A Land Mobile Satellite Data System

John D.B.Kent Canadian Astronautics Limited 1050 Morrison Drive Ottawa, Ontario K2H 8K7 Phone: 613-820-8280 FAX: 613-820-8314

ABSTRACT

The Telesat Mobile Incorporated (TMI) Mobile Data System (MDS) has been developed to apply satellite technology to the transportation industry's requirement for a fleet management system. It will provide two-way messaging and automatic position reporting capabilities dispatch centres and between customers' fleets of trucks. The design has been based on the Inmarsat L-Band space segment with system link parameters and margins adjusted to meet the land mobile satellite channel characteristics. The system interfaces with the Teleglobe Des Laurentides earth Quebec. The station at Weir, signalling protocols have been derived from the Inmarsat Standard C packet signalling system¹ with requirements trucking unique incorporated where necessary.

SYSTEM DESCRIPTION

topology is system The illustrated in Figure 1. and the in HUB equipment connectivity Figure 2. Fleets are connected to the central HUB via terrestrial (leased lines, dialup facilities or X.25 data accesses) or VSAT systems. The system connectivity maps each dispatch centre to a fleet or subfleet(s) of mobiles. Each mobile has an association with only one dispatch centre. The earth (MET) terminal mobile

identifier then becomes the only routing indicator needed to address or identify the originator or addressee of a one-to-one message.

Four classes of messages are utilized in the MDS: general messages of up to 121 bytes for outbound messages and 129 bytes coded inbound messages, for messages which are a set of 32 pre-selected messages, 32 premessage with blank formatted fields to be filled in by the operator and broadcast messages. or subfleet broadcast Fleet messages from the dispatch centre in the outbound direction are routed to groups of METS whose association is established when the MET logs-on the system.

SYSTEM ELEMENTS

The major hardware elements in the HUB system are the STARMASTER system switch (SS), redundant VAX 3300 Network Control Processors (NCP) and Single Board Computers Satellite Protocol (SBC) Processors (SPP), the PACX 200 Remote Switch and the Channel Messages from dispatch Units. from the routed centres are incoming terrestrial circuits to the on-line NCP via the SS. The NCP contains the dispatch centre and terminal fleet records, system information and Historical configuration data. records are also maintained in the NCP billing for and network management purposes. Incoming messages are processed by the NCP and forwarded to two queues (Priority and Routine) to the SPP. The NCP also maintains the position reporting register and assigns channels, slots and slot intervals to the MET's at log-on for position reporting messages.

The two elements of the HUB are interconnected by four 9.6 kbps terrestrial routed lines, backed up by a single redundant line. The remote switch configuration is controlled by the NCP and lines and channel unit grouping are changed via a 2.4 kbps dialup orderwire.

PROPAGATION AND SYSTEM MARGIN

The land mobile satellite channel is characterized by a line-of-sight (LOS) component, a multipath-path component and shadowing or blockage of the LOS component. The LOS combined with multi-path form the the fast fading component which follows a Rician distribution and the shadowing results in a slow fading with component а log-normal distribution. Figure 2^2 shows the cumulative probability distribution function for typical land mobile satellite paths in the Ottawa, Ontario area.

limited The satellite EIRP available at L-Band (21.6 dBW) and the relatively wide bandwidth available per channel (5 KHz), in relation to the channel data rate, indicated that coding should be utilized to correct errors introduced by the rapidly changing channel characteristics. To improve the performance of the coding the outbound frame is interleaved in a 64x162 matrix thus spreading burst errors throughout the frame. The selected coding system was rate 1/2convolution coding with а

constraint length of 7 with 3 bit soft decision Viterbi decoding. The inbound frame is not interleaved due to its short duration (527 ms); however, it is coded as per the outbound channel. The margin and data rates on the inbound channels are adjusted for the lack of interleaving.

FRAME STRUCTURE AND MESSAGING

The outbound and inbound channel and packet structure is shown in Figure 4. A single outbound TDM channel is used on the forward link with a frame period of 8.64 seconds. A 128 bit unique word indicates the start of frame and is followed by a 112 bit bulletin board which includes the system identifier and network information. The inbound channel descriptors (ICD) provide the acknowledgement status of the previous frame (ACK/NACK) register and the reservation status of the 14/28 slots in the position reporting and messaging channels three frames ahead. This is necessary due to the depth of interleaving and the time required for decoding and descrambling. The message packet length is established by the length of the message. In the event of a message overlapping two frames, the message is carried over to the first information packet of the next frame. If the frame has excess capacity, the unused space is padded out with dummy zeros. The outbound message includes the reservation of an inbound channel and slot on which the MET sends the message acknowledgement.

Optimization of the system throughput is accomplished by utilization of a combination of slotted Aloha and reservation Aloha for inbound messages. The inbound channels, up to a total of 14 messaging position and reporting channels, are divided

into 14/28 slots depending on the channel data rate of 300 or 600 bps. The channels are divided into position reporting and general which are messaging channels subdivided into retry and priority message slots. Initial log-on to the system and the first packet of a single or multi-packet message utilize a slotted Aloha protocol with subsequent packets sent in reserved slots controlled by the satellite protocol processor (SPP) through the ICD. If a fade or other loss of the inbound packet occurs, indicated by a cyclic redundancy code (CRC) error, the is set to NACK and the ICD for extended reservation is another packet by the SPP. The MET acknowledges the NACK by repeating the lost packet and continuing the message on a three frame multislot basis adding a slot for the lost packet. The relatively long message delay for a multi-packet inbound message is indicated in Figure 5, which assumes no CRC errors for the inbound packets. An ARQ system is used in conjunction with the FEC with the last two bytes of packets reserved for the CRC.

Position report information is forwarded from the Loran-C board (latitude and longitude to .01 degree along with a two digit relative reliability indicator) to the MET processor board on the schedule established at log-on. This information is sent in the reserved slots and channel every 208, 416 or 832 frames 104. position corresponding to information every 15, 30, 60 or 120 minutes approximately. If the position report is not received by the HUB, indicated to the MET by the ICD status the MET takes no further action. If the user has subscribed to a retry service then interrogates the MET HUB the requesting a position report and assigning one of a number of

reserved slots in a position reporting channel for the retry.

Broadcast messages to fleets and subfleets are not acknowledged by addressees to avoid congestion on the inbound channels. They are repeated at least three times in successive outbound frames to ensure reception by vehicles subject to nominal propagation conditions.

DEMODULATOR PERFORMANCE OBJECTIVES

The MET demodulator operates in a synchronous half duplex mode at 1200 sps. During transmission the MET must retain frequency and bit timing so that it can re-acquire the outbound TDM channel after the first unique word. With additive white Gaussian noise and a specified received phase noise the demodulator performance shall be:

C/No dB-Hz	Pe xe-05
33.5	2.0

Initial acquisition of the carrier with a frequency offset at the demodulator of +/-850 Hz shall be achieved over a range of C/No of 33.0 to 35.0 dB-Hz within 25 seconds with a probability of failure not greater than 0.01.

The inbound TDMA burst demodulators will operate at 600/1200 sps (HUB selectable) with 632/316 TDM symbol periods per The burst to burst burst. frequency uncertainty after frequency correction at the Des Laurentides earth station shall not be greater than +/- 650 Hz and the maximum rate of change of frequency during a burst shall not exceed +/- 65 Hz per second for six seconds. The packet error probability (PEP) for a 15 byte packet shall be less than the

following at 300 bps:

SUMMARY

of

1990.

C/No dB-Hz	PEP
32.3	0.1
34.6	0.02

Digital signal processing is used in all modems and provides the flexibility to rapidly reconfigure the network and reduces the hardware required for redundancy.

The MDS system is currently undergoing system and acceptance

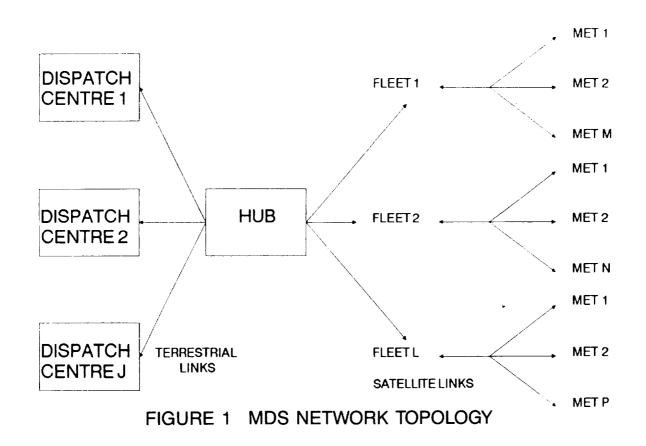
tests and is scheduled to be in

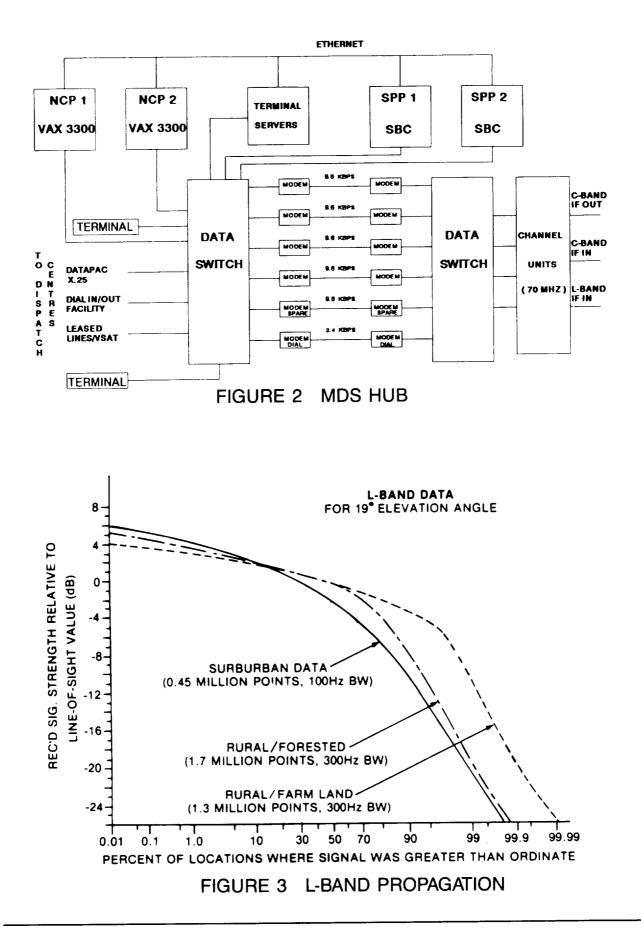
operational service in the Spring

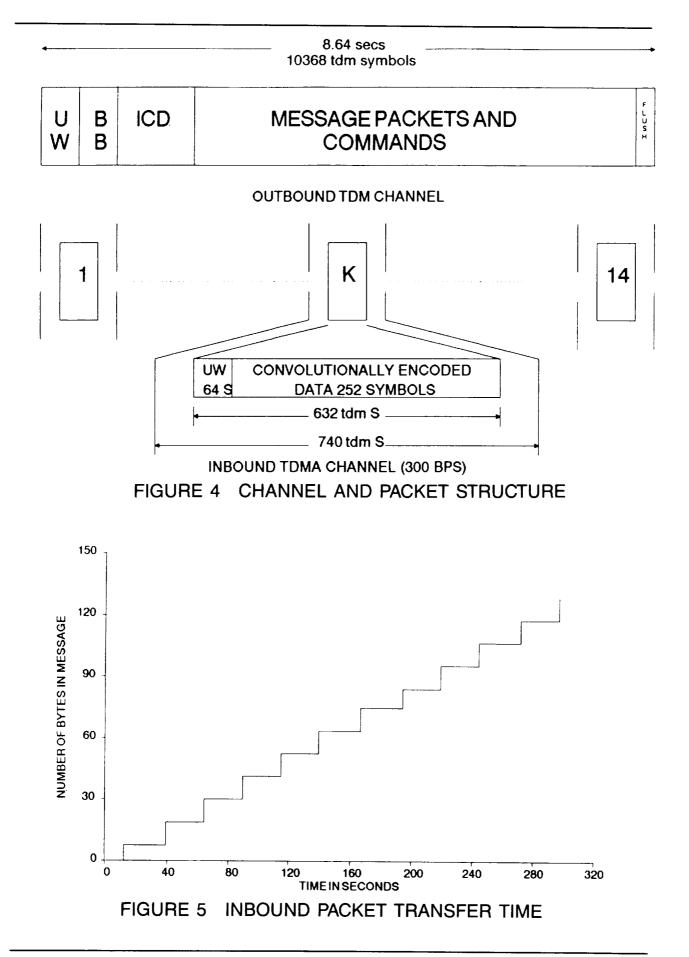
performance has proven to be quite

robust and to meet the messaging

The satellite link


objectives even under relatively dense shadowing. The Loran-C position reporting accuracy has been excellent in rural areas and the quality indicator has alerted to possible errors in high noise environments.


Final test results will be presented at the conference and overall system performance will be discussed.


REFERENCES

1. INMARSAT, Standard-C, System Definition Manual, Release 1.3, July 1989.

2. BUTTERWORTH, J. AND MATT, E. 1983. The Characterization of Propagation Effects for Land Mobile Satellite Services. IEE Conference Publication No. 222.

