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We construct a phenomenological Landau-de Gennes theory for hard colloidal rods by performing
an order parameter expansion of the chemical-potential dependent grand potential. By fitting the
coefficients to known results of Onsager theory, we are not only able to describe the isotropic-
nematic phase transition as function of density, including the well-known density jump, but also the
isotropic-nematic planar interface. The resulting theory is applied in calculations of the isotropic
core size in a radial hedgehog defect, the density dependence of linear defects of hard rods in square
confinement, and the formation of a nematic droplet in an isotropic background.
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I. INTRODUCTION

Studying phase transitions involves a careful investiga-
tion of the free energy of the system, however, computing
it can be very hard, even for the simplest interactions [1].
In the case of symmetry-breaking transitions an order pa-
rameter can be defined, which allows one to distinguish
a disordered state from an ordered one. From the micro-
scopic Hamiltonian close to a phase transition, a power
expansion in terms of this order parameter can often be
derived [2], the so-called Landau free energy [3], but it
can also be set up phenomenologically based on symme-
try grounds. The Landau free energy is usually stud-
ied on the level of a saddle-point approximation, such
that only polynomial Euler-Lagrange equations have to
be solved to understand the phase behaviour, and this
procedure has had many successes. Examples include
the spontaneous magnetization from a paramagnet to a
ferromagnet [4], the gas-liquid transition [5], and the for-
mation of a superconductor from an ordinary metal [6].

For nematic liquid crystals the order parameter is a
traceless and symmetric tensor Q [7] with components
Qαβ where α, β = 1, 2, 3 in three-dimensional systems.
This tensorial form is chosen because the ordered phase
breaks rotational (SO(3)-) symmetry, but there is a resid-
ual Z2, or up-down symmetry, which requires the theory
to be invariant under O(3), rather than SO(3). The bulk
Helmholtz (or Gibbs) free energy that describes the first
order phase transition towards a nematic phase, can then
be expanded as

∆F = A(T − T ∗)Tr(Q2) −BTr(Q3) + C(TrQ2)2, (1)

where A, B and C are phenomenological coeffcients, T is
temperature and T ∗ is the temperature of the isotropic
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spinodal. However, this so-called Landau-de Gennes ex-
pansion [7] is only suitable for thermotropics: materials
that become liquid crystalline as function of tempera-
ture. It has been applied in many situations, ranging
from equilibrium [8] to non-equilibrium situations [9], in-
cluding colloidal particles immersed in a thermotropic
nematic [10, 11] and active nematics [12].

In contrast, lyotropic systems, which can consist of
hard rods or platelets [13–17], become ordered as a func-
tion of density [18], and are not described by the free
energy of Eq. (1). A simple remedy for this problem
would be to replace T in Eq. (1) by the density ρ, but
this cannot capture the density jump that is found in the
isotropic-nematic (IN) phase transition, which can be as
large as 25% [19]. Most theories for lyotropics, such as
Onsager theory [20], do exhibit this density jump, but
are difficult to handle numerically in more complex situ-
ations or geometries, because one has to solve a compli-
cated non-linear integral equation.

This motivates us to set up a Landau expansion for
lyotropics for which we will use the grand potential Ω
rather than the Helmholtz (or Gibbs) free energy F in
section II. By using Ω, the expansion parameters will
depend on the chemical potential µ [21], and the den-
sity jump will naturally be encoded through the relation
∂(Ω/V )/∂µ|V,T = −ρ, with V the volume of the system
and ρ the average density. Such a Landau expansion
in terms of Q is different from, for example, the phase-
field-crystal method of Ref. [22], which produces terms
that also explicitly depend on density. In our description
only a single µ-dependent term is needed to describe the
density dependence of the IN transition. It is therefore
easier to use than the method proposed in Ref. [22], for
which also an Euler-Lagrange equation for ρ needs to be
solved, in addition to the one for Q. We will explore
the bulk properties of our Landau expansion by fitting
and comparing it with Onsager theory [20] in section III,
which is exact in the needle limit [23]. Afterwards, we
fit the square-gradient coefficients by using the hard-rod
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surface tension on parallel and perpendicular anchoring
for a planar IN interface in section IV. This approach is
similar to the one that is briefly discussed by Wittmann
et al. in the context of fundamental measure theory [24]
. However, we will perform a more thorough analysis
of the quality of this theory compared to Onsager the-
ory. Finally, we show some applications: a study of the
isotropic core size in a hedgehog defect (section V), linear
defects and director textures for rods under confinement
(section VI), and the shape and size of a nematic droplet
with a homogeneous director field (section VII).

II. LANDAU-DE GENNES FREE ENERGY

Let us consider hard rods of length L and diameter
D at chemical potential µ in a macroscopic volume V
bounded by a surface ∂V . In the Landau grand potential,
we will consider terms that depend on Q and its spatial
gradient ∇Q,

∆Ω[Q] = (2)
∫

V

dr [∆ωb(Q(r)) + ωe(∇Q(r))] +

∫

∂V

dS ωs(Q(r)),

where ∆ωb is the bulk grand potential density with re-
spect to the isotropic state, ωe describes elastic deforma-
tions and surface tension effects, and ωs is an anchoring
term that describes the interaction with external walls.
All the terms should be invariant under Q → UTQU,
with U ∈ O(3). We expand the bulk contribution with
respect to the isotropic state ∆ωb up until fourth order
in Q, which gives us

βB2∆ωb(Q(r);µ) =
2

3
aβ(µ∗ − µ)QαβQβα− (3)

4

3
b QαβQβλQλα +

4

9
d QαβQβαQλρQρλ,

where we will use the Einstein summation convention
throughout the paper. The second virial coefficient in

the disordered isotropic phase is given by B2 = πL2D/4
in the limit L ≫ D, and is included in our definition to
render the Landau coefficients a, b and d conveniently
dimensionless. For simplicity we assume them to be in-
dependent of µ. Moreover, µ∗ will turn out to be the
chemical potential at the isotropic spinodal. When we
assume that the nematic phase is uniaxial, then Q can
be expressed in terms of the scalar order parameter S(r)
and the director field n(r) for α, β = 1, 2, 3,

Qαβ(r) =
3

2
S(r)

[

nα(r)nβ(r) −
1

3
δαβ

]

. (4)

Notice that the largest eigenvalue of Q is S, while the
corresponding (normalized) eigenvector is n. Using that
QαβQβα = (3/2)S2 and that QαβQβλQλα = (3/4)S3, we
can express Eq. (3) in terms of S as

βB2∆ωb = aβ(µ∗ − µ)S2 − bS3 + dS4. (5)
For the terms in gradients of Q we only retain terms

up until square gradients in Q which gives us [25]

βB2ωe(∇Q(r)) =
2

9

[

l1(∂αQβλ)(∂αQβλ)

+ l2(∂αQαλ)(∂βQβλ) + l3(∂αQβλ)(∂λQβα)
]

, (6)

where the dimensionfull parameters l1, l2 and l3 are elas-
tic constants for Q. In general, they will depend on µ,
but for simplicity, we initially assume them to be con-
stant. Later, in section VII, we will investigate the effect
when they are µ-dependent.

It is instructive to work out ωe for the uniaxial case of
Eq. (4). Since the norm of the director is a constant and
using the vector identities

[n× (∇× n)]α = −nβ∂βnα, (7)

(∂αnβ)(∂αnβ) = (∇ · n)2 + [n · (∇× n)]2 (8)

+ |n× (∇× n)|2 −∇ · [n(∇ · n) + n× (∇× n)],

we can recast ωe in the form

βB2ωe =
1

3
(l1 + ls/3)|∇S|2 +

ls
3

(n · ∇S)2 + ∇(S2) ·

[(

l1 +
2

3
ls

)

(∇ · n)n +

(

l1 +
1

3
ls

)

n× (∇× n)

]

+ (9)

S2
{

(l1 + ls)(∇ · n)2 + l1[n · (∇× n)]2 + (l1 + ls)|n× (∇× n)|2
}

− [l1 + (ls − la)/2]∇ ·
{

S2[n(∇ · n) + n× (∇× n)]
}

,

where we introduced ls = (l2 + l3)/2 and la = (l2− l3)/2.
We see that ωe encodes for surface tension (first line) and
elastic deformations (second line) [26]. Eq. (9) can be
compared with the Frank elastic free energy Fe [27, 28]
for a bulk nematic phase with a spatially constant bulk

order parameter Sb,

Fe =
1

2

∫

dr{K11(∇ · n)2 + K22(n · ∇ × n)2+ (10)

K33|n× (∇× n)|2 − 2K24∇ · [n(∇ · n) + n× (∇× n)]},

where the terms in the integrand describe splay, twist,
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bend and saddle splay deformations, respectively. Up
to second order in Sb we find K11 = K33 = 2S2

b (l1 +
ls)/(βB2), K22 = 2S2

b l1/(βB2) and K24 = S2
b [l1 + (ls −

la)/2]/(βB2). Within Onsager theory K33 ≫ K11 and
K22 = K11/3 [29], which is not to be expected to hold in
the Landau expansion at this order. Finally, notice that
the last term of Eq. (10) is a surface contribution [30]
and that la will typically only contribute to the surface
free energy [7].

Finally, ωs in Eq. (2) is an anchoring contribution for
external walls, for which we assume the Rapini-Papoular
(like), or Nobili-Durand form [31, 32],

βB2ωs

L
=

w

2

[

Qαβ(r) −Q0
αβ(r)

]2
, (11)

with w the dimensionless anchoring strength and Q0 the
preferred value of Q on the surface. Although it is possi-
ble to minimize ∆Ω with respect to S, it is more conve-
nient and more general to directly minimize Eq. (2) with
respect to Q when the director field varies as function of
position. However, one has to perform the minimization
under the constraint that Q is traceless and symmetric,
see for example Ref. [33].

III. BULK PROPERTIES

In bulk, we assume a fully uniaxial nematic phase
and hence it is sufficient to investigate Eq. (5). The
(meta)stable and unstable points are found by the con-
dition ∂∆ωb/∂S = 0, resulting in the following solutions

SI = 0, (12)

S±
N =

3b

8d

(

1 ±

√

1 −
32adβ(µ∗ − µ)

9b2

)

. (13)

The stability of these points can be investigated by an-
alyzing the sign of ∂2∆ωb/∂S

2. The isotropic spin-
odal µ∗ is defined by ∂2∆ωb/∂S

2|S=SI
= 0, while the

nematic spinodal βµ+ = βµ∗ − 9b2/(32ad) is the µ
for which ∂2∆ωb/∂S

2|S=S+

N

= 0. Finally, the binodal

βµIN = βµ∗ − b2/(4ad) is determined from ∆ωB(SI) =
∆ωB(S+

N ). A stability analysis shows that (i) for µ < µ+

the isotropic phase is the stable configuration, (ii) for
µ+ < µ < µIN we have that S−

N is absolutely unsta-

ble, while S+
N is metastable and the isotropic phase is

stable, and (iii) for µIN < µ < µ∗ we have that S−
N is

absolutely unstable, while S+
N is stable and the isotropic

phase is metastable. (iv) For µ > µ∗ we have that S−
N is

metastable, while S+
N is stable and the isotropic phase is

unstable. The resulting bifurcation diagram listing the
stability of all these branches is shown in the inset of
Fig. 1, where we indicate with arrows the IN transition
as function of µ. Below, we derive the values of the coef-
ficients we used in Fig. 1 from fits to Onsager theory.

When S is known for a given µ, one can convert µ to
the dimensionless density c = B2ρ. For this we introduce

c
3 3.5 4 4.5 5 5.5 6

S
(c

)
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Figure 1. Bifurcation diagram for the lyotropic Landau-de
Gennes (LdG) theory in the density-order parameter (c, S)
representation and in the chemical potential-order parameter
(µ, S) representation (inset) by fitting it to coexistence data
from Onsager theory. We use green for the isotropic branch
SI , blue for the upper nematic branch S+

N , and red for the
lower nematic branch S−

N . We use full lines whenever the
respective branch is (globally) stable, dashed lines whenever
they are metastable and dotted lines whenever they are ab-
solutely unstable. In grey we show data points obtained from
Onsager theory and we see that the LdG theory matches well
with it. With arrows we indicate the isotropic-nematic transi-
tion in both representations, exhibiting a density jump in the
(c, S) representation when the ordered phase starts to form.

the grand potential density of the isotropic state ωI and
define ω := ωI + ∆ωb. Then we find ∂(B2ω)/∂µ = −c,
such that

c(µ) = cI(µ) + aS2, (14)

where we have defined cI(µ) = −∂(B2ωI)/∂µ. Within
Onsager theory, we calculate ωI by using an isotropic
distribution function, such that βµ(cI) = log(cI/4π) +
2cI [34]. By inverting this relation, one obtains cI(µ).
Together with Eq. (14), and S one can determine c.

At isotropic-nematic coexistence, we have from Eq.
(14) and the analysis above that

c(µIN ) = cI(µIN ) + aS2
IN , (15)

βµIN = βµ∗ −
b2

4ad
, (16)

SIN =
b

2d
. (17)

Within Onsager theory, it is known that [34] cI(µIN ) =
3.290, c(µIN ) = 4.191, βµ∗ = 6.855, βµIN = 5.241 and
SIN = 0.7922. Using these values, we find a = 1.436,
b = 5.851 and d = 3.693. With this set of parameters, we
determine that βµ+ = 5.039 [35]. We plot the bifurcation
diagram in Fig. 1, indicating the stable, metastable and
unstable regions in the (c, S) representation and in the
inset we show the (µ, S) representation. Arrows indicate
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Figure 2. Interfacial profiles S(z) and c(z) between an
isotropic phase and a nematic phase, calculated within the
lyotropic LdG theory. Two characteristic distances are de-
fined to quantify the shape of the profiles: δ is the displace-
ment between the center of the S profile and that of the c
profile, where we defined a measure for the interfacial width
τ = |z+ − z−|, with c′′′(z±) = 0.

the IN transition in both representations, for which the
density jump is correctly captured by construction. We
also give a comparison with Onsager theory (the grey
circles) for which the bifurcation diagram is known [34,
36].

We note that S+
N > 1 for c & 5 in Fig. 1, which is

unphysical. A simple remedy for this problem would be
to replace S4 → S4/(1 − S) in Eq. (5), which ensures
that S ≤ 1. However, this complicates the free energy,
especially when the full Q-tensor theory is needed, so it
will not be considered here. We have seen in our cal-
culations that this remedy does give better results for
the nematic branches at high densities when compared
with Onsager theory. However, our calculations show
that inhomogeneous Landau theories are less accurate
for these expansions, presumably because accuracy in the
metastable regime is more important than in the high-
density regime.

IV. ISOTROPIC-NEMATIC INTERFACE

Let us now consider an inhomogeneous system that for
z → ∞ consists of an isotropic fluid, while for z → −∞
there is a bulk nematic with order parameter Sb. For sim-
plicity, we neglect biaxial effects within our LdG theory,
which can be important, but can be included quite easily
if necessary [37, 38]. Moreover, we assume homogeneity
in the plane perpendicular to the z axis. As a natural
consequence a planar interface will develop between the
two bulk phases, with an order parameter profile S(z)
and a density profile c(z), that can be calculated within
our Landau theory. The surface tension for parallel γ‖
and perpendicular anchoring γ⊥ of such a system are
known within Onsager theory [39] and these quantities

will be used to fit the constants l1 and ls = (l2 + l3)/2
from Eq. (6). We fix the director field n to be spatially
constant with a specified orientation and let α be the an-
gle of the director with the interface normal. This means
that for α = 0 (α = π/2) the rods are aligned perpendic-
ular (parallel) to the interface. With this definition, we
can write n ·∇S = S′(z) cosα, where henceforth a prime
denotes differentiation with respect to z.

The Landau grand potential per unit interfacial area
A for this geometry is

∆Ω[S]

A
=

∫

dz

[

m(α)

2βB2

(S′(z))
2

+ ∆ωb(S(z);µ)

]

, (18)

with stiffness constant m(α) = (2/3)[ls cos2 α+ l1 + ls/3].
It is straightforward to rewrite the Euler-Lagrange equa-
tion δ∆ΩLdG[S]/δS = 0, into

m(α)S′′(z) =
∂[βB2∆ωb(S(z);µ)]

∂S(z)
,

lim
z→−∞

S(z) = Sb, lim
z→∞

S(z) = 0. (19)

For our purposes it suffices to consider this equation at
coexistence, where µ = µIN and Sb = SIN . Multiplying
this equation with S′(z) and integration over z gives

m(α)

2
(S′(z))2 = dS2(S − SIN )2, (20)

where we used that βB2∆ωb(S(z);µIN ) = dS2(S −
SIN )2, and where an integration constant vanishes be-
cause S′(z) → 0 for z → ±∞. Taking the square root
of this equation and choosing the positive root since it is
consistent with our boundary conditions, it is straight-
forward to find that the order parameter profile reads

S(z) =
SIN

2

[

1 − tanh

(

z

2ξ

)]

, (21)

after introducing the correlation length ξ =
[2dm(α)]1/2/b. The profile for c(z) can be obtained from
Eq. (14), as

c(z) = cI +
aS2

IN

4

[

1 − tanh

(

z

2ξ

)]2

. (22)

By definition ∆ωb(SIN , µIN ) = 0, which means that
the bulk pressure comes entirely from the isotropic con-
tribution to the grand potential, ωI = −βB2pIN . Hence,
∆Ω/A is the surface tension when evaluated at coexis-
tence,

βB2γ(α) = m(α)

∫ ∞

−∞

dz[S′(z)]2 = S3
IN

√

dm(α)

18
, (23)

where we used Eq. (20). Using Eq. (23) we find that
m(α) = 9/(8d)[πβγ(α)LD/S3

IN ]2L2, and the surface
tensions known from Onsager theory, βγ‖LD = 0.156
(α = π/2) and βγ⊥LD = 0.265 (α = 0) [39], are used
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as input parameters. We thus find m‖ = 0.296L2, and

m⊥ = 0.854L2. For the perpendicular case (α = 0), we
plot the profiles c(z) and S(z) in Fig. 2, showing that
the density profile is shifted with respect to the order pa-
rameter profile, which is consistent with Onsager theory
and simulations [39]. The same phenomenon is found for
α = 0, but the interfaces have a smaller width. This
shift seems to be robust, general and universal as several
types of theories yield similar predictions for its sign and
magnitude, even for the isotropic-plastic crystal interface
[40].

For the above obtained values of m‖ and m⊥, it follows

using the relation below Eq. (18) that l1 = 0.165L2 and
ls = 0.837L2. In this case it is not possible to determine
la. Using these values, we find K11/K22 = 6, which
should be contrasted with the exact relation where this
ratio should be equal to 3 for L → ∞ [29, 41, 42].

To assess the quality of our calculations, we introduce
two characteristic lengths. The first one is defined as
δ = |zS−zc|, where S(zS) = SIN/2 and c(zc) = [c(µIN )+
cI(µIN )]/2, hence we see that δ is a measure for the shift
of c(z) with respect to S(z). Another length scale is
the width of c(z), which can be defined as τ = |z+ −
z−|, where z± satisfies c′′′(z±) = 0. For α = 0, we find
that δ‖ = 0.223L and τ‖ = 0.586L, while within Onsager

theory the values are δO‖ = 0.45L [39] and τO‖ = 0.697L

[43]. Finally, for α = π/2, we have determined that δ⊥ =
0.378L and τ⊥ = 0.994L, however, the values of δO⊥ and
τO⊥ are not reported in the literature. Where comparisons
are possible, we do see that the LdG results compare
quite favourably with Onsager theory, where one should
keep in mind the enormously reduced numerical effort of
the LdG theory compared to the Onsager theory of the
IN interface.

V. RADIAL HEDGEHOG DEFECT

In this section, we will study the hedgehog defect,
an object that has received much attention in the ther-
motropic liquid crystal literature [44–47], but for which
little is known for lyotropic liquid crystals. To study this
type of defect, we assume locally uniaxial symmetry and
consider

Q(r) =
3

2
S(r)

(

er ⊗ eTr −
1

3
I

)

, (24)

where n(r) = er is the radial unit-vector. If the hedgehog
defect would consist of a bulk nematic phase, the elastic
free energy density diverges at the centre r = 0, and the
only way for the system to lower its free energy is by a
melting transition of the core to an isotropic phase. Lan-
dau theory allows us to determine the internal structure
of the resulting defect core, shown schematically in the
inset of Fig. 3. This calculation would not be possible
within continuum theories such as e.g. Eq. (10), in which
the spatial variation of S(r) is ignored. In such Frank-
Oseen theories, a cut-off length is needed to assess the
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Figure 3. Internal structure of a hedgehog defect for various
chemical potentials µ. In (a) the order parameter profile S(r)
is shown and in the inset we show a schematic top view of the
defect. In (b) we plot the dimensionless local density c(r).
The profiles clearly show the structure of an isotropic core
centered at r = 0.
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Figure 4. (a) Isotropic core size measured by the positions
rS and rc for which the order parameter S and the density
c reach the average of their minimum and maximum value,
respectively. (b) The interfacial shift δ = |rS − rc| as func-
tion of µ. The vertical dotted lines indicate the bulk binodal
µ = µIN , and the horizontal line in (b) is the shift δ⊥ in a
planar geometry with a fixed director field perpendicular to
the interfacial plane, as determined in section IV.

size of the isotropic core, whereas the core size will fol-
low naturally from the regime where S(r) vanishes within
our LdG theory. Finally, the rod length L is a natural
length scale in our calculations, because we determined
the stiffness constants m‖ and m⊥ from a microscopic
theory. This allows us to estimate the isotropic core size
in terms of L.



6

Since we fix the director field to be radial, it suffices
to evaluate Eq. (5) and (9). A radial director field is
irrotational, ∇× er = 0, and has a non-vanishing diver-
gence, ∇ · er = 2/r. From Eq. (2) and Eq. (6) it is then
straightforward to derive the grand potential

βB2∆Ω[S] =

∫

dr

[

1

3

(

l1 +
4ls
3

)

(∂rS)2 (25)

+ ∂r(S2)
2

r

(

l1 +
2

3
ls

)

+ S2(l1 + ls)
4

r2
+ βB2∆ωb

]

,

for which the Euler-Lagrange equation is

S′′(r) +
2

r
S′(r) −

6

r2
S(r) =

3βB2

2m⊥

∂∆ωb

∂S
, (26)

to be solved for the boundary conditions S(0) = 0 and
S(R) = S+

N (µ). The radius R is the size of the hedgehog
defect, which can be thought of as the radius of a finite
spherulite or a bulk nematic where there is a finite region
of size R where the rods are radially aligned. In our
calculations we set R = 50L. Notice that the surface
term in Eq. (6) does not contribute because we consider
strong homeotropic anchoring conditions at r = R.

Solving Eq. (26) for a given µ gives the structure of a
hedgehog defect S(r), shown in Fig. 3(a) for several µ.
Indeed, an isotropic core centered at the origin is found.
For r ↓ 0, the profiles behave locally as S(r) = O(r2)
and for r → ∞ as S(r) = S+

N (µ) − O(1/r2), as is well
known [44]. Moreover, increasing µ, which is equivalent
to setting a higher bulk density, gives rise to a smaller
isotropic core size. This behaviour is also observed in
thermotropic Landau theory [44], however there are two
new features that our version provides. Firstly, as was
mentioned earlier, m⊥ is determined by a fit to the On-
sager result, and hence the rod length L is an intrinsic
(microscopic) length scale of the theory. This allows us
to determine the isotropic core size in terms of L. We
see that the isotropic core size is always O(L) sufficiently
far from the nematic spinodal, in accordance with exper-
iments [48]. This is in sharp contrast with thermotropic
liquid crystals, where the isotropic core size is macro-
scopic in size compared to the microscopic size of the
molecules, which have a length on the order of 10−9 m
[44]. The reason is that for thermotropics, the binodal
lies always close to the isotropic spinodal temperature T ∗

and the nematic spinodal temperature T+, since typically
T+ − T ∗ . 1 K [8]. Secondly, from S(r) we can deter-
mine the density profiles c(r), for which we show some
examples in Fig. 3(b) for the same set of µ. Similar to
the planar interface case, c(r) is shifted with respect to
S(r) towards the region where the bulk nematic phase is
found.

The isotropic core size can be characterized by rS or
rc, the positions for which S(r) and c(r) attains the aver-
age of their minimum and maximum value, respectively,
which we show as a function of µ in Fig. 4(a). We see that
both quantities increase with decreasing µ, showing that

at low (bulk) densities the rods have a lower tendency to
order, which facilitates an isotropic phase. When µ ap-
proaches the nematic spinodal µ+, the core size diverges,
because the nematic phase becomes absolutely unstable.
However, it is hard to determine numerically the exact
state point for which this happens, because of conver-
gence problems in Eq. (26) for βµ . 5.22.

We plot the interfacial shift δ = |rS − rc| in Fig. 4(b),
revealing a weak (but non-monotonic) variation with µ.
As a comparison we indicate δ⊥, which is the result found
in the flat geometry of Sec. IV, as the dotted horizontal
line. We do not make a comparison with the interfacial
width τ since it is an ill-defined quantity for the hedge-
hog defect: the equation c′′′(r) = 0 has only one solution.
Finally, we remark that the hedgehog defect can be un-
stable towards a ring disclination or a split core defect,
as was found for thermotropic LdG theory [46]. For hard
rods the split core defect has been realized by applying an
external magnetic field [49]. Ring disclinations, however,
are expected not to occur in hard-rod systems, because,
in contrast to molecular systems, we have K11 ≫ K33.

VI. CONFINED HARD RODS

An application for which we need the full Q-tensor the-
ory is the confinement of rods in a rectangular cuboid.
Such a system has been investigated using a mean-field
Onsager model and Frank-Oseen model [50], but also us-
ing Monte-Carlo simulations [51] and within Landau the-
ory [52]. In the latter case, however, local density varia-
tions were not considered.

Let us consider a rectangular cuboid with a square
base of dimensions l × l in the xy-plane as illustrated
in Fig. 5(a). To simplify the problem, we take the height
equal to the diameter of the rods, such that the rods will
necessarily order within the xy-plane. We implement this
by setting Qzz = −1/2 and Qzx = Qzy = 0. Following
Ref. [51], we use the largest positive eigenvalue λ+ of Q
to determine the degree of order, while the corresponding
eigenvector n is a measure for the alignment in the xy-
plane. Observe that λ+ is not always the same as the
scalar order parameter S, which is defined as the absolute
largest eigenvalue. We parametrize

Q(x, y) =





1
4

+ q1(x, y) q2(x, y) 0
q2(x, y) 1

4
− q1(x, y) 0

0 0 − 1
2



 , (27)

for which we can derive (see Appendix A) the Euler-
Lagrange equations for q = (q1, q2),

(l1+ ls)∇
2q = 3aβ(µ∗−µ)q−

9

2
bq+

d

2
(3+16q21 +16q22)q,

(28)
with the boundary conditions

(l1 + ls)(ν̂ · ∇q) +
9

4
w(q− q0) = 0, (29)
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Figure 5. (a) A rectangular cuboid with a square base of
dimensions l × l in which we confine rods with diameter D
and length L. Various anchoring boundary conditions at the
four walls Γ1, ...,Γ4 are investigated. (b)-(c) For ∆ = 0 (see
Eq. (31)) the rods at the corners of the square have the same
angle with the bottom wall, while (d) for ∆ > 0 the rods
always move to the edge farthest from the corner towards the
opposing wall or (e) for ∆ < 0 the edge closest to the corner
is moved towards the opposing wall.

and ν̂ an outward pointing normal vector. Unless stated
otherwise, we assume relatively strong anchoring condi-
tions, w = 10. Moreover, we assume anchoring condi-
tions at the four walls of the form

Q0(r) =
3

2

[

n0(r) ⊗
(

n0
)T

(r) −
1

3
I

]

, r ∈ Γi, (30)

with a specified director n0 and Γi (i = 1, .., 4) indicating
the four walls. In general, we will assume planar anchor-
ing at the four walls, but we also want to investigate
various director configurations at the four corners. For
example, for (x, y) ∈ Γ1 we assume

n0
x =

√

1 − ∆2 sin2
(πx

l

)

,

n0
y = −∆ sin

(πx

l

)

, (31)

with anchoring paramater ∆, which allows us to study
metastable states that are otherwise hard to access. For
∆ = 0 this gives an equal weight to either of the two
configurations shown in Fig. 5(b) and (c), whereas a bias
in the configurations of the director occurs when ∆ 6= 0.
For ∆ > 0 the configuration of Fig. 5(d) is preferred
and for ∆ < 0 the configuration of Fig. 5(e). Analogous
expressions can be derived for the other three boundaries
which we can summarize for (x, y) ∈ Γi (i = 1, 2, 3, 4) as

q01 = (−1)i
3

4

[

2∆2 sin2
(πxi

l

)

− 1
]

, (32)

q02 = −
3

2
∆ sin

(πxi

l

)

√

1 − sin2
(πxi

l

)

, (33)

with (x1, x2, x3, x4) = (x, y,−x,−y). Solving the set of
equations Eq. (28), (29), (32) and (33) gives λ+(x, y)
and n(x, y) [53]. Moreover, within our Landau theory we
can extract the density c(x, y) = cI(µ) + (2a/3)Tr(Q2).

Figure 6. Profiles of the director angle θ(x, y) (top), eigen-
value λ+(x, y) (middle) and density c(x, y) (bottom) in a cell
of 73/20×73/20 in units of rod length L and where the height
of the slab is chosen to be equal to the diameter D of the rods.
We fix the anchoring strength w = 10 and anchoring parame-
ter ∆ = 0.1, and investigate their effects on an isotropic state
(a)-(c) at chemical potential βµ = 2, while in (d)-(f) we con-
sider a nematic state βµ = 5. The bulk 2D IN transition
occurs at βµIN = 2.03 as explained in the text. The ordering
effects of the walls can be seen in (a) where θ is the angle with
the x axis, while the degree of ordering is shown in (b) and
(e), and the density c in (c) and (f).

Interestingly, it turns out that c(x, y) is a good measure
for the local two-dimensional density ρ2D = N/A, with
N = ρAD the number of rod and A = l2 the base area,
such that c = (π/4)L2ρ2D, is a natural dimensionless real
density.

Note that the present square-gradient theory cannot
account for layering at a hard wall, which in principle is
present in simulations and theory of these systems [54,
55] although not in a pronounced way given the large
particle aspect ratios considered. The extension of the
Landau theory to include, for example, a smectic phase
in the case of short rods to describe pre-smectic layering
for perpendicular anchoring is, however, straightforward
[56].

In Fig. 6 we show examples of the structures that can
be found for ∆ = 0.1 and l/L = 73/20. The latter system
size is chosen because it enables us to compare our results
with the simulations of Ref. [51]. We consider βµ = 2
(2D isotropic) and βµ = 5 (nematic), which should be
compared with βµ2D

IN = βµ∗−(3b−d)/(2a) = 2.03 where
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the bulk phase transition in this 2D geometry takes place
according to our 3D-based LdG theory. In the isotropic
state for ∆ = 0.1, the rods align along the four walls,
while pointing their endpoints towards the corners along
the diagonals, as can be seen in Fig. 6(a) where we plot
the (minimal) angle θ of n with respect to the the x-axis.
Fig. 6(b) shows that the core is 2D isotropic since λ+ =
1/4, but close to the walls ordering is induced, λ+ > 1/4.
Furthermore, the density is lowest where the ordering is
the smallest, see Fig. 6(c). However, a complete study
of the wetting and pre-wetting properties of the walls is
out of the scope of this paper, since a more sophisticated
surface free energy may be needed [57]. In the nematic
state, there is a competition between the ordering effects
of the wall and the density-induced order due to the rod-
rod interactions. This results in a lens-shaped director
field structure (Fig. 6(d)), and for this specific boundary
condition it results in defects near two of the four corners
with an isotropic core shown in red in Fig. 6(e), with a
reduction in local density shown in blue in Fig. 6(f).

The type of possible structures are very sensitive to
the boundary conditions that we impose. In Fig. 7 we
show the various possibilities for different values of ∆ as
function of µ. For ∆ = 0 we see in Fig. 7(a)-(d) that
order is always reduced at the four corners, but these
isotropic cores become smaller in size for larger µ. The
same happens when ∆ = 0.1 in Fig. 7(e)-(h), although
now only in two of the four corners a 2D isotropic phase
is found. In Fig. 7 (i)-(l) we set ∆ = 0.5 and see that
two defects are created at the center of the cell, which
move apart along the diagonal when the total density is
increased. When the center is perfectly ordered, λ+ =
1, the defects reside at fixed positions, but not at the
corners. A combination of the various structures can be
found whenever ∆ is different for the four boundaries.
An example is shown in Fig. 7(m)-(p) with ∆ = 0.5 on
Γ1 and Γ4, and ∆ = 0 on Γ2 and Γ3.

A competition of the wall-induced ordering and the
spontaneous nematic ordering always occurs beyond the
chemical potential for which the center starts to order.
Hence, we investigate λmid

+ ≡ λ+(0, 0) as function of µ,
shown for various system sizes l and anchoring parame-
ters ∆ in Fig. 8. We observe a second-order phase transi-
tion at µ > µ2D

IN , with a shift that depends on the system
size and on the nature of defects. In our calculations we
also observe that a smaller anchoring strength w shifts
the phase transition closer to the 2D bulk one, the same
as with increasing l. This can be understood from the ob-
servation that for the formation of a nematic phase in the
center, it is necessary to counteract the wall-ordering ef-
fects. When the wall-ordering effects are stronger, which
happens at larger w or smaller l, a larger density and
hence a larger µ is needed to spontaneously order the
system.

Finally, we make some remarks on the location of
the bulk phase transition of the quasi 2D setup that
we have investigated here. Converting µ2D

IN to a den-
sity, we find that the 2D bulk phase transition takes

Figure 7. Nematic director n (black lines) and the degree
of two-dimensional ordering λ+(x, y) (colormap) for chemical
potentials βµ = 2, 3, 4, 5 from left to right, for several anchor-
ing parameter ∆ (see Eq. (31) and Fig. 5):(a)-(d) ∆ = 0,
(e)-(h) ∆ = 0.1, (i)-(l) ∆ = 0.5 and (m)-(p) ∆ = 0.5 on
Γ1 and Γ4, while ∆ = 0 on Γ2 and Γ3. A two-dimensional
isotropic state (λ+ = 1/4) is colored in red. The cell size is
the same as in Fig. 6.

place at c∗ = 1.95, which should be compared with
ρ∗2D = 3π/2L2 or c∗ ≈ 4.7 for the two-dimensional On-
sager model [36]. This significant discrepancy can be un-
derstood from the fact that we have not properly included
the walls that confine the rods in the xy-plane, we simply
set Qzz = −1/2 and Qzx = Qzy = 0. The Landau the-
ory that we use is, however, effectively three-dimensional,
and the excluded volume interactions in two dimensions
are of a different nature than in three dimensions. A bet-
ter construction of the LdG theory would include these
walls within a three-dimensional calculation. Another
alternative is to use a two-dimensional Landau theory
where the coefficients are to be determined from the bi-
furcation diagram of a two-dimensional Onsager theory.
We expect that the qualitative features presented in this
case, however, will not change.
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Figure 8. The 2D order parameter evaluated at the center of
the the cell λmid

+ = λ+(0, 0) as function of the chemical poten-
tial µ for various system sizes l×l and anchoring parameter ∆
(dimensionless anchoring strength w = 10). In black we show
the 2D bulk phase transition, the 3D IN-transition occurs at
βµIN = 5.241 beyond the scale of the plot.

VII. NEMATIC DROPLET

Nematic droplets, or tactoids, differ from droplets of
an isotropic fluid because they are elongated rather than
spherical in shape. This has been observed in experi-
ments, where the defect structures in the nematic tex-
ture have been investigated [58–62], but also in simula-
tions [63], and within the Zwanzig model [64]. The shape
of a tactoid can be determined within continuum theory
[65] by minimizing the combined elastic and surface free
energy

F = Fe +

∫

∂Vdrop

dS[γ‖ + (γ⊥ − γ‖)(ν̂ · n)2], (34)

at a finite and given volume of the droplet Vdrop. Re-
call that the Frank elastic free energy Fe is given in Eq.
(10), and that γ‖ (γ⊥) is the surface tension when the
rods are aligned parallel (perpendicular) to the interface.
Since the shape is an input parameter in the minimiza-
tion procedure of Eq. (34), one has to impose how the
rods align along the interface of the droplet, and this is
captured in the second term of Eq. (34). Minimization
of this free energy has been successful in determining the
shapes of tactoids. The surface tensions that are used as
fit parameters to match the theory with the experimen-
tally observed shapes, however, disagree with the exper-
imentally measured and theoretically obtained values of
the surface tension [39, 43, 62, 66–71]. A hypothesis for
this discrepancy is due to the simple choice of the Rapini-
Papoular form [31] to describe the anchoring at the IN
interface, which is strictly speaking only true for a planar
(non-curved) geometry. The question is how much cur-
vature would renormalize the surface tensions of the flat

geometry. Our aim is to calculate this within our Landau
theory, because the surface effects of Eq. (34) should au-
tomatically be captured in our treatment. Such a calcu-
lation has been briefly touched upon for the thermotropic
case in Ref. [72], although only in a two-dimensional xy-
geometry and with a focus on the time evolution rather
than on the equilibrium tactoid sizes and shapes.

For simplicity we focus on tactoids with a homogeneous
director field, n = ez, with ez the unit vector in the z-
direction. For such a director field all elasticity terms
vanish, and hence the Landau grand potential is given
by

∆Ω[S] = (35)
∫

dr

[

m‖

2βB2

|∇S|2+
m⊥ −m‖

2βB2

(n · ∇S)2 + ∆ωb

]

.

It is easily seen that this free energy mimics the sec-
ond term in Eq. (34), with the identification that the
surface normal ν̂ is the same as ∇S on the surface de-
fined by S(r∗) = (1/2) maxr∈V S(r), where we defined
the IN interface to be the loci of points for which S(r)
attains half its maximum value. Thus, the square gra-
dient term in Eq. (35) is a surface tension contribution
that results in droplets that tend to minimize their sur-
face area, while the second term favours droplet shapes
for which the misalignment between surface normal and
director is minimal because m⊥ > m‖.

It turns out to be numerically difficult to find non-
trivial solutions to the Euler-Lagrange equations of Eq.
(35) that are spatially inhomogeneous. For this reason
we investigate instead a dynamical equation for S [73]
assuming model-A (pseudo-)dynamics [74],

∂S

∂t
= −Γ

δ∆Ω[S;µ]

δS(r)
, (36)

and far-field boundary condition

ν̂ · ∇S(r, t) = 0, r ∈ ∂V. (37)

As an initial condition we take a spherical droplet (or
“nucleus”)

S(r, t = 0) =
3

2
S+
N (µ)Θ(r − r0), (38)

where Θ is the Heaviside step function, r0 is the radius

of the initial droplet and r =
√

ρ2 + z2, in terms of the
cylindrical coordinates (ρ, z). Our goal is to look at a
fixed µ for stationary solutions of Eq. (36), since they
would also be solutions of the Euler-Lagrange equations.
If we use Eq. (36) for a fixed r0, we only find solutions for
which droplets keep growing if µ is too large, or droplets
that keep shrinking if µ is too small. Consequently, there
must be a critical chemical potential µc for which the
droplet neither grows or shrinks when the optimal shape
is attained. To find µc for a given shape and droplet
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Figure 9. Relaxation of a spherical liquid crystalline droplet of initial radius r0 = 3L prepared at βµ0 = 5.5 according to the
dynamics of Eq. (39) and constraint Eq. (40). In (a)-(c) we show snapshots of the order parameter profile S(ρ, z) for various
values of dimensionless time t′ showing that the spherical droplet becomes elongated over time. In (d) and (e) we show the
order parameter profiles along the two symmetry axes of the droplet. In (f)-(h) we show the corresponding snapshots of the
local dimensionless density c(ρ, z) and the profiles along the symmetry axes in (i) and (j).

volume we fix µ0 = µ(t = 0) and evaluate instead of Eq.
(36),

∂S

∂t
= (39)

− Γ
δ

δS(r)

[

∆Ω[S;µ0] −
∆µ(t)

βB2

∫

dr c(r, t;µ0 + ∆µ(t))

]

,

with a Lagrange multiplier ∆µ(t) such that conservation
of total number of particles

∫

dr c(r, t;µ0 + ∆µ(t)) =

∫

dr c(r, t = 0;µ0) (40)

is guaranteed. By definition ∆µ(t = 0) = 0. Working
out the above Euler-Lagrange equation gives

βB2

Γ

∂S

∂t
= m‖∇

2S + (m⊥ −m‖)
∂2S

∂z2

− 2aβ{µ∗ − [µ0 + ∆µ(t)]}S + 3bS2 − 4dS3. (41)

Moreover, we find that we can approximate βµ(cI) ≈
AcI + B, with A ≈ 2.25541 and B = −2.19865, with
a largest relative error of 0.6% for cI ∈ [3, 6]. Using
this approximation the constraint of Eq. (40) can be
rewritten as

∫

dr

[

β∆µ(t)

A
+ aS2(r, t)

]

=

∫

dr aS2(r, t = 0). (42)

We solve Eq. (41) and Eq. (42), using the boundary
condition Eq. (37) and initial condition Eq. (38) where
we take for the system volume a cylinder of radius 20L
and height 20L, with the xy-plane as a symmetry plane
for the droplet. When r0 and µ0 are too small, the initial
droplet disappears in time, but when they are chosen too
big the droplet will eventually touch the system boundary
and a “planar” interface along the radial direction will
develop. However, here we will only consider the set of
values for µ0 and r0 that give stable droplets that do not
change over time: this defines µc = µ0 + ∆µ(t → ∞).
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In Fig. 9(a)-(c) we show the typical relaxation of a
spherical droplet as function of dimensionless time t′ =
ΓL3t/(βB2) towards an elongated shape within our LdG
theory, with the profiles along the two coordinate axes
shown in Fig. 9(d) and (e). Our LdG theory allows also
for the calculation of c(ρ, z) using Eq. (14), which we
show in Fig. 9(f)-(h) and in Fig. 9(i)-(j) along the two
symmetry axes. The stationary solution that we find
has a higher chemical potential than the bulk binodal,
µc > µIN , which accounts for the Laplace pressure in
this ensemble.

Interestingly, the solution found for long times is very
similar to the IN planar interface at coexistence. This is
indicated by the interfacial shift δ and interfacial width
τ . We find for S(ρ, 0) and c(ρ, 0) that δρ = 0.219L and
τρ = 0.576L to be compared with the flat plane result
of δ‖ = 0.223L and τ‖ = 0.586L. Along the z axis we
find δz = 0.372L and τz = 0.978L to be compared with
δ⊥ = 0.378L and τ⊥ = 0.994L. This shows that the
surface tensions in both directions are effectively reduced
for µ > µIN , since τ is smaller. However, from scaling
arguments [75], we find that for γ⊥ the relevant length
scale is L− (1/2)d2/L, with d the possible displacement
of the rods given the orientation distribution function. In
contrast, for γ‖ the relevant length scale is d. A higher µ
is equivalent to a higher density and hence lower d. From
the above scaling arguments we deduce that γ⊥ should
increase with µ while γ‖ should decrease, which is not
captured in our calculation.

This latter observation is relevant when we investigate
the aspect ratio R1/R2 of the stationary droplets, with
R1 the length of the main axis and R2 the one of the
minor axis, see the inset of Fig. 10(a). It turns out that
we always find R1/R2 = 1.7, which equals the ratio of
the surface tensions determined from the planar geom-
etry γ⊥/γ‖ =

√

m⊥/m‖, see Eq. (23). Starting with
different values of µ0 and r0 (or even changing the as-
pect ratio of the initial droplet) we observe that µc only
depends on µ0, see Fig. 10(a). For small µc, and hence
lower values of the “Laplace pressure”, µc−µIN , we find
larger droplets, as indicated by a larger R1, although the
differences are not large among the various final droplet
sizes. However, regardless the final size, the aspect ratio
is always 1.7, which is illustrated by the various colored
lines in Fig. 10(b) converging to the dotted grey line.
This is only to be expected when curvature effects are
not important, which is also found within the macro-
scopic theory of Eq. (34) for homogeneous director fields
with γ⊥ and γ‖ constant. However, we expect that γ⊥
and γ‖ depend on curvature. Moreover, in experiments
[58–62], it is concluded that (i) the aspect ratio depends
on R1, (ii) the aspect ratio can become as large as 4 to 5
and (iii) the experimentally observed shapes have cusps
at the endpoints on the axis parallel to the director field
when the aspect ratio is larger than 2. Only very large
droplets are expected to have an aspect ratio of 1.7.

Interestingly, in simulations R1/R2 ∼ 1.7 is also found
[63, 76], in contrast to the experiments where a larger
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Figure 10. (a) Time evolution of the chemical potential
µ(t′) = µ0 + ∆µ(t′) for various initial droplets and initial
chemical potential µ0. We use the same color for initial
droplets of the same r0 and aspect ratio. In the inset we
show the shape parameters R1 and R2 that we use to char-
acterize the droplets. In (b) we indicate the time evolution
of the aspect ratio R1/R2 as function of the droplet main
axis R1, where the various arrows indicate the flow of time.
All lines end on the grey dotted line R1/R2 = 1.7 where the
droplet does not change anymore, while the final droplet size
R1(t

′ = ∞) depends crucially on µ0. The dotted blue lines
correspond to the results shown in Fig. 9.

R1/R2 up to ∼ 5 has been observed [62]. We note, how-
ever, that the rods in these simulations have a smaller
particle aspect ratio (L/D ∼ 20) than in typical experi-
ments (L/D ∼ 1000). Moreover, rod flexibility, polydis-
persity and residual Van der Waals forces may be at play,
and investigating these effects will be left for future work.
In the remainder of the text, we will instead speculate
how the present LdG theory can produce R1/R2 > 1.7.
Whether or not these large tactoid aspect ratios can ac-
tually be found within Onsager theory remains, however,
an open question.

Clearly, increasing the aspect ratio is only possible
within our theory by tuning the ratio m⊥/m‖. Indeed,
we find in our calculations that we can obtain any desired
aspect ratio by varying this quantity. Moreover, to make
R1/R2 depend on the droplet size and hence on µc−µIN ,
the coefficients m⊥ and m‖ need to depend on µ. This
does not come as a surprise, since l1 and ls are in general
µ dependent. However, since m⊥ = (2/3)(l1 +4ls/3) and
m‖ = (2/3)(l1+ls/3) we find that the maximal aspect ra-
tio that can be achieved by tuning l1 and ls is R1/R2 = 2,
while keeping l1, ls > 0. However, we have to go to ex-
treme limits to achieve this behaviour, l1 should be close
to zero or ls very large.

Another possibility to achieve a higher aspect ratio is
by including higher order terms in the Landau expansion.
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The next order term has two derivatives and is third or-
der in Q. There are many symmetry-allowed terms that
satisfy this condition, however, the only one that does
not generate any new elasticity contributions and hence
the only one that is quadratic in n is the term

2

9
l4Qαβ∂αQρσ∂βQρσ =

l4
2
S(r)

[

(n · ∇S)2 −
1

3
|∇S|2

]

+ elasticity terms, (43)

see Ref. [77], which holds for the uniaxial case. Another
motivation why such a term is needed, is that it lifts the
degeneracy on K11 and K33, which is also found within
Onsager theory [29], but not in LdG theory if the square
gradient terms are only quadratic in Q, see section II
below Eq. (10).

Clearly, including Eq. (43) increases γ⊥, which is re-
flected by the positive sign of the first term. In con-
trast γ‖ is reduced, since the second term is negative.
Consequently, for l4 > 0, the aspect ratio R1/R2 is in-
creased. To reproduce the flat plane result for large
droplets we expand l4 = l04(µ − µIN ) + O[(µ − µIN )2]
with l04 > 0, and tried to do the calculation with this
contribution [78]. By construction larger droplets will
have an aspect ratio closer to R1/R2 = 1.7, since µc will
be closer to µIN . While it was rather straightforward to
get R1/R2 ∼ 2 by tuning l04, we found numerical difficul-
ties when we tried to find a larger aspect ratio, because
adding Eq. (43) introduces extra non-linearities in the
Euler-Lagrange equation. Moreover, within all of our cal-
culations, no cusps in the droplet shape were found, while
they are always experimentally observed for R1/R2 & 2,
see for example Ref. [62]. We hypothesize that these
cusps are essential to have a large aspect ratio, and we
speculate that we cannot find such solutions due to the
adopted square-gradient approximation. Another possi-
bility would be that model-A dynamics is not suitable to
find these cusp(-like) solutions. Finally, we neglect any
bipolarness in the director-field texture that may also be
important [62, 69]. It would be interesting to use the full
Q-tensor theory to capture this effect, since it is known
within the macroscopic theory of Eq. (34) that R1/R2

depends on R1 when bipolarness is included, even when
γ⊥ and γ‖ are taken to be constant.

Despite its shortcomings here and there, our theory
does show that adding a µ-dependent elasticity term to
the free energy allows us to predict an aspect ratio of
R1/R2 = 1.7 − 2 that depends on the droplet size. The
larger the droplet, the smaller R1/R2 since the “Laplace
pressure” is smaller. If the elastic coefficients are as-
sumed to be constant, we find no curvature effects on
R1/R2. An improvement of the theory to obtain cusp-
like solutions is needed, however. We expect that the
cusps have a strong renormalizing effect on the surface
tensions so that experimentally observed aspect ratios
around 4 can be achieved. The existence of these cusps is
expected to be more important than that of the “Laplace
pressure”, which turns out to be important whenever
R1/R2 ∼ 2.

VIII. DISCUSSION AND CONCLUSIONS

We have constructed a Landau theory for hard rods
by a suitable order parameter expansion of the grand
potential in Sec. II. The coefficients are determined by
fitting them to the bulk coexistence data and the sur-
face tensions in a planar geometry. This is different from
the approach of Ref. [24] where the Frank elastic coeffi-
cients from a fundamental measure theory [79] are used
to determine the square gradient coefficients. We have
compared our results with known properties of Onsager
theory, such as the (bulk) bifurcation diagram in Sec. III
and characteristic length scales of the IN interface in Sec.
IV.

The remainder of the paper was a demonstration of the
resulting Landau theory in more complex situations. We
gave examples that were investigated before within Lan-
dau theory, but not yet within a density-dependent one.
In Sec. V we showed that we can assess the isotropic core
size of hedgehog defects in terms of the rod length L and
investigated how the isotropic core size depends on the
bulk density. Sufficiently far from the spinodal, we found
a core size that is on the order of the length of the con-
stituent particles, in contrast to a thermotropic hedgehog
defect, which has a core size that is much larger than
the length of the constituent molecules. In Sec. VI we
studied the evolution of topological defects as function of
density in confined quasi two-dimensional geometries and
examined the effects of various boundary conditions. Sec.
VII describes a novel application to find the curvature de-
pendence of the surface tension in a self-consistent man-
ner to explain the discrepancy between measurements
and theoretical predictions of the surface tension for tac-
toids. Our calculations showed that the “Laplace pres-
sure” renormalizes the surface tensions of the flat geom-
etry for the perpendicular and parallel anchoring condi-
tions, provided that a higher order µ-dependent elastic
coefficient is included. However, cusps in the equilibrium
shapes of the tactoids are not found, and are expected
to be important for the renormalization of the surface
tensions.

We remark that the construction of the LdG theory
is completely general. There are various ways of deter-
mining the coefficients, for which we have only shown
one example. Moreover, these coefficients do not nec-
essarily need to be fitted to Onsager theory, but can
also be determined from comparisons with other theo-
ries for (hard) rods, such as fundamental measure theory
[24], or experiments and simulations. An interesting ap-
plication would be to determine the Landau coeffcients
from Khokhlov-Semenov theory to describe semi-flexible
chains [18, 80, 81]. Furthermore, we only studied the
grand-canonical ensemble, however, for bulk systems it
is also possible to consider the Gibbs free energy, where
the pressure is the relevant intensive variable to be tuned
to describe the density-dependent IN transition for hard
rods. Ultimately, the final application determines which
method is optimal. Finally, we hope that our findings
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will help to provide (qualitative) insights into problems
that can be very hard to tackle within (inhomogeneous)
Onsager theory or extensions thereof.
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APPENDIX A: EULER-LAGRANGE EQUATIONS FOR RODS IN SQUARE CONFINEMENT

In this appendix we derive the Euler-Lagrange equations that we used in section VI. For this we have to minimize
∆Ω with respect to Q while taking into account that Q is traceless and symmetric, and that the order occurs in the
(x, y) plane. Therefore, we introduce the Lagrange multipliers λB , κB

ρ and ξB to ensure these constraints in the bulk,

and for the surface we introduce likewise λS , κS
ρ and ξS .

We define

βB2∆Ω̃[Q] = βB2∆Ω[Q] − λB

∫

V

drδαβQβα(r) −
κB
α

2
ǫαβρ

∫

V

dr[Qβρ(r) −Qρβ(r)] − ξB
∫

V

drδαzδβz

(

Qαβ(r) +
1

2

)

− λSL

∫

∂V

dS δαβQβα(r) −
κS
αL

2
ǫαβρ

∫

∂V

dS[Qβρ(r) −Qρβ(r)] − ξSL

∫

∂V

dSδαzδβz

(

Qαβ(r) +
1

2

)

. (44)

The Lagrange multipliers λB and λS ensure that Q is traceless in the bulk and surface respectively, while κB
α and κS

α

(α = 1, 2, 3) ensure that Q is symmetric in the bulk and on the surface respectively. It is then straightforward to find

the Euler-Lagrange equations by setting δ∆Ω̃/δQαβ(r) = 0 to find for α, β = 1, 2, 3 and r ∈ V

l1∂
2
λQαβ+l2∂λ∂αQλβ+l3∂λ∂βQαλ−3aβ(µ∗−µ)Qβα+9b QβρQρα−4dQλρQρλQβα = λBδαβ+κB

ρ ǫραβ+ξBδαzδβz, (45)

while for r ∈ ∂V

4

9
[l1∂λQαβ ν̂λ + l2∂λQλβ ν̂α + l3∂βQαλν̂λ] + w(Qαβ −Q0

αβ) = λSδαβ + κS
ρ ǫραβ + ξSδαzδβz, (46)

with ν̂ being the unit surface normal. Setting the derivatives with respect to the Lagrange multipliers to zero, gives
the constraints

Tr(Q) = 0, Qαβ = Qβα (α, β = x, y, z), Qzz = −
1

2
. (47)

The Lagrange multipliers can be determined by evaluating the zz component of Eq. (45),

λB + ξB =
3

2
aβ(µ∗ − µ) +

9

4
b + 2dQλρQρλ, (48)

while taking the trace of Eq. (45) gives

3λB + ξB = 2ls∂ρ∂λQλρ + 9bQλρQρλ, (49)

hence

λB = ls∂λ∂ρQρλ +
9

2
b

(

QλρQρλ −
1

4

)

−
3

4
aβ(µ∗ − µ) − dQλρQρλ. (50)

The effect of the Lagrange multipliers κρ is to symmetrize Eq. (45) over the indices α and β. A similar calculation
can be performed to determine the surface Lagrange multipliers. Combining Eq. (45)-(47) and Eq. (50) results in
the Euler-Lagrange equations Eq. (28) and boundary condition Eq. (29).
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