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CHAPTER I

Introduction

Over twenty years ago, mirror symmetry led physicists to conjecture the LG/CY

correspondence (see [24, 25]). It describes a deep relationship between the geom-

etry of Calabi–Yau complete intersections and the local structure of correspond-

ing singularities. The conjecture could not be made mathematically precise until

2007 with the development of Fan–Jarvis–Ruan–Witten (FJRW) theory (see [14]).

The LG/CY correspondence is now understood as a relationship between the

Gromov–Witten (GW) theory of a Calabi–Yau and the FJRW theory of the cor-

responding singularity (see Conjecture IV.2).

Though FJRW theory is interesting in its own right, evidence also suggests that

it is easier to calculate than GW theory. For example in [18], Guéré calculates the

genus zero FJRW theory in a range of cases where the corresponding GW theory is

currently unknown. Thus the LG/CY correspondence provides a possible method

for determining the GW theory of many Calabi–Yau’s.

In genus zero the LG/CY correspondence has been proven for hypersurfaces

in Gorenstein weighted projective spaces in [5, 4, 19] and for certain complete

intersections in [8]. In this paper we prove a version of the genus zero LG/CY

correspondence for the mirror quintic, a Calabi–Yau (CY) hypersurface in an orb-
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ifold quotient of projective space. This is the first example of the LG/CY corre-

spondence for a space which cannot be constructed as a complete intersection in

weighted projective space.

In all of the known examples, the LG/CY correspondence has been carried out

in the following manner. The numbers encoding the information for FJRW theory

(resp. GW theory) are packaged into a formal generating function, known as the

J–function. Both FJRW theory and GW theory these theories are A–model the-

ories. Using mirror symmetry, J–function for FJRW theory is related to another

function encoding B–model data called the I–function in an explicit way. The

same can be done for GW theory yielding another I–function. Using analytic con-

tinuation and a symplectic transformation, the two respective I–functions can be

related in a specific way. Putting all of these relations together, gives the relation

between the two J–functions.

In the remainder of the introduction we describe the relationship between these

various functions using the first known example, the quintic. Then we give an

overview of the LG/CY correspondence for the mirror quintic.

1.1 LG/CY for the quintic

As mentioned above, the LG/CY correspondence relies heavily on a related

concept known as mirror symmetry. Given a CY–threefold X, mirror symmetry

gives a relationship between the A–model of X and the B–model of its “mirror”

X∨—also a CY–threefold. Roughly speaking, the A–model is determined by the

Kähler structure and the B–model by the complex structure. The Kähler deforma-

tions of a three–fold X are parametrized by H1,1(X), whereas the dimension of

the complex deformations is h2,1(X). Thus a first prediction of mirror symmetry
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is h1,1(X) = h2,1(X∨).

However, mirror symmetry goes beyond that. In essence, the A–model en-

codes enumerative information about a space, whereas the B–model encodes the

information of the variation of Hodge structures, which are determined via period

integrals.

The quintic

The polynomial defining the (Fermat) quintic is

(1.1) W = x5
1 + · · ·+ x5

5.

The vanishing locus of W in projective space defines the quintic M as a subset of

P4, i.e. M := {W = 0}.

The mirror quintic is the Deligne–Mumford stack

W = [M/Ḡ] ⊂ [P4/Ḡ]

where we define the group Ḡ ∼= (Z/5Z)3 as the subgroup of the big torus of P4

acting via generators e1, e2, e3:

e1[x1, x2, x3, x4, x5] = [ζx1, x2, x3, x4, ζ−1x5]

e2[x1, x2, x3, x4, x5] = [x1, ζx2, x3, x4, ζ−1x5](1.2)

e3[x1, x2, x3, x4, x5] = [x1, x2, ζx3, x4, ζ−1x5].

The B–model

In order to describe the LG/CY correspondence for the quintic, we need to

describe both the A–model and the B–model. using the B–model, we obtain the

I–functions which we can relate explicitly. In order to set up the two sides of the

LG/CY correspondence, let us first consider the B–model.
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As described in [22], the B–model is defined in terms of the variation of hodge

structure, which we can study via period integrals. Let X be a complex variety

and let Xt be a family of deformations of X parametrized by some base S. Let ωt

be a local section of R3π∗C ⊗OS; i.e. for each t ∈ S, we have ωt ∈ H3(Xt). Let

{γi(t)} be a basis of locally constant sections of H3(Xt). The period integrals of ωt

are defined as
∫

γi(t)
ωt.

Given a choice of γi(t), the corresponding period integrals satisfy the Picard–

Fuchs equations of ωt, which are defined via derivatives of ωt.

The LG/CY correspondence arises in large part from the observation that al-

though the space of Kähler deformations of M is contractible, the space of complex

deformations of W is not. In fact, the deformations of W are given by the family

of polynomials

(1.3) Wψ = W − ψx1x2 . . . x5.

We may define a family of Deligne–Mumford stacks

Wψ := {Wψ = 0} ⊂ [P4/Ḡ].

Under the action ψ → αψ with α5 = 1, this becomes a family of (orbifold) CY

three–folds over the stack [P1/Z5]. It is regular away from the points ψ = 0,

ψ = ∞ and ψ5 = 1.

Let ω be a family of (3, 0) forms on Wψ. For the quintic we can express the

periods of any other 3–form as a linear combination of derivatives of the periods

of ω. Hence the B–model for the quintic is determined by the periods of ω.

Taking successive derivatives of ω, we arrive at a differential equation satisfied
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by the periods

(1.4) D4
q − 5q

4

∏
m=1

(5Dq + mz)

where Dq = zq ∂
∂q . This equation is known as the Picard–Fuchs equation.

We can express a solution to this equation in terms of a cohomology-valued

hypergeometric function, which we will denote by IM(s, z). It is given by

IM(s, z) := esH/z
(

∑
k≥0

eks ∏
5k
m=1(5H + mz)

∏
k
b=1(H + bz)5

)
(mod H4).

Here s = −5 log ψ. When we expand this function in powers of H, it yields a basis

of solutions to the Picard–Fuchs equations for the periods of W , which take a nice

form under the identification q = es (see Section 6.2).

This is the I–function that will be related to the GW theory as mentioned pre-

viously.

Remark I.1. In the B–model, H is a formal variable used to track the variuos lin-

early independent solutions of the Picard–Fuchs equation, with H4 = 0. We use

the notation IM instead of IW to match the notation of later chapters. This is justi-

fied in part by Givental’s mirror theorem, which equates the function IM with the

so–called J function for M. This will be described shortly.

If we expand the periods around the point ψ = 0, we obtain a the Picard–Fuchs

equations

(1.5) D4
t − 55t−5

4

∏
m=1

(Dt − mz)

where t = ψ and Dt = zt ∂
∂t . One can obtain an I–function

I(W,〈J 〉)(t, z) = ∑
k=1,2,3,4

φ
J k z2−k ∑

l≥0

tk+5l Γ((k + 5l)/5)5

Γ(k/5)Γ(k + 5l)
.

This is the I–function that will relate to the FJRW theory.
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At the moment Hk and φ
J k are simply book–keeping devices to keep track of

the solutions to the Picard–Fuchs equations. In other words the coefficients of φ
J k

give a basis of solutions to (1.5) and the coefficients of the variou powers of H give

solutions to (1.4). In the next section we will interpret Hk and φ
J k as elements of

the respective state spaces for GW theory and FJRW theory.

Mirror symmetry is a way of relating these I–functions with the J–functions

defined by the A–model, which we now describe.

The A–model

Much of the study of mirror symmetry has focused on a correspondence be-

tween the (contractible) space of Kähler structures of M—which is also one–dimensional—

and a contractible neighborhood of the point ψ = ∞ in the family we just de-

scribed. This is the CY side of the LG/CY correspondence.

The CY A–model can be best described by GW theory. The aim of GW theory

is to study a space X by looking at maps f : C → X where C is a complex curve.

There is a moduli space Mg,n(X, δ) parametrizing the stable maps f : C → X where

C is a complex curve of genus g with n distinct marked points and f∗(C) = δ ∈

H2(X).

For each marked point, we can define an evaluation map evi : Mg,n(X, δ) → X

defined by

evi([ f : C → X]) := f (pi),

where pi is the marked point. We can pull back cohomology classes from X to the

moduli space of stable maps via these evaluation maps.

Each marked point also yields a tautological class ψi ∈ H∗(Mg,n(X, δ)), which

is the first Chern class of the line bundle whose fiber over a point [ f : C → X] is
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the cotangent line T∗
pi

C.

Taking all of this together, we can define GW invariants on X via the integrals

〈ψa1α1, . . . , ψan αn〉
X
g,n,δ :=

∫

[Mg,n(X,δ)]vir

n

∏
i=1

ev∗i (αi)ψ
ki
i

where [Mg,n(X, δ)]vir denotes the virtual fundamental class.

We now specialize to the quintic M. One often organizes the GW invariants

into a generating function FM whereby relations between the GW invariants can

be viewed as partial differential equations satisfied by FM.

From the generating function FM we can construct Givental’s J–funciton, which

encodes genus zero invariants of M. Choose a basis {βi}i∈I for H∗(M) and let

{
βi
}

denote the dual basis. We can express a point of the state space with this ba-

sis as s = ∑i∈I siβi. The J–function is defined as the cohomology–valued function

JM(s, z) := z + s + ∑
n≥0

∑
a,δ≥0
h∈I

Qδ

n!za+1
〈s, . . . , s, ψaβh〉

M
0,n+1,δβh.

The J–function should be viewed as a function on H∗(M).

Restricting to H2(M) we obtain the small J–function JM
small(t, z). In the case of the

quintic hypersurface, the genus zero GW invariants are completely determined by

JM
small(t, z).

The mirror theorem for the Fermat quintic, as formulated by Givental (see [15])

is a correspondence between JM
small and IM. Let H ∈ H2(M) denote the pullback

of the hyperplane class from P4 and let s be the dual coordinate. We can view IM

as a function on H2(M). Then Givental’s mirror theorem can be stated as follows:

Theorem I.2 (Givental). After an explicit change of variables, JM
small is equal to IM.

On the other hand, if we consider a neighborhood of ψ = 0, we end up on

the Landau–Ginzberg (LG) side of the LG/CY correspondence. We use the term
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Landau–Ginzburg model to refer to a pair (W, G) where W is nondegenerate quasi-

homogeneous polynomial on CN and G is a finite subgroup of Aut(W). We think

of this data as defining a singularity {W = 0} ⊂ [CN/G].

Fan, Jarvis and Ruan (see [14]) have defined a theory known as FJRW theory

(named after Fan, Jarvis, Ruan and Witten) which describes the LG A–model.

FJRW theory studies the singularity {W = 0} ⊂ [CN/G] by considering the so–

called W–structures, which are collections of line bundles {L1, . . .LN} over com-

plex (orbifold) curves. These line bundles are roots of the log canonical bundle

ωlog that satisfy the condition that for each monomial of Wl of W

Wl(L1, . . . ,LN) ∼= ωlog.

The Li also satisfy some other conditions determined by the group G (see [14] for

details).

There is a moduli space of W–structures Wg,n parametrizing the set of W–

structures over complex orbifold curves of genus g with n–marked (orbifold)

points. These curves are allowed orbifold structure only at marked points and

nodes.

The moduli space Wg,n decomposes into connected components based on the

multiplicities of the Li at each of the (orbifold) marked points (see Section 2.2). In

other words, given h1, . . . , hn ∈ G, we can write

Wg,n = ⊔Wg,n(h1, . . . hn).

There is also a state space HW,G which plays the role of H∗(M) in GW theory.

The state space is defined in terms of the Lefschetz thimbles of the singularity.

We do not give a full definition here, but will be content to remark that HW,G a
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decomposition indexed by G:

HW,G =
⊕

h∈G

Hh.

The summands Hh are called sectors. The state space can also be decomposed

into the broad part and the narrow part. The narrow part of HW,G is a direct sum

of sectors which are one–dimensional and is indexed by a subset Ŝ ⊂ G. For

h ∈ Ŝ, we choose a generator of the sector Hh, which we denote by φh. In this

dissertation, we will focus solely on the narrow part.

Each marked point also yields a tautological class ψi ∈ H2(Wg,n(h1, . . . , hn)).

Similar to GW theory, we can define FJRW invariants for narrow insertions φhi
as

〈
ψa1φh1

, . . . , ψan φhn

〉(W,G)
g,n

:=
1

|G|g−1

∫

[Wg,n,G(h)]vir

n

∏
i=1

ψ
ai
i

The general definition is somewhat involved, so we omit it here, and refer the

reader to the original treatment in [14]. (For the case of the quintic, see [5].)

The LG model for the quintic is the pair (W, 〈J 〉), where W is the Fermat quintic

as in (1.1) and J = (e2πi/5, . . . , e2πi/5) ∈ Aut(W). For the conditions on the line

bundles imply that Li is a fifth root of ωlog and L1
∼= . . . ∼= L5.

As with GW theory, we organize the invariants into a generating function

F (W,〈J 〉), which satisfies similar differential equations to FM. Again we choose

a basis {φh}h∈Ŝ for the narrow part of the state space. Here as before φh is a gen-

erator of Hh and the dual basis is
{

φh
}

. We can express an element of HW,〈J 〉 in

this basis t = ∑h∈Ŝ thφh and from F (W,〈J 〉) construct the FJRW J–function

J(W,〈J 〉)(t,−z) = −zφJ + t + ∑
n≥0

∑
a≥0
h∈G

1

n!(−z)a+1
〈t, . . . t, ψaφh〉

(W,〈J 〉)
0,n+1 φh.

To obtain the small J–function, we restrict to the degree 2 part of HW,〈J 〉, which

in this case is one–dimensional, generated by φ
J 2 with dual coordinate t. As with
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the GW theory for M, the small J–function J
(W,〈J 〉)
small (t, z) completely determines the

FJRW theory for (W, 〈J 〉).

In [5], Chiodo–Ruan proved a mirror theorem for the LG side similar to Theo-

rem I.2 of Givental, relating J
(W,〈J 〉)
small with I(W,〈J 〉). As on the CY side, we can view

I(W,〈J 〉) as a function on H 2
W,〈J 〉.

Theorem I.3 (Chiodo–Ruan). The function J
(W,〈J 〉)
small is equal to I(W,〈J 〉) after an explicit

change of variables.

Remark I.4. In slight contrast to the presentation here, Chiodo–Ruan actually de-

fine the I–function via the LG A–model theory, and then prove that it satisfies the

corresponding Picard–Fuchs equations. However, since their I–function provides

a basis of solutions to (1.5), it gives the periods of the B–model in a neighborhood

of ψ = 0, and so is consistent with our treatment here.

1.1.1 LG/CY correspondence

For the LG A–model, we have J
(W,〈J 〉)
small (t, z), which we would like to relate to

JM
small(q, z) for the CY A–model. Theorem ?? and Theorem I.2 relate J

(W,〈J 〉)
small (t, z) to

I(W,〈J 〉)(t, z) and JM(q, z) to IM(q, z), resp. With these two theorems in place, the

last piece to the LG/CY correspondence is to relate the two I–functions. This was

done by Chiodo–Ruan in [5] via analytic continuation and a symplectic transfor-

mation.

The first step is to do analytic continuation on IM from a neighborhood of ψ =

∞ to a neighborhood of ψ = 0 via the Mellin–Barnes method and the change of

variables q = t−5. After doing so, we have another function IM′
satisfying the

Picard–Fuchs equations (1.5). After identifying H∗(M) with HW,〈J 〉 via the map

Hk 7→ φ
J k+1 , Chiodo–Ruan proved the following:
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Theorem I.5 (Chiodo–Ruan). There is a C[z, z−1]–valued symplectic transformation

U such that

U
(

I(W,〈J 〉)
)
= IM.

Using Theorems I.2, I.3 and VI.1 we obtain the desired relation between respec-

tive J–functions for the GW invariants and the FJRW invariants.

Givental’s symplectic formalism may make it possible to determine the higher

genus LG/CY correspondence from the genus zero correspondence. Namely, it

has been conjectured (see [5, Conjecture 3.2.1]) that the quantization of U should

relate the higher genus invariants of the two respective theories. This completes

the LG/CY correspondence for the quintic.

1.2 The mirror quintic

It is natural to ask whether a similar scheme can be used to relate the GW

theory for W to the corresponding LG A–model. In other words, we would like

to relate the respective J–functions, to the I–functions using mirror symmetry,

and then relate the two I functions via analytic continuation and a symplectic

transformation.

The LG A–model is given by the pair (W, G) where W is the Fermat quintic in

(1.1) and G is the group

(1.6) G := 〈J , e1, e2, e3〉 ∼= (Z5)
4.

Recall e1, e2 and e3 are defined by (1.2).

The main obstacle to this scheme for the mirror quintic is that h2,1(W) = 101.

Thus the Picard–Fuchs equations in question are partial differential equations in

101 variables. To write these equations and provide solutions would be unfeasi-

ble. For this reason we restrict our attention to a one–dimensional subspace of
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the degree two part of each theory, which we will describe, each in turn. The

one–dimensional subspaces we choose are arguably the most natural and most

important dimension in each theory.

First note that W is an orbifold, so we will need to use the Chen–Ruan cohomol-

ogy instead of the ordinary cohomology. We define this cohomology in terms of

the inertia orbifold.

Given an orbifold X which is a global quotient, i.e. X = [X/Γ], where Γ is

a finite group, the inertia orbifold has a simple description. Let SΓ be the set

of conjugacy classes of Γ, Xg denote the fixed point set of g ∈ Γ and C(g) the

centralizer. Then the inertia orbifold is

IX =
⊔

[g]∈SΓ

[Xg/C(g)].

The orbifold X can be identified with the untwisted sector, i.e. [Xe/Γ] in the above

decomposition. Now we define

H∗
CR(X ) := H∗(IX ).

There is also a degree shift, which we will not describe here (see e.g. [3]).

1.2.1 B–model

For the B–model, we restrict to the one–dimensional space of deformations of

M defined by

Mψ :=
{

Wψ = 0
}
⊂ P4.

Here Wψ is defined as in (1.3).

As described above we want to consider the period integrals for 3–forms on

Mψ. In a neighborhood of ψ = ∞, these will describe the CY B–model. We choose
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a (3, 0)–form ω and as before construct IW (s, z) with s = −5 log ψ. The compo-

nents of IW (s, z) give a basis for the periods of ω. In other words, IW give a basis

for solutions to the Picard–Fuchs equations determined by ω and its derivatives.

In this case it is no longer true that any 3–form is a linear combination of deriva-

tives of the periods of ω. However, there is a set of 3–forms
{

ωg

}
indexed by the

components of IW , such that every 3–form can be expressed as a linear combi-

nation of {ω} ∪
{

ωg

}
and derivatives thereof. For each ωg there is a function

IWg whose components give the periods of ωg. The corresponding Picard–Fuchs

equations obtained by differentiating ωg are as follows.

g = (0, 0, 0, 1
5 , 4

5) (Dq)
2 − 53q(Dq + 2z)(Dq + 3z)

g = (0, 0, 0, 2
5 , 3

5) (Dq)
2 − 53q(Dq + z)(Dq + 4z)(1.7)

g = (0, 0, 1
5 , 1

5 , 3
5) (Dq)(Dq − z)− 54q(Dq + z)(Dq + 3z)

g = (0, 0, 2
5 , 2

5 , 1
5) (Dq)(Dq − 2z)− 54q(Dq + z)(Dq + 2z)

Since the components of IW are indexed by certain elements of Ḡ, we have in-

dexed these by elements of Ḡ using a convention which we will describe in Nota-

tion II.6. Any other element of Ḡ indexing a component of IW can be obtained by

permuting the coordinates of those g listed here. Again we have made the change

of variables q = es.

We can do the same near ψ = 0 obtaining functions I
(W,G)
h indexed by the

sectors of HW,G satisfying the corresponding Picard–Fuchs equations:
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h = (2
5 , 2

5 , 2
5 , 3

5 , 1
5) (Dt)

2 − (5
t )

5(Dt − 2z)(Dt − 3z)

h = (1
5 , 1

5 , 1
5 , 3

5 , 4
5) (Dt)

2 − (5
t )

5(Dt − z)(Dt − 4z)(1.8)

h = (1
5 , 1

5 , 2
5 , 2

5 , 4
5) (Dt)(Dt + z − (5

t )
5(Dt − z)(Dt − 3z)

h = (1
5 , 1

5 , 3
5 , 3

5 , 2
5) (Dt)(Dt + 2z)− (5

t )
5(Dt − z)(Dt − 2z).

1.2.2 A–model

Mirror symmetry tells us that the periods defined in a neighborhood of the

point ψ = ∞ should be related to the GW theory of W . Since W is an orbifold, we

must use orbifold GW theory. To define orbifold GW theory, we modify standard

GW theory, most notably by letting the evaluation maps have target IW instead

of W . Hence, when we define the GW invariants,
〈
α1ψk1 , . . . , αnψkn

〉W
g,n,δ

, we have

insertions α1, . . . , αn ∈ H∗
CR(W).

As with the quintic, we define a J–function, JW (s, z). However, the degree two

part of the cohomology of W has dimension 101. So we restrict JW (s, z) to the

one–dimensional subspace defined by the degree 2 part of the untwisted sector

H2(W) to obtain the small J–function JWsmall(s, z). Here we let s be the dual coor-

dinate to H ∈ H2(W). After doing so, we obtain the following mirror theorem.

Theorem I.6 (Lee–Shoemaker [20]). The function JWsmall is equal to IW after an explicit

change of variables.

Remark I.7. The change of variables in this theorem is called the mirror transforma-

tion.

Recall that IW does not determine all of the periods of M near ψ = ∞. To obtain

a full correspondence, we must consider the derivatives of JW (s, z) indexed by the
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twisted sectors of IW . Let 1g denote the fundamental class of Wg and sg the dual

coordinate. Then we define

JWg (s, z) := z
∂JW (s, z)

∂sg

∣∣∣
s∈H2

un(W)

The mirror theorem can then be extended to these functions as well:

Theorem I.8 (Lee–Shoemaker [20]). For each g, the function JWg is equal to IWg after

applying the mirror transformation.

On the LG side, FJRW theory gives an analogous statement near the point

ψ = 0. With W and G defined as in (1.1) and (1.6), respectively, we define the

J–function J(W,G)(t, z) in the same way as before. To define the small J–function

J
(W,G)
small (t, z), we restrict J(W,G)(t, z) to the one–dimensional subspace of HW,G gen-

erated by φ
J 2 with t the dual coordinate. As with the GW theory in this case, this

small J–function is not enough to give a full correspondence, so we consider the

derivatives of J(W,G). For each h ∈ S such that φh is of degree 2 in HW,G, let th be

the dual coordinate. Then we define

J
(W,G)
g (t, z) := z

∂J(W,G)(t, z)

∂th

∣∣∣
tφ

J 2∈H
J 2

One of the main theorems proved in this dissertation can be stated as follows:

Theorem I.9. After an explicit change of variables, J
(W,G)
small is equal to I(W,G). Further-

more, under the same change of variables J
(W,G)
h is equal to I

(W,G)
h .

Remark I.10. This theorem follows as a corollary from Theorem V.10, which gives

an expression for a “big I–function”, which is derived from the big J–function

J(W,G)(t, z). The justification for the name I–function is that its derivatives satisfy

the Picard–Fuchs equations given in (1.8), which is the content of Remark V.13.
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However, it is not known whether this I function satisfies the proper PDE’s to

give the full genus zero theory for the B–model.

Remark I.11. Phrased slightly differently, Theorem I.9 says that the small FJRW J–

function J
(W,G)
small (t, z) satisfies, up to a change of variables, the Picard–Fuchs equa-

tions of a holomorphic (3, 0)–form on Mψ around ψ = 0 and the first deriva-

tives J
(W,G)
h (t, z) give solutions to the Picard–Fuchs equations of the other (non–

holomorphic) families of 3–forms on Mψ around ψ = 0.

1.2.3 LG/CY correspondence

The first part of the LG/CY correspondence is a state–space isomorphism,

which is much more interesting for the mirror quintic than for the quintic. This

gives us a way to identify HW,G and H∗
CR(W) as graded vector spaces. Chiodo–

Ruan prove this isomorphism more generally in [5], but we compute it directly in

Section 6.1. This isomorphism gives us a correspondence between the indexing

sets for Wg and the sectors of HW,G. In particular, for each IWg , there is a corre-

sponding function I
(W,G)
h .

We do analytic continuation on the functions IW and IWg to a neighborhood

around ψ = 0 obtaining functions IW
′

and IW
′

g . The final step is the symplectic

transformation as described in the following theorem:

Theorem I.12 ((= Theorem VI.1)). There exists a linear symplectic transformation U

which identifies IW
′

and IW
′

g with I(W,G) and the corresponding I
(W,G)
h , resp.

Givental’s symplectic formalism allows one to rephrase the above theorem in

a more useful form. In this setting, one can view the genus zero generating func-

tions of GW theory and FJRW theory as generating Lagrangian cones L W and

L (W,G) in appropriate symplectic vector spaces. These Lagrangian subspaces
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completely determine the respective genus zero theories. The above theorem then

identifies a certain subset of L W , the small slice (see Definition IV.4) of L W , with

the corresponding (small) slice of L (W,G).

Theorem I.13 ((= Theorem VI.4)). The symplectic transformation U identifies the ana-

lytic continuation of the small slice of L W with the small slice of L (W,G).

As in the case of the quintic, it is conjectured that the quantization of U iden-

tifies the (analytic continuation of the) higher genus GW theory of W with the

FJRW theory of (W, G).

Remark I.14. The material in this dissertation is a result of collaborative work with

Mark Shoemaker, and can also be found in the preprint [21].



CHAPTER II

The Landau–Ginzburg Model

For the mirror quintic, the Landau–Ginzburg model is described by FJRW–

theory. Here we will give a brief review of the definitions and facts we will need

to describe the LG/CY correspondence. This was developed by Fan–Jarvis–Ruan

in [14]. We will more closely follow the discussion in [5] . The mirror theorem for

the LG model will be given in Chapter V.

2.1 State Space

A polynomial W ∈ C[x1, . . . , xN ] is quasihomogeneous of degree d with integer

weights w1, . . . , wN if for every λ ∈ C,

W(λw1 x1, . . . , λwN xN) = λdW(x1, . . . , xN).

By rescaling the numbers w1, . . . , wN and d, we can require that gcd(w1, . . . , wN) =

1. For each 1 ≤ k ≤ N, let qk =
wk
d . The central charge of W is defined to be

(2.1) ĉ :=
N

∑
k=1

(1 − 2qk).

A polynomial is nondegenerate if

(i) the weights qk are uniquely determined by W, and

(ii) the hypersurface defined by W is non–singular in projective space.

18
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The maximal group of diagonal symmetries is defined as

Gmax :=
{
(α1, . . . , αN) ⊆ (C∗)N |W(α1x1, . . . , αNxN) = W(x1, . . . , xN)

}

Note that Gmax always contains the exponential grading element J = (e2πiq1 , . . . , e2πiqN).

If W is nondegenerate, Gmax will be finite. Define the exponent of W, denoted d̄, as

the order of the largest cyclic subgroup of Gmax. In this paper, we will assume for

simplicity that d̄ is equal to the degree d of W. This does not hold in general, but

will be true in the case of interest to us.

A group G ⊂ Gmax is admissible if there is a Laurent polynomial Z, quasiho-

mogeneous with the same weights as W, having no monomials in common with

W, such that the maximal group of diagonal symmetries of W + Z is equal to G.

Every admissible group G has the property that J ∈ G. Let

SLW =
{
(α1, . . . , αN) ∈ Gmax|∏ αi = 1

}
.

If W satisfies the Calabi–Yau condition ∑
N
k=1 wk = d, then Z = x1x2 . . . xN will be

quasihomogeneous with the same weights as W; thus SLW will be admissible.

Let G be an admissible group. For h ∈ G, let CN
h denote the fixed locus of CN

with respect to h. Let Nh be the complex dimension of the fixed locus of h. Define

Hh := HNh
(CN

h , W+∞
h ; C)G,

that is, G–invariant elements of the the middle dimensional relative cohomology

of CN
h . Here W+∞

h := (ℜWh)
−1(ρ, ∞), for ρ >> 0. The state space is the direct

sum of the “sectors” Hh, i.e.

HW,G :=
⊕

h∈G

Hh.
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HW,G is Q–graded by the W–degree. To define this grading, first note that each

element h ∈ G can be uniquely expressed as

h = (e2πiΘ1(h), . . . , e2πiΘN(h))

with 0 ≤ Θk(h) < 1. The degree–shifting number is

ι(h) :=
N

∑
k=1

(Θk(h)− qk).

For αh ∈ Hh, the (real) W–degree of αh is defined by

(2.2) degW(αh) := Nh + 2ι(h).

Remark II.1. Although we will not need it in this paper, one can define a product

structure on HW,G, which then becomes a graded algebra. Let φJ be the funda-

mental class in HJ , and note that degW(φJ ) = 0. In fact φJ is the identity element

in HW,G. This partially explains the prominence of the element J in the above

discussion.

There is also a non–degenerate pairing

〈−,−〉 : Hh ×Hh−1 → C,

which induces a symmetric non–degenerate pairing,

〈−,−〉 : HW,G ×HW,G → C.

2.2 Moduli of W–curves

Recall that an n–pointed orbifold curve is a stack of Deligne–Mumford type with

at worst nodal singularities with orbifold structure only at the marked points and

the nodes. We require the nodes to be balanced, in the sense that the action of the

stabilizer group be given by

(x, y) 7→ (e2πi/kx, e−2πi/ky).
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Given such a curve, C, let ω be its dualizing sheaf. The log–canonical bundle is

ωlog := ω(p1 + · · ·+ pn)

Following [5], we will consider d–stable curves. A d–stable curve is a proper

connected orbifold curve C of genus g with n distinct smooth markings p1, . . . , pn

such that

(i) the n–pointed underlying coarse curve is stable, and

(ii) all the stabilizers at nodes and markings have order d.

There is a moduli stack, Mg,n,d parametrizing such curves. It is proper, smooth

and has dimension 3g − 3 + n. (As noted in [5], it differs from the moduli space

of curves only because of the stabilizers over the normal crossings.)

Write W as a sum of monomials W = W1 + · · · + Ws, with Wl = cl

N

∏
k=1

x
alk
k .

Given line bundles L1, . . . ,LN on the d–stable curve C, we define the line bundle

Wl(L1, . . . ,LN) :=
N⊗

k=1

L⊗alk
k .

Definition II.2. A W–structure is the data (C, p1, . . . , pn,L1, . . . ,LN, ϕ1, . . . ϕN), where

C is an n–pointed d–stable curve, the Lk are line bundles on C satisfying

(2.3) Wl(L1, . . . ,LN) ∼= ωlog,

and for each k, ϕk : L⊗d
k → ω

wk
log is an isomorphism of line bundles.

There exists a moduli stack of W–structures, denoted by Wg,n.

Proposition II.3 (Chiodo–Ruan [5]). The stack Wg,n is nonempty if and only if n > 0

or 2g − 2 is a positive multiple of d. It is a proper, smooth Deligne–Mumford stack of

dimension 3g − 3 + n. It is etale over Mg,n,d of degree |Gmax|2g−1+n/dN.



22

The moduli space can be decomposed into connected components, which we

now describe. Because Lk is a dth root of a line bundle pulled back from the

coarse underlying curve, the generator of the isotropy group at pi acts on Lk by

multiplication by e2πimi
k/d for some 0 ≤ mi

k < d. The integer mi
k is the multiplicity

of Lk at pi, and will usually be denoted multpi
(Lk). Equation (2.3) ensures that

(e2πimi
1/d, . . . , e2πimi

N/d) ∈ Gmax. Furthermore, when we push forward the line

bundle Lk to the coarse curve, we find it has degree

(2.4) qk(2g − 2 + n)−
n

∑
i=1

multpi
(Lk)/d,

which must therefore be an integer.

Let h = (h1, . . . , hn) denote an n–tuple of group elements, hi ∈ Gmax. Define

Wg,n(h) to be the stack of n–pointed, genus g W–curves for which multpi
(Lk)/d =

Θk(hi). The following proposition describes a decomposition of Wg,n in terms of

multiplicities:

Proposition II.4 (Fan–Jarvis–Ruan [14]). The stack Wg,n can be expressed as the dis-

joint union

Wg,n = ∐ Wg,n(h)

with each Wg,n(h) an open and closed substack of Wg,n. Furthermore, Wg,n(h) is non–

empty if and only if

hi ∈ Gmax, i = 1, . . . , n

qk(2g − 2 + n)−
n

∑
i=1

Θk(hi) ∈ Z, k = 1, . . . , N.

Suppose G ⊂ Gmax is an admissible group, so G is the maximal group of diag-

onal symmetries of W + Z for some choice of quasihomogeneous Laurent poly-

nomial Z. We define Wg,n,G to be the stack of (W + Z)–curves with genus g and n
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marked points. This definition does not depend on the particular choice of Z (see

[14]).

Proposition II.5 (Fan–Jarvis–Ruan [14]). Wg,n,G is a proper substack of Wg,n.

We denote the universal curve by π : C → Wg,n,G(h), and the universal W–

structure by (L1, . . . , LN).

For each substack Wg,n(h), one may define a virtual cycle [Wg,n(h)]vir of degree

2

(
(ĉ − 3)(1 − g) + n −

n

∑
i=1

ι(hi)

)
.

The virtual cycle [Wg,n,G(h)]
vir is defined as

[Wg,n,G(h)]
vir :=

|Gmax|

|G|
i∗[Wg,n(h)]

vir,

with i : Wg,n,G(h) →֒ Wg,n(h) the inclusion map.

2.3 FJRW Invariants

FJRW invariants can be defined for any pair (W, G) where W is a nondegener-

ate quasihomogeneous polynomial and G is an admissible group. However, the

most general definition is somewhat complicated, and unnecessary for our pur-

poses here. To simplify the exposition, we will specialize to the case of interest to

us, namely W = x5
1 + · · ·+ x5

5 and G = SLW . Note SLW is the same as G defined

in (1.6)

W is degree five with weights wk = 1 for 1 ≤ k ≤ 5. In this case J =

(e2πi/5, . . . , e2πi/5), and ĉ = 3.

Notation II.6. By a slight abuse of notation, we will often represent a group ele-

ment h = (e2πiΘ1(h), . . . , e2πiΘN(h)) by

h = (Θ1(h), . . . , Θ5(h)).
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With this convention, we can write

G =

{
( r1

5 , . . . , r5
5

)
|

5

∑
k=1

rk ≡ 0 (mod 5), 0 ≤ rk ≤ 4

}
.

In computing the state space, we find that the only non–zero sectors are the

identity sector He, and those with Nh = 0. If Nh = 0 we call Hh a narrow sector.

Let Ŝ = {h ∈ G|Nh = 0} denote the index set for the narrow sectors. As each

narrow sector is fixed by G, the state space can be decomposed as

HW,G = He ⊕
⊕

h∈Ŝ

Hh.

with Hh
∼= C. The elements of He have degree three. The elements of each of

the narrow sectors have even W–degree. In what follows we will focus on the

subspace of narrow sectors,

H
nar

W,G :=
⊕

h∈Ŝ

Hh.

Remark II.7. As in [5] the narrow sectors form a closed theory. In other words, any

invariant involving an insertion that is not narrow vanishes.

There is an obvious choice of basis {φh}h∈Ŝ, where φh is the fundamental class

in Hh. Let
{

φh
}

denote the dual basis with respect to the pairing, i.e. φh = φh−1 .

The moduli space may now be described as

Wg,n,G =
{
(C, p1, . . . , pn,L1, . . . ,L5, ϕ1, . . . , ϕ5)|ϕk : L⊗5

k
∼
→ ωlog, ⊗5

k=1Lk
∼= ωlog

}
.

For each h = (h1, . . . , hn) ∈ (Ŝ)n, the virtual cycle [Wg,n(h)]vir has degree

2

(
(ĉ − 3)(1 − g) + n −

n

∑
k=1

ι(hk)

)
= 2n − 2

n

∑
k=1

ι(hk).

We also have psi classes ψi for each marked point. The class ψi is defined as the

first Chern class of the bundle whose fiber over a point is the cotangent line to the

corresponding coarse underlying curve at the i–th marking.
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With this in mind, we can define the FJRW invariant

〈
ψa1φh1

, . . . , ψan φhn

〉(W,G)
g,n

:=
1

625g−1

∫

[Wg,n,G(h)]vir

n

∏
i=1

ψ
ai
i .

Extending linearly, we obtain invariants defined for any insertions in H nar
W,G.

The perfect obstruction theory used to define the virtual class is given by

−Rπ∗(
⊕5

k=1 Lk)
∨. In genus zero, the situation simplifies greatly:

Proposition II.8. The genus zero FJRW theory for the mirror quintic is concave, and

−Rπ∗

( 5⊕

k=1

Lk

)∨
= R1π∗

( 5⊕

k=1

Lk

)∨
.

Proof. We will show that over any geometric point (C, p1, . . . , pn,L1, . . . ,L5, ϕ1, . . . , ϕ5)

in the moduli space, the fiber
⊕5

k=1 H0(C,Lk) = 0. This then implies the result.

Let f : C → C denote the map from the stack C to the coarse underlying curve C,

and let |Lk| denote the push forward f∗Lk. Then H0(C,Lk) ∼= H0(C, |Lk|), thus it

suffices to show that the line bundle |Lk| has no global sections.

Let Γ be the dual graph to C (see [17]). Recall that each vertex v of Γ corresponds

to a rational curve component Cv. Let Pv denote the set of special points (marks

and nodes) on Cv and kv the number of such points. For τ ∈ Pv, let multτ(Lk) be

the multiplicity of Lk at the point τ. As in equation (2.4), the degree of the push

forward |Lk|Cv
can be expressed in terms of the multiplicity at each special point:

deg(|Lk|Cv
) = 1

5(kv − 2)− 1
5 ∑

τ∈P

multτ(Lk)

= − 2
5 +

1
5 ∑

τ∈P

(1 − multτ(Lk))

Since we have restricted our consideration to narrow sectors, multτ(Lk) > 0

whenever τ is not a node. If C is irreducible, we see that deg(|Lk|) is negative and

H0(C, |Lk|) = 0. If C is reducible, each component of Cv has at least one node and
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we obtain the following inequality:

(2.5) deg(|Lk|Cv
) ≤ 1

5(#nodes(Cv)− 2) < #nodes(Cv)− 1.

Since we are in genus 0, Γ is a tree. Choose one of the 1–valent vertices, v. There

is only one node on the corresponding rational component Cv. By equation (2.5),

deg(|Lk|Cv
) < 0 so any section of |Lk| must vanish on Cv. Choosing a vertex

attached to t + 1 edges, (2.5) yields deg(|Lk|Cv
) < t. Therefore if a section of

|Lk|Cv
vanishes at t of the nodes, we see by degree considerations that it must be

identically zero on Cv.

By starting at the outer vertices of Γ and working in, the above two facts allow

one to show that a section of |Lk| must vanish on every component of C.

On each W–curve in Wg,n,G we have ⊗5
k=1Lk

∼= ωlog. This implies that L5 is

determined by L1,L2, L3, L4. We will use this fact to facilitate computation.

Let (A4)g,n denote the moduli space of genus g, n–marked A4–curves corre-

sponding to the polynomial A4 = x5. Such W–structures are often referred to as

5–spin curves. Let (A4
4)g,n denote the fiber product

(A4
4)g,n := (A4)g,n ×Mg,n,5

(A4)g,n ×Mg,n,5
(A4)g,n ×Mg,n,5

(A4)g,n

Proposition II.9. There is a surjective map

s : (A4
4)g,n → Wg,n,G

which is a bijection at the level of a point.

Proof. The map is

(L1, . . . ,L4, φ1, . . . , φ4) →

(
L1, . . . ,L4,

(( 4⊗

k=1

L∨
k

)
⊗ ωlog

)
, ϕ1, . . . , ϕ4, ϕ∨

1 ⊗ · · · ⊗ ϕ∨
4 ⊗ id

)
.
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Notice that the image of this map satisfies
⊗5

k=1 Lk
∼= ωlog, and the fifth line

bundle in the image is a fifth root of ωlog. Furthermore, every point in Wg,n,G is of

this form. It is clear that this map is bijective at the level of a point. This implies

the proposition.

Using the previous two propositions, we can give a more useful description of

the genus zero correlators. Given h = (h1, . . . , hn), let us denote

A4
4(h)g,n :=

(A4)g,n(Θ1(h1), . . . Θ1(hn))×Mg,n,d
· · · ×Mg,n,d

(A4)g,n(Θ4(h1), . . . , Θ4(hn)).

Each factor of (A4)g,n is equipped with a universal A4–structure. Abusing nota-

tion, we denote the universal line bundle over the ith factor of (A4
4)g,n also by Li.

By the universal properties of the W–structure on Wg,n, we have s∗Lk
∼= Lk for

1 ≤ k ≤ 4. Define L5 on (A4
4)g,n as the pullback s∗L5.

In [14] the authors show that [W0,n,G]
vir is Poincaré dual to 5ctop

(
R1π∗

(⊕5
i=1 Li

)∨)

as a consequence of concavity. By the projection formula, we can pull the correla-

tors back to (A4
4)0,n. The map s has degree 5, so we get the following expression

for the genus 0 correlators:

〈
ψa1φh1

, . . . , ψan φhn

〉(W,G)
0,n

= 625
∫

A4
4(h)0,n

n

∏
i=1

ψ
ai
i ∪ ctop

(
R1π∗

( 5⊕

i=1

Li

)∨)



CHAPTER III

The Calabi–Yau Model

The CY model is defined by GW theory for W . However, as mentioned previ-

ously, we must use orbifold GW theory. Here we introduce the mirror quintic and

describe the orbifold GW theory. This discussion can be found in greater detail in

[20].

3.1 The State Space

Recall the pair (W, G) from Section 2.3. Let Ḡ denote the quotient G/〈J 〉. Let

Y denote the global quotient orbifold

Y = [P4/Ḡ]

where the Ḡ–action on P4 comes from coordinate–wise multiplication. Note that

this is the same as (1.2). The mirror quintic W is defined as the hypersurface

W := {W = 0} ⊂ Y .

The correct state space for orbifold Gromov–Witten theory is Chen–Ruan orbifold

cohomology, defined via the inertia orbifold (see [3]). If X = [X/H] is a global

quotient of a nonsingular variety X by a finite group H, the inertia orbifold IX

takes a particularly simple form. Let SH denote the set of conjugacy classes (h) in

28
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H, then

IX = ∐
(h)∈SH

[Xh/C(h)].

As a vector space, the Chen–Ruan cohomology groups H∗
CR(X ) of an orbifold X

are the cohomology groups of its inertia orbifold:

H∗
CR(X ) := H∗(IX ).

We will now describe the Chen–Ruan cohomology of the mirror quintic W (for

more detail, see [20]). For an element g ∈ G, denote by [g] the corresponding

element in Ḡ and I(g) := {k ∈ {1, 2, 3, 4, 5} |Θk(g) = 0}. The order of this set is

Ng as defined in Section II.

Fix an element ḡ ∈ Ḡ. Given g ∈ G such that [g] = ḡ, the set

P4
g :=

{
xj = 0

}
j/∈I(g)

⊂ P4

is a component of the fixed locus (P4)ḡ. From this we see that each element g ∈ G

such that [g] = ḡ corresponds to a connected component Yg of IY associated with

P4
g ⊂ (P4)ḡ. Note that if g has no coordinates equal to zero (i.e. Θk(g) = 0) then

P4
g is empty, and so is Yg. This gives us a convenient way of indexing components

of IY .

Let

Yg = {(x, [g]) ∈ IY | x ∈ [P4
g/Ḡ]},

and let S denote the set of all g such that Θk(g) is equal to 0 for at least one k. Then

IY = ∐
g∈S

Yg ,

with each Yg a connected component.

The inertia orbifold of the mirror quintic W can be described in terms of IY .

The mirror quintic W intersects nontrivially with Yg exactly when Ng ≥ 2. (that
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is, dimYg ≥ 1.) Let

S̃ :=
{

g ∈ G
∣∣Ng ≥ 2

}
.

Then

IW = ∐
g∈S̃

Wg , where Wg = W ∩Yg.

All nontrivial intersections are transverse, so

dim(Wg) = dim(Yg)− 1 = Ng − 2.

For g ∈ S̃, the age of g is defined as

age(g) :=
5

∑
k=1

Θk(g).

The Chen–Ruan cohomology of W is defined, as a graded vector space, by

H∗
CR(W) :=

⊕

g∈S̃

H∗−2 age(g)(Wg).

In FJRW theory we were interested only in H nar
W,G. Similarly, here we will only be

interested in the subring of H∗
CR(W) consisting of classes of even (real) degree.

These are the ambient classes. We will denote this ring as Heven
CR (W).

Let 1g denote the constant function with value one on Wg. Let H denote the

class in H∗(Y) which pulls back to the hyperplane class in P4 and H the induced

class on W .

A convenient basis for Heven
CR (W) is

⋃

g∈S̃

{1g, 1gH, . . . , 1gHdim(Wg)}.

Let s represent the dual coordinate to H ∈ H∗
CR(W). We denote by H2(W) the

subspace sH of classes in H2
CR(W) supported on the untwisted component W ⊂

IW .
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3.2 Orbifold GW invariants

We can also define the orbifold GW invariants for W (see e.g. [1] or [2]).There

exists a moduli space of stable maps from genus–g, n–marked pre–stable orbifold

curves to W of degree δ ∈ H2(W), which we will denote by Mg,n(W , δ). Our orb-

ifold curves are allowed to have non-trivial orbifold structure only at the marked

points and nodes. As before, the nodes must be balanced (see Section 2.2). As

described in [1] and [12], although there are not generally well–defined maps

evi : Mg,n(W , δ) → W

there are maps

ev∗i : H∗
CR(W) → H∗(Mg,n(W , δ)

which behave as if evaluation maps existed, just as in the non–orbifold setting.

Under these maps, we can pull back cohomology classes from W to Mg,n(W , δ).

Similar to FJRW theory, we can define ψ classes ψi ∈ H∗(Mg,n(W , δ). The

class ψi is the first Chern class of the line bundle whose fiber over a point is the

cotangent line to the coarse underlying curve at the i–th marked point.

There is a virtual class [Mg,n(W , δ)]vir, which allows us to define the orbifold

GW invariants for αi ∈ H∗
CR(W)

〈ψa1α1, . . . , ψan αn〉
W
g,n,δ :=

∫

[Mg,n(W ,δ)]vir

n

∏
i=1

ev∗i (αi)ψ
ki
i

Summing over the degree, we write

〈ψa1α1, . . . , ψan αn〉
X
g,n := ∑

δ

Qδ〈ψa1α1, . . . , ψan αn〉
X
g,n,δ,

where the Qδ are formal Novikov variables used to guarantee convergence.



CHAPTER IV

Givental Formalism

In this chapter, we will discuss Givental’s formalism, which provides the back-

drop for the respective J–functions.

Let � denote a theory—either the Gromov–Witten theory of a space X or the

FJRW theory of a pair (W, G)—with state space
(

H�, 〈−,−〉�
)

containing the ba-

sis {βi}i∈I and invariants

〈ψa1 βi1 , . . . , ψan βin〉
�
g,n.

We may define formal generating functions of �–invariants. Let t = ∑i∈I tiβi

represent a point of H� written in terms of the basis. For notational convenience

denote the formal series ∑k≥0 tkψk as t(ψ). Define the genus g generating function

by

F�
g := ∑

n

1

n!
〈t(ψ), . . . , t(ψ)〉�g,n.

Let D denote the total genus descendent potential,

D� := exp

(
∑
g≥0

h̄g−1F�
g

)
.

As in Gromov–Witten theory, the correlators in FJRW theory satisfy the so–

called string equation (SE), dilation equation (DE), and topological recursion relation

(TRR) (For the proof in orbifold Gromov–Witten theory see [23], in the case of

32
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FJRW theory see [14]). These equations can be formulated in terms of differen-

tial equations satisfied by the various genus g generating functions F�
g . We can

use this extra structure to rephrase the theory in terms of Givental’s overruled La-

grangian cone. For a more detailed exposition of what follows we refer the reader

to Givental’s original paper on the subject [15].

Let V � denote the vector space H�((z−1)), equipped with the symplectic pair-

ing

(4.1) Ω�( f1, f2) := Resz=0〈 f1(−z), f2(z)〉�.

V � admits a natural polarization V � = V �
+ ⊕ V �

− defined in terms of powers of

z:

V
�
+ = H�[z],

V
�
− = z−1H�[[z−1]].

We obtain Darboux coordinates
{

qi
k, pk,i

}
with respect to the polarization on V �

by representing each element of V � in the form

∑
k≥0

∑
i∈I

qi
kβiz

k + ∑
k≥0

∑
i∈I

pk,iβ
i(−z)−k−1

One can view F�

0 as the generating function of a Lagrangian subspace L � of V �.

Let β0 denote the unit in H�, and make the change of variables (the so–called

Dilaton shift)

q0
1 = t0

1 − 1 qi
k = ti

k for (k, i) 6= (1, 0).

Then the set

L
� :=

{
p = dqF

�

0

}
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defines a Lagrangian subspace. More explicitly, L � contains the points of the

form

−β0z + ∑
k≥0
i∈I

ti
kβiz

k + ∑
a1,...,an,a≥0
i1,...,in,i∈I

ti1
a1
· · · tin

an

n!(−z)a+1
〈ψa1 βi1 , . . . , ψan βin , ψaβi〉

�

0,n+1βi.

Because F�

0 satisfies the SE, DE, and TRR, L � will take a special form. In fact,

L � is a cone satisfying the condition that for all f ∈ V �,

(4.2) L
� ∩ L f = zL f

where L f is the tangent space to L � at f . Equation (4.2) justifies the term over-

ruled, as each tangent space L f is filtered by powers of z:

L f ⊃ zL f ⊃ z2L f ⊃ · · ·

and L � itself is ruled by the various zL f . The codimension of zL f in L f is equal

to dim(H�).

A generic slice of L � parametrized by H�, i.e.

{ f (t)|t ∈ H�} ⊂ L
�,

will be transverse to the ruling. Given such a slice, we can reconstruct L � as

(4.3) L
� =

{
zL f (t)|t ∈ H�

}
.

Givental’s J–function is defined in terms of the intersection

L
� ∩−β0z ⊕ H ⊕ V

−.

Writing things out explicitly, the J–function is given by

J�(t, z) = β0z + t + ∑
n≥0

∑
a≥0
h∈I

1

n!za+1
〈t, . . . , t, βhψa〉�0,n+1βh.
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In other words, we can obtain the J–function by setting ti
k = 0 whenever k > 0.

In [16] it is shown that the image of J�(t,−z) is transverse to the ruling of L �,

so J�(t,−z) is a function satisfying (4.3). Thus the ruling at J�(t,−z) is spanned

by the derivatives of J�, i.e.

(4.4) zLJ�(t,−z) =
{

J�(t,−z) + z ∑ ci(z)
∂

∂ti
J�(t,−z)|ci(z) ∈ C[z]

}
.

By the string equation, z ∂
∂t0 J�(t, z) = J�(t, z), so (4.4) simplifies to

zLJ�(t,−z) = {z ∑ ci(z)
∂

∂ti
J�(t,−z)|ci(z) ∈ C[z]

}
.

4.1 Quantization of Symplectic operators

One of the useful tools in this formalism, is quantization of infinitesimal sym-

plectic operators, which we will briefly introduce here. Details can be found in [9]

and [10]

Suppose that T is an endomorphism of V � of the form

(4.5) T = ∑
m≥0

Bmzm

where Bm : H� → H�. Let B∗
m denote the adjoint with respect to the pairing 〈, 〉�.

Then the symplectic adjoint of T is

T∗(−z) := ∑
m≥0

B∗
m(−z)m.

We say T is symplectic if Ω�(T f1, T f2) = Ω�( f1, f2). This is equivalent to

T∗(−z)T(z) = Id .

We will be interested in a transformation of the form

T = exp(A)
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in which A also has the form (4.5). In this case, T being symplectic is equivalent

to A being infinitesimal symplectic, or in other words that Ω(A f , g) + Ω( f , Ag) = 0

for any f , g ∈ V �. This in turn implies that

(4.6) A∗
m = (−1)m+1Am.

The process of quantization then proceeds as we now describe. First we quan-

tize quadratic monomials in the variables
{

qi
k, pk,i

}
as follows:

q̂i
kq

j
ℓ
= qi

kq
j
ℓ

p̂k,i pℓ,j = h̄2 ∂

∂qi
k

∂

∂q
j
ℓ

,

q̂i
k pℓ,j = h̄qi

k

∂

∂q
j
ℓ

In order to quantize a symplectomorphism T = exp(A) of the form (4.5) define

a function hA on V � by

hA( f ) =
1

2
Ω�(A f , f ).

Since hA is a quadratic in the variables
{

qi
k, pk,i

}
, it can be quantized by the above

formula. We define the quantization of A via

Â =
1

h̄
ĥA,

and T̂ is defined by

T̂ = exp(Â).

We will illustrate this procedure with the following example.

Example IV.1. Suppose that the infinitesimal symplectic transformation A is of

the form

A = Amzm,
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where Am : H� → H� is a linear transformation and m > 0.

To compute Â, one must first compute the Hamiltonian hA. Let

f (z) = ∑
k≥0

∑
i∈I

pk,iβ
i(−z)−1−k + ∑

ℓ≥0
∑
j∈I

q
j
ℓ
β jz

ℓ ∈ V
�.

Then

hA( f ) =
1

2
Ω�(A f , f )

=
1

2
Resz=0

〈
(−z)m ∑

k1≥0
∑
i∈I

pk1,i(Amβi) z−1−k1 + (−z)m ∑
ℓ1≥0

∑
j∈I

q
j
ℓ1
(Amβ j)(−z)ℓ1 ,

∑
k2≥0

∑
i∈I

pk2,iβ
i(−z)−1−k2 + ∑

ℓ2≥0
∑
j∈I

q
j
ℓ2

β jz
ℓ2

〉
�

Since only the z−1 terms contribute to the residue, the right-hand side is equal to

1

2

m−1

∑
k≥0

∑
i,j∈I

(−1)k pk,i pm−k−1,j

〈
Amβi, βj

〉
�

+
1

2 ∑
k≥0

∑
i,j∈I

(−1)m pm+k,iq
j
k

〈
Amβi, β j

〉
�

−
1

2 ∑
k≥0

∑
i,j∈I

q
j
k pm+k,i

〈
Amβ j, βi

〉
�

.

By (4.6), we have
〈

βi, Amβ j

〉
�

= (−1)m+1Amβi, β j.

Thus, denoting (Am)i
j =

〈
Amβi, β j

〉
�

and (Am)ij =
〈

Amβi, βj
〉
�

, we can write

hA( f ) =
1

2

m−1

∑
k=0

∑
i,j∈I

(−1)k pk,i pm−k−1,j(Am)
ij + (−1)m ∑

k≥0
∑

i,j∈I

pm+k,iq
j
k(Am)

i
j.

This implies that

(4.7) Â =
h̄

2

m−1

∑
k=0

∑
i,j∈I

(−1)k(Am)
ij ∂

∂qi
k

∂

∂q
j
m−k−1

+ (−1)m ∑
k≥0

∑
i,j∈I

(Am)
i
jq

j
k

∂

∂qi
m+k

.

From this example, it is not difficult to deduce the general form of Â for any A

of the form (4.5).
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4.2 The conjecture

The LG/CY correspondence was first proposed by physicists (see [24, 25]), and

is given as a conjecture in [5]. It is phrased mathematically as a correspondence

between Gromov–Witten invariants of a Calabi–Yau manifold, and the FJRW in-

variants of a specified pair (W, G). In genus 0, the correspondence can be in-

terpreted in terms of the Lagrangian cones of the respective theories. In [5] the

genus 0 conjecture is proven for the Fermat quintic using this interpretation. For

simplicity we state the conjecture below only in the particular case of the mirror

quintic.

In what follows we will use (W, G) in place of � to denote the FJRW theory

of (W, G) and W in place of � to denote the Gromov–Witten theory of W . The

FJRW and Gromov–Witten state spaces will be H nar
W,G and Heven

CR (W) respectively.

The full LG/CY correspondence may be stated as a relationship between D(W,G)

and the analytic continuation of DW |Qd=1, where the latter represents the total

genus descendant potential for W after setting the Novikov variable to one. Once

Novikov variables have been set to one, the conjecture may be phrased as follows:

Conjecture IV.2 ([5]). Let V (W,G) and V W be the Givental spaces corresponding to the

FJRW theory of (W, G) and the Gromov–Witten theory of W .

1. There is a degree–preserving C[z, z−1]–valued linear symplectic isomorphism

U : V
(W,G) → V

W

and a choice of analytic continuation of L W such that

U(L (W,G)) = L
W .
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2. After analytic continuation, up to an overall constant the total potential functions

are related by quantization of U, i.e.

DW = Û(D(W,G)).

Remark IV.3. It is not guaranteed that DW |Qd=1 is an analytic function. Implicit

in the conjecture, however, is the claim that after setting the Novikov variables to

one, DW converges in some neighborhood. Thus one must first check convergence

in order to prove the LG/CY correspondence. For the purposes of this paper

however, the necessary convergence will follow from the mirror theorem of [20]

restated here in equation (6.1).

4.2.1 The Small Slice of L

In [5], the LG/CY correspondence is proven by relating the respective J–functions

for the two theories. A crucial point in the argument is that in the case of the quin-

tic three–fold M, the J–function JM(s, z) (and hence the full Lagrangian cone L M)

may be recovered from the small J–function

JM
small(s, z) := JM(s, z)|s=s∈H2(M).

This is no longer true for the mirror quintic.

Although calculating the big J–function for W appears to be a difficult prob-

lem, in [20] its derivatives ∂
∂si JW (s, z) may be calculated at any point sH ∈ H2(W).

This allows us to prove a “small” version of the LG/CY correspondence for the

mirror quintic. We will phrase the theorem in analogy with Conjecture IV.2.

In order to do so we define the small slice of L W and L (W,G) to be that part of

the ruling coming from sH ∈ H2(W) and tφ
J 2 ∈ H 2

W,G respectively:
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Definition IV.4. The small slices of L W and L (W,G) are defined by

L
W

small := {zLJW (s,−z)|s = sH}.

L
(W,G)

small := {zLJ(W,G)(t,−z)|t = tφ
J 2}.

Our main theorem may then be stated as a correspondence between the small

slices of the Lagrangian cones L (W,G) and L W .

Theorem IV.5. (=Theorem VI.4) There exists a symplectic transformation U identifying

the analytic continuation of L W
small with L

(W,G)
small .



CHAPTER V

A Landau–Ginzburg mirror theorem

In this section we prove a mirror theorem for (W, G), which will be necessary

to prove the LG/CY correspondence. A similar theorem for the GW theory of W

was proven in [20]. Fix as a basis for H nar
W,G the set {φh}h∈Ŝ defined in Section 2.3.

5.1 The twisted theory

We will construct a twisted FJRW theory whose invariants coincide with those

of (W, G) in genus zero. We first extend the state space

H
ext

W,G := H
nar

W,G ⊕
⊕

h∈G\Ŝ

φhC.

Any point t ∈ H ext
W,G can be written as t = ∑

h∈G

thφh. Let ik(h) := 〈Θk(h) −
1
5〉,

where 〈−〉 denotes the fractional part. Notice ik(h) =
4
5 exactly when Θk(h) = 0.

Set

degW(φh) := 2
5

∑
k=1

ik(h).

For h ∈ Ŝ, this definition matches the W–degree defined in (2.2).

We extend the definition of our FJRW invariants to include insertions φh in

H ext
W,G. Namely, set

〈
ψa1φh1

, . . . , ψan φhn

〉(W,G)
0,n

= 0

41
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if hi ∈ G \ Ŝ.

We would like to unify our definition of the extended FJRW invariants, by re–

expressing them as integrals over (Ã4
4)0,n, a slight variation of (A4

4)0,n. We will

make use of the following lemma.

Lemma V.1 (Chiodo–Ruan [5]). Let C be a d–stable curve and let M be a line bundle

pulled back from the coarse space. If l|d, there is an equivalence between two categories of

lth roots L on d–stable curves:

{
L|L⊗l ∼= M

}
↔

⊔

0≤E<∑ lDi

{
L|L⊗l ∼= M(−E), multpi

(L) = 0
}

.

where the union is taken over divisors E which are linear combinations of integer divisors

Di corresponding to the marked points pi.

Proof. Let p denote the map which forgets stabilizers along the markings. The

correspondence is simply L 7→ p∗p∗(L).

Definition V.2. For m1, . . . , mn ∈ {1
5 , 2

5 , 3
5 , 4

5 , 1}, consider the stack Ã4 (m1, . . . , mn)g,n

classifying genus g, n–pointed, 5–stable curves equipped with fifth roots:

Ã4 (m1, . . . , mn)g,n :=
{
(C, p1, . . . , pn,L, ϕ)|φ : L⊗5 ∼

→ ωlog(−
n

∑
i=1

5miDi), multpi
(L) = 0

}
,

where the integer divisors Di correspond to the markings pi.

The moduli space Ã4 (m1, . . . , mn)g,n also has a universal curve C → Ã4 and a

universal line bundle L̃.

We now define an analogue of (A4
4)g,n, replacing (A4)g,n with (Ã4)g,n in each

factor. For 1 ≤ i ≤ n, let mi = (m1i, . . . , m5i) be a 5-tuple of fractions satisfying

mki ∈ {1
5 , 2

5 , 3
5 , 4

5 , 1}, and 〈∑5
k=1 mki〉 = 0. Let m denote the 5 × n matrix (m)ki =

mki.
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Define

Ã4
4(m)g,n := Ã4(m11, . . . , m1n)g,n ×Mg,n,5

· · · ×Mg,n,5
Ã4(m41, . . . , m4n)g,n.

Ã4
4(m)g,n carries four universal line bundles L̃1, . . . , L̃4 satisfying

(L̃k)
⊗5 ∼= ωlog

(
−

n

∑
i=1

5mkiDi

)
.

Define a fifth line bundle

L̃5 := L̃∨
1 ⊗ · · · ⊗ L̃∨

4 ⊗ ωlog

(
−

n

∑
i=1

5

∑
k=1

mkiDi

)
.

One can check that (L̃5)
⊗5 ∼= ωlog(−∑

n
i=1 5m5iDi).

The above moduli space yields a uniform way of defining the extended FJRW

invariants for (W, G). Given φh1
, . . . , φhn

∈ H ext
W,G, let

I(h) =




i1(h1) +
1
5 · · · i1(hn) +

1
5

...
...

i5(h1) +
1
5 · · · i5(hn) +

1
5




.

Consider the following proposition.

Proposition V.3. On Ã4
4(I(h))0,n, the sheaf π∗

(⊕5
k=1 L̃k

)
vanishes and R1π∗

(⊕5
k=1 L̃k

)

is locally free. Furthermore,

(5.1)
〈
ψa1φh1

, . . . , ψan φhn

〉(W,G)
0,n

= 625
∫

Ã4
4(I(h))0,n

∏ ψ
ai
i ∪ ctop

(
R1π∗

( 5⊕

k=1

L̃k

)∨)
.

Proof. Comparing A4 and Ã4, we see that if mki ∈
{

1
5 , 2

5 , 3
5 , 4

5

}
for all k, i, we

can identify Ã4
4(m)g,n with A4

4(m)g,n via Lemma V.1. Under this identification

Rjπ∗(L̃k) = Rjπ∗(Lk). This gives (5.1) in the case φh1
, . . . , φhn

∈ H nar
W,G.

To finish the proof we must consider the case where hi ∈ G \ Ŝ for some i. In

this case (I(h))ki = 5 for some k. Thus it suffices to prove that if mki = 5 for some

i and k, then π∗
(⊕5

k=1 L̃k

)
= 0 and ctop

(
R1π∗

(⊕5
k=1 L̃k

))
= 0.
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Without loss of generality assume mk1 = 5. Consider the integer divisor D1 on

Ã4
4(m)0,n corresponding to the first marked point. We have the following exact

sequence

0 → L̃k → L̃k(D1) → L̃k(D1)|D1
→ 0.

This gives rise to the long exact sequence

0 → π∗(L̃k) → π∗(L̃k(D1)) → π∗(L̃k(D1)|D1
)

→ R1π∗(L̃k) → R1π∗(L̃k(D1)) → R1π∗(L̃k(D1)|D1
) → 0.

The first two terms are 0. Indeed, consider first π∗(L̃k). The fiber over the

point (C, p1, . . . , pn, L̃1, . . . , L̃5) is equal to H0(C, L̃k). As in Proposition II.8 we will

show that L̃k has no global sections by computing its degree on each irreducible

component of C. If C is irreducible, deg(L̃k) < 0 and the claim follows. If not,

let Γ denote the dual graph to C, let v be a vertex corresponding to the irreducible

component Cv and let Pv be the set of special points of Cv. As in Proposition II.8,

we obtain the inequality deg(L̃k|Cv
) < #nodes(Cv) − 1. Again one can proceed

vertex by vertex starting from outer vertices of Γ and show that the restriction of

L̃k to each component has no nonzero global sections.

We can do the same with π∗(L̃k(D1)), with one alteration. If C is reducible, and

v′ corresponds to the irreducible component carrying the first marked point, then

deg L̃k(D1)|Cv′
< #nodes(Cv′). But any section of L̃k(D1) must still vanish on all

other components of C, and by degree considerations it must therefore vanish on

Cv′ .

D1 is zero–dimensional on each fiber, so R1π∗(L̃k(D1)|D1
) also vanishes. The

above long exact sequence above becomes

0 → π∗L̃k(D1)|D1
→ R1π∗L̃k → R1π∗L̃k(D1) → 0.



45

Therefore

ctop(R1π∗L̃k) = ctop(π∗L̃k(D1)|D1
) · ctop(R1π∗L̃k(D1)).

But ctop(π∗L̃k(D1)|D1
) = 0, as L̃k(D1)|D1

∼= Lk|D1
is a fifth root of ωlog|D1

which

is trivial. Thus ctop(R1π∗L̃k) = 0 as well.

We may define a C∗–equivariant generalization of the above theory. This will

allow us to compute invariants which, in the non–equivariant limit coincide with

the genus zero FJRW invariants above. Given a point (C, p1, . . . , pn, L̃1, . . . , L̃5) in

(Ã4
4)g,n, let C∗ act on the total space of

⊕5
k=1 L̃k by multiplication of the fiber. This

induces an action on (Ã4
4)g,n.

Set R = H∗
C∗(pt, C)[[s0, s1, . . . ]], the ring of power series in the variables s0, s1, . . .

with coefficients in the equivariant cohomology of a point, H∗
C∗(pt, C) = C[λ]. De-

fine a multiplicative characteristic class c taking values in R, by

c(E) := exp

(
∑
k

sk chk(E)

)

for E ∈ K∗((Ã4
4)g,n).

Define the twisted state space

H
tw := H

ext
W,G ⊗ R ∼=

⊕

h∈G

R · φh

and extend the pairing by

(5.2)
〈
φh1

, φh2

〉
:=





∏
{k |ik(h1)=4/5}

exp(−s0) if h1 = (h2)
−1

0 otherwise.

In this definition, the empty product is understood to be 1.

We define the symplectic vector space V tw := Htw((z−1)), with the symplectic

pairing defined as in equation (4.1).
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We may also define twisted correlators as follows. Given φh1
, . . . , φhn

basis ele-

ments in H tw, define the invariant

〈
ψa1φh1

, . . . , ψan φhn

〉tw

g,n
:= 625

∫

Ã4
4(I(h))g,n

∏ ψ
ai
i ∪ c

(
Rπ∗

( 5⊕

k=1

L̃k

))
.

taking values in R. We can organize these invariants into generating functions

F tw
g and Dtw as in Section IV.

Specializing to particular values of sd yield different twisted invariants. In par-

ticular, if sd = 0 for all d, we get what is referred to as the untwisted theory. We will

denote the generating functions of the untwisted theory by Fun
g and Dun.

On the other hand, setting

(5.3) sd =





− ln λ if d = 0

(d−1)!
λd otherwise

we obtain the (extended) FJRW–theory invariants defined above. To see this first

consider the following lemma.

Lemma V.4. [5, Lemma 4.1.2] With sd defined as in (5.3), the multiplicative class c(−V) =

eC∗(V∨). In particular, the non–equivariant limit yields the top chern class of V∨.

Proof. We can check this on a line bundle, and then apply the splitting principle.
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Consider a line bundle L. Then we have

exp

(
∑
d≥0

sd chd(−L)

)
= exp

(
ln λ ch0(L)− ∑

d>0

sd chd(L)

)

= exp

(
ln λ ch0(L

∨)− ∑
d>0

(−1)dsd chd(L
∨)

)

= exp

(
ln λ ch0(L

∨) + ∑
d>0

(−1)d−1 (d−1)!
λd chd(L

∨)

)

= λ exp

(
∑
d>0

(−1)d−1 c1(L
∨)d

dλd

)

= λ exp

(
ln(1 +

c1(L
∨)

λ

)

= λ + c1(L
∨)

By Proposition II.8, π∗(
⊕

L̃k) = 0 and c(Rπ∗(L̃k)) = c(−R1π∗(L̃k)). Setting

sd as in (5.3) therefore yields

c
(

Rπ∗

( 5⊕

k=1

L̃k

))
= eC∗

(
R1π∗

( 5⊕

k=1

L̃k

)∨)
.

Applying Proposition V.3 we obtain the following

Corollary V.5. After specializing sd to the values in (5.3),

lim
λ→0

F tw
0 = F

(W,G)
0 .

5.2 The I–function

We will compute twisted invariants by relating them to untwisted invariants,

which we can compute directly. As before it is easy to check that Fun
0 satisfies SE,

DE, and TRR, (where φJ plays the role of the unit in this theory, as in Remark II.1)
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so it defines an overruled Lagrangian cone L un ⊂ V un, satisfying the same geo-

metric properties as described in Section IV. We obtain the untwisted J–function

Jun(t,−z) = −zφJ + t + ∑
n≥0

∑
a≥0
h∈G

1

n!(−z)a+1
〈t, . . . t, ψaφh〉

un
0,n+1 φh.

We may similarly define Jtw(t, z) and L tw in terms of F tw
0 , but it is not obvious

L tw is a Lagrangian cone. Rather than proving this directly, we will use the meth-

ods of quantization. Let Bd(x) denote the dth Bernoulli polynomial, and recall

ik(h) = 〈Θk(h)−
1
5〉.

Proposition V.6. The symplectic transformation

∆ =
⊕

h∈G

5

∏
k=1

exp

(
∑
d≥0

sd

Bd+1

(
ik(h) +

1
5

)

(d + 1)!
zd

)

satisfies L tw = ∆(L un).

Proof. Note first that the identity Bd(1 − x) = (−1)dBd(x) implies ∆ is symplectic.

The proof is the same as the proof in [5] and [7], with some slight modification.

We give a sketch here. The strategy is to first relate Dun to Dtw via the quantization

∆̂. The desired statement then follows by taking the semiclassical limit (see [9]).

We will prove that

(5.4) ∆̂Dun = Dtw

by viewing both sides as functions with respect to the variables sd and showing

they are both solutions to the same system of differential equations. First notice

that both sides of (5.4) have the same initial condition, i.e. when s = 0 they are

equal. We will show that Dtw and Dun both satisfy

(5.5)
∂Φ

∂sd
=

5

∑
k=0

P
(k)
d Φ
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where

P
(k)
d =

Bd+1(
1
5)

(d + 1)!

∂

∂tJ

d+1

− ∑
a≥0

h∈G

Bd+1(ik(h) +
1
5)

(d + 1)!
th
a

∂

∂th
a+d

+
h̄

2 ∑
a+a′=d−1
h,h′∈G

(−1)a′ηh,h′ Bd+1(ik(h) +
1
5)

(d + 1)!

∂2

∂th
a∂th′

a′

,

and ηh,h′ denotes the inverse pairing.

Using the formula derived in (4.7) one can check that ∆̂Dun satisfies (5.5). It

remains to show that Dtw does as well. Substituting Dtw for Φ in (5.5) and taking

the derivative with respect to sd, we see that the equation reduces to

∑
n≥0

1

n!

〈
t(ψ), . . . , t(ψ); chd(Rπ∗(L̃k)) · c(Rπ∗(

⊕

l

L̃l))
〉

0,n

= P
(k)
d F tw

g +
h̄

2 ∑
a+a′=d−1
h,h′∈G

(−1)a′ηh,h′ Bd+1(ik(h) +
1
5)

(d + 1)!

∂F tw
g

∂th
a

∂F tw
g

∂th′
a′

This equation was proven in [7], and generalized to the extended state space

in [5]. It is proved using Grothendieck–Riemann–Roch to give an expression for

chd(Rπ∗(L̃k)).

It will be useful to separate the summands of Jun(t, z) in terms of powers of th.

Given a function n : G → Z≥0, let Jun
n (t, z) denote the ∏h∈G(t

h)n(h)–summand

of Jun(t, z). Proposition II.4 plus a straightforward ψ–class calculation shows that

the correlator
〈
φh1

, . . . , φhn
, ψlφh

〉un

0,n+1
= 1 when ik(h) = 〈3

5 − ∑m ik(hm)〉 and l =

n − 2. It is zero otherwise. Furthermore, ik(h
−1) = 〈3

5 − ik(h)〉. We arrive at the

following pleasant formula

Jun
n (t, z) =

∏h∈G(t
h)n(h)

z|n|−1 ∏h∈G n(h)!
φhn

,

with hn defined by ik(hn) = 〈∑h∈G n(h)ik(h)〉.
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We conclude that

(5.6) Jun(t, z) = ∑
n

∏h∈G(t
h)n(h)

z|n|−1 ∏h∈G n(h)!
φhn

.

Proposition V.6 allows us to describe L tw in terms of L un. Combining this with

Equation (5.6), we will obtain an explicit description of a slice of L tw. This will

then determine Jtw(t, z).

Define Dh = th ∂
∂th

0

, and put Dk = ∑h∈G ik(h)Dh. Notice that Dh Jun
n (t, z) =

n(h)Jun
n (t, z). Consider the following functions:

s(x) = ∑
d≥0

sd
xd

d!

Gy(x, z) = ∑
l,m≥0

sl+m−1
Bm(y)

m!

xl

l!
zm−1.

These functions satisfy the following:

Gy(x, z) = G0(x + yz, z)

G0(x + z, z) = G0(x, z) + s(x)

Proposition V.7. The slice defined by

Js(t, z) =
5

∏
k=1

(
exp(−G1/5(zDk, z)

)
Jun(t, z)

lies on L un.

Proof. This lemma appears in [11] and [5]. We give the proof again here for the

purpose of completeness. Any element f ∈ V tw can be written in the form

f = −zφJ + ∑
l≥0

tlz
l + ∑

l≥0

pl( f )

(−z)l+1

for some pl( f ) = ∑h∈G pl,h( f )φh. If f ∈ L un, then we know

pl( f ) = ∑
n≥0

∑
h∈G

1

n!

〈
t(ψ), . . . , t(ψ), ψlφh

〉un

0,n+1
φh
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The idea is to define

El( f ) = pl( f )− ∑
n≥0

∑
h∈G

1

n!

〈
t(ψ), . . . , t(ψ), ψlφh

〉un

0,n+1
φh

and show that El(Js) = 0.

Let deg sd = d + 1, and proceed by induction on the degree. Since Jun(t, z) lies

on L un, the degree zero terms of El(Js) vanish. Now assuming the degree n terms

vanish, we will show that the degree n + 1 terms vanish. Because of the vanishing

up to degree n, there exists another family J̃s(t,−z) such that El(Js) and El( J̃s)

agree up to degree n. Differentiating, we obtain

∂

∂sd
El(Js) = dJs Ej(z

−1Pd Js)

where

Pd =
5

∑
k=1

d+1

∑
m=0

1

m!(d + 1 − m)!
zmBm(

1
5)(zDk)d+1−m.

Up to degree n, the right hand side coincides with d J̃s El(z
−1Pd J̃s), which van-

ishes because the term in parentheses lies on Td J̃sLun .

Applying ∆ to Js(t,−z) yields a slice of the twisted cone L tw. To facilitate

computation, we express Js(t,−z) in terms of monomials in the th variables

Js(t,−z) = ∑
n

5

∏
k=1

exp

(
−G 1

5

((
∑

h∈G

n(h)ik(h)
)
z, z

))
Jun
n (t,−z),

and express ∆ as

∆ =
5

∏
k=1

⊕

h∈G

exp
(

G 1
5

(
ik(h)z, z

))
.
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If we set Fn = ⌊∑h∈G n(h)ik(h)⌋, we can write

∆ (Js(t,−z)) = ∑
n

5

∏
k=1

exp

(
G1

5

(〈
∑

h∈G

n(h)ik(h)
〉

z, z

)

−G 1
5

(
∑

h∈G

n(h)ik(h)z, z

))
Jun
n (t, z)

= ∑
n

5

∏
k=1

exp

(
∑

0≤b<Fn

−s

(
1
5 z +

〈
∑

h∈G

n(h)ik(h)
〉

z + bz

))
Jun
n (t, z)

Now we can define the modification factor

Mn(z) =
5

∏
k=1

exp

(
∑

0≤b<Fn

−s

(
− 1

5 z −
〈

∑
h∈G

n(h)ik(h)
〉

z − bz

))

Setting sd as in (5.3), we get

Mn(z) = ∏
1≤k≤5

0≤b<Fn

exp


−s0 − ∑

d>0

sd

(
− 1

5 z − 〈∑h∈G n(h)ik(h)〉 z − bz
)d

d!




= ∏
1≤k≤5

0≤b<Fn

exp


ln λ + ∑

d>0

(−1)d−1

(
1
5 z + 〈∑h∈G n(h)ik(h)〉 z + bz

)d

d




= ∏
1≤k≤5

0≤b<Fn

λ exp

(
ln

(
1 +

1
5 z + 〈∑h∈G n(h)ik(h)〉 z + bz

λ

))

= ∏
1≤k≤5

0≤b<Fn

(
λ + 1

5 z +
〈

∑
h∈G

n(h)ik(h)
〉

z + bz

)

Define the I–function:

(5.7) Itw(t, z) := ∑
n

Mn(z)Jun
n (t, z)

By Proposition V.6, Itw ⊂ L tw. Furthermore, we know by Corollary V.5 taking

the non–equivariant limit λ 7→ 0 recovers the FJRW invariants of (W, G). Define

I(W,G)(t, z) := lim
λ→0

Itw(t, z)|t∈H nar
W,G

.

By Corollary V.5, the function I(W,G)(t, z) lies on L (W,G).
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5.3 The mirror theorem

To state the mirror theorem, we apply the following convention:

Notation V.8. From this point forward, we restriction to t of degree two in H nar
W,G.

Let t denote the dual coordinate to φ
J 2 . Then we may write

(5.8) t = tφ
J 2 + ∑

h∈Ŝ\J
2

degW φh=2

thφh.

We will need the following lemma.

Lemma V.9. For t as in (5.8), we may expand the I–function as

(5.9) I(W,G)(t, z) = zF(t)φJ + G(t) +O(z−1)

with F(t) = F0(t) +O(2) and

G(t) = G
J 2(t)φJ2 + ∑

h∈Ŝ\J
2

degW φh=1

thGh(t)φh +O(2).

Here O(2) denotes terms of degree at least two in the variables {th|h 6= J
2}.

Proof. Applying the non–equivariant limit λ 7→ 0 to (5.7), we can write

I(W,G)(t, z) = ∑
n

∏
k=1,...,5
0≤m<Fn

((〈
∑
h∈Ŝ

n(h)ik(h)
〉
+ 1

5 + m

)
z

)
∏h tn(h)

z|n|−1 ∏h n(h)!
φhn

,

where the first sum is now over n : Ŝ → Z≥0.

For a given n, the power of z in the corresponding summand is

1 − ∑
h∈Ŝ

n(h) +
5

∑
k=1

⌊∑
h∈Ŝ

n(h)ik(h)⌋

where the first two terms are the contribution from Jun(t, z) and the last sum is

from the modification factor Mn. Since we have restricted to degW(φh) ≤ 2, we
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have

1 − ∑
h∈Ŝ

n(h) +
5

∑
k=1

⌊∑
h∈Ŝ

n(h)ik(h)⌋ ≤ 1 − ∑
h∈Ŝ

n(h) +
5

∑
k=1

∑
h∈Ŝ

n(h)ik(h) ≤ 1.

Consider the coefficient of z1. For a particular n to contribute to this term, it

must be the case that

∑
h∈Ŝ

n(h) =
5

∑
k=1

⌊∑
h∈Ŝ

n(h)ik(h)⌋

which implies that

5

∑
k=1

⌊∑
h∈Ŝ

n(h)ik(h)⌋ =
5

∑
k=1

∑
h∈Ŝ

n(h)ik(h).

Therefore ik(hn) =
〈
∑h∈Ŝ n(h)ik(h)

〉
= 0 for 1 ≤ k ≤ 5, and hn = J . This

gives us the first term zF(t)φJ . It is clear that F(t) = F0(t) + O(2), because for

〈
∑h∈Ŝ n(h)ik(h)

〉
= 0 to hold for all k there cannot be just one of the variables th.

Now consider the coefficient of z0. There are two kinds of summands we need

to consider, those only in the variable t and those of the form Cth′ tm for some

h′ ∈ Ŝ and m ≥ 0. Here the last factor is the m–th power of t corresponding to the

element φ
J 2 .

In the first case, consider the t5m+l–term. Here ∑h∈Ŝ n(h)ik(h) = m + l
5 , thus

the power of z in this term is 5m + 1 − 5m − l. Because this is zero, we arrive at

l = 1, and thus ik(hn) =
1
5 for all k.

The exponent of z in the coefficient of th′ tm is

(5.10)
5

∑
k=1

⌊m
5 + ik(h

′)⌋ − m.

When restricted to h′ ∈ Ŝ, we have

5

∑
k=1

⌊m
5 + ik(h

′)⌋ − m +
5

∑
k=1

〈
m
5 + ik(h

′)
〉
= 1.
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Thus expression (5.10) is equal to 0 if and only if ∑
5
k=1

〈
m
5 + ik(h

′)
〉
= 1. One

can easily check that this implies 5|m, therefore 〈∑h n(h)ik(h)〉 =
〈

m
5 + ik(h

′)
〉
=

ik(h
′). This gives the other terms of G(t).

Now we are prepared to state the mirror theorem.

Theorem V.10 (LG Mirror Theorem). With F(t) and G(t) as above, and t as in (5.8),

(5.11) J(W,G)(τ(t), z) =
I(W,G)(t, z)

F(t)
where τ(t) = G(t)

F(t)
.

Proof. Recall that the J–function is uniquely characterized by the fact that is lies

on L (W,G) and is of the form zφJ + t+O(z−1). The theorem follows from this fact

and the previous lemma.

Remark V.11. The function τ(t) is referred to as the mirror transformation.

Let J
(W,G)
h (t, z) denote the derivative

J
(W,G)
h (t, z) := z

∂

∂th
J(W,G)(t, z)|t=t.

Recall by (4.4) that these functions determine the small cone L
(W,G)

small . The rest of

the section will be devoted to calculating these functions. In fact as we shall see

it is sufficient to compute J
(W,G)
h (t, z) for φh of degree at most two. These will

determine all others.

Expand I(W,G)(t, z) in terms of powers of th for h 6= J
2

I(W,G)(t, z) = I
(W,G)
J (t, z)+ 1

z

(
∑
h

th I
(W,G)
h (t, z)

)
+
(

1
z

)2 (
∑

h1,h2

th1th2 I
(W,G)
h1,h2

(t, z)
)
+ · · ·

so that

(5.12) I
(W,G)
h (t, z) = z

∂

∂th
I(W,G)(t, z)|t=t.

As an immediate consequence of the previous theorem and Lemma V.9 we ob-

tain the following corollary.
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Corollary V.12. Given h ∈ Ŝ with degW φh ≤ 2, φh 6= φ
J 2 , there exist functions F0(t),

G
J 2 , and Gh(t) determined by I

(W,G)
h (t, z) such that F0 and Gh are invertible, and

J
(W,G)
h (τ(t), z) =

I
(W,G)
h (t, z)

Gh(t)
where τ(t) =

G
J 2(t)

F0(t)

Proof. For h = J this follows by setting t = t.

For the other h use equation (5.11), differentiate both sides with respect to th,

and set t = t. By equation (5.12), the left hand side equals

Gh(t)

F0(t)
J
(W,G)
h (τ(t), z)

and the right hand side equals

I
(W,G)
h (t, z)

F0(t)

as desired.

Remark V.13. To justify the fact that we call Theorem V.10 and its corollary a “mir-

ror theorem,” one can check that up to a factor of t or t2, the functions I
(W,G)
h (t, z)

satisfy the Picard–Fuchs equations (1.8) of the mirror family Mψ around ψ = 0.

One may check this fact directly, or it follows immediately from Theorem VI.1.

The functions Ih(t, z) may be computed directly from (5.7). We list below Ih(t, z)

for h ∈ Ŝ \ J
2 satisfying deg(φh) ≤ 2. These formulas will be needed in the next

section.

(i) For h = J ,

tI
(W,G)
J (t, z) = ∑

k=1,2,3,4

φ
J k z2−k ∑

l≥0

tk+5l Γ((k + 5l)/5)5

Γ(k/5)Γ(k + 5l)
.

(ii) For h = (1
5 , 1

5 , 1
5 , 3

5 , 4
5) and h1 = (4

5 , 4
5 , 4

5 , 1
5 , 2

5),

I
(W,G)
h (t, z) =zφh ∑

l≥0

t5l Γ((1 + 5l)/5)3Γ((3 + 5l)/5)Γ((4 + 5l)/5)

Γ(1/5)3Γ(3/5)Γ(4/5)Γ(1 + 5l)

+φh1

2

25 ∑
l≥0

t3+5l Γ((4 + 5l)/5)3Γ((6 + 5l)/5)Γ((7 + 5l)/5)

Γ(4/5)3Γ(6/5)Γ(7/5)Γ(4 + 5l)
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(iii) For h = (2
5 , 2

5 , 2
5 , 3

5 , 1
5) and h1 = (3

5 , 3
5 , 3

5 , 4
5 , 2

5),

I
(W,G)
h (t, z) =zφh ∑

l≥0

t5l Γ((2 + 5l)/5)3Γ((3 + 5l)/5)Γ((1 + 5l)/5)

Γ(2/5)3Γ(3/5)Γ(1/5)Γ(1 + 5l)

+ φh1 ∑
l≥0

t1+5l Γ((3 + 5l)/5)3Γ((4 + 5l)/5)Γ((2 + 5l)/5)

Γ(3/5)3Γ(4/5)Γ(2/5)Γ(2 + 5l)
.

(iv) For h = (1
5 , 1

5 , 2
5 , 2

5 , 4
5) and h1 = (3

5 , 3
5 , 4

5 , 4
5 , 1

5),

I
(W,G)
h (t, z) =zφh ∑

l≥0

t5l Γ((1 + 5l)/5)2Γ((2 + 5l)/5)2Γ((4 + 5l)/5)

Γ(1/5)2Γ(2/5)2Γ(4/5)Γ(1 + 5l)

+
φh1

5 ∑
l≥0

t2+5l Γ((3 + 5l)/5)2Γ((4 + 5l)/5)2Γ((6 + 5l)/5)

Γ(3/5)2Γ(4/5)2Γ(6/5)Γ(3 + 5l)
.

(v) For h = (1
5 , 1

5 , 3
5 , 3

5 , 2
5) and h1 = (2

5 , 2
5 , 4

5 , 4
5 , 3

5),

I
(W,G)
h (t, z) =zφh ∑

l≥0

t5l Γ((1 + 5l)/5)2Γ((3 + 5l)/5)2Γ((2 + 5l)/5)

Γ(1/5)2Γ(3/5)2Γ(2/5)Γ(1 + 5l)

+ φh1 ∑
l≥0

t1+5l Γ((2 + 5l)/5)2Γ((4 + 5l)/5)2Γ((3 + 5l)/5)

Γ(2/5)2Γ(4/5)2Γ(3/5)Γ(2 + 5l)
.



CHAPTER VI

LG/CY Correspondence

6.1 The state space correspondence

An isomorphism between the Landau–Ginzberg state space and the cohomol-

ogy of corresponding Calabi–Yau hypersurfaces is proven in [6]. In the case of the

mirror quintic, the work implies in particular an isomorphism between Heven
CR (W)

and H nar
W,G as graded vector spaces. We will describe the correspondence explicitly

below. Recall that Heven
CR (W) can be split into summands indexed by g ∈ S̃, where

S̃ is composed of elements g = (r1, r2, r3, r4, r5) ∈ G such that at least two ri are

0. The basis for H nar
W,G on the other hand is given by {φh}h∈Ŝ where Ŝ runs over

elements h = (r1, r2, r3, r4, r5) ∈ G such that ri 6= 0 for all i.

6.1.1 dim(Wg) = 3

For g = e, map

µ : Hi 7→ φ
J i+1 .
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6.1.2 dim(Wg) = 1

For g = (0, 0, 0, 2
5 , 3

5), let h = (1
5 , 1

5 , 1
5 , 3

5 , 4
5) and h1 = (4

5 , 4
5 , 4

5 , 1
5 , 2

5), then

µ : 1g 7→ φh

1gH 7→ φh1
.

For g = (0, 0, 0, 1
5 , 4

5), let h = (2
5 , 2

5 , 2
5 , 3

5 , 1
5) and h1 = (3

5 , 3
5 , 3

5 , 4
5 , 2

5), then

µ : 1g 7→ φh

1gH 7→ φh1
.

6.1.3 dim(Wg) = 0

Let

µ : 1g 7→ φh,

where,

if g = (0, 0, 1
5 , 1

5 , 3
5), h = (1

5 , 1
5 , 2

5 , 2
5 , 4

5);

if g = (0, 0, 4
5 , 4

5 , 2
5), h = (4

5 , 4
5 , 3

5 , 3
5 , 1

5);

if g = (0, 0, 2
5 , 2

5 , 1
5), h = (1

5 , 1
5 , 3

5 , 3
5 , 2

5);

if g = (0, 0, 3
5 , 3

5 , 4
5), h = (4

5 , 4
5 , 2

5 , 2
5 , 3

5).

If g is a permutation of one of the above, define the map by permuting the h

coordinates accordingly. By extending the above identification linearly, we obtain

a map

µ : Heven
CR (W) → H

nar
W,G

identifying the state spaces. Note that this identification preserves the grading

and (up to a constant factor) preserves the pairing.
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6.2 Analytic continuation of IW

Let JW (s, z) denote the (big) J–function of the mirror quintic W . Let sg denote

the dual coordinate to the fundamental class 1g on Wg. We define

JWg (s, z) := z
∂

∂sg JW (s, z)|s=sH.

For g of age at most 1, we know by [20] that

(6.1) JWg (σ(s), z) =
IWg (s, z)

Hg(s)
where σ(s) =

G0(s)

F0(s)
,

where here Hg, G0, and F0 are explicitly determined functions, and IWg is given

below. Let q = es, then

(i) If g = e = (0, 0, 0, 0, 0),

IWe (q, z) = zqH/z




1 + ∑
〈d〉=0

qd

∏
1≤m≤5d

(5H + mz)

∏
0<b≤d
〈b〉=0

(H + bz)5




.

(ii) If g = (0, 0, 0, r1, r2),

IWg (q, z) =

zqH/z1g

(
1 + ∑

〈d〉=0

qd

∏
1≤m≤5d

(5H + mz)

∏
0<b≤d
〈b〉=0

(H + bz)3 ∏
0<b≤d
〈b〉=r2

(H + bz) ∏
0<b≤d
〈b〉=r1

(H + bz)

)
.

(iii) If g = (0, 0, r1, r1, r2), let g1 = (〈−r1〉, 〈−r1〉, 0, 0, 〈r2 − r1〉). Then
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IWg (q, z) =

zqH/z1g




1 + ∑
〈d〉=0

qd

∏
1≤m≤5d

(5H + mz)

∏
0<b≤d
〈b〉=0

(H + bz)2 ∏
0<b≤d

〈b〉=〈3r2〉

(H + bz)2 ∏
0<b≤d

〈b〉=〈2r1〉

(H + bz)




+ zqH/z1g1




∑
〈d〉=r1

qd

∏
1≤m≤5d

(5H + mz)

∏
0<b≤d
〈b〉=r1

(H + bz)2 ∏
0<b≤d
〈b〉=0

(H + bz)2 ∏
0<b≤d
〈b〉=r2

(H + bz)




We will analytic continue each of the above I–functions from q = 0 to t =

q−1/5 = 0 using the Mellon–Barnes method as in [5].

6.2.1 g = e = (0, 0, 0, 0, 0)

The I–function IWe is identical to the I–function in [5, Equation (47)], after rein-

terpreting H as the hyperplane class in H2(W). We recall their analytic continua-

tion and symplectic transformation in 6.3.1.

6.2.2 g = (0, 0, 0, r1, r2)

The Gamma function satisfies

Γ(z + n)/Γ(z) = (z)(z + 1) · · · (z + n − 1)

and consequently

Γ(1 + x/z + l)/Γ(1 + x/z) = z−l
l

∏
k=1

(x + kz).

With this we can rewrite our I–functions. In the present case we obtain

IWg (q, z) = z1gqH/z·

∑
〈d〉=0

qd Γ(1 + 5H/z + 5d)Γ(1 + H/z)3Γ(r1 + H/z)Γ(r2 + H/z)

Γ(1 + 5H/z)Γ(1 + H/z + d)3Γ(r1 + H/z + d)Γ(r2 + H/z + d)
.
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The function 1/(e2πis − 1) has simple poles at each integer with residue 1. From

this we can rewrite the function as a contour integral

IWg (q, z) =z1gqH/z Γ(1 + H/z)3Γ(r1 + H/z)Γ(r2 + H/z)

Γ(1 + 5H/z)
·

∫

C

1

e2πis − 1
qs Γ(1 + 5H/z + 5s)

Γ(1 + H/z + s)3Γ(r1 + H/z + s)Γ(r2 + H/z + s)
.

where the curve C goes from +i∞ to −i∞ and encloses all nonnegative integers

to the right.

By closing the curve to the left, we obtain an expansion in terms of t = q−1/5.

The Gamma function has poles at nonpositive integers, so we obtain a sum of

residues at s = −1 − l for l ≥ 0 and s = −H/z − m/5 for m ≥ 1. In this case,

at negative integers, the residue is a multiple of H2, and so vanishes on Wg. The

residue similarly vanishes at s = −H/z − m/5 when m is congruent to 0, 5r1, or

5r2. For the remaining values of m, we use

Ress=−H/z−m/5 Γ(1 + 5H/z + 5s) = −
1

5

(−1)m

Γ(m)
,

to obtain

IW
′

g (t, z) = z1g
Γ(1 + H/z)3Γ(r1 + H/z)Γ(r2 + H/z)

5Γ(1 + 5H/z)
·

∑
0<m

m 6≡0,5r1,5r2

(−ξ)m2πi

e−2πiH/z − ξm

tm

Γ(m)Γ(1 − m/5)3Γ(r1 − m/5)Γ(r2 − m/5)
.

Here the prefactor of qH/z cancels with a term in each residue. Note that Γ(r1 −

m/5) = Γ(1 − r2 − m/5). Recalling the identity Γ(x)Γ(1 − x) = π/ sin(πx), we
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simplify the above expression as

IW
′

g (t, z) = z1g
Γ(1 + H/z)3Γ(r1 + H/z)Γ(r2 + H/z)

5Γ(1 + 5H/z)
·

∑
0<m

m 6≡0,5r1,5r2

(−ξ)m2πi

e−2πiH/z − ξm

tmπ−5Γ(m/5)3Γ(r1 + m/5)Γ(r2 + m/5)

Γ(m)(sin(πm/5))−3(sin(π(r1 + m/5)))−1(sin(π(r2 + m/5)))−1

= z1g
Γ(1 + H/z)3Γ(r1 + H/z)Γ(r2 + H/z)

5Γ(1 + 5H/z)
·

∑
0<k<5

k 6≡0,5r1,5r2

(
(−ξ)k2πi

e−2πiH/z − ξk

1

Γ(1 − k/5)3Γ(1 − (r1 + k/5))Γ(1 − (r2 + k/5))
·

∑
l≥0

tk+5l Γ((k + 5l)/5)3Γ(r1 + (k + 5l)/5)Γ(r2 + (k + 5l)/5)

Γ(k/5)3Γ(r1 + k/5)Γ(r2 + k/5)Γ(k + 5l)

)
.

6.2.3 g = (0, 0, r1, r1, r2)

Let g1 = (〈−r1〉, 〈−r1〉, 0, 0, 〈r2 − r1〉). Re–writing IWg (t, z) in terms of Gamma

functions yields

IWg (q, z) =

z1gΓ(1 − r1)
2Γ(1 − r2)


 ∑

〈d〉=0

qd Γ(1 + 5d)

Γ(1 + d)2Γ(1 − r1 + d)2Γ(1 − r2 + d)




+ 1g1
Γ(r1)

2Γ(r2)


 ∑

〈d〉=r1

qd Γ(1 + 5d)

Γ(1 + d)2Γ(1 − r1 + d)2Γ(1 − r2 + d)




= z1gΓ(1 − r1)
2Γ(1 − r2)

∫

C

1

e2πis − 1
qs Γ(1 + 5s)

Γ(1 + s)2Γ(1 − r1 + s)2Γ(1 − r2 + s)

+ 1g1
Γ(r1)

2Γ(r2)
∫

C

1

e2πi(s−r1) − 1
qs Γ(1 + 5s)

Γ(1 + s)2Γ(1 − r1 + s)2Γ(1 − r2 + s)
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Analytic continuing along the other side using the same method as above we ob-

tain

IW
′

g (t, z) =z
1g

5
Γ(1 − r1)

2Γ(1 − r2)·

∑
0<k<5|k≡5r1,5r2

(
(−ξ)k2πi

1 − ξk

1

Γ(1 − k/5)2Γ(1 − (r1 + k/5))2Γ(1 − (r2 + k/5))
·

∑
l≥0

tk+5l Γ((k + 5l)/5)2Γ(r1 + (k + 5l)/5)2Γ(r2 + (k + 5l)/5)

Γ(k/5)2Γ(r1 + k/5)2Γ(r2 + k/5)Γ(k + 5l)

)

+ 1g1
Γ(r1)

2Γ(r2)·

∑
0<k<5|k≡5r1,5r2

(
(−1)kξk+5r12πi

1 − ξk+5r1

1

Γ(1 − k/5)2Γ(1 − (r1 + k/5))2Γ(1 − (r2 + k/5))
·

∑
l≥0

tk+5l Γ((k + 5l)/5)2Γ(r1 + (k + 5l)/5)2Γ(r2 + (k + 5l)/5)

Γ(k/5)2Γ(r1 + k/5)2Γ(r2 + k/5)Γ(k + 5l)

)
.

6.3 The symplectic transformation

In this section we will compute the symplectic transformation by considering

each function IW
′

g (t, z) separately.

6.3.1 g = e

Here we recall calculations from [5], and the symplectic transformation which

they compute. Analytic continuation of IWe (t, z) yields

IW
′

e (t, z) = z
Γ(1 + H/z)5

5Γ(1 + 5H/z) ∑
k=1,2,3,4

(−ξ)k2πi

e−2πiH/z − ξk

1

Γ(1 − k/5)5 ∑
l≥0

tk+5l Γ((k + 5l)/5)5

Γ(k/5)Γ(k + 5l)
.

On the other hand

tI
(W,G)
J (t, z) = ∑

k=1,2,3,4

φ
J k z2−k ∑

l≥0

tk+5l Γ((k + 5l)/5)5

Γ(k/5)Γ(k + 5l)
.

Thus the transformation

U
J k : φ

J k 7→ zk−1 Γ(1 + H/z)5

Γ(1 + 5H/z)

(−ξ)k2πi

e−2πiH/z − ξk

1

Γ(1 − k/5)5

sends t
5 I

(W,G)
J (t, z) to IW

′

e (t, z).
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6.3.2 g = (0, 0, 0, 2
5 , 3

5 )

In this case

IW
′

g (t, z) = z1g
Γ(1 + H/z)3Γ(2/5 + H/z)Γ(3/5 + H/z)

5Γ(1 + 5H/z)
·

(
(−ξ)2πi

e−2πiH/z − ξ

1

Γ(1 − 1/5)3Γ(1 − 3/5)Γ(1 − 4/5)
·

∑
l≥0

t1+5l Γ((1 + 5l)/5)3Γ((3 + 5l)/5)Γ((4 + 5l)/5)

Γ(1/5)3Γ(3/5)Γ(4/5)Γ(1 + 5l)

+
(−ξ)42πi

e−2πiH/z − ξ4

1

Γ(1 − 4/5)3Γ(1 − 6/5)Γ(1 − 7/5)
·

∑
l≥0

t4+5l Γ((4 + 5l)/5)3Γ((6 + 5l)/5)Γ((7 + 5l)/5)

Γ(4/5)3Γ(6/5)Γ(7/5)Γ(4 + 5l)

)
.

Using the relation Γ(1 + x) = xΓ(x), we can rewrite the last summand, which

gives us

IW
′

g (t, z) = z1g
Γ(1 + H/z)3Γ(2/5 + H/z)Γ(3/5 + H/z)

5Γ(1 + 5H/z)
·

(
(−ξ)2πi

e−2πiH/z − ξ

1

Γ(1 − 1/5)3Γ(1 − 3/5)Γ(1 − 4/5)
·

∑
l≥0

t1+5l Γ((1 + 5l)/5)3Γ((3 + 5l)/5)Γ((4 + 5l)/5)

Γ(1/5)3Γ(3/5)Γ(4/5)Γ(1 + 5l)

+
(−ξ)42πi

e−2πiH/z − ξ4

1

Γ(1 − 4/5)3Γ(1 − 1/5)Γ(1 − 2/5)
·

2

25 ∑
l≥0

t4+5l Γ((4 + 5l)/5)3Γ((6 + 5l)/5)Γ((7 + 5l)/5)

Γ(4/5)3Γ(6/5)Γ(7/5)Γ(4 + 5l)

)
.

If h = (1
5 , 1

5 , 1
5 , 3

5 , 4
5) and h1 = (4

5 , 4
5 , 4

5 , 1
5 , 2

5), we see that the transformation

Uh : φh 7→ 1g
Γ(1 + H/z)3Γ(2/5 + H/z)Γ(3/5 + H/z)

Γ(1 + 5H/z)
·

(−ξ)2πi

e−2πiH/z − ξ

1

Γ(1 − 1/5)3Γ(1 − 3/5)Γ(1 − 4/5)
,

Uh1
: φh1

7→ z1g
Γ(1 + H/z)3Γ(2/5 + H/z)Γ(3/5 + H/z)

Γ(1 + 5H/z)
·

(−ξ)42πi

e−2πiH/z − ξ4

1

Γ(1 − 4/5)3Γ(1 − 1/5)Γ(1 − 2/5)
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sends t
5 I

(W,G)
h (t, z) to IW

′

g (t, z).

6.3.3 g = (0, 0, 0, 1
5 , 4

5 )

IW
′

g (t, z) = z1g
Γ(1 + H/z)3Γ(1/5 + H/z)Γ(4/5 + H/z)

5Γ(1 + 5H/z)
·

(
(−ξ)22πi

e−2πiH/z − ξ2

1

Γ(1 − 2/5)3Γ(1 − 3/5)Γ(1 − 1/5)

(
− 1

5

)
∑
l≥0

t2+5l Γ((2 + 5l)/5)3Γ((3 + 5l)/5)Γ((1 + 5l)/5)

Γ(2/5)3Γ(3/5)Γ(1/5)Γ(1 + 5l)

+
(−ξ)32πi

e−2πiH/z − ξ3

1

Γ(1 − 3/5)3Γ(1 − 4/5)Γ(1 − 2/5)
·

(
− 1

5

)
∑
l≥0

t3+5l Γ((3 + 5l)/5)3Γ((4 + 5l)/5)Γ((2 + 5l)/5)

Γ(3/5)3Γ(4/5)Γ(2/5)Γ(2 + 5l)

)
.

If h = (2
5 , 2

5 , 2
5 , 3

5 , 1
5) and h1 = (3

5 , 3
5 , 3

5 , 4
5 , 2

5), the transformation

Uh : φh 7→ 1g
Γ(1 + H/z)3Γ(1/5 + H/z)Γ(4/5 + H/z)

Γ(1 + 5H/z)
·

−(ξ)22πi

e−2πiH/z − ξ2

1

Γ(1 − 2/5)3Γ(1 − 3/5)Γ(1 − 1/5)
,

Uh1
: φh1

7→ z1g
Γ(1 + H/z)3Γ(1/5 + H/z)Γ(4/5 + H/z)

Γ(1 + 5H/z)
·

(ξ)32πi

e−2πiH/z − ξ3

1

Γ(1 − 3/5)3Γ(1 − 4/5)Γ(1 − 2/5)

sends t2

25 I
(W,G)
h (t, z) to IW

′

g (t, z).
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6.3.4 g = (0, 0, 1
5 , 1

5 , 3
5 )

Letting g1 = (4
5 , 4

5 , 0, 0, 2
5),

IW
′

g (t, z) = z
1g

5
Γ(1 − 1/5)2Γ(1 − 3/5)·
(
(−ξ)2πi

1 − ξ

1

Γ(1 − 1/5)2Γ(1 − 2/5)2Γ(1 − 4/5)
·

∑
l≥0

t1+5l Γ((1 + 5l)/5)2Γ((2 + 5l)/5)2Γ((4 + 5l)/5)

Γ(1/5)2Γ(2/5)2Γ(4/5)Γ(1 + 5l)

+
(−ξ)32πi

1 − ξ3

1

Γ(1 − 3/5)2Γ(1 − 4/5)2Γ(1 − 1/5)
·

(
− 1

5

)
∑
l≥0

t3+5l Γ((3 + 5l)/5)2Γ((4 + 5l)/5)2Γ((6 + 5l)/5)

Γ(3/5)2Γ(4/5)2Γ(6/5)Γ(3 + 5l)

)

+
1g1

5
Γ(1/5)2Γ(3/5)·
(
(−1)ξ22πi

1 − ξ2

1

Γ(1 − 1/5)2Γ(1 − 2/5)2Γ(1 − 4/5)
·

∑
l≥0

t1+5l Γ((1 + 5l)/5)2Γ((2 + 5l)/5)2Γ((4 + 5l)/5)

Γ(1/5)2Γ(2/5)2Γ(4/5)Γ(1 + 5l)

+
(−1)3ξ42πi

1 − ξ4

1

Γ(1 − 3/5)2Γ(1 − 4/5)2Γ(1 − 1/5)
·

(
− 1

5

)
∑
l≥0

t3+5l Γ((3 + 5l)/5)2Γ((4 + 5l)/5)2Γ((6 + 5l)/5)

Γ(3/5)2Γ(4/5)2Γ(6/5)Γ(3 + 5l)

)
.

Letting h = (1
5 , 1

5 , 2
5 , 2

5 , 4
5) and h1 = (3

5 , 3
5 , 4

5 , 4
5 , 1

5), the transformation

Uh : φh 7→ 1gΓ(1 − 1/5)2Γ(1 − 3/5)·

(−ξ)2πi

1 − ξ

1

Γ(1 − 1/5)2Γ(1 − 2/5)2Γ(1 − 4/5)

+1g1

Γ(1/5)2Γ(3/5)

z
·

(−1)ξ22πi

1 − ξ2

1

Γ(1 − 1/5)2Γ(1 − 2/5)2Γ(1 − 4/5)
,
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Uh1
: φh1

7→ z1gΓ(1 − 1/5)2Γ(1 − 3/5)·

(ξ)32πi

1 − ξ3

1

Γ(1 − 3/5)2Γ(1 − 4/5)2Γ(1 − 1/5)

+1g1
Γ(1/5)2Γ(3/5)·

ξ42πi

1 − ξ4

1

Γ(1 − 3/5)2Γ(1 − 4/5)2Γ(1 − 1/5)
,

sends t
5 I

(W,G)
h (t, z) to IW

′

g (t, z).

6.3.5 g = (0, 0, 2
5 , 2

5 , 1
5 )

Letting g1 = (3
5 , 3

5 , 0, 0, 4
5),

IW
′

g (t, z) = z
1g

5
Γ(1 − 2/5)2Γ(1 − 1/5)·

(
(−ξ)22πi

1 − ξ2

1

Γ(1 − 2/5)2Γ(1 − 4/5)2Γ(1 − 3/5)
·

∑
l≥0

t2+5l Γ((2 + 5l)/5)2Γ((4 + 5l)/5)2Γ((3 + 5l)/5)

Γ(2/5)2Γ(4/5)2Γ(3/5)Γ(2 + 5l)

(−ξ)2πi

1 − ξ

1

Γ(1 − 1/5)2Γ(1 − 3/5)2Γ(1 − 2/5)
·

∑
l≥0

t1+5l Γ((1 + 5l)/5)2Γ((3 + 5l)/5)2Γ((2 + 5l)/5)

Γ(1/5)2Γ(3/5)2Γ(2/5)Γ(1 + 5l)

)

+
1g1

5
Γ(2/5)2Γ(1/5)·
(
(−1)2ξ42πi

1 − ξ4

1

Γ(1 − 2/5)2Γ(1 − 4/5)2Γ(1 − 3/5)
·

∑
l≥0

t2+5l Γ((2 + 5l)/5)2Γ((4 + 5l)/5)2Γ((3 + 5l)/5)

Γ(2/5)2Γ(4/5)2Γ(3/5)Γ(2 + 5l)

+
(−1)ξ32πi

1 − ξ3

1

Γ(1 − 1/5)2Γ(1 − 3/5)2Γ(1 − 2/5)
·

∑
l≥0

t1+5l Γ((1 + 5l)/5)2Γ((3 + 5l)/5)2Γ((2 + 5l)/5)

Γ(1/5)2Γ(3/5)2Γ(2/5)Γ(1 + 5l)

)
.
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Letting h = (1
5 , 1

5 , 3
5 , 3

5 , 2
5) and h1 = (2

5 , 2
5 , 4

5 , 4
5 , 3

5), the transformation

Uh : φh 7→1gΓ(1 − 2/5)2Γ(1 − 1/5)·

(−ξ)2πi

1 − ξ

1

Γ(1 − 1/5)2Γ(1 − 3/5)2Γ(1 − 2/5)

+1g1

Γ(2/5)2Γ(1/5)

z
·

(−1)ξ32πi

1 − ξ3

1

Γ(1 − 1/5)2Γ(1 − 3/5)2Γ(1 − 2/5)
,

Uh1
: φh1

7→z1gΓ(1 − 2/5)2Γ(1 − 1/5)·

(−ξ)22πi

1 − ξ2

1

Γ(1 − 2/5)2Γ(1 − 4/5)2Γ(1 − 3/5)

+1g1
Γ(2/5)2Γ(1/5)·

(−1)2ξ42πi

1 − ξ4

1

Γ(1 − 2/5)2Γ(1 − 4/5)2Γ(1 − 3/5)
,

sends t
5 I

(W,G)
h (t, z) to IW

′

g (t, z).

6.3.6 Putting things together

The above calculations define a map

Uh : φh → V
W

for each h ∈ Ŝ. Extending linearly, we may define the transformation U,

U :=
⊕

h∈Ŝ

Uh : V
(W,G) → V

W .

Expressing U in terms of the bases

{φh}h∈Ŝ and {1g, 1gH, . . . , 1gHdim(Wg)}g∈S̃,

U takes the form of a block matrix which is zero away from the diagonal blocks.

The first diagonal block (corresponding to the non–twisted sector of W) is size

4 × 4 and all others are 2 × 2. Each block is nonsingular, thus U is also.
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Furthermore, one can check via a direct calculation on blocks that U is sym-

plectic. This proves the following.

Theorem VI.1. There is a C[z, z−1]–valued degree–preserving symplectic transforma-

tion U identifying V (W,G) with V W . Furthermore, for h ∈ Ŝ satisfying deg(φh) ≤ 2,

U

(
ch · I

(W,G)
h (t, z)

)
= IW

′

µ−1(h)(t, z)

where ch is the factor t
5 or t2

25 depending on h.

6.4 The main theorem

By equation (4.4), the slice L W ∩ LJW (s,−z) of the ruling is generated by z ∂
∂si JW (s, z)

where i runs over a basis of Heven
CR (W). Thus the small slice L W

small of the La-

grangian cone is completely determined by the first derivatives of JW (s, z) evalu-

ated at points sH ∈ H2(W). This implies the following:

Lemma VI.2. The small slice of the Lagrangian cone L W is determined by

{IWg (q, z)}{g∈G̃|deg 1g≤2}.

Proof. For s ∈ H2(W), each point of L W ∩ LJW (s,−z) is of the form

z ∑
i∈I

ci(s, z)
∂

∂si
JW (s,−z).

where I is a choice of basis for Heven
CR (W). By choosing a particular basis, we

will show that such linear combinations are completely determined by the set

{IWg (q, z)}{g∈G̃|deg 1g≤2}.

The main result of [20] states that after choosing suitable coordinates (i.e. the

mirror transformation) the I–functions IWg and their derivatives give the rows of

the solution matrix of ∇W
s for W when restricted to H2(W). Here ∇W

s denotes the
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Dubrovin connection, defined in terms of the quantum cohomology of W (see [13]

and [20]). We summarize the content of the theorem below. Consider the subset

of Heven
CR (W) given by

{(∇W
s )k1}0≤k≤3 ∪ {1g,∇W

s 1g}deg(1g)=2.

We can check that this set forms a basis by using properties of the J–function.

Note first that the elements of {1} ∪ {1g}deg(1g)=2 are linearly independent. For

s ∈ H2
un(W), ∇W

s 1g = 1
z H ∗s 1g is a degree four class supported in a particular

component of IW . If g = (0, 0, 0, r1, r2),
1
z H ∗s 1g is a multiple of 1gH, and if g =

(0, 0, r1, r1, r2),
1
z H ∗s 1g is a multiple of 1g1

where g1 = (〈−r1〉, 〈−r1〉, 0, 0, 〈r2 −

r1〉). We can check that these multiples are non–zero by observing that the peri-

ods of 1
z H ∗s 1g are obtained as the coefficients of d

ds JWg (s, z) (see Definition 1.4 in

[20]) which are nonzero by (6.1). This shows that {1g,∇W
s 1g}deg(1g)=2 are linearly

independent. Similarly, (∇z
s)

k1 is a nonzero class of degree k supported on the

non twisted sector. We conclude that

{(∇W
s )k1}0≤k≤3 ∪ {1g,∇W

s 1g}deg(1g)=2

is a set of 204 = dim(Heven
CR (W)) linearly independent elements and thus forms a

basis.

By definition, for 1g of degree at most 2,

z
∂

∂sg JW (s,−z)|s = JWg (s,−z).

Because the J–function satisfies the quantum differential equation (equation 5 in

[16]), if sg′ is the dual coordinate to ∇W
s 1g, we have the following

z
∂

∂sg′
JW (s,−z)|s =

d

ds
JWg (s,−z).
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Similarly if sk is dual to (∇W
s )k1,

z
∂

∂sk
JW (s,−z)|s =

(
d

ds

)k

JWe (s,−z).

Therefore, for s ∈ H2(W), L W ∩ LJW (s,−z) is completely determined by the C[z]–

span of {JWg (s,−z)}age(g)≤2.

But, by the mirror theorem (6.1), the span of JWg (s,−z) is equal to the span of

IWg (σ−1(s),−z) where σ is the mirror map.

In FJRW theory, we have the analogous result.

Lemma VI.3. The small slice of the Lagrangian cone L (W,G) is determined by

{I
(W,G)
h (t, z)}{h∈Ŝ|deg(φh)≤2,h 6=J 2}.

Proof. The proof is essentially the same as in the previous lemma.

Theorem VI.4. The symplectic transformation U identifies the analytic continuation of

the small slice of L W with the small slice of L (W,G).

Proof. The result follows immediately from Theorem VI.1 and the previous two

lemmas.

Remark VI.5. Theorem VI.4 proves the first part of Conjecture IV.2 restricted to

the small parameters sH ∈ Heven
CR (W) and tφ

J 2 ∈ H nar
W,G (see 4.2.1). Note that

although we have restricted all calculations to the small parameters, this is enough

to completely determine U.
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