)

In view of (2.1) and (2.2), the next candidate vector to be added to Kn−1(A,R) is
of the form Aj ri. Using (5.1) and the induction hypothesis, it follows that

v̂ = γAj ri +
n−1∑
i=1

vi βi, where βi, γ ∈ C and γ 6= 0.(6.9)

Next, we show that

v = 0 ⇐⇒ Aj ri ∈ Kn−1(A,R).(6.10)

If v = 0, then, by (6.8) and (6.9), the vector Aj ri is a linear combination of v1,v2,
. . . ,vn−1, and, by the induction hypothesis, it is contained in Kn−1(A,R). Con-
versely, if Aj ri ∈ Kn−1(A,R), then, in view of (6.8) and (6.9), we have

v =
n−1∑
i=1

vi γi, where γi ∈ C.(6.11)

Recall that v is constructed to be biorthogonal to the clusters of left Lanczos vectors
W(k) for all 1 ≤ k < l(n). Multiplying (6.11) from the left by

(
W(k)

)T, it follows
that γi = 0 for all 1 ≤ i < nl(n). Moreover, if nl(n) ≤ n− 1, then in Step 1f)(i), v is
also orthogonalized against vi for all nl(n) ≤ i ≤ n − 1, and by multiplying (6.11)
from the left by vH

i , it follows that also γi = 0 for all nl(n) ≤ i ≤ n − 1. Thus all
γi = 0 in (6.11), and so v = 0. Note that, since we are assuming exact deflation
only, v is turned into the n-th Lanczos vector vn if, and only if, v 6= 0. In view
of (6.8)–(6.10), it follows that vn ∈ Kn(A,R), but vn 6∈ Kn−1(A,R). Together
with the induction hypothesis, this shows that (6.7) holds true.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

A LANCZOS-TYPE METHOD FOR MULTIPLE STARTING VECTORS 1599

7. Concluding remarks

We presented an extension of the classical Lanczos process for single starting
vectors to multiple starting vectors.

The objective of this paper is to describe the algorithm and to prove some of its
key properties. In order to keep the length of the paper reasonable, we decided not
to include numerical examples. Applications of the algorithm to the problems men-
tioned in §1.2 and numerical results will be and, in part, already have been reported
elsewhere. Freund and Malhotra [18] developed a block version of QMR, called
BL-QMR,1 for the solution of multiple linear systems (1.1) that uses a version of
Algorithm 5.1 with deflation, but without look-ahead. Numerical experiments with
the BL-QMR algorithm are reported in [18, 29]. The results in [18, 29] clearly illus-
trate the importance of deflation. More precisely, basis vectors do become almost
linearly dependent in several of the numerical examples in [18, 29], yet BL-QMR
converges as long as these vectors are deflated properly. However, as soon as the
deflation procedure is turned off, BL-QMR fails to converge. In [13], Feldmann
and Freund use an early version (without deflation and without look-ahead) of the
algorithm to compute Padé approximants to matrix-valued transfer functions (1.5),
and report numerical results for problems arising in circuit simulation.

Finally, we stress that we are well aware of the connections between the problem
of constructing suitable basis vectors for block Krylov subspaces, and the related
problems of solving block Hankel systems and constructing matrix-Padé approxi-
mations; see, e.g., [7, 8, 34, 40, 41] and the references given therein. The connections
between the proposed Lanczos-type algorithm and these related problems should
be explored further. A first such result on the connection to matrix-Padé approxi-
mation was given by Freund [15].

Acknowledgments

The authors are grateful to the referee and editor for their constructive comments
that greatly improved the presentation of the paper. The third author would like
to thank Jane Cullum for pointing out the deflation procedure in [9].

References

[1] J. I. Aliaga, Algoritmos paralelos basados en el método de Lanczos. Aplicaciones en prob-
lemas de control, Doctoral Thesis, Departamento de Sistemas Informáticos y Computación,
Universidad Politécnica de Valencia, Valencia, Spain, 1995.

[2] J. I. Aliaga, D. L. Boley, R. W. Freund, and V. Hernández, A Lanczos-type algorithm for mul-
tiple starting vectors, Numerical Analysis Manuscript No. 96–18, Bell Laboratories, Murray
Hill, NJ, 1996. Also available online from http://cm.bell-labs.com/cs/doc/96.

[3] J. I. Aliaga, D. L. Boley, and V. Hernández, A block clustered Lanczos algorithm, Presentation
at the workshop on “Numerical Linear Algebra with Applications”, Oberwolfach, Germany,
April 1994.

[4] Z. Bai, D. Day, and Q. Ye, ABLE: an adaptive block Lanczos method for non-Hermitian
eigenvalue problems, Research Report 95-04, Department of Mathematics, University of Ken-
tucky, Lexington, KY, 1995.

[5] D. L. Boley, Krylov space methods on state-space control models, Circuits Systems Signal
Process. 13 (1994), 733–758. MR 95e:93036

[6] D. L. Boley and G. H. Golub, The nonsymmetric Lanczos algorithm and controllability,
Systems Control Lett. 16 (1991), 97–105. MR 92e:93004

1FORTRAN-77 and MATLAB implementations of BL-QMR are available online under a
limited-use license agreement from http://www.bell-labs.com/topic/limited-dist/.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=95e:93036
http://www.ams.org/mathscinet-getitem?mr=92e:93004

1600 J. I. ALIAGA, D. L. BOLEY, R. W. FREUND, AND V. HERNÁNDEZ

[7] O. H. Bosgra and A. J. J. Van der Weiden, Input-output invariants for linear multivariable
systems, IEEE Trans. Automat. Control AC-25 (1980), 20–36. MR 81m:93022

[8] A. Bultheel, Recursive algorithms for the matrix Padé problem, Math. Comp. 35 (1980),
875–892. MR 81h:41017

[9] J. K. Cullum and W. E. Donath, A block Lanczos algorithm for computing the q algebraically
largest eigenvalues and a corresponding eigenspace for large, sparse symmetric matrices,
Proc. 1974 IEEE Conference on Decision and Control, IEEE Press, New York, 1974, pp. 505–
509.

[10] J. K. Cullum and R. A. Willoughby, Lanczos algorithms for large symmetric eigenvalue
computations, Volume 1, Theory, Birkhäuser, Basel, 1985. MR 87h:65064a

[11] , A practical procedure for computing eigenvalues of large sparse nonsymmetric matri-
ces, Large Scale Eigenvalue Problems (J. Cullum and R. A. Willoughby, eds.), North-Holland,
Amsterdam, The Netherlands, 1986, pp. 193–240. MR 88a:65040

[12] P. Feldmann and R. W. Freund, Efficient linear circuit analysis by Padé approximation via

the Lanczos process, IEEE Trans. Computer-Aided Design 14 (1995), 639–649.
[13] , Reduced-order modeling of large linear subcircuits via a block Lanczos algorithm,

Proc. 32nd Design Automation Conference, ACM, New York, 1995, pp. 474–479.
[14] R. W. Freund, The look-ahead Lanczos process for nonsymmetric matrices and its applica-

tions, Proceedings of the Cornelius Lanczos International Centenary Conference (J. D. Brown
et al., eds.), SIAM, Philadelphia, 1994, pp. 33–47. MR 95f:65076

[15] , Computation of matrix Padé approximations of transfer functions via a Lanczos-
type process, Approximation Theory VIII, Vol. 1: Approximation and Interpolation (C. K.
Chui and L. L. Schumaker, eds.), World Scientific Publishing Co., Inc., Singapore, 1995,
pp. 215–222. MR 98d:41001

[16] R. W. Freund and P. Feldmann, Efficient circuit analysis by Padé approximation via the
Lanczos process, Presentation at the workshop on “Numerical Linear Algebra with Applica-
tions”, Oberwolfach, Germany, April 1994.

[17] R. W. Freund, M. H. Gutknecht, and N. M. Nachtigal, An implementation of the look-ahead
Lanczos algorithm for non-Hermitian matrices, SIAM J. Sci. Comput. 14 (1993), 137–158.
MR 93h:65048

[18] R. W. Freund and M. Malhotra, A block QMR algorithm for non-Hermitian linear systems
with multiple right-hand sides, Linear Algebra Appl. 254 (1997), 119–157. MR 98g:65027

[19] R. W. Freund and N. M. Nachtigal, QMR: a quasi-minimal residual method for non-
Hermitian linear systems, Numer. Math. 60 (1991), 315–339. MR 92g:65034

[20] , An implementation of the QMR method based on coupled two-term recurrences,
SIAM J. Sci. Comput. 15 (1994), 313–337. MR 95f:65067

[21] G. H. Golub and R. Underwood, The block Lanczos method for computing eigenvalues,
Mathematical Software III (J. R. Rice, ed.), Academic Press, New York, 1977, pp. 361–377.
MR 57:14376

[22] W. B. Gragg, Matrix interpretations and applications of the continued fraction algorithm,
Rocky Mountain J. Math. 4 (1974), 213–225. MR 49:6576

[23] W. B. Gragg and A. Lindquist, On the partial realization problem, Linear Algebra Appl. 50
(1983), 277–319. MR 84h:93020

[24] M. H. Gutknecht, A completed theory of the unsymmetric Lanczos process and related algo-
rithms, part I, SIAM J. Matrix Anal. Appl. 13 (1992), 594–639. MR 93e:65053

[25] H. M. Kim and R. R. Craig, Jr., Structural dynamics analysis using an unsymmetric block
Lanczos algorithm, Internat. J. Numer. Methods Engrg. 26 (1988), 2305–2318.

[26] , Computational enhancement of an unsymmetric block Lanczos algorithm, Internat.
J. Numer. Methods Engrg. 30 (1990), 1083–1089. CMP 91:01

[27] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differ-
ential and integral operators, J. Res. Nat. Bur. Standards 45 (1950), 255–282. MR 13:163d

[28] , Solution of systems of linear equations by minimized iterations, J. Res. Nat. Bur.
Standards 49 (1952), 33–53. MR 14:501g

[29] M. Malhotra, R. W. Freund, and P. M. Pinsky, Iterative solution of multiple radiation and
scattering problems in structural acoustics using a block quasi-minimal residual algorithm,
Comput. Methods Appl. Mech. Engrg. 146 (1997), 173–196. MR 98d:76104

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=81m:93022
http://www.ams.org/mathscinet-getitem?mr=81h:41017
http://www.ams.org/mathscinet-getitem?mr=87h:65064a
http://www.ams.org/mathscinet-getitem?mr=88a:65040
http://www.ams.org/mathscinet-getitem?mr=95f:65076
http://www.ams.org/mathscinet-getitem?mr=98d:41001
http://www.ams.org/mathscinet-getitem?mr=93h:65048
http://www.ams.org/mathscinet-getitem?mr=98g:65027
http://www.ams.org/mathscinet-getitem?mr=92g:65034
http://www.ams.org/mathscinet-getitem?mr=95f:65067
http://www.ams.org/mathscinet-getitem?mr=57:14376
http://www.ams.org/mathscinet-getitem?mr=49:6576
http://www.ams.org/mathscinet-getitem?mr=84h:93020
http://www.ams.org/mathscinet-getitem?mr=93e:65053
http://www.ams.org/mathscinet-getitem?mr=13:163d
http://www.ams.org/mathscinet-getitem?mr=14:501g
http://www.ams.org/mathscinet-getitem?mr=98d:76104

A LANCZOS-TYPE METHOD FOR MULTIPLE STARTING VECTORS 1601

[30] A. A. Nikishin and A. Yu. Yeremin, Variable block CG algorithms for solving large sparse
symmetric positive definite linear systems on parallel computers, I: general iterative scheme,
SIAM J. Matrix Anal. Appl. 16 (1995), 1135–1153. MR 97e:65032

[31] D. P. O’Leary, The block conjugate gradient algorithm and related methods, Linear Algebra
Appl. 29 (1980), 293–322. MR 81i:65027

[32] B. N. Parlett, Reduction to tridiagonal form and minimal realizations, SIAM J. Matrix Anal.
Appl. 13 (1992), 567–593. MR 93c:65059

[33] B. N. Parlett, D. R. Taylor, and Z. A. Liu, A look-ahead Lanczos algorithm for unsymmetric
matrices, Math. Comp. 44 (1985), 105–124. MR 86f:65072

[34] J. Rissanen, Algorithms for triangular decomposition of block Hankel and Toeplitz matrices
with application to factoring positive matrix polynomials, Math. Comp. 27 (1973), 147–154.
MR 48:7577

[35] A. Ruhe, Implementation aspects of band Lanczos algorithms for computation of eigenvalues
of large sparse symmetric matrices, Math. Comp. 33 (1979), 680–687. MR 81b:65034

[36] T.-J. Su, A decentralized linear quadratic control design method for flexible structures, Ph.D.
Thesis, Department of Aerospace and Engineering Mechanics, The University of Texas at
Austin, Austin, TX, 1989.

[37] T.-J. Su and R. R. Craig, Jr., Model reduction and control of flexible structures using Krylov
vectors, J. Guidance Control Dynamics 14 (1991), 260–267.

[38] D. R. Taylor, Analysis of the look ahead Lanczos algorithm, Ph.D. Thesis, Department of
Mathematics, University of California, Berkeley, CA, 1982.

[39] R. Underwood, An iterative block Lanczos method for the solution of large sparse symmetric
eigenproblems, Ph.D. Thesis, Computer Science Department, Stanford University, Stanford,
CA, 1975.

[40] A. J. J. Van der Weiden and O. H. Bosgra, The determination of structural properties of a
linear multivariable system by operations of system similarity, Internat. J. Control 32 (1980),
489–537. MR 81j:93036

[41] G.-L. Xu and A. Bultheel, Matrix Padé approximation: definitions and properties, Linear
Algebra Appl. 137/138 (1990), 67–136. MR 91g:41020

(J. I. Aliaga) Departamento de Informática, Universidad Jaume I, Campus de Riu Sec,

12071 Castellón, Spain

E-mail address: aliaga@inf.uji.es

(D. L. Boley) Department of Computer Science and Engineering, University of Min-

nesota, 4-192 EE/CSci Building, 200 Union Street S.E., Minneapolis, Minnesota 55455–

0159

E-mail address: boley@cs.umn.edu

(R. W. Freund) Bell Laboratories, Lucent Technologies, Room 2C–420, 700 Mountain

Avenue, Murray Hill, New Jersey 07974–0636

E-mail address: freund@research.bell-labs.com

(V. Hernández) Departamento de Sistemas Informáticos y Computación, Universidad

Politécnica de Valencia, Apartado de Correos 22012, 46071 Valencia, Spain

E-mail address: vhernand@dsic.upv.es

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=97e:65032
http://www.ams.org/mathscinet-getitem?mr=81i:65027
http://www.ams.org/mathscinet-getitem?mr=93c:65059
http://www.ams.org/mathscinet-getitem?mr=86f:65072
http://www.ams.org/mathscinet-getitem?mr=48:7577
http://www.ams.org/mathscinet-getitem?mr=81b:65034
http://www.ams.org/mathscinet-getitem?mr=81j:93036
http://www.ams.org/mathscinet-getitem?mr=91g:41020

	1. Introduction
	1.1. The Lanczos process for single starting vectors
	1.2. Handling multiple starting vectors
	1.3. Related work on block Lanczos methods
	1.4. Outline
	1.5. Notation

	2. Block Krylov subspaces
	3. Biorthogonality of the Lanczos vectors
	3.1. The Lanczos vectors
	3.2. Vector-wise biorthogonality
	3.3. Cluster-wise biorthogonality
	3.4. Matrix formulation
	3.5. Normalization

	4. The construction of the Lanczos vectors
	4.1. Review of the case of single starting vectors
	4.2. Multiple starting vectors, but no deflation or look-ahead
	4.3. Deflation
	4.4. History indices
	4.5. Recurrence relations for the general case
	4.6. An example

	5. The Lanczos-type algorithm with deflation and look-ahead
	5.1. A complete statement of the algorithm
	5.2. Implementation details

	6. Properties of the algorithm
	7. Concluding remarks
	Acknowledgments
	References

