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A LANDING THEOREM FOR ENTIRE FUNCTIONS WITH

BOUNDED POST-SINGULAR SETS

Anna Miriam Benini and Lasse Rempe

Abstract. The Douady-Hubbard landing theorem for periodic external rays is one of
the cornerstones of the study of polynomial dynamics. It states that, for a complex
polynomial f with bounded postcritical set, every periodic external ray lands at
a repelling or parabolic periodic point, and conversely every repelling or parabolic
point is the landing point of at least one periodic external ray. We prove an analogue
of this theorem for an entire function f with bounded postsingular set. If f has
finite order of growth, then it is known that the escaping set I(f) contains certain
curves called periodic hairs; we show that every periodic hair lands at a repelling or
parabolic periodic point, and conversely every repelling or parabolic periodic point
is the landing point of at least one periodic hair. For a postsingularly bounded
entire function f of infinite order, such hairs may not exist. Therefore we introduce
certain dynamically natural connected subsets of I(f), called dreadlocks. We show
that every periodic dreadlock lands at a repelling or parabolic periodic point, and
conversely every repelling or parabolic periodic point is the landing point of at least
one periodic dreadlock. More generally, we prove that every point of a hyperbolic
set is the landing point of a dreadlock.

1 Introduction

Let p : C → C be a polynomial. The filled-in Julia set K(p) consists of those points
z ∈ C whose orbits remain bounded under repeated application of p. In their study
of the dynamics of complex polynomials and the Mandelbrot set [DH85], Douady
and Hubbard introduced the notion of external rays, which can be characterised
as the gradient lines of the Green’s function on the basin of attraction of infinity,
C\K(p). Periodic (and pre-periodic) rays are of particular importance, due to the
following result.
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Douady-Hubbard landing theorem. Let p be a polynomial whose post-critical
set

P(p) .

.=
⋃

c : p′(c)=0

{pn(c) : n ≥ 1} (1.1)

is bounded. (Equivalently, assume that K(p) is connected.)
Then every periodic ray of p lands at a repelling or parabolic periodic point, and

conversely every repelling or parabolic periodic point of p is the landing point of at
least one and at most finitely many periodic external rays.

The first half of this theorem, concerning the landing of periodic rays, can be
found in [DH85, Exposé VIII.II, Proposition 2]. The second half, which is more
difficult, is due to Douady; the first published proofs are in [EL89, Hub93]. Ever since,
the Douady-Hubbard theorem has been a cornerstone of the study of polynomial
dynamics. In particular, it forms the basis of the “puzzle techniques” that were
pioneered by Yoccoz, Branner and Hubbard, and continue to lead to fundamental
new results; see [Hub93, RY08, ALS11].

In the study of rational functions and transcendental entire functions, there is
no immediate analogue of the basin of infinity, and this is one of the reasons that
the study of these classes has presented greater challenges than that of polynomials.
Nonetheless, in both settings analogues of the above-mentioned puzzle techniques
have been employed to certain classes of functions with considerable success. We
refer to [Roe08, Ben15] for two examples.

Our goal is to extend the Douady-Hubbard landing theorem to the case of a
transcendental entire function f . In this setting, the role that critical values play in
polynomial dynamics is taken by the larger set S(f) of singular values of f . These
are those points not having a neighbourhood in which all branches of f−1 are defined
and holomorphic. Analogously to (1.1), the postsingular set of f is defined as

P(f) ..=
⋃

s∈S(f)

{fn(s) : n ≥ 0}. (1.2)

For transcendental maps, ∞ is an essential singularity, rather than a super-
attracting fixed point. Hence the definition of external rays for polynomials as gra-
dient lines of a Green’s function has no natural analogue. Nonetheless, it has long
been known that the escaping set

I(f) ..= {z ∈ C : fn(z) → ∞}

often contains curves to infinity; indeed, in some cases this was already noticed by
Fatou [Fat26]. It was the work of Devaney and his collaborators (see e.g. [DK84,
DT86]) that really began the study of these hairs or dynamic rays in the 1980s,
particularly for functions in the exponential family,

fa : z �→ ez + a. (1.3)
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Devaney, Goldberg and Hubbard were probably the first to suggest that such hairs
could serve as analogues of external rays of polynomials; compare [DGH86, BDH+99].
Subsequently, Schleicher and Zimmer [SZ03a] and Schleicher and Rottenfußer [RS08b]
proved that, for the families of exponential maps (1.3) and of cosine maps z �→
aez + be−z, respectively, the entire escaping set I(f) consists of hairs.

On the other hand, in [RRRS11] it is shown that there is a transcendental entire
function f for which I(f) contains no arcs. Hence there are no curves in I(f), of
any kind, landing at any of the repelling periodic points of f . (Recall that repelling
periodic points are dense in the Julia set of any transcendental entire function.)
Furthermore, the postsingular set P(f) of this function is bounded. Indeed, S(f) is
a compact subset of the immediate basin of attraction of a single attracting fixed
point.

Dreadlocks. In view of the preceding example, we develop a novel approach to the
landing problem that removes the focus on hairs altogether, by connecting repelling
periodic points to infinity using more general sets of escaping points.

More precisely, we introduce a notion of dreadlocks for postsingularly bounded
entire functions. These are certain unbounded connected sets of escaping points
generalising the concept of hairs. (See Section 4 for formal definitions.) The set of
dreadlocks has a natural combinatorial structure, and in tame cases, all dreadlocks
are in fact hairs. In general, however, dreadlocks can be topologically much more
complicated. Indeed, it follows from [Rem16] that the closure of a dreadlock may be
a hereditrarily indecomposable continuum.1

With this terminology, we are able to prove the following generalisation of the
Douady-Hubbard landing theorem for postsingularly bounded entire functions: Ev-
ery periodic dreadlock lands, and every repelling or parabolic periodic point is the
landing point of at least one and at most finitely many periodic dreadlocks (Theo-
rem 8.1). In particular, without requiring the definitions of Section 4, we can state
the following result.

Theorem 1.1 (Landing at periodic points). Let f be a transcendental entire func-
tion such that P(f) is bounded, and let ζ be a repelling or parabolic periodic point.
Then there is a connected and unbounded set A ⊂ I(f) and a period p with the
following properties.

(a) A = A ∪ {ζ} and A does not separate the plane;
(b) fp(A) = A and f j(A) ∩ A = ∅ for 1 ≤ j < p;
(c) for every ε > 0, fn tends to ∞ uniformly on {z ∈ A : |z − ζ| ≥ ε}.

If ζ̃ �= ζ is a different repelling or parabolic periodic point and Ã is a set as above
for ζ̃ then A ∩ Ã = ∅.

1 More precisely, [Rem16] shows that a Julia continuum of a disjoint-type entire function may
have this property, Every such Julia continuum is the closure of a dreadlock in our sense; compare
Lemma 4.14 and Remark 4.15.



1468 A. M. BENINI, L. REMPE GAFA

We emphasise that using dreadlocks, rather than restricting to cases where hairs
exist (see Theorem 1.4 below), is crucial if one wishes to obtain results for general
classes of functions. Indeed, Pfrang [Pfr19] uses our results to construct (homotopy)
Hubbard trees for all postsingularly finite entire functions. This is a natural result
whose hypothesis and conclusion make no mention of hairs; its proof in this form
is made possible by the use of dreadlocks; compare the discussion at the end of the
final section of [PRS18]. Similarly, work of Fagella and the first author [BF15, BF17,
BF20], was formulated only for functions with hairs, but contains a number of results
whose conclusion makes sense without this assumption. For example, the conclusion
of the main theorem of [BF17] states that every non-repelling cycle has a singular
orbit that is associated to it in a certain explicit manner. These results should now
extend to all postsingularly bounded entire functions, by replacing the role of hairs
in the proofs by our “dreadlocks”. In addition, the key technique of fundamental
tails that we use to control dreadlocks (see Section 3) has already found further
applications, for instance in the study of inner functions arising in transcendental
dynamics [EFJS19], and in a new version of the Fatou-Shishikura inequality [BF20].

Moreover, our results offer the possibility of developing puzzle-type arguments
for all postsingularly bounded entire functions, and of using the powerful techniques
of symbolic dynamics to study the behaviour of non-escaping points. As mentioned
above, this is the reason why the structure of polynomial Julia sets is so well under-
stood. Theorem 1.1 opens up large classes of entire transcendental functions to the
same type of analysis.

Existence and landing of periodic hairs. In many interesting cases, periodic
dreadlocks are in fact be periodic hairs. That is, the connected set A in Theorem 1.1
is an arc connecting ζ to ∞. In particular, this holds for functions satisyfing the
following property, which states that the escaping set consists entirely of hairs.

Definition 1.2 (Criniferous functions). We say that an entire function f is crinif-
erous2 if the following holds for every z ∈ I(f): For all sufficiently large n there is an
arc γn connecting fn(z) to ∞, in such a way that f maps γn injectively onto γn+1,
and such that minz∈γn

|z| → ∞ as n → ∞.

The counterexample from [RRRS11] mentioned above shows that entire func-
tions, even those with bounded postsingular sets, need not be criniferous. However,
the same article also establishes criniferousness for a large and natural class of func-
tions, as follows. The Eremenko-Lyubich class B consists of those transcendental
entire functions for which S(f) is bounded, and hence compact. (If P(f) is bounded,
then f ∈ B by definition.) It is proved in [RRRS11] that f is criniferous whenever
f ∈ B and f has finite order of growth, i.e.,

log log|f(z)| = O(log|z|).

2 “Criniferous” means “having hair” or “hairy”, from Latin crinis (hair) + ferre (to bear).
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Furthermore, any finite composition of functions with these properties is also crinif-
erous.

To discuss periodic hairs, let us use the following definition from [Rem08].

Definition 1.3 (Periodic hairs). An invariant hair of a transcendental entire func-
tion f is a continuous and injective curve γ : R → I(f) such that f(γ(t)) = γ(t + 1)
for all t and limt→+∞|γ(t)| = ∞. A periodic hair is a curve that is an invariant hair
for some iterate fn of f .

Such a hair lands if the limit z0 = limt→−∞ γ(t) exists; this limit is called the
landing point (sometimes also endpoint) of the hair γ.

With this terminology, Theorem 1.1 takes the following form for criniferous func-
tions.

Theorem 1.4. “Landing theorem for periodic hairs.” Let f be a transcendental
entire function such that the postsingular set P(f) is bounded. Then every periodic
hair of f lands at a repelling or parabolic periodic point. If, in addition, f is crinif-
erous, then conversely every repelling or parabolic periodic point of p is the landing
point of at least one and at most finitely many periodic hairs.

The first part of the theorem, concerning landing behaviour of periodic rays, is not
new. It was proved for exponential maps in [SZ03b], and later in full generality by the
second author [Rem08, Corollary B.4]; see also [Den14]. The proof uses similar ideas
as in the polynomial case, namely expansion properties for the hyperbolic metric,
although there are also some additional ingredients.

On the other hand, the usual proofs for accessibility of repelling and parabolic
periodic points in the polynomial case [EL89, Hub93, Prz94] strongly rely on the
presence of the open basin of attraction of infinity, and thus break down completely
in the transcendental setting. Nonetheless, there has been some previous work in
this direction. Under the additional dynamical assumption that f is geometrically
finite, the theorem was proved by Mihaljević-Brandt [Mih10]. Furthermore, the first
author and Lyubich [BL14] proved Theorem 1.4 when f belongs to the exponential
family (1.3).

For exponential maps, boundedness of the postsingular set is a strong dynamical
condition (though weaker than geometrical finiteness), as it implies non-recurrence
of the singular value a. However, the non-recurrence property is not used in any
essential way in [BL14], and the ideas used there form one of the ingredients in our
proofs of Theorems 1.1 and 1.4.

During the preparation of this manuscript, Dierk Schleicher informed us that he
has an alternative approach to Theorem 1.4, using ideas from [SZ03b].

Hyperbolic sets. As in [BL14], our techniques apply not only to repelling (and
parabolic) periodic points, but also to hyperbolic sets; see [Prz94] for the correspond-
ing result for polynomials. Recall that a compact, forward-invariant set K ⊂ C is
called hyperbolic if for some k ∈ N and η > 1 we have |(fk)′(z)| > η for all z ∈ K.
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If P(f) is bounded and K is such a hyperbolic set, then we prove that every point
of K is “accessible” from the escaping set, via a dreadlock (see Theorem 8.2). Again,
we can state the following result without requiring the terminology of dreadlocks.

Theorem 1.5. “Landing at hyperbolic sets.” Let f be a transcendental entire func-
tion such that P(f) is bounded, and let K be a hyperbolic set of f . Then there is a
collection A of pairwise disjoint, connected and unbounded sets A ⊂ I(f) with the
following properties.

(a) For every A ∈ A, there is z0(A) ∈ K such that A = A ∪ {z0(A)}, and A does
not separate the plane;

(b) the function A → K; A �→ z0(A) is surjective;
(c) f(A) ∈ A for all A ∈ A;
(d) for every ε > 0, fn tends to ∞ uniformly on {z ∈

⋃
A : dist(z, K) ≥ ε};

(e) if z0(A) is periodic of period p, then fkp(A) = A for some k ≥ 1.

If f is criniferous, then every A ∈ A is an arc connecting z0(A) ∈ K to ∞.

This generalisation is of particular relevance in the case where P(f) itself is
a hyperbolic set, which is often the case for non-recurrent entire functions (see
[RvS11]). Hence, in this case, each singular value can itself be connected to infinity
by a dreadlock, which in turn allows one to study the Julia set via symbolic dynamics
rather closely. For example, in [Ben15], the existence of a ray landing at the omitted
value is exploited to prove strong rigidity properties of non-recurrent parameters in
the exponential family, extending previous work [Ben11] in the postsingularly finite
case.

To conclude the introduction, we remark on the case where the postsingular
set P(f) is unbounded. If f is a polynomial, then every unbounded orbit escapes to
infinity. For polynomials with escaping singular orbits, the Douady-Hubbard landing
theorem no longer holds. Indeed, it is possible that a repelling periodic point is
the landing point of uncountably many external rays, none of which are periodic.
Compare [LP96].

For transcendental entire functions, it is possible for singular orbits to be un-
bounded without converging to infinity. It is conceivable that, for f ∈ B with all
singular orbits nonescaping, a version of the landing theorem holds. However, even
for exponential maps this is not known (see [Rem06a] for a partial result), and it
appears that significant further new ideas would be required to approach it. See
Section 14 for further discussion.

Structure of the paper. Section 2 gives an overview of expansivity properties
for functions in class B without the assumption of bounded postsingular set. It also
defines the concept of external addresses, and gives sufficient conditions on such
addresses to be realised by certain unbounded connected sets of points. Several
of the ideas used in this section are already implicitly or explicitly contained in the
literature, e.g. in [EL92, Rem07a, Rem08, Rem09], but are combined here in a novel,
systematic and unified manner.
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From Section 3 onward, we restrict to functions with bounded postsingular sets,
beginning by discussing hyperbolic expansion estimates for such maps, and intro-
ducing the important combinatorial notion of fundamental tails. With these prepa-
rations, Section 4 introduces dreadlocks for a function with bounded postsingular
set, studies their main topological and combinatorial properties, and also shows that
the escaping set consists of dreadlocks. The ideas in this section have their roots in
[Rem07a]. In particular, we recover the main result of that paper; see Corollary 4.11.
In Section 5, we discuss the relation between dreadlocks and hairs.

Section 6 introduces accumulation sets of dreadlocks at bounded addresses, and
gives different characterisations of when a dreadlock lands. This section contains
a crucial innovation, which is central to the proofs of our main theorems: Rather
than having to contend with the potentially complicated topological structure of
dreadlocks, we can instead study their landing properties by considering a certain
chain of open simply-connected sets. In Section 7, we establish that such a landing
dreadlock cannot separate the plane. We are then ready to state our main theorems
concerning dreadlocks in Section 8, and to derive Theorems 1.1 and 1.4 from these.

The three following sections are dedicated to proving the main theorems of this
paper. Section 9 establishes the landing of periodic dreadlocks, in Section 10 we show
accessibility of hyperbolic sets and repelling periodic orbits, and finally Section 11
is dedicated to the proof of accessibility of parabolic points.

We remark that one can take an alternative, less natural but more direct, ap-
proach to establishing our theorems, bypassing most of the material in Sections 2
and 4–6. Readers interested in such a short-cut are referred to Remark 8.4.

To round off the paper, Section 12 discusses bounds on the number of rays
landing together at a given point in a hyperbolic set. We also include two appendices.
The first, Section 13, gives some details concerning the cyclic order at infinity of
unbounded connected sets, which are used in some of our arguments. The second,
Section 14, discusses open questions about landing theorems for entire functions
with unbounded postsingular sets.

Notation and preliminaries. We write C for the complex plane and Ĉ for the
Riemann sphere. We denote the closure in C of a set A ⊂ C by A, and occasionally
cl(A). The closure of A in Ĉ is denoted by Â.

The Euclidean disk of radius R around a point z is denoted by DR(z); the unit
disk is D ..= D1(0). If D is any Euclidean disc, we also write r(D) for the radius of
D.

We denote Euclidean distance and diameter by dist and diam, respectively. If
U ⊂ C is an open set omitting more than two points, then we denote hyperbolic
distance on U by distU , and similarly diamU for hyperbolic diameter. We also denote
the density of the hyperbolic metric of U at a point z by ρU (z). That is, the length
element of the hyperbolic metric is given by ρU (z)|dz|.
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Figure 1: The dynamical plane for a function with two tracts T1 and T2. One of the funda-
mental domains Fi obtained by taking preimages of δ is shown inside T2.

2 Unbounded Sets of Escaping Points

In this section, we briefly review basic properties of the dynamics of a function
f ∈ B, and review the definition of external addresses for such maps. Then we
state a theorem (Theorem 2.5) about the existence of unbounded connected sets for
these addresses, and devote the rest of the section to the proof thereof. These sets
will provide the basis of the “dreadlocks” that are introduced (for postsingularly
bounded entire functions) in Section 4.

Throughout this section, fix a function f ∈ B. Recall that this implies that S(f)
is bounded. For now, we do not assume that P(f) is also bounded. Let us begin by
reviewing the method of partitioning the locus where f is large into (topological)
half-strips known as fundamental domains. (Compare e.g. [Rem08, Section 2] or
[Rot05, Section 2].) For this construction, we fix a Euclidean disk D around the
origin containing S(f). The connected components of f−1(C\D) are called the tracts
of f . If T is a tract, then f : T → C\D is a universal covering map; in particular,
T is unbounded and simply connected. In fact (applying the same argument to a
slightly smaller disc than D), T is a Jordan domain in Ĉ whose boundary passes
through infinity, and f is a universal covering f : T → C\D on the closure of
T (in the complex plane C).

We may assume in the following that D ∩ f(D) �= ∅, e.g. by ensuring that,
f(0) ∈ D. Then it is easy to see that there is an arc δ connecting a point of ∂D to
infinity in the complement of the closure of the tracts. We define

W0
..= C\(D ∪ δ). (2.1)

The connected components of f−1(W0) are called the fundamental domains of f ;
see Figure 1.
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We remark that there are only finitely many fundamental domains that intersect
a given compact set, due to the following simple fact.

Lemma 2.1 (Preimage components intersecting a compact set). Let f : X → Y be a
holomorphic map between Riemann surfaces X and Y . Furthermore, let U ⊂ Y be a
domain whose boundary (in Y ) is locally connected; i.e. every point of the boundary
of U in Y has arbitrarily small connected relative neighbourhoods in Y .

Then for any compact set K ⊂ X, only finitely many connected components of
f−1(U) intersect K.

Remark. The condition that ∂U is locally connected is necessary: Let X = Y = C,
f = exp, and let U be a simply-connected domain in the punctured unit disc that
spirals in towards the unit circle. (I.e., any branch of the argument on U tends to
infinity as |z| → 1 in U .) Then infinitely many components of f−1(U) intersect the
closed unit disc.

Proof. We begin by reformulating the hypothesis that ∂U is locally connected, as
follows.

Claim. Let ζ ∈ U , and let Δ be a neighbourhood of ζ in Y . Then there is a finite
collection of connected open sets W1, . . . , Wn ⊂ V ∩U such that {ζ}∪W1 ∪ · · ·∪Wn

is a neighbourhood of ζ in {ζ} ∪ U .

Proof. Shrinking Δ if necessary, we may assume that Δ is a closed topological disc,
and that U �⊂ Δ. Consider the compact set Q ..= ∂Δ ∪ (Δ\U). Since U is connected
but not contained in Δ, the boundary of each connected component of U ∩Δ = Δ\Q
intersects ∂Δ. Recall that ∂U is locally connected; it follows readily that Q is also.
Hence U ∩ Δ has at most finitely many connected components of diameter greater
than, say, δ ..= dist(ζ, ∂Δ)/2; see [Why42, Theorem 4.4 in Chapter VI]. (Here dist
refers to distance with respect to some metric on the topological disc Δ.) Therefore
only finitely many connected components of W1, . . . , Wn of U ∩ Δ intersect the disc
of radius δ around ζ, as claimed. ⊓⊔

Let z ∈ f−1(U), and ζ ..= f(z). Then z has a neighbourhood V1 that is topologi-
cally mapped as by z �→ zd, where d is the local degree of f at z. Take W1, . . . , Wn as
in the claim, for Δ = f(V1). If Vz ⊂ V1 is a sufficiently small disc around z, then any
point in f−1(U) ∩ Vz maps into some Wj . As f−1(Wj) has d connected components
in V1, it follows that Vz intersects at most dn connected components of f−1(U).

So the compact set K ∩ f−1(U) has an open cover by sets Vz, each of which
intersects only finitely many connected components of f−1(U). The claim follows by
taking a finite subcover. ⊓⊔

It follows that there are only finitely many fundamental domains F whose clo-
sure intersects the disc D. When this does not occur for any F , the function f
is dynamically particularly simple; more precisely, it is of disjoint type (hyperbolic
with connected Fatou set). For a detailed study of the topological dynamics of such
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functions, see [Rem16]. (Compare also the discussion of disjoint-type addresses in

Remark 4.15). In the following, given a fundamental domain F we denote by
∞

F the
unbounded connected component of F\D.

Expansion properties and relative cylindrical distance. It is known that
functions in B are strongly expanding near infinity. More precisely, if f ∈ B, then
the cylindrical derivative of f is large whenever f(z) is large [EL92, Lemma 1]. That
is,

‖Df(z)‖cyl
..=

∣∣∣∣f
′(z) ·

z

f(z)

∣∣∣∣ → ∞ as |f(z)| → ∞. (2.2)

In view of (2.2), we may assume that the radius r(D) is chosen sufficiently large to
ensure that

‖Df(z)‖cyl ≥ 2 (2.3)

whenever f(z) /∈ D. In particular, f(0) ∈ D. These assumptions will remain in place
for the remainder of the paper.

A number of results in the literature are phrased not for the function f directly,
but in terms of a logarithmic transform L of f . (See e.g. [EL92] or [Rem07a].) Such
a transform can be obtained using the change of variable z = ρ · exp(ζ), where
ρ = r(D) is the radius of D. I.e., there is a 2πi-periodic function L defined by

ρ · exp(L(ζ)) = f(ρ · exp(ζ)),

defined whenever the right-hand side (i.e., f(z)) belongs to C\D. Dynamical prop-
erties of L easily translate to properties of f on the set of points whose orbits remain
outside D forever. Our assumptions on D imply that the function L is normalised
in the sense of [Rem07a, RRRS11].

We occasionally cite results from other articles that are phrased in this lan-
guage, but never use the logarithmic transform L directly in this article. Instead, we
use the following terminology, which is inspired by this change of coordinates. See
Figure 2(a).

Definition 2.2 (Relative cylindrical distance). For z, w ∈ W0, we define the relative
cylindrical distance distW0

cyl (z, w) to be the shortest cylindrical length of a curve γ

from z to w that is homotopic, in C\D, to a curve in W0.
Equivalently, if U is a connected component of exp−1(W0) and ζ, ω are the

logarithms of z and w that belong to U , then

distW0

cyl (z, w) = |ζ − ω|.

We similarly define the distance between two subsets of W0, and the diameter
diamW0

cyl with respect to this metric.

Since f is expanding with respect to the cylindrical metric on W0 by (2.3), we
have

distW0

cyl (f(z), f(w)) ≥ 2 · distW0

cyl (z, w) (2.4)
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(a) (b)

Figure 2: In (a), the cylindrical distance between z and w is less than π. However, any curve
connecting z and w in W0 takes more than two full turns around D, and hence the relative
distance in the sense of Definition 2.2 is greater than 4π. The second image, in (b), illustrates
Lemma 2.7 in this case. Here Γ is a union of three cross-cuts of W0 satisfying the conclusion
of the lemma; the domain WΓ

0
is shown shaded in grey. (Nb. the set Γ constructed in the

proof of Lemma 2.7 contains two additional cross-cuts; omitting these does not change the
domain WΓ

0
, and therefore the conclusions of the lemma).

whenever z and w both belong to
∞

F for some fundamental domain F .
Let us also note the following fact for future reference.

Observation 2.3. Let ζ0 ∈ W0. If (zn)∞
n=0 is a sequence of points in W0, then

|zn| → ∞ if and only if distW0

cyl (zn, ζ0) → ∞.

External addresses and symbolic dynamics. The reason for introducing fun-
damental domains is that they can be used to assign symbolic dynamics to points
whose orbit stays sufficiently large, and in particular to escaping points.

Definition 2.4 (External addresses). Let f ∈ B, and let fundamental domains
be defined as above. An (infinite) external address is a sequence s = F0F1F2 . . .
of fundamental domains of f . The address s is bounded if the set of fundamental
domains occurring in s is finite; it is periodic if there is k such that Fn+k = Fn for
all n ≥ 0.

Let s = F0F1F2 . . . be an external address, and recall that
∞

Fn denotes the un-
bounded connected component of Fn\D. Then we define

J0
s (f) := {z ∈ C : fn(z) ∈

∞

Fn for all n ≥ 0}.

Remark. For the purpose of this paper, we shall often use “address” synonymously
with “external address”.
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The main goal of this section is to prove the following.

Theorem 2.5 (Realisation of addresses). Let s be an external address.

(a) Suppose that J0
s contains some point z0. Then J0

s also contains a closed un-
bounded connected set X on which the iterates of f tend to infinity uniformly.
Moreover, distW0

cyl (z0, X) ≤ 4π.

(b) If X1 and X2 are unbounded, closed, connected subsets of J0
s with X1 �⊂ X2,

then X2 ⊂ X1 and fn|X2
→ ∞ uniformly.

(c) If s is bounded, then J0
s �= ∅. Furthermore, there exists R > r(D), depending

on the finite collection of fundamental domains occurring in s but not otherwise
on s, such that the set X in (a) can be chosen to contain a point of modulus
R.

(d) Conversely, if F is a finite collection of fundamental domains, then there is
R > 0 such that the iterates of f tend to infinity uniformly on the closed set

⋃

s∈FN0

J0
s \DR(0) =

{
z ∈ C : |z| ≥ R and fn(z) ∈

⋃

F∈F

F for all n ≥ 0

}
.

(2.5)

This collection of results is not entirely new. Claims (a) and (b) are variants
of Proposition 3.2 and Corollary 3.4 of [Rem07a]. Part (d) follows from [Rem08,
Lemma 2.1]. Claim (c) is proved in [Rem08, Theorem 2.4] for fixed addresses, and
the proof extends directly to the case of arbitrary bounded addresses; compare
also [BF15, Proposition 2.11]. Alternatively, when f is of disjoint type, Js �= ∅
for bounded addresses s (and even for certain unbounded s, see Proposition 2.13
below) by [BK07, Corollary B’ on p. 405]; compare also [Rem16, Proposition 3.10].
Using the results of [Rem09], it can then be deduced for general functions in the
class B that J0

s �= ∅ for bounded s.
Since the papers in question all use slightly different notation, we shall give a

new proof of Theorem 2.5 that is self-contained and unified. We begin with a simple
property of the set J0

s , which is similar to [EL92, Theorem 1].

Lemma 2.6 (One-dimensionality of J0
s ). Let s = F0F1 . . . be an external address.

Then J0
s is a subset of J(f), has empty interior and does not separate the plane.

Proof. For each n ≥ 0, Un
..= C\ cl(

∞

Fn) is connected. Suppose, by contradiction, that
V0 was a connected component of C\∂J0

s that does not contain U0. Then V0 ⊂ F0,
and f : V0 → f(V0) is a conformal isomorphism.

It follows inductively that fn(V0) ⊂
∞

Fn for all n ≥ 0. On the other hand, fix
z0 ∈ V0, and set zn

..= fn(z0). It follows from the above that fn : V0 → fn(V0)
is univalent for all n. By (2.4) and the definition of the cylindrical derivative, we
have |(fn)′(z0)|/|fn(z0)| → ∞ as n → ∞. By Koebe’s 1/4-theorem it follows that
0 ∈ fn(V0) for sufficiently large n. This is a contradiction and proves that J0

s has
empty interior and does not separate the plane.
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Let z ∈ J0
s . Suppose first that dist(fn(z), D) → ∞ as n ≥ 0. If z belonged

to the Fatou set of f , then it would follow from equicontinuity that there are n0

and a neighbourhood V of z such that fn(V ) ∩ D = ∅ for all n ≥ n0. But then
fn0(V ) ⊂ J0

σn0 (s), and this contradicts the result we have just proved. So z ∈ J(f).

Otherwise, there is a sequence nk such that fnk(z) �→ ∞. Then the spherical
derivative of fnk at z is comparable to the corresponding cylindrical derivative.
By (2.4), the latter tends to infinity as k → ∞. Thus the family of iterates of f is
not normal at z by Marty’s theorem, and again z ∈ J(f). ⊓⊔

A separation lemma. We now formulate a key technical lemma – closely related
to Lemmas 3.1 and 3.3 of [Rem07a] – that will be crucial for our unified proof
of Theorem 2.5. Before making the formal statement, which is slightly technical,
let us explain the idea. Let z0 ∈ W0, and suppose that z0 can be connected to
infinity within the set of points of modulus greater than R. Then our lemma states
(in particular) that no point ζ of modulus at most R can be connected to infinity
without passing near z0, in the sense of relative cylindrical distance.

It may appear at first as though this is obvious, since the round circle centred
at 0 and of modulus |z0| has cylindrical length 2π, and must intersect any curve
connecting ζ to infinity. However, the diameter of the intersection of this circle with
W0 may be arbitrarily large when measured with respect to distW0

cyl ; see Figure 2.

Lemma 2.7 (Cross-cuts of. W0). Let z0 ∈ W0. Then there exists a union Γ ∋ z0

of cross-cuts of W0 such that distW0

cyl (z0, ζ) ≤ 2π for all ζ ∈ Γ and such that the

unbounded connected component W0
Γ of W0\Γ has the following property. If R > 0

is such that z0 belongs to the unbounded connected component of W0\DR(0), then
WΓ

0 is also disjoint from DR(0). Here Γ can be chosen to consist only of arcs of the
circle of radius |z0| centred at the origin.

Moreover, suppose that A ⊂ W0 is any unbounded connected set with z0 ∈ A.
Then, for all z ∈ WΓ

0 , distW0

cyl (z, A) ≤ 2π.

Remark. The curve δ in the definition of fundamental domains can be chosen to be
piecewise analytic, in which case the number of cross-cuts in Γ is necessarily finite.
However, we do not require this.

Proof. Let U be a connected component of exp−1(W0); then exp: U → W0 is a
conformal isomorphism. For ζ ∈ U , let Iζ denote the vertical segment ζ+i·[−2π, 2π].
The fact that U is disjoint from its 2πiZ-translates implies the following separation
property: if ζ0, ζ1 ∈ U with ζ0 /∈ Iζ1

, then either Iζ1
separates ζ0 from infinity in U ,

or vice versa. (Compare [Rem07a, Lemma 3.3].)
Indeed, suppose otherwise. Then for j = 0, 1, there is a curve γj ⊂ U connecting

ζj to infinity, and not intersecting Iζ1−j
. Set A ..= γ0 ∪ γ1 ∪ {∞}, and let a ∈ A be

a point of minimal real part; say a ∈ γj . By [Rem16, Corollary 5.4], Iζ separates a
from ∞ for every ζ ∈ A\Iζ . This is a contradiction to the fact that ζ1−j ∈ A, but
γj does not intersect Iζ1−j

.
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Now let ζ0 be the unique point of exp−1(z0) ∩ U and set I ..= Iζ0
. Observe that

the endpoints of I are elements of exp−1(z0) different from ζ0, and hence do not
belong to U . We set X ..= I ∩ U ; then X is a collection of cross-cuts of U . Set
Γ ..= exp(X); we will prove the claims of the lemma by considering the unbounded
connected component V1 of U\I. In other words, V1 consists of all points of U that
are not separated from ∞ by Iζ .

By the separation property, for all ζ ∈ V1, Iζ separates ζ0 from infinity in U .
So if A ⊂ U is an unbounded connected set with ζ0 ∈ A, then Iζ ∩ A �= ∅, and in
particular dist(ζ, A) ≤ 2π. Moreover, by hypothesis ζ0 can be connected to infinity
by a curve in U that stays at real parts greater than log R. So Re ζ > log R for all
ζ ∈ V1.

Since exp(V1) = WΓ
0 , this completes the proof of the lemma. ⊓⊔

Existence of unbounded sets of escaping points. With these preparations,
we are now able to prove the existence of unbounded connected subsets of J0

s under
very general hypotheses.

Theorem 2.8 (Unbounded subsets of J0
s ). Let s = F0F1F2 . . . be an external ad-

dress. Suppose that (zn)∞
n=0 is a sequence of points such that each zn ∈

∞

Fn for all
n ≥ 0.

Suppose furthermore that there is C > 0 such that distW0

cyl (zn, f |−1
Fn

(zn+1)) ≤ C

for all n ≥ 0 for which (f |Fn
)−1(zn+1) /∈

∞

Fn.
Then there is a closed, unbounded and connected subsetX ⊂ J0

s such that

distW0

cyl (z0, X) ≤ 2 max(2π, C).

Proof. For n ≥ 0, let Γn be the union of cross-cuts from Lemma 2.7, applied to zn.
Let Ak

n be a sequence of unbounded closed connected sets, defined for n, k ≥ 0 as
follows. Let A0

n be the closure of the unbounded connected component of Fn\Γn.
For k ≥ 0, let Ak+1

n be the closure of the unbounded connected component of
(f |Fn

)−1(Ak
n+1)\Γn. Observe that Ak+1

n ⊂ Ak
n for all n and k.

Claim. distW0

cyl (A
k
n, zn) ≤ 2 max(2π, C) for all n, k ≥ 0.

Proof. Since A0
n intersects Γn, the claim is true for k = 0. Suppose that k ≥ 0 is

such that the claim holds for all n ≥ 0. Let n ≥ 0, and set B ..= (f |Fn
)−1(Ak

n+1). If
B ∩Γn �= ∅, then Ak+1

n intersects Γn and the claim is immediate from the properties

of Γn. Otherwise, Ak+1
n = B. Suppose first that (f |Fn

)−1(zn+1)) /∈
∞

Fn. Then

distW0

cyl (A
k+1
n , zn) ≤ distW0

cyl (A
k+1
n , (f |Fn

)−1(zn+1)) + C

≤ max(2π, C) + C ≤ 2 max(2π, C)

by (2.4). Now suppose that (f |Fn
)−1(zn+1)) ∈

∞

Fn. By the inductive hypothesis,
and since Γn separates ∂D from B, we can connect B to Γn by a curve γ with
diamW0

cyl (γ) ≤ max(2π, C). Since diamW0

cyl (Γn) ≤ 2π, the claim follows. ⊓⊔
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Now set X1
..=

⋂
k≥0 Ak

0. Then X1 ∪ {∞} is compact and connected as a count-
able intersection of compact connected sets. Moreover, X1 contains a point ζ with
distW0

cyl (ζ, z0) ≤ 2 max(π, C). If X is the connected component of X1 containing ζ,
then X is unbounded by the boundary bumping theorem [Nad92, Theorem 5.6], and
the proof is complete. ⊓⊔

In particular, we obtain the following partial results towards Theorem 2.5.

Corollary 2.9 (Realised addresses have unbounded sets). Suppose that s is an
external address, and that there is a point z0 ∈ J0

s . Then J0
s contains an unbounded

closed connected set X, and distW0

cyl (z0, X) ≤ 4π.

Proof. Set zn
..= fn(z0), and apply Theorem 2.8. ⊓⊔

Corollary 2.10 (Bounded addresses are realised). Suppose that F is a finite col-
lection of fundamental domains. Then there is R > 0 with the following property.

If s is an external address whose entries are all in F , then J0
s contains an un-

bounded connected set X which contains a point of modulus at most R.

Proof. Pick a base-point ζ0 ∈ W0. For F ∈ F , let ζF be the preimage of ζ0 in F . Then
there is a constant C such that distW0

cyl (ζ0, ζF ) ≤ C for all F ∈ F (when defined).

If s is an external address in FN0 , we can set zn
..= ζ0 for all n ≥ 0, and

apply Theorem 2.8. We obtain an unbounded connected set X with distW0

cyl (ζ0, X)
≤ 2 max(2π, C). If R is sufficiently large (depending only on C), then X contains a
point of modulus at most R. ⊓⊔

Uniform escape to infinity. To complete the proof of Theorem 2.5, we consider
the question of uniform escape to infinity on an unbounded connected subset of J0

s .

Recall that by definition of J0
s a point z belongs to J0

s if and only if zn ∈
∞

Fn for all
n, where s = F0F1 . . ..

Lemma 2.11 (Uniform escape on unbounded connected sets). Let s = F0F1F2 . . .
be an external address, and suppose that X ⊂ J0

s is unbounded and connected.
Furthermore, assume that there is a sequence (zn)∞

n=0 (not necessarily an orbit of

f) such that zn ∈
∞

Fn, and such that distW0

cyl (zn, fn(X)) → ∞. Then fn|X → ∞
uniformly.

Proof. Let ζ0 ∈ W0 be any base point. We may assume that distW0

cyl (zn, ζ0) → ∞.

Indeed, set ηn
..= distW0

cyl (zn, fn(X)) and let (ξn)∞
n=0 be any sequence in W0 with

distW0

cyl (ξm, ζ0) → ∞ and distW0

cyl (ξm, ζ0) ≤ ηn/3.

Now define

z̃n
..=

{
zn if distW0

cyl (zn, ζ0) > ηn/3

ξn otherwise.



1480 A. M. BENINI, L. REMPE GAFA

Clearly dist(z̃n, ζ0) → ∞ and distW0

cyl (z̃n, fn(X)) ≥ ηn/3 → ∞, as desired.
Let Γn be the union of cross-cuts associated to zn by Lemma 2.7. Then, for

sufficiently large n, fn(X) is disjoint from Γn, and hence belongs to WΓn

0 . Since
|zn| → ∞ by Observation 2.3, it follows that fn(X) → ∞ uniformly, as required. ⊓⊔

Proof of Theorem 2.5. We first prove (b), so let X1, X2 ⊂ J0
s be closed, unbounded

and connected with X1 �⊂ X2.
Let z0 ∈ X1\X2 and set zn

..= fn(z0). Then dist(zn, fn(X2)) → ∞ by (2.4). In
particular, fn|X2

→ ∞ uniformly by Lemma 2.11.
Let n0 be sufficiently large that distW0

cyl (zn, fn(X2)) > 2π for n ≥ n0. Let Γn be

the union of crosscuts associated to zn by Lemma 2.7. Then fn(X2) ⊂ WΓn

0 for
n ≥ n0. Since fn(X1) connects zn to ∞, we have dist(fn(X1), f

n(ζ)) ≤ 2π for all
ζ ∈ X2 and all n ≥ 0. Again by (2.4), we have dist(X1, ζ) = 0, and hence ζ ∈ X1, as
required.

Now let us prove (a), so suppose that z0 ∈ J0
s . By Corollary 2.9, there is an

unbounded closed connected set X ⊂ J0
s with distW0

cyl (X, z0) ≤ 4π. We may assume
that z0 /∈ X. Indeed, otherwise we let ε be sufficiently small and replace X by an
unbounded connected component of X\Dε(z0) that intersects ∂Dε(z0).

Now set zn
..= fn(z0). By (2.4), we have distW0

cyl (f
n(X), zn) → ∞, and hence it

follows from Lemma 2.11 that fn|X → ∞ uniformly. This completes the proof of (a)
of Theorem 2.5.

Part (c) follows directly from Corollary 2.10. To prove (d), observe first that
equality of the sets in (2.5) holds as soon as R is sufficiently large. Indeed, suppose
that F, F ′ ∈ F and that z ∈ F maps to some point in F ′ of modulus at least R. Since
f(z) ∈ W0, we must in fact have z ∈ F , and additionally z ∈

∞

F if R is sufficiently
large.

Now let ζ0 and (ζF )F∈F be defined as in the proof of Corollary 2.10. Let R
be sufficiently large such that any point z ∈ W0 of modulus at least R satisfies
distW0

cyl (ζ0, z) ≥ 3 max(C, 2π).

Let z be a point whose orbit is contained in
⋃

F∈F F , and furthermore |z| ≥ R.
Then it follows that

distW0

cyl (ζ0, f(z))≥ 2 · (distW0

cyl (ζ0, z)−max(C, 2π))≥
4

3
distW0

cyl (ζ0, z).

It follows by induction that distW0

cyl (ζ0, f
n(z)) → ∞ uniformly in n, and the claim

follows. ⊓⊔

Exponentially bounded addresses. As noted above, the results on bounded
addresses can be generalised to certain unbounded addresses. While we do not require
this fact for this paper, we shall record it for future reference.

Definition 2.12 (Exponentially bounded addresses). Let ζ0 ∈ W0 be an arbitrary
base point. For any fundamental domain F , let ζF be the unique preimage of ζ0 in
F .
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We say that an infinite external address s is exponentially bounded if there exists
a positive real number T with the following property. For all n ≥ 0, if ζFn

∈
∞

Fn, then

distW0

cyl (ζ0, ζFn
) ≤ expn(T ). (2.6)

Remark. If ξ is another base-point, then it follows from 2.4 that distW0

cyl (ζF , ξF ) is
uniformly bounded (where defined) for all fundamental domains F . Thus it follows
that the definition of exponentially bounded addresses is independent of the choice
of base point ζ0.

Exponentially bounded addresses were defined previously for exponential maps
[SZ03a] and cosine maps [RS08b]; it is easy to see that in these cases the definition
agrees with ours. For these families, the class of exponentially bounded addresses s
agrees precisely with those for which J0

s �= ∅. This is no longer true for general f ,
even when f has finite order of growth; see [ABR].

In [BK07, Corollary B’], it is shown that J0
s �= ∅ for a certain class of addresses,

namely those whose orbits remain within finitely many tracts, and such that the
“index” of the corresponding fundamental domains within each tract does not grow
faster than an iterated exponential. It is easy to see that such addresses are ex-
ponentially bounded in our sense, but the converse is not the case. (For example,
our definition allows for addresses taking values in fundamental domains that lie in
infinitely many different tracts.)

We now show that (c) and (d) of Theorem 2.5 can be extended to exponentially
bounded addresses as follows.

Proposition 2.13 (Exponentially bounded addresses are realised). Let s be an ex-
ponentially bounded address. Then J0

s �= ∅.
More precisely, there is a number R > 0, depending only on the base-point

ζ0 ∈ W0 and T > 0, with the following property. If s is exponentially bounded for
this choice of ζ0 and T , then J0

s contains an unbounded connected set X on which
the iterates tend to infinity uniformly, and which contains a point of modulus R.

Conversely, the iterates of f tend to infinity uniformly on
⋃

s

J0
s \DR(0), (2.7)

where the union is taken over all external addresses s as above.

Proof. We shall use an expansion estimate [RRRS11, Lemma 3.1], which is stronger
than (2.4) at large distances. (Compare also [BK07, Lemma 3.3].) We will use
this estimate in the following form, which follows easily from the version stated
in [RRRS11]: There are constants C1, C2 > 0 with the following property. If F is a

fundamental domain and ζ1, ζ2 ∈
∞

F with distW0

cyl (ζ1, ζ2) ≥ C1, then

distW0

cyl (f(ζ1), f(ζ2)) ≥ exp(C2 · distW0

cyl (ζ1, ζ2)). (2.8)
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Now fix ζ0 and T > 0, and denote by S the set of all addresses that satisfy
Definition 2.12 for these choices. We may assume without loss of generality that ζ0

is chosen sufficiently large to ensure that ζF ∈
∞

F for every fundamental domain F .
(To this end, we may need to increase T , but only by a finite amount according to
the remark following Definition 2.12.) Define E(t) ..= exp(C2 · t). By basic properties
of exponential growth, there is R̃ > 0 such that the following hold for all x ≥ R̃/3.

E(x) > 3E(x/2) > E(x/2) > 2x, and (2.9)

En(x) ≥ En(R̃/3) > expn(T ) + 2π. (2.10)

We choose R sufficiently large to ensure that distW0

cyl (z, ζ0) > R̃ whenever |z| ≥ R.

Suppose that s ∈ S, and let z ∈ J0
s such that t ..= distW0

cyl (z, ζ0) ≥ R̃. We claim
that

distW0

cyl (f
n(z), ζ0) ≥ 3En(t/3). (2.11)

Indeed, this is trivial for n = 0, and if the claim holds for n, then

distW0

cyl (f
n(z), ζFn

) ≥ distW0

cyl (f
n(z), ζ0) − expn(T ) ≥ 2En(t/3).

Hence, by (2.8) and 2.9,

distW0

cyl (f
n+1(z), ζ0) = distW0

cyl (f
n+1(z), f(ζFn

)) ≥ E(2En(t/3)) ≥ 3En+1(t/3).

The claim follows by induction. In particular,

distW0

cyl (f
n(z), ζ0) ≥ 3En(R̃/3) ≥ expn(T ).

Since this applies to all points in the union (2.7), the second claim of the proposition
follows.

Now let us prove the first. Set t ..= R̃/3. For n ≥ 0, choose zn ∈
∞

Fn with
distW0

cyl (zn, ζ0) = En(t). Such a point exists because dist(ζFn
, ζ0) < En(t), and ζFn

can be connected to infinity within
∞

Fn.
For n ≥ 0, let Γn be the union of cross-cuts from Lemma 2.7, applied to zn, and

let Ak
n, for n, k ≥ 0, be defined precisely as in the proof of Theorem 2.8.

Claim. distW0

cyl (A
k
n, ζ0) ≤ 3En(t) for all n, k ≥ 0.

Proof. If Ak
n ∩ Γn �= ∅, then the claim follows by choice of zn. In particular, this is

always the case for k = 0.
So suppose that k ≥ 0 is such that the claim holds for all n ≥ 0, and that n is

such that Ak+1
n ∩ Γn = ∅. Then, by definition, f(Ak+1

n ) = Ak
n+1. By the inductive

hypothesis, the latter contains a point w with distW0

cyl (w, ζ0) ≤ 3En+1(t). Define

w̃ ..= (f |Fn
)−1(w) ∈ Ak

n+1. Then, by (2.8) and (2.9),

distW0

cyl (w̃, ζFn
) ≤ E−1(3En+1(t)) ≤ 2En(t).
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So

distW0

cyl (w̃, ζ0) ≤ distW0

cyl (w̃, ζFn
) + distW0

cyl (ζFn
, ζ0) ≤ 2En(t) + expn(T ) ≤ 3En(t)

by (2.10), as claimed. ⊓⊔

In particular, the set
⋂

k≥0 Ak
0 has a connected component X containing a point

with dist(Ak
n, ζ0) ≤ 3t = R̃, and hence of modulus at most R. Since X is connected

and unbounded, it also contains a point of modulus exactly R. The proof is complete.
⊓⊔

3 Hyperbolic Expansion and Fundamental Tails

For the remainder of the article, we shall specialise to the case where our transcen-
dental entire function f has bounded postsingular set P(f).

This section collects some fundamental preliminary material concerning these
functions. We begin by noting a global expansion property away from the postsin-
gular set, and then proceed to introduce the notation of fundamental tails, which
will later be used to study the structure of the set of escaping points.

Recall that if Ω is a hyperbolic domain, we denote by ρΩ the density of the
hyperbolic metric on Ω.

Proposition 3.1 (Hyperbolic expansion). For every transcendental entire function
f , #P(f) ≥ 2.

Now suppose that P(f) is bounded, let P be a compact forward-invariant set
with P(f) ⊂ P, and let Ω be the unbounded connected component of C\P. If
z ∈ V .

.= f−1(Ω) ⊂ Ω, then f is strictly expanding at z in the hyperbolic metric of
Ω. Moreover, this expansion factor tends to infinity as z → ∞ in V . That is,

‖Df(z)‖Ω
.

.= |f ′(z)| ·
ρΩ(f(z))

ρΩ(z)
> 1, (3.1)

and

‖Df(z)‖Ω → ∞ as |z| → ∞. (3.2)

In particular, for every ε > 0 there is Λ > 1 such that ‖Df(z)‖Ω ≥ Λ whenever
z ∈ V with dist(z, P) ≥ ε.

This result was proved, for a hyperbolic entire function f and a certain choice of
P, in [Rem09, Lemma 5.1]. The same proof goes through whenever P intersects the
unbounded connected component of C\S(f). This can always be ensured by adding
a periodic orbit to P that intersects this component, which is sufficient for all our
purposes. However, for completeness and future reference, we shall prove the result
for general P, with a slightly simpler proof than that given in [Rem09]. To do so,
we use the following simple fact.
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Lemma 3.2 (Preimages in annuli). Let f be an entire transcendental function which
is bounded on an unbounded connected set. Let z1, z2 ∈ C. Then, for all C > 1, and
all sufficiently large R, f−1({z1, z2}) contains a point of modulus between R/C and
C · R.

Proof. Let C > 1 and set A ..= {z ∈ C : 1/C < |z| < C}. Suppose by contradiction
that Rn → ∞ is a sequence such that the functions

gn : A → C; z �→ f(Rn · z)

omit both z1 and z2. By Montel’s theorem, this sequence of functions is normal, and
hence converges locally uniformly, possibly after restricting to a subsequence. By
assumption, lim sup min|z|=1 gn(z) < ∞, and hence the limit function is holomorphic.
But this implies that f remains bounded on the circle of radius Rn as n → ∞. Hence
f is bounded by the maximum principle and hence constant by Liouville’s theorem,
a contradiction. ⊓⊔

Proof of Proposition 3.1. The fact that #P(f) ≥ 2 is well-known: Otherwise, f
would be a self-covering of a punctured plane, and hence conformally conjugate to
z �→ zd for some d. However, f is transcendental.

So Ω is indeed a hyperbolic domain. Since f : V → Ω is a covering map, and
hence a local isometry with respect to the hyperbolic metrics of V and Ω, we have
ρV (z) = ρΩ(f(z))|f ′(z)| for all z ∈ V .

The open mapping theorem implies that every connected component of the set
V = f−1(Ω) is unbounded (compare e.g. [AR17, Lemma 4.3]). Hence, by forward-
invariance of P, we have V ⊂ Ω.

Since #P ≥ 2, and by Picard’s theorem, C\V = C\f−1(P) contains points of
arbitrarily large modulus. Hence V � Ω. By Pick’s theorem, it follows that

‖Df(z)‖Ω = |f ′(z)| ·
ρΩ(f(z))

ρΩ(z)
=

ρV (z)

ρΩ(z)
> 1

for all z ∈ V . This establishes the first claim.
Furthermore, since f ∈ B, there is an unbounded connected set on which f is

bounded. (For example, the boundary of one of the tracts of f). By Lemma 3.2,
there is a sequence (cn)n≥0 in Ω\V such that cn → ∞ and |cn+1/cn| ≤ 2. (We can
even ensure |cn+1/cn| → 1 by letting the constant C in Lemma 3.2 tend to 1, but do
not require this here.) Hence 1/ρV (z) = O(|z|) as z → ∞ in V . (Compare [Rem09,
Lemma 2.1] and see also [MR13, Proposition 3.4] and [Min17].) On the other hand,
ρΩ(z) = O(1/(|z| log|z|)) as z → ∞. The claim follows. ⊓⊔

Corollary 3.3 (Sets remaining in Ω). Let f ∈ B. Let Ω, P be as in Proposition 3.1,
and suppose that U ⊂ Ω is open with fn(U) ⊂ Ω for all n. Then dist(fn(z), P) → 0
uniformly on compact subsets of U .

In particular, if z0 ∈ Ω with fn(z0) ∈ Ω for all n, and lim sup dist(fn(z0), P) > 0,
then z0 ∈ J(f).
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Proof. Note that (fn|U ) form a normal family by Montel’s theorem, so U ⊂ F (f).
Therefore the first claim follows from the second: if dist(fn(z), P) → 0 for all z ∈ U ,
then this convergence is automatically uniform on compact subsets of U .

So suppose that z0 ∈ Ω, and that there exist ε > 0 and an increasing sequence
(nk)

∞
k=0 such that dist(fnk(z0), P) ≥ ε. We must show that z0 ∈ J(f).

It follows from Lemma 3.2 that distΩ(z, f−1(P)) remains bounded as z → ∞ in
Ω. Hence

δ ..= sup
k

distΩ(fnk(z0), f
−1(P)) < ∞.

So we can connect fnk(z0) to a point of f−1(P) by a curve γk of hyperbolic length
at most δ in Ω. Pulling back γk under fnk , we obtain a curve αk connecting z0 to
a point wk ∈ f−(nk+1)(P). By Proposition 3.1, each of the curves αj

k = fnj (αk), for
j < k, has hyperbolic length at most δ. Hence these curves stay a uniform distance
away from P, and again by Proposition 3.1, there is λ > 1 such that

‖Df(z)‖ ≥ λ

for all k, all j < k, and all z ∈ αj
k.

So in fact αk has hyperbolic length at most δ · λk, and wk → z0 as k → ∞.
converging to z0. But fnk+1(wk) ∈ P, and dist(fnk1 (z0), P) ≥ ε. Therefore the
family of iterates of f is not equicontinuous at z0, and z0 ∈ J(f), as desired. ⊓⊔

Remark. The result can also be proved by appealing to the classification of Fatou
components.

Fundamental tails. Let f be an entire transcendental function with bounded
postsingular set, and denote the unbounded connected component of C\P(f) by Ω.
(In everything that follows, we could more generally let Ω be as in Proposition 3.1;
i.e. the unbounded connected component of C\P where P is a forward-invariant
compact set containing P(f). However, we shall not require this extra generality.)

Let D and γ be as in Section 2. We may additionally assume that D is chosen
sufficiently large to ensure that P(f) ⊂ D and that

‖Df(z)‖Ω ≥ 2 (3.3)

whenever f(z) /∈ D (recall (3.2)).
Recall that fundamental domains are the connected components of the preim-

age of W0 = C\(D ∪ δ) under f . All concepts that follow depend a priori on this
choice of fundamental domains, i.e. on the choice of the initial configuration con-
sisting of D and δ. However, it turns out that this choice is not essential. (Compare
Observation 4.12.)

The postsingular set P(f) is contained in D, and the image of any fundamental
domain is contained in C\D. Hence the closure of a fundamental domain does not
intersect the postsingular set. It follows that for any n ≥ 0, any fundamental domain
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F , and any connected component τ of f−n(F ), τ is a Jordan domain on the Riemann
sphere whose boundary contains ∞ and whose closure is mapped homeomorphically
onto F by fn. Moreover, fk(z) → ∞ as z → ∞ in τ , for all k ≥ n + 1.

Definition 3.4 (Fundamental tails). Let n ≥ 1. A connected component τ of
f−n(W0) is called a fundamental tail of level n. In particular, the fundamental tails
of level 1 are precisely the fundamental domains of f .

Proposition 3.5 (Facts about fundamental tails). Fundamental tails of the same
level are disjoint. Moreover, for every N and any compact set K, there are at most
finitely many fundamental tails of level at most N that meet K.

If τ is a fundamental tail of level n > 1, then f(τ) is a fundamental tail of level
n − 1.

Proof. Recall that the fundamental tails of level N are precisely the connected com-
ponents of f−N (W0). Hence they are pairwise disjoint, and the second claim follows
from Lemma 2.1. The final claim holds by definition. ⊓⊔

Lemma 3.6 (Fundamental domain associated to fundamental tail). Let τ be a fun-
damental tail of level n. Then there is a unique fundamental domain F such that
F ∩ τ is unbounded. In fact, if n > 1, then F contains all sufficiently large points of
τ .

Proof. We proceed by induction. The claim is trivial for n = 1. Now suppose that
n > 1. By induction, there is a unique fundamental domain F1 whose intersection
with the fundamental tail f(τ), of level n − 1, is unbounded.

Let A1 be the unbounded connected component of F1\D, and let A2 be the
unbounded connected component of A1∩f(τ)\D. Then f(τ)\A2 is bounded. Indeed,
this is clear if n = 2, and otherwise follows from the inductive hypothesis.

Recall that f : τ → f(τ) is a homeomorphism. Since A2 ⊂ W0, there is a unique
fundamental domain F containing A ..= f−1(A2) ∩ τ , and τ\A ⊂ τ\F is bounded,
as claimed. ⊓⊔

It follows from the above that we can associate natural symbolic sequences to
fundamental tails.

Definition 3.7 (Addresses of fundamental tails). Let τ be a fundamental tail of
level n, and denote by Fk(τ) the unique fundamental domain whose intersection
with the fundamental tail fk(τ) is unbounded. We will call the finite sequence s =
F0(τ)F1(τ) . . . Fn−1(τ), of length n, the (finite) external address of τ .

Conversely, we can construct a fundamental tail having an arbitrary prescribed
(finite) address by taking repeated pull-backs along the correct branches. Recall that
a sequence s1, say of length n, is a prefix of another sequence s2 of length m ≥ n if
the first n entries of s2 coincide with those of s1.
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Definition and Lemma 3.8 (Tails at a given address). Let s = F0F1 . . . be a finite
or infinite sequence of fundamental domains having length at least n ≥ 1. Then there
is a unique fundamental tail τ of level n having address s̃ .

.= F0F1 . . . Fn−1. We
denote this fundamental tail by τn(s). We also define the inverse branches

f−n
s

.

.= (fn|τn(s))
−1 : W0 → τn(s).

Proof. The proof is by induction on the level n of the tails. For n = 1 and for
every fundamental domain F0, the fundamental tail of level 1 and address F0 is the
fundamental domain F0 itself, which is unique and has address F0 by definition. Now
let s be in the claim and let τ = τn−1(σ(s)) be the fundamental tail of level n−1 and
address F1 . . . Fn−1. This tail exists and is unique by the inductive hypothesis. Let
R be sufficiently large, and let τ1 be the unique unbounded connected component
of τ\DR(0). By Lemma 3.6, τ1 is contained in the fundamental domain F1 = F0(τ)
for sufficiently large R. Hence, if we additionally assume that R is greater than the
radius of D, we have τ1 ⊂ f(F0) = W0. So there is a unique connected component
τ̃1 of f−1(τ1) contained in F0, and a unique connected component τ̃ of f−1(τ)
containing τ̃1. Then F0(τ̃) = F0; i.e., F0 is the initial entry in the address of the
fundamental tail τ̃ , which hence has address s. ⊓⊔

The following are immediate consequences of the preceding results and defini-
tions.

Observation 3.9. Let τ be a fundamental tail of level n, and let s be the address
of τ . Then the address of f(τ) is σ(s), where σ denotes the shift map.

Suppose that τ1 and τ2 are fundamental tails of levels n1 and n2, with n1 ≥ n2.
Let s1 and s2 be the addresses of τ1 and τ2, respectively. Then τ1 ∩ τ2 is unbounded
if and only if s1 is a prefix of s2. In this case, if addditionally n1 > n2, all sufficiently
large points of τ1 lie in τ2.

4 Dreadlocks

Maintaining the same notation as in the previous section, we now define and study
the central objects of this article: dreadlocks. Recall that P(f) is bounded; the main
goal of this section is to show that, under this assumption, each of the sets J0

s

defined in Section 2 can be consistently extended to a larger – and, in a certain
sense, maximal – set Js. The intersection of Js with the escaping set I(f) forms the
dreadlock Gs at address s.

As we shall see, each dreadlock is an unbounded connected set of escaping points,
the escaping set can be written as the union of dreadlocks, and via their external
addresses the collection of dreadlocks is endowed with a natural combinatorial struc-
ture. Furthermore, the definition of dreadlocks does not depend on the initial choices
made in the construction of fundamental domains. Together these facts indicate that
dreadlocks can indeed be considered a natural generalisation of “hairs” or “rays”.
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For a fundamental domain F , recall that
∞

F denotes the unbounded connected
component of F\D. We extend this definition to fundamental tails as follows.

Definition 4.1 (Unbounded parts of tails). Let τ be a fundamental tail of level n.
We define

∞

τ to be the unbounded connected component of τ\f−(n−1)(D). In other

words, if F = fn−1(τ), then
∞

τ is the component of f−(n−1)(
∞

F ) contained in τ .

Observe that, if s is an external address and n ≥ 2, then
∞

τn(s) is precisely the
unbounded connected component of τn(s) ∩ τn−1(s).

Definition 4.2 (Dreadlocks). Let s be an (infinite) external address. We say that
a point z ∈ C has external address s if z ∈

∞

τn+1(s) for all sufficiently large n.
We denote the set of all points z ∈ C having external address s by Js. The

dreadlock Gs is defined to be Gs
..= Js ∩ I(f).

Remark. If z ∈ Js, then fn(z) belongs to
∞

Fn for all sufficiently large n. In particular,
z ∈ J(f) by Lemma 2.6. Observe, however, that Js is not closed in general.

Note that other notions of points having external address s appear in the litera-
ture; for example, in [Rem07a], z is said to have address s = F0F1 . . . if fn(z) ∈ Fn

for all n ≥ 0. The advantage of the above definition, in the context of postsingularly
bounded functions, is that we shall see that every escaping point has an external
address (Corollary 4.5), and that this address is in a certain sense independent of
the initial choice of fundamental domains (Observation 4.12).

Lemma 4.3 (Properties of addresses and dreadlocks). Suppose that s is an external
address and z ∈ Js. Then

(a) z /∈ Js̃ for s �= s̃.
(b) The point f(z) has address σ(s).
(c) If w ∈ f−1(z), then w has an address in σ−1(s), and every such address is

realised by exactly one element of f−1(z).
(d) The restriction f : Js → Jσ(s) is a continuous bijection.

Proof. The first claim is trivial since fundamental tails of a given level are dis-
joint. Now write s = F0F1F2 . . . ; observe that f(

∞

τn+1(s)) =
∞

τn(σ(s)) and that
f :

∞

τn+1(s) →
∞

τn(σ(s)) is a conformal isomorphism.
By definition, z belongs to

∞

τn(s) for all sufficiently large n; say for n ≥ n0. Let
n ≥ max(1, n0 − 1). Then f(z) ∈ f(

∞

τn+1(s)) =
∞

τn(σ(s)), as claimed in (b).
Now let w ∈ f−1(z). For n ≥ n0, we have z = f(w) ∈

∞

τn(s). In particular,
for n ≥ n0 + 1, there is a fundamental tail ϑn such that f(ϑn) = τn−1(s) and

w ∈
∞

ϑn. Recall that
∞

τn(s) ⊂ τn−1(s), and that the intersection
∞

ϑn+1 ∩ ϑn is non-

empty (since it contains w). Hence
∞

ϑn+1 ⊂ ϑn for all n ≥ n0 +1. That is, ϑn+1 tends
to infinity within ϑn. So if F is the fundamental domain whose intersection with
ϑn0+1 is unbounded, then ϑn tends to infinity in F for n ≥ n0 + 1. It follows that
ϑn = τn(Fs). In particular, w has address Fs ∈ σ−1(s).
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Conversely, let s̃ ∈ σ−1(s); that is, s̃ = Fs for some fundamental domain F .
Then the fundamental tail ϑn0+1 of level n0 + 1 associated to the address s̃ ..= Fs
is a component of f−1(τn0

). Hence there is a unique element w of f−1(z) in ϑn0+1,
and w has address s̃ as above.

The final claim follows from the previous two. ⊓⊔

The following proposition establishes a connection between the sets Js defined
in Definition 4.2 and the sets J0

s studied in Section 2.

Proposition 4.4 (Js and J0
s ). Let s be an (infinite) external address. If z ∈ J0

s ,
then z ∈

∞

τn(s) for all n ≥ 1. In particular, J0
s ⊂ Js.

Proof. This is essentially the content of the second paragraph of the proof of [Rem07a,
Theorem 1.1]. Since that proof is somewhat concise, and we are using a different ter-
minology, we provide the details.

For n ≥ 1, let ϑn denote the fundamental tail of level n containing z. By assump-
tion, fn−1(z) ∈

∞

Fn−1, and hence z ∈
∞

ϑn.

We claim that
∞

ϑn+1 ⊂ ϑn; that is, ϑn+1 tends to infinity within ϑn. Indeed,
∞

ϑn+1

is a connected component of f−n(
∞

Fn) and ϑn is a connected component of f−n(W0).

Since
∞

Fn ⊂ W0 and
∞

ϑn+1 ∩ ϑn �= ∅, the claim follows.
Inductively, ϑn tends to infinity within F0 = ϑ1 for each n ≥ 0. Applying this

fact to fk(z), we see likewise that fk(ϑn) tends to infinity within Fk for n ≥ k. Thus,

for any n ≥ 1, we conclude that ϑn = τn(s), and hence z ∈
∞

ϑn =
∞

τn(s), as desired. ⊓⊔

Corollary 4.5 (Escaping points are organised in dreadlocks).

(a) A point z has an external address if and only if there is n and an external
address s such that fn(z) ∈ J0

σn(s).

(b) There is a number R > 0 with the following property. If z ∈ J(f) is such that
|fn(z)| ≥ R for all sufficiently large n, then z has an external address s.

(c) Every escaping point z ∈ I(f) has an external address s, and hence belongs to
a dreadlock Gs.

Proof. The “only if” direction of (a) is immediate from Definition 4.2. On the other
hand, if z has the stated property, then fn(z) has address s by Proposition 4.4, and
hence z also has an external address by Lemma 4.3.

To prove (b), let F be the set of fundamental domains that intersect D. Recall

that F\
∞

F is bounded for all F ∈ F , and that F is finite by Lemma 2.1. Now fix

R > sup

{
|z| : z ∈ D ∪

⋃

F∈F

F\
∞

F

}
.

Suppose that |fn(z)| ≥ R for all n ≥ n0. Then, for all n ≥ n0, fn(z) belongs to

some fundamental domain F , and by choice of R, it must belong to
∞

F . Now z has
an address by (a).

Finally, (c) is an immediate consequence of (b). ⊓⊔
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Remark 4.6 Under the hypotheses of Proposition 4.4, fn(z) belongs to
∞

Fn for all
n. However, it may well be that z belongs to a bounded component of τk(s)\D for
all sufficiently large k and similarly for all points on the forward orbit of z.

Indeed, typically when I(f) does not consist of hairs, exactly this is the case for
many escaping points, so Proposition 4.4 is not at all trivial, and uses the bounded-
ness of the postsingular set in an essential manner. No analogue thereof is currently
known for functions with unbounded postsingular set, and in particular in this set-
ting there is no canonical way of associating external addresses to arbitrary escaping
points as in Corollary 4.5. This is a major challenge in showing the unboundedness
of components of the escaping set. (Compare Corollary 4.11 below.)

Connectedness of dreadlocks and uniform escape to infinity. Thanks to
Proposition 4.4, we can use the results of Section 2 to study dreadlocks. We use the
following definition from [Rem16].

Definition 4.7 (Escaping composants). Let z ∈ I(f). Then the escaping composant
μ(z) = μ(z, f) is the union of all connected sets A containing z on which the iterates
of f tend to infinity uniformly.

Remark. While μ(z) is a union of sets on which the iterates tend to infinity uni-
formly, typically fn will not tend to infinity uniformly on μ(z).

Lemma 4.8 (Dreadlocks and uniform escape). Let s be an external address, and
suppose that z ∈ Gs. Let A ∋ z be a connected set and suppose that there is N ≥ 0
such that fn(A)∩D = ∅ for n ≥ N . (In particular, this is the case when the iterates
of f tend to infinity uniformly on A.)

Then there is n0 ≥ N such that A ⊂
∞

τn(s) for n ≥ n0. In particular, μ(z) ⊂ Gs.

Proof Let n0 ≥ N + 1 be such that z ∈
∞

τn(s) for n ≥ n0. Let n ≥ n0. Then

A ⊂ f−n(W0) ∩ f−(n−1)(W0).

Now
∞

τn(s) is a connected component of the set on the right-hand side, z ∈ A∩
∞

τn(s),
and A is connected. Hence A ⊂

∞

τn(s) for n ≥ n0, and all points in A have address
s. ⊓⊔

We remark that a dreadlock Gs may contain uncountably many different escaping
composants. Moreover, it is possible for μ(z) to consist of a single point. (See [Rem16,
Theorem 1.6].) However, by the results of Section 2, Gs contains a distinguished
uniformly escaping composant, namely the one consisting of those points for which
the set A can be taken to be unbounded.

Definition and Lemma 4.9 (The core of a dreadlock). Let s be an infinite external
address. Let X be the collection of all closed, unbounded, connected sets X ⊂ Gs on
which the iterates of f tend to infinity uniformly. Then no element of X separates
the plane. Furthermore, X is linearly ordered by inclusion; i.e., if X1, X2 ∈ X then
X1 ⊂ X2 or X2 ⊂ X1.



GAFA A LANDING THEOREM FOR ENTIRE FUNCTIONS 1491

In particular, if Js �= ∅, then the union μs
.

.=
⋃

X ⊂ Gs �= ∅ satisfies μs = μ(z)
for all z ∈ μs. We call μs the core of the dreadlock Gs.

Proof If X ∈ X , then there is n0 ≥ 1 such that X ⊂
∞

τn(s) for n ≥ n0. In particular,
fn(X) ⊂ J0

σn(s) for n ≥ n0.

Let n ≥ n0. Since fn : τn(s) → W0 is a conformal isomorphism, and X is un-
bounded, it follows that fn(X) is unbounded for all n. By Lemma 2.6 we know that
fn(X), and hence X, does not separate the plane.

Furthermore, if X1, X2 ∈ X , then we can choose n0 sufficiently large so that
the above holds for both sets. It follows from part (b) of Theorem 2.5 that one of
fn0(X1) and fn0(X2) is contained in the other, and the same holds for X1 and X2.

By part (a) of Theorem 2.5, together with Proposition 4.4, the set μs (as defined
in the statement of the lemma) is non-empty. By the fact we just proved, μs is a
nested union of connected sets, and hence itself connected. Finally suppose that
z ∈ μs; so z ∈ Xz for some Xz ∈ X . Since X is linearly ordered by inclusion, we
have

μs =
⋃

{X ∈ X : Xz ⊂ X} ⊂ μ(z).

Conversely, if the iterates of f tend to infinity uniformly on the connected set A ∋ z,
then they do so also on the closed, unbounded and connected set A ∪ Xz, which is
contained in Gs by Lemma 4.8. Hence A ⊂ μs, and we have proved μ(z) = μs, as
desired. ⊓⊔

Proposition 4.10 (Dreadlocks are connected). Let s be an external address with
Js �= ∅. Then μs is dense in Js and Gs. In particular, both of these sets are connected
and unbounded.

Proof Let z ∈ Js. By Corollary 4.5, there is n0 such that fn(z) ∈ J0
σn(s) for n ≥ n0.

Let Xn be the unbounded connected subset of μσn(s) whose existence is guaranteed

by Theorem 2.5. Recall that Xn can be connected to fn(z) by a curve γn ⊂ C\D
of cylindrical length at most 4π such that γn is homotopic to a curve in W0. In
particular, the pullback γ̃n of γn along the orbit of z is a curve connecting z to the
set X̃n

..= f−n
s (Xn) ⊂ μ(s).

The density ρΩ of the hyperbolic metric on Ω tends to zero like 1/|z||log z|.
(Recall that Ω is the unbounded connected component of C\P(f).) Therefore the
hyperbolic length ℓΩ(γn) is also uniformly bounded, independently of n. It follows
by Proposition 3.1 that ℓΩ(γ̃n) → 0 as n → ∞. Hence distΩ(z, X̃n) → 0, and z ∈ μs,
as claimed.

Recall that the (relative) closure of a connected set is again connected. So Js and
Gs are connected and unbounded, as the dense subset μs has these properties. ⊓⊔

We note that the above result (and its proof) is essentially a reformulation of the
main argument in the proof of the main theorem of [Rem07a], which we recover as
follows.
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Corollary 4.11 (Unbounded sets of escaping points). If f is a postsingularly
bounded entire function, then every connected component of the escaping set I(f)
is unbounded.

Proof Let z ∈ I(f). By Corollary 4.5, z ∈ Gs for some external address s, and by
Proposition 4.10, Gs is an unbounded connected subset of I(f). ⊓⊔

Independence of dreadlocks from the construction. Note that the definition
of addresses, and hence of dreadlocks, depends a priori on the choice of fundamental
domains, and hence on the domain W0 (i.e., on the choice of the disc D and the
curve δ). However, if dreadlocks are to be considered canonical objects associated
to f , then this dependence should not be essential. We briefly discuss why this is
indeed the case.

Suppose that Ŵ 0 is a different choice of base domain, and that τ̂ is a fundamental
tail of level at least 2, using this alternative initial configuration.

Then it is easy to see that there is a unique fundamental domain F for the original
domain W0 such that all sufficiently large points of τ̂ lie in F . Indeed, if z ∈ τ̂ is
sufficiently large, then f(z), f2(z) /∈ D, and in particular f(z) /∈ δ. So f(z) ∈ W0,
and the claim is established.

In particular, if ŝ is an external address with respect to Ŵ 0, then we can associate
to ŝ an address s = F0F1 . . . with respect to W0. Here for each n ≥ 0, Fn is
the fundamental domain associated, in the above manner, to the fundamental tails
τ̂k(σ

n(ŝ)), for k ≥ 2. (Observe that Fn is independent of k.) It is easy to see that, in
turn, ŝ can be obtained from s using the same procedure in the opposite direction,
so that the correspondence s �→ ŝ is a bijection between external addresses defined
using the original configuration W0, and those defined using the modified one. The
following observation is an easy consequence of this construction.

Observation 4.12 (Dreadlocks are independent of the initial configuration). Let s
and ŝ correspond to each other as in the above construction; let Gs be the dreadlock

obtained by using preimages of W0 in the construction, and let Ĝŝ be the corre-

sponding dreadlock according to the choice Ŵ 0. Then Gs = Ĝŝ.
In other words, the collection G = {Gs} of subsets of J(f) is independent of the

initial choice of W0.

We remark that the same is not true for the set Js. Indeed, suppose that z is
a non-escaping point that has an external address for one choice of W0. Then we
can choose a different initial configuration W̃ 0, where the initial disc D̃ is chosen
sufficiently large to ensure that z enters D̃ infinitely many times. Clearly z does not
have an external address with respect to this configuration.

In similar fashion, we see that dreadlocks are preserved under iteration. Indeed,
let n ≥ 1. Suppose that D̂ is a disc centred around zero such that fn−1(D) ⊂ D̂,
and that δ̂ ⊂ δ connects D̂ to ∞ outside of D̂. Then Ŵ 0

..= C\(cl(D̂) ∪ δ̂) is a
valid initial configuration for fn. Every fundamental domain of fn (with respect to
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Ŵ 0) is contained in a unique fundamental tail of level n for f . Conversely, every
fundamental tail of f contains exactly one fundamental domain of fn. Hence there
is a natural bijection between the fundamental domains of fn and finite external
addresses of length n for f , and thus between external addresses of fn and those of
f . In particular, we obtain the following.

Observation 4.13 (Dreadlocks and iterates). Every dreadlock of f is a dreadlock
of fn, for n ≥ 1, and vice versa.

Cyclic order of addresses and dreadlocks. There is a natural cyclic order
on the set of fundamental tails of any given level, and in particular on the set of
fundamental domains of f : if A, B, C are fundamental tails, then A ≺ B ≺ C means
that B tends to infinity between A and C in positive orientation. (See Section 13
for background on the cyclic order near infinity.) We can also define a cyclic order
on the collection of dreadlocks, by choosing for each a closed, connected, unbounded
set on which the iterates tend to infinity, as in Proposition 4.10, and considering the
cyclic order of these sets.

Recall that the function f acts in a natural way on dreadlocks, and maps fun-
damental tails of level n + 1 to fundamental tails of level n. By the remark above,
this action locally preserves cyclic order, in the following sense. Let A ≺ B ≺ C be
either dreadlocks or fundamental tails of some fixed level n > 1. If the addresses of
A, B and C all have the same initial entry, then f(A) ≺ f(B) ≺ f(C).

We can also define a “lexicographical” cyclic order on (finite or infinite) external
addresses. To do so, we use the curve δ to convert the cylic order on fundamental
domains to a linear order in the usual sense, setting F < F̃ if and only if δ ≺ F ≺ F̃ .
This linear order gives rise to a lexicographic order < on external addresses in the
usual sense. The cyclic order on addresses is then defined by s1 ≺ s2 ≺ s3 if and
only if s1 < s2 < s3, s2 < s3 < s1, or s3 < s1 < s2.

It follows from what was written above that this cyclic order on addresses agrees
with the cyclic order of the associated fundamental tails or dreadlocks.

Disjoint-type addresses. To conclude this section, we discuss a particularly well-
behaved type of dreadlock. Note that, in general, the points in the closure of a
dreadlock Gs need not belong to Js. Indeed, this is the case for those dreadlocks of
greatest interest to us, namely those accumulating on a periodic point whose orbit
does not lie outside of D. We show now that this cannot occur when the address s (or
a forward iterate thereof) contains only fundamental domains that do not intersect
D.

Lemma 4.14 ((Eventually) disjoint-type addresses). Let s = F0F1 . . . be an external
address, and suppose that there is n0 ≥ 0 such that Fn does not intersect ∂D for
n ≥ n0. Then Gs = Js = f−n

s (J0
σn(s)) ⊂ τn(s) for n ≥ n0.

Proof By assumption, we have Fn ⊂ W0, and in particular
∞

Fn = Fn, for n ≥ n0.
Thus τn+1(s) ⊂ τn(s) for n ≥ n0 (where we use the convention that τ0(s) = W0 for
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convenience). In particular,
∞

τn+1(s) = τn+1(s), and

Js =
⋃

k>0

⋂

j≥k

∞

τj(s) =
⋂

j>n

τj(s) = {z ∈ τn(s) : f j(z) ∈ Fj for j ≥ n} = f−n
s (J0

σn(s))

by definition. Furthermore,

Gs = Js =
⋂

n>n0

τn(s) ⊂
⋂

n>n0

τn+1(s) = Js

(where the first equality holds by Proposition 4.10). This completes the proof. ⊓⊔

Remark 4.15 (Disjoint-type addresses). If n0 = 0, then we say that s is of disjoint
type (since τn(s) and τn′(s) have disjoint boundaries for n �= n′). For a disjoint-type
function (i.e., one that is hyperbolic with connected Fatou set), all addresses are
of disjoint-type, given a suitable choice of fundamental domains. In this case, every
component of the Julia set J(f) is one of the sets Js = J0

s , and the closure Js ∪{∞}

in Ĉ is called a Julia continuum. Compare [Rem16]. Suppose that, additionally,
Gs is a hair (in the sense of Definition 5.1 below). Then it follows, using [Rem16,
Corollary 5.6], that either Gs = Js, and Js is an arc to ∞ on which the iterates of
f tend to infinity uniformly, or Js\Gs contains a single non-escaping point z0; here
Gs is an arc connecting z0 to ∞. (For functions satisfying a head-start condition,
this follows already from the results of [RRRS11], without the need for the results
of [Rem16].)

In fact, it can be shown that, whenever s is of disjoint type, the set Js is homeo-
morphic to the component of the Julia set of a suitable disjoint-type function, with
escaping points corresponding to escaping points. (Compare also Theorem 7.2 be-
low.) Hence the above observation remains true for disjoint-type addresses, even if f
itself is not of disjoint type. So we may think of dreadlocks at disjoint-type addresses
as always “landing”. When s is bounded, we show below that this is true in a precise
sense (see Proposition 6.5 (d)).

However, when Gs is not a hair, it may happen that Js contains a dense or
uncountable set of non-escaping points, even when f and hence all addresses are
of disjoint type [Rem16, Theorem 2.3]. In this article, we only consider landing
properties for dreadlocks at bounded external addresses, so these subtleties will not
become relevant.

5 Hairs and Dreadlocks

We shall now discuss the relationship between hairs and dreadlocks. The term “hair”
was coined by Devaney in the 1980s (see [Dev84, p. 168]), and is commonly used in
an informal manner to refer to dynamically natural curves in Julia sets of transcen-
dental entire functions. We use the following convention. (See Remark 5.6 below for
comparison with some other definitions in the literature.)
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Definition 5.1 (Hairs). A dreadlock Gs is a hair if one of the following holds.

(a) There is a homeomorphism γ : [0, ∞] → Gs ∪ {∞} such that γ(∞) = ∞ and
fn|Gs

→ ∞ uniformly.
(b) There is a continuous bijection γ : (0, ∞] → Gs ∪ {∞} such that γ(∞) = ∞

and fn|γ([t0,∞)) → ∞ uniformly, for any t > 0.

Remark 1. In general, the bijection in (b) is not a homeomorphism. Indeed, even for
exponential maps a hair may accumulate upon itself. Compare e.g. [DJ02, DJR05,
Rem07b, Wor18].
Remark 2. The second part of condition (a) is essential. Indeed, by [Rem16, Theo-
rem 2.10], there exists a postsingularly bounded entire function having a dreadlock
which is an arc connecting a finite endpoint to infinity, but such that the iterates on
this arc do not tend to infinity uniformly.

On the other hand, the second part of condition (b) can be shown to be inessen-
tial. That is, suppose γ : (0, ∞] → Gs∪{∞} is a continuous bijection with γ(∞) = ∞.
Then, possibly after reversing the orientation of γ on (0, ∞), for all t > 0 we have
fn|γ([t0,∞)) → ∞ uniformly. We shall not provide the (somewhat lengthy) proof, as
we do not require this fact in our paper.

Observation 5.2 (Properties of hairs).

(a) Gs is a hair if and only if Gσ(s) is a hair. Up to suitable reparameterisation,
the corresponding functions γ and γ̃ satisfy γ̃(t) = f(γ(t)).

(b) If s is a bounded external address, then fn|Gs
does not tend to infinity uni-

formly. In particular, if s is bounded, then Gs is a hair if and only if condi-
tion (b) of Definition 5.1 holds.

Proof To prove the first claim, note that f : Gs → Gσ(s) is a continuous bijection.
Furthermore, for every n ≥ 2, f |τn(s) extends to a homeomorphism τn(s) ∪ {∞} →
τn−1(σ(s)) ∪ {∞}. If Gs is a hair, define γ̃ as in the claim. Clearly it is only nec-
essary to show that γ̃(t) → ∞ as t → ∞, which follows from the above fact
since γ|[1/2,1) ⊂ τn for sufficiently large n. For the converse direction, we define
γ(t) ..= (f |τn(s))

−1(γ̃(t)), where n is sufficiently large depending on t, and proceed
analogously.

Now suppose that s is bounded, and let R > 0 be as in Corollary 2.10. Then, for
all n ≥ 0, the dreadlock fn(Gs) = Gσn(s) contains a point of modulus at most R.
Hence the iterates of f do not tend to infinity uniformly on Gs. ⊓⊔

The following is an alternative formulation of Definition 5.1, and allows us to
connect the notion with our definition of criniferous functions.

Proposition 5.3 (Characterisation of hairs). A dreadlock Gs of f is a hair if and
only if, for every z ∈ Gs, there is an arc connecting z to ∞ on which fn → ∞
uniformly.
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Proof If Gs is a hair, then the stated condition holds by definition.
So now suppose that every point z ∈ Gs can be connected to infinity by an arc

γz on which the iterates tend to infinity uniformly. So γz ⊂ μ(z) ⊂ μs ⊂ Gs by
Lemma 4.8. By Lemma 4.9, the arcs γz are linearly ordered by inclusion, and the
arc γz is unique.

Let (xn)∞
n=0 be a countable dense subset of Gs. Set n0 = 0 and define nk+1

inductively as the minimal value of n for which xn does not lie on the arc γxnk
. (If

no such n exists, then Gs = γxnk
satisfies Definition 5.1 (a) and we are done.) We

set yk
..= xnk

. Then the union of the arcs γyk
is a single continuous injective curve

γ : (0, ∞) → Gs, which can be parameterised such that γ([1/k,∞)) = γyk
for all k.

IF γ(t) has a limit z0 ∈ Gs as t → 0, then γz0
= γ ∪ {z0} = γ = Gs, since γ is

dense in Gs. Hence Gs satisfies Definition 5.1 (a).
Otherwise, γ

(
(0, ∞)

)
�⊂ γz for all z ∈ Gs. Hence we see that γz ⊂ γyk

for
sufficiently large k; it follows that γ is surjective, and Definition 5.1 (b) holds. ⊓⊔

Corollary 5.4 (Dreadlocks and criniferous functions). A transcendental entire
function f with bounded postsingular set is criniferous if and only if every dreadlock
is a hair.

Proof Recall that every escaping point of f belongs to some dreadlock. Hence the
claim is immediate from Proposition 5.3. ⊓⊔

Observe that we now have two apparently different definitions of periodic hairs,
namely Definition 1.3, and the case of a periodic dreadlock (i.e., a dreadlock Gs at a
periodic address s) that is a hair. We conclude the section by showing that the two
coincide.

Proposition 5.5 (Periodic hairs). Every periodic hair in the sense of Definition 1.3
is a periodic dreadlock, and this dreadlock is a hair in the sense of Definition 5.1.
Conversely, any periodic dreadlock that is a hair has a parameterisation as a periodic
hair in the sense of Definition 1.3.

Proof Suppose that γ is a periodic hair. Then, for every t ∈ R, the iterates fn tend to
infinity uniformly on γ

(
[t, ∞)

)
. Hence, by Lemma 4.8, γ is contained in a dreadlock

Gs, whose address s is necessarily periodic. Let X be as in Lemma 4.9. If X ∈ X ,
then fn(X) ⊂ γ

(
[0, ∞)

)
for sufficiently large n, and hence X ⊂ γ

(
[−n, ∞)

)
. Thus

we conclude that γ = μs.
Let R be as in part (d) of Theorem 2.5, applied to the set of fundamental domains

occurring in s = F0F1F2 . . . . It follows that there is t such that γ((−∞, t)) contains
only points of modulus less than R. Indeed, by choice of R there is n1 such that
fn(z) /∈ γ([0, 1]) for n ≥ n1, whenever z ∈ Gs with |z| ≥ R; then we may take
t = 1 − n1.

Let z ∈ Gs, and let n0 be such that fn(z) ∈ Fn and |fn(z)| > R for n ≥ n0. We
may assume that n0 is a multiple of the period of s. Recall that fn0(z) ∈ Gs is in
the closure of γ by Proposition 4.10. Since γ((−∞, t)) contains no points of modulus
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greater than R, it follows that fn0(z) ∈ γ([t, ∞)). Thus z ∈ γ([t − n0, ∞)). We have
proved that Gs = γ, and clearly Gs is a hair in the sense of Definition 5.1.

Now suppose that s is periodic and that Gs is a hair. Let γ̃ : (0, ∞) → Gs be a
parameterisation of Gs as in part (b) of Definition 5.1. Consider the point z0

..= γ̃(1),
and its image z1 = f(z0), then z1 = γ̃(t) for some t. It follows easily that t > 1,
and that the piece γ̃

(
(1, t)

)
is disjoint from its forward and backward images in Gs.

We may reparameterise γ̃ to a curve γ : R → Gs such that γ([0, 1]) corresponds to
γ̃([1, t]), and such that γ(t + 1) = f(γ(t)) for all t. Then γ is a periodic hair in the
sense of Definition 1.3. ⊓⊔

Remark 5.6 (On the concept of hairs). The notion of a “dynamic ray” of an entire
function is given in [RRRS11, Definition 2.2]. By the same reasoning as in Obser-
vation 5.2, in our setting of postsingularly bounded functions this definition can be
phrased as follows: a “dynamic ray” of a postsingularly bounded entire function is
a maximal curve in the escaping set satisfying (b) of Definition 5.1. Hence every
dynamic ray is contained in the core of a dreadlock, and a dreadlock Gs is a dy-
namic ray if and only if it satisfies Definition 5.1 (b). In particular, for a bounded
address s, Gs is a dynamic ray if and only if it is a hair. Moreover, for criniferous
functions – and in particular the class of functions for which hairs are constructed
in [RRRS11] – every dynamic ray in the sense of [RRRS11, Definition 2.2] is either
a hair in the sense of Definition 5.1, or becomes such upon the addition of a finite
escaping endpoint.

In general, [RRRS11] leaves open the possibility that a dreadlock contains a
hair as a proper subset. For example, it follows from [Rem16, Theorem 2.5] that
there is an entire function f with bounded postsingular set (and indeed of disjoint
type), having a bounded-address dreadlock Gs with the following properties. The set

Gs\Gs consists of a single point z0 with bounded orbit, and Ĝs is homeomorphic to a
sin(1/x) continuum, with the starting point of the accumulating curve corresponding
to ∞, and one of the endpoints of the limiting interval situated at z0. Then the
accumulating curve itself is a “dynamic ray”, but this ray does not include all points
of Gs.

Here, we restrict only to consider cases where the entire dreadlock Gs is a hair,
and hence leave open the question of whether proper subsets of dreadlocks should
be considered “hairs” or not.

Also note that [RRS10, p. 740] defines a notion of Devaney hairs; for postsingu-
larly bounded functions such a Devaney hair is a curve γ as in (b) of Definition 5.1,
with the addition of a finite, not necesarily escaping, endpoint. In particular, if Gs

is a hair, then Gs contains many Devaney hairs in the sense of [RRS10], linearly or-
dered by inclusion. Conversely, any Devaney hair is either contained in a dreadlock,
or consists of a dreadlock together with a finite landing point.
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6 Accumulation Sets and Landing Properties of Bounded-Address

Dreadlocks

We now study the accumulation behaviour of dreadlocks at bounded external ad-
dresses. (The restriction to bounded addresses is due to the phenomena discussed at
the end of Remark 4.15.) In the case where the dreadlock in question is a hair, it is
clear that the “accumulation set” of this dreadlock should be the set of limit points
of the curve γ(t) as t → 0, where γ is the curve from Definition 5.1. For periodic
hairs, one can see easily that this is equivalent to fixing a base point on this hair,
considering its successive preimages along γ, and studying the accumulation set of
this sequence. This motivates the following definition.

Definition 6.1 (Accumulation sets of bounded addresses). Let s be a bounded ex-
ternal address, and let ζ ∈ W0.

For n ≥ 1, set ζn
..= ζn(s) ..= f−n

s (ζ) ∈ τn(s). (Recall from Definition 3.8 that
f−n

s = (fn|τn(s))
−1.) Then the accumulation set Λ(s, ζ) of s with respect to ζ is

defined to be the accumulation set (in Ĉ) of the sequence (ζn)∞
n=1.

Note that this is an abstract definition of the accumulation set associated to
an address; it uses only the notion of fundamental tails, and does not require the
definition of dreadlocks or their properties. That this is a natural concept may not
be clear a priori, but should become apparent through the results proved in this
section. We begin by verifying that Λ(s, ζ) is independent of ζ.

This follows from the following well-known fact about the shrinking of univa-
lent preimages. (Compare also [Lyu83, Proposition 3].) Recall that Ω is the unique
unbounded component of C\P (f).

Lemma 6.2 (Euclidean shrinking). Suppose that V ⋐ Ω is a bounded Jordan do-
main. Then, for any ε > 0 and any compact set K ⊂ C, there exists Nε with
the following property. For n ≥ Nε, every connected component of f−n(V ) that
intersects K has Euclidean diameter at most ε.

Proof Suppose, by contradiction, that there is a sequence (Vk)
∞
k=0 of nk-th preimages

of V , with nk → ∞, with Vk ∩ K �= ∅ and infk diam(Vk) > 0. Let Ṽ ⋐ Ω be a
slightly larger Jordan domain than V with V ⊂ Ṽ , and let Ṽ k be the component
of f−nk(Ṽ ) containing Vnk

. Then fnk : Ṽ k → Ṽ is a covering map and hence a
conformal isomorphism, whose inverse ϕk

..= (f |Ṽ k
)−1 : Ṽ → Ṽ k maps V to Vk.

By assumption, there is a sequence (zk)
∞
k=0 with zk ∈ K ∩Vk. By Koebe’s distor-

tion theorem, Ṽ k contains a round disc around zk whose diameter is comparable to
that of Vk. By assumption, the latter is bounded from below. Hence, if U is a suffi-
ciently small disc centred at a limit point of the sequence (zk), then U is contained
in infinitely many Ṽ nk

. It follows that fn(U) ⊂ Ω for all n ≥ 0, and fn(U) ⊂ Ṽ for
infinitely many n. This contradicts Corollary 3.3. ⊓⊔
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Corollary 6.3 (Spherical shrinking). Suppose that V ⋐ Ω is a bounded Jordan
domain. Then, for any ε > 0 there exists N such that for n ≥ N every connected
component of f−n(V ) has spherical diameter at most ε.

Proof Let K ⊂ C be a compact set whose complement has spherical diameter less
than ε. Since the spherical and Euclidean metrics are comparable on any compact
subset of the plane, there is ε1 such that any set of Euclidean diameter at most ε1

that intersect K has spherical diameter at most ε. Let N = Nε1
be as in Lemma 6.2,

let n ≥ N , and let X be a connected component of f−n(V ). Then either X ∩K = ∅,
and hence X has spherical diameter less than ε, or X ∩ K �= ∅ and Lemma 6.2
applies. In the latter case, diamX ≤ ε1, and hence X also has spherical diameter at
most ε by choice of ε1. ⊓⊔

Corollary and Definition 6.4 (Accumulation sets and landing of dreadlocks).
Let s be a bounded external address. Then Λ(s, ζ1) = Λ(s, ζ2) for any two choices of
ζ1, ζ2 ∈ W0.

We write Λ(Gs) .

.= Λ(s) .

.= Λ(s, ζ), and call Λ(Gs) the accumulation set of the

dreadlock Gs. The dreadlock Gs is said to land at a point z0 ∈ Ĉ if Λ(Gs) = {z0}.

Proof Let V be a bounded Jordan domain in W0 containing both ζ1 and ζ2. For
j ∈ {1, 2} and n ≥ 1, write ζn

j
..= f−n

s (ζj) ∈ τn
..= τn(s). Since fn : τn → W0 is

univalent, for any n the points ζ1
n and ζ2

n belong to the same connected component
of f−n(V ). By Corollary 6.3, the spherical diameter of this component tends to zero
as n → ∞. Hence the sequences (ζ1

n)∞
n=1 and (ζ2

n)∞
n=1 have the same accumulation

set in Ĉ. ⊓⊔

The following establishes a number of fundamental properties of accumulation
sets.

Proposition 6.5 (Properties of accumulation sets). Let s be a bounded external
address, and Gs the dreadlock at address s.

(a) The accumulation set Λ(s) is a nonempty connected subset of Ĉ.
(b) The closure Ĝs of Gs in Ĉ is given precisely by

Ĝs = Gs ∪ Λ(s) ∪ {∞}.

(c) If Js\Gs �= ∅, then this set has a unique element z0, and Gs lands at z0, which
has bounded orbit.

(d) If s is of disjoint type, then Gs lands at a point z0 ∈ Js having bounded orbit.
(e) Let U be a neighbourhood of a point z0 ∈ Λ(s). Then fn does not tend to

infinity uniformly on U ∩ Gs.

(f) Let K ⊂ Ĝs be compact with K∩Λ(s) = ∅. Then fn → ∞ uniformly on K∩C,
and in particular K ∩ C ⊂ Js.
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Before proving these facts, we observe a few consequences. Firstly, we see that
we can characterise the accumulation set purely in terms of Gs as a subset of the
escaping set, justifying the notation Λ(Gs) = Λ(s).

Corollary 6.6 (Topological landing criterion). Let Gs be a dreadlock at a bounded

address s. Then the accumulation set of Gs consists precisely of those points in Ĝs

having a neighbourhood U such that fn does not tend to infinity uniformly on
U ∩ Gs.

In particular, Gs lands at a point z0 ∈ C if and only if Ĝs = Gs ∪ {z0, ∞} and if

furthermore, for every neighbourhood U of z0 in Ĉ, the iterates of f tend to infinity
uniformly on Gs\U .

Proof of Corollary 6.6, using Proposition 6.5 The first claim is a direct consequence
of Proposition 6.5 (e) and (f). The second claim follows from the first (together with
the fact that the accumulation set of Gs is nonempty). ⊓⊔

In particular, it follows that for hairs our definition of the accumulation set agrees
with the usual one. Recall by Observation 5.2 that if a bounded-address dreadlock
is a hair, it must satisfy part (b) of Definition 5.1.

Corollary 6.7 (Accumulation sets of hairs). Suppose that a dreadlock Gs at bounded
address is a hair, and let γ : (0, ∞) → Gs be the continuous bijection from Defini-
tion 5.1. Then Λ(Gs) is precisely the accumulation set of γ(t) as t → 0.

Proof of Corollary 6.7, using Proposition 6.5 Let Λ(γ) ⊂ Ĉ denote the set of ac-
cumulation points of γ(t) as t → 0. Recall that the iterates of f tend to infinity
uniformly on γ([t, ∞)) for all t > 0, by Definition 5.1. Thus we see from part (e) of
Proposition 6.5 (or from Corollary 6.6) that Λ(Gs) ⊂ Λ(γ).

It remains to prove the opposite inclusion, Λ(γ) ⊂ Λ(Gs). If γ lands, i.e., when
#Λ(γ) = 1, this follows from the first inclusion and the fact that Λ(Gs) �= ∅. So we
may assume that Λ(γ) is a nondegenerate continuum.

Since Λ(γ) ⊂ Ĝs, we have

Λ̃ ..= Λ(γ)\(Gs ∪ {∞}) ⊂ Λ(Gs)

by (b) of Proposition 6.5. As Λ(Gs) is closed, it thus suffices to prove that Λ̃ is dense
in Λ(γ).

This is clear if Λ(γ) ∩ Gs = ∅. Otherwise, let t0 > 0 be such that γ(t0) ∈ Λ(γ).
We claim that γ

(
(0, t0]

)
⊂ Λ(γ).

This follows from a well-known argument that we sketch as follows; compare
[Rem06b, Lemma 5.1] for the case of exponential maps. For every t > 0, there are
pieces of other hairs of f accumulating uniformly from above and below on γ

(
[t, ∞)

)
.

(For example, this follows from [Rem16, Proposition 8.1] via [Rem09, Theorem 1.1].)
Thus, in order to accumulate on γ(t0), the curve γ must also accumulate on γ([t, t0]);
letting t → 0, the claim is established.
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Let t0 ∈ (0, ∞] be the supremum over all possible choices of t0, and let (tn)∞
n=0 be

a decreasing sequence with tn → 0. Then An
..= γ([tn, t0]) is a compact and nowhere

dense subset of Λ(γ) for all n. By Baire’s theorem,

Λ̃ = Λ(γ)\
⋃

An

is dense in Λ(γ), as claimed. This completes the proof. ⊓⊔

Remark (Remark 1) The proof shows that a hair Gs either lands, or otherwise
a generic point in Λ(Gs) belongs to C\Gs. It is plausible that this is true without
the assumption that Gs is a hair, with a similar proof. This would simplify the
characterisation in Corollary 6.6 as follows: A dreadlock Gs at a bounded address s
lands at a finite point z0 ∈ C if and only if Gs\Gs = {z0}.

Remark (Remark 2) For periodic addresses, or for addresses satisfying a head-
start condition as in [RRRS11], the proof of Corollary 6.7 is considerably simpler.
Indeed, in this setting it is easy to see directly that the iterates of f do not tend to
infinity uniformly on any neighbourhood of any point of Λ(γ).

Finally, we observe that most periodic rays land and most periodic points are
landing points. Compare also [BK07, BF15, Ben16].

Corollary 6.8 (Most periodic dreadlocks land). Let p ≥ 1. Then, for all but
finitely many periodic addresses s of period p, the dreadlock Gs lands at a peri-
odic point z ∈ Js of period p. Conversely, for all but finitely many periodic points
z of period p, the point z is repelling and there is a periodic address s of period p
such that z ∈ Js; in particular, Gs lands at z.

Proof Passing to an iterate, we can assume that p = 1. (Recall that the sets Js

are pairwise disjoint by Lemma 4.3 (a).) Only finitely many fundamental domains
F intersect D, and hence all but finitely many fixed addresses of f are of disjoint
type. Hence the first claim follows from Proposition 6.5 (d). Similarly, all but finitely
many fixed points of f are contained in W0, and hence have a fixed external address.
So the second claim is a consequence of Proposition 6.5 (c). ⊓⊔

The remainder of the section is dedicated to establishing Proposition 6.5. We shall
do so by applying Corollary 6.3 to a suitable large Jordan domain V , depending
on the collection of fundamental domains involved. The following technical lemma
collects the properties that we require of V .

Lemma 6.9 (Domains for bounded-address dreadlocks). Let ζ belong to an un-
bounded connected component of W0 ∩ f−1(D) and let R > 0. Let F be any finite
collection of fundamental domains of f . Then there is a Jordan domain V ⋐ Ω with
the following properties.

(i) ζ ∈ V .
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(ii) For all F ∈ F , the unique preimage ζF of ζ in F also belongs to V .
(iii) For all F ∈ F , there is a connected component AF of V ∩ F containing ζF as

well as all points of F having modulus at most R.
(iv) If U is the connected component of V ∩W0 containing ζ, then U ∩AF intersects

the unbounded connected component
∞

F of F\D, for all F ∈ F .

Proof See Figure 3. Write F = {F 1, . . . , Fn}. Let γ be a Jordan curve in C\D that
intersects the arc δ in exactly one point. We may assume that γ is chosen so large
that γ surrounds ζ, f(D) and the set {f(z) : |z| ≤ R}.

For each i, set γi ..= f−1(γ) ∩ F i and ζi ..= ζF i . Then γi is a cross-cut of F i that
separates ζi, F i ∩ D and all points of modulus at most R in F i from ∞ in F i. In
particular, γi belongs to the unbounded connected component of F i\D.

Let Xi be the closure of the bounded component of F i\γi, and let Y be the
union of these components. Observe that different Xi may intersect when the corre-
sponding fundamental domains are adjacent. In this case, the corresponding two Xi

intersect precisely in a preimage component of the piece of δ that connects D to γ.
Let Y1, . . . , Yk be the k ≤ n connected components of X, and set Γj

..= Yj ∩ f−1(γ).
That is, Γj is the union of finitely many γi, together with their endpoints.

Then each Yk is a closed Jordan domain in Ω\δ, and Γj is an arc of ∂Yk. (Recall

that the closure of a fundamental domain does not meet δ.) Let Ỹ be obtained from
Y by adding, for each j ≤ k, an arc βj in W0\X joining ζ to a point of Γj ; this
is possible by the assumption on ζ. We may assume that two different βj intersect
only at ζ.

Then Ỹ is a compact and full set, and we may let V be a Jordan domain con-
taining Ỹ . The point ζ and all ζi belong to V by construction. Moreover, each Yj

is connected, and hence belongs to a single connected component of V ∩ (
⋃

i F
i).

Finally, the union of all βj and all Γj is connected by construction, is contained in
C\D and intersects the unbounded connected component of F i\D for all i. This
completes the construction. ⊓⊔

The domain V from Lemma 6.9 allows us to study the accumulation sets of
dreadlocks. The following lemma is crucial not only in our study of accumulation
sets, but also for the proofs of our main theorems. The key idea is that, in order
to investigate the landing of a given dreadlock Gs, we can study a certain chain of
simply-connected domains (obtained as iterated preimages of the domain V from
Lemma 6.9) whose diameters shrink to zero.

Lemma 6.10 (Preimage domains). Let F be a finite collection of fundamental do-
mains of f , and assume that F contains every fundamental domain F with F∩D �= ∅.
Let ζ, R and V be as in Lemma 6.9. If R was chosen sufficiently large (depending
only on F), then the following holds.

Let s = F0F1 . . . be any external address. For n ≥ 1, set ζn(s) .

.= f−n
s (ζ) ∈ τn

.

.=
τn(s). Also let Vn = Vn(s) be the unique component of f−n(V ) containing ζn(s).
Then the following hold for all n ≥ 1.
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Figure 3: A domain V as described in Lemma 6.9. The domain V is shaded. For clarity,
we include only the fundamental domains F i that comprise the collection F̃ ; each of these
is contained in a tract of f and is adjacent to other fundamental domains, which are not
shown.

(1) The spherical diameter of Vn(s) tends to 0 as n → ∞. In particular, if (ωn)∞
n=0

is any sequence with ωn ∈ Vn(s) for all sufficiently large n, then Λ(s) coincides
with the set Λω of accumulation points of the sequence (ωn).

(2) τn+1(s) ⊂
∞

τn+1(s) ∪ Vn(s) ⊂ τn(s) ∪ Vn(s) and in fact τn+1(s) ⊂ τn(s) ∪ Vn(s).
(3) If Fn ∈ F , then ζn+1(s) ∈ Vn(s); in particular Vn(s) ∩ Vn+1(s) �= ∅.

If Fk ∈ F for all k ≥ 0, then additionally:

(4) Vn(s) ∩ μs �= ∅.
(5) fm → ∞ uniformly on An

.

.= Gs\
⋃

j≥n Vj(s). (In particular, An is closed and
An = Js\

⋃
j≥n Vj(s).) In fact, if z belongs to this set, then |fm(z)| ≥ ρm−n for

m ≥ n, where the sequence (ρℓ)
∞
ℓ=0 depends only on F .

Proof By Corollary 6.3 the spherical diameter of Vn(s) tends to 0 as n → ∞, uni-
formly in s. In particular, the set Λω in (1) is independent of the choice of the
sequence (ωn). Also recall that ζ ∈ V by assumption; if we choose ωn = ζn, then
Λ(s) = Λ(s, ζ) = Λω. This proves (1).

Part (2) is trivial if Fn /∈ F . Indeed, by assumption on F , we then have Fn ⊂ W0,
τn+1(s) =

∞

τn+1(s) and τn+1(s) ⊂ τn(s) by definition. So suppose that Fn ∈ F . Then

Fn ⊂
∞

Fn ∪ AFn
and Fn ⊂ W0 ∪ AFn

, where AFn
⊂ V is the connected set from

Lemma 6.9 (iii).
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Observe that τn+1(s) is the connected component of f−n(Fn) containing ζn+1(s),
that τn(s) is the connected component of f−n(W0) containing ζn(s), and that Vn(s)
is the connected component of f−n(V ) containing ζn(s). Let A1 be the connected
component of f−n(AFn

) contained in Vn(s) and let A2 be the connected compo-
nent of f−n(AFn

) contained in τn+1(s). Since we have τn+1(s) ⊂
∞

τn+1(s) ∪ A2 and
τn+1(s) ⊂ τn(s) ∪ A2, we should show that A1 = A2.

Let x ∈ AF ∩
∞

Fn be a point that can be connected to ζ in W0 ∩ V . Such a point
exists by Lemma 6.9 (iv). Let xn be the unique point of f−n(x) in A1. Then ζn(s)
and xn belong to the same connected component of f−n(W0); i.e., xn ∈ τn(s). Now

x ∈
∞

Fn, and
∞

τn+1(s) is the connected component of f−n(
∞

Fn) contained in τn(s). So
xn ∈

∞

τn+1(s) ⊂ τn+1(s), and hence xn ∈ A2. We have shown A1 ∩ A2 �= ∅, and
therefore A1 = A2. Also ζn+1(s) ∈ A2 ⊂ V . We have proved both (2) and (3).

Now assume that all fundamental domains Fn occurring in s = F0 . . . Fn−1Fn . . .
belong to F . Let n ≥ 0.

We next prove (4). For n ≥ 0, let Xn ⊂ μσn(s) ⊂ Gσn(s) be a closed unbounded
connected set as in Theorem 2.5 (a). By Theorem 2.5 (c), if R is large enough
(depending only on F), then Xn can be chosen to contain a point of radius at most
R. In particular, Xn intersects the set AFn

from Lemma 6.9. So if X̃n ⊂ μs is the
connected component of f−n(Xn) contained in τn+1(s), then X̃n ∩ Vn(s) �= ∅.

To prove (5), suppose that z ∈ An
..= Gs\

⋃
j≥n Vj(s). Since z ∈ Gs, there is m0

such that z ∈
∞

τm(s) for m > m0. If m0 is minimal with this property, then by (2),

z ∈
∞

τm0+1(s)\
∞

τm0
(s) ⊂ Vm0

(s).

By assumption on z, we must have m0 < n. So, for m ≥ n, we have fm(z) ∈
∞

Fm.
Furthermore, by the proof of (2), fm(z) /∈ AFm

, and thus |fm(z)| > R.
So, if R is chosen sufficiently large, fn(An) belongs to the set from Theorem 2.5 (d),

on which the iterates tend to infinity uniformly and which depends only on F . The
same holds for fn(An); in particular, this set is contained in Gσm(s). ⊓⊔

Proof of Proposition 6.5 Let F be a finite collection of fundamental domains con-
taining all fundamental domains occurring in s, and also all fundamental domains
whose closure intersects D. Let ζ, V and Vn be as in Lemma 6.10. Here we assume
that R is chosen at least as large as the numbers from Theorem 2.5 (c) and (d).

Throughout the proof we will frequently refer to properties (1)–(5) of dreadlocks
Gs with s ∈ F∞, as established in Lemma 6.10.

By (1),

Λ(s) =
⋂

N≥1

cl
Ĉ

{
ζn(s) : n ≥ N

}
=

⋂

N≥1

cl
Ĉ

⎛
⎝

⋃

n≥N

Vn

⎞
⎠ .

Each of the sets in the intersection on the right is compact and connected by (3);
claim (a) follows.
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We next prove (e). First let U be a neighbourhood of some point z0 ∈ Λ(s).
By (1), there are infinitely many n such that Vn ⊂ U . By definition, all points in Vn

map to the bounded set V after n iterations, and Vn contains a point of μs by (4).
Hence fn does not tend to infinity uniformly on U ∩μs ⊂ U ∩Gs, as claimed. Observe
that this argument also shows that

Λ(s) ⊂ Ĝs. (6.1)

On the other hand, let K ⊂ Ĝs be compact with K ∩ Λ(s) = ∅. Then there is
N ≥ 1 such that

K ∩
⋃

n≥N

Vn = ∅.

So fn tends to infinity uniformly on K by (5), and in particular K ⊂ Js. This
proves (f).

Now we establish the remaining claims in Proposition 6.5. Let z ∈ Gs\Λ(s).
By (f), applied to K = {z}, we see that z ∈ Gs. Thus

Ĝs = Gs ∪ {∞} ⊂ Gs ∪ Λ(s) ∪ {∞}.

Together with (6.1), this proves (b).
Next suppose that z0 ∈ Js\Gs; that is, z0 has address s but is not escaping. There

is n0 such that fn(z0) ∈ J0
σn(z) for n ≥ n0. Hence |fn(z0)| < R by Theorem 2.5 (d).

So fn(z0) ∈ V for n ≥ n0, and thus z0 ∈ Vn. By (1), this proves Λ(s) = {z0}, as
claimed.

It remains to prove (d). Recall from Lemma 4.14 that, if s is of disjoint type,
then Jσn(s) = Gσn(s) ⊂ Fn for all n ≥ 0. Let X be the set from 2.5 (d). Then there
is n0 such that |fn(z)| > R for all n ≥ n0 and all z ∈ X. Set

R̃ ..= max{|f j(z)| : |z| ≤ R and j ≤ n0}.

By Theorem 2.5 (c), for all n ≥ 0 there is ζn ∈ Js such that |fn(ζn)| ≤ R. We
claim that |f j(ζn)| ≤ R̃ for all n ≥ n0 and all j ≤ n. Indeed, let j be minimal such
that |f j(ζn)| > R (if no such j exists, there is nothing to prove). Then f j(ζn) ∈ X,
and hence we must have j > n − n0, and the claim follows by the definition of R̃.

Let z0 ∈ Js be a limit point of the sequence (ζn); then all points on the orbit of
z0 have modulus at most R̃. The claim now follows from (c). ⊓⊔

Remark 6.11 (Coding trees). Fix F , ζ and V as in Lemmas 6.9 and 6.10. For each
F ∈ F , we can choose an arc γF connecting ζ to the point ζF , and we may assume
that these arcs are disjoint except at ζ. For each ζF0

and each arc γF1
, there is a

component of f−1(γF1
) connecting ζF0

to some point ζF0F1
of f−2(ζ). By Lemma 6.10,

this is precisely the point contained in the fundamental tail at address F0F1.
Continuing inductively, we obtain an infinite tree with root ζ, whose vertices

of depth n > 0 are the elements of f−(n)(ζ) contained in fundamental domains of
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level n − 1 whose addresses contain only entries from F , and whose edges are all
components of f−n(γF ) for some F ∈ F . Recall that the spherical length of these
edges tends to zero as n → ∞.

This tree can be considered to be an analogue of the geometric coding tree used
by Przytycki [Prz94] in the case of rational functions. We see that, for each address s
whose entries are drawn from F , the accumulation set of the dreadlock Gs coincides
precisely with the accumulation set of a branch of this coding tree. However, we will
not use this language in the following.

7 Separation Properties of Dreadlocks

We now prove that a dreadlock that lands at a non-escaping point z0 ∈ C does
not separate the plane. This fact is not used in our paper (except to deduce the
corresponding parts of Theorems 1.1 and 1.5), but is important for applications.

Theorem 7.1 (Dreadlocks do not separate). Let f be a postsingularly bounded
function f , and let s be a bounded external address of f . Assume that Gs lands at
a point z0 ∈ C\Gs. Then Gs does not separate the plane.

It is plausible that this can be directly deduced from our results and techniques
in Section 6; indeed Pfrang does this for postsingularly finite f [Pfr19]. Instead, we
deduce Theorem 7.1 by relating landing dreadlocks to Julia continua of disjoint-type
entire functions. Recall from Remark 4.15 that a function g is of disjoint type if g
is hyperbolic with connected Fatou set, and that a Julia continuum of g is a set of
the form Ĉ = C ∪ {∞}, where C is a connected component of J(g).

Theorem 7.2 (Dreadlocks and Julia continua). Let f be a postsingularly bounded
function, and let s be a bounded (resp. periodic) external address of f such that
Gs lands. If λ is sufficiently small to ensure that g : z �→ λf(z) is of disjoint type,

then Ĝs is homeomorphic to a Julia continuum Ĉ of g at a bounded (resp. periodic)
external address.

The homeomorphism can be chosen to fix ∞, and send z0 to the unique point of
bounded orbit in Ĉ.

Much is known about the topology of Julia continua of disjoint-type entire func-
tions; see [Rem16]. Theorem 7.2 allows us to transfer this information to landing
dreadlocks. In particular, we can easily deduce Theorem 7.1.

Proof of Theorem 7.1, using Theorem 7.2 Let g be a disjoint-type function as in
Theorem 7.2. Then the Fatou set F (f) is connected and non-empty by definition.
Hence J(f) is a nowhere dense set that does not separate the plane, so no subset of
J(f) separates the plane.

So by Theorem 7.2, the set Ĝs is homeomorphic to a non-separating plane con-
tinuum. It is well-known that being a one-dimensional non-separating plane contin-
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uum is a topological property. (Indeed, a one-dimensional plane continuum is non-
separating if and only if it is tree-like; see [Bin51, Theorem 6] and
[Mań12, Theorem 1.5]. Compare also [JT02].) So Ĝs is also non-separating. ⊓⊔

Proof of Theorem 7.2 By [BK07, Example on p. 392], for λ ∈ C small enough the
function g is indeed of disjoint type; we fix such λ in the following. By
[Rem09, Theorem 1.1], there is a map ϑ defined on

J≥R(f) ..= {z ∈ C : |fn(z)| > R for all n > 1},

which is a conjugacy between f on J≥R(f) and g on ϑ(J≥R(f)). Furthermore, ϑ
extends continuously to ∞ with ϑ(∞) = ∞ – in particular, ϑ maps escaping points of
f to escaping points of g – and J≥Q(g) ⊂ ϑ(J≥R(f)) for some Q [Rem09, Lemma 3.3].

Assuming that R > 0 is sufficiently large, the proof of [Rem09, Theorem 3.2]
furthermore implies the following. For any external address address s of f , there is
an external address s̃ of g such that

ϑ(J0
s (f) ∩ J≥R(f)) ⊂ J0

s̃ (g). (7.1)

If s is bounded (resp. periodic), then so is s̃. We can extend ϑ|J≥R(f)∩I(f) to a
bijection ϑ : I(f) ∪ {∞} → I(g) ∪ {∞} by defining

ϑ(z) ..= g−n
s̃ (ϑ(fn(x))).

The value ϑ(z) is independent of n and, in particular, agrees with the original value
when z ∈ J≥R(f) ∪ I(f). This follows from (7.1) and Proposition 4.4 and the conju-
gacy relation for ϑ. Note that we do not claim that this bijection is continuous on
I(f).

Now suppose that s is bounded and that the dreadlock Gs(f) lands at a point
x0 ∈ C\Gs. Note that the dreadlock Gs̃ of g also lands at some point y0 ∈ C of
bounded orbit since the function g is of disjoint type. (Recall Proposition 6.5 (d).)

Consider the closures Ĝs(f), Ĝs̃(g) of Gs(f) and Gs̃(g) in Ĉ. For n >= 0 define

Xn
..= f−n

s (J0
σn(s)(f) ∩ J≥R(f)) ∪ {∞} ⊂ Ĝs.

By definition, Xn ⊃ Xn−1, and ϑ is continuous when restricted to Xn. We claim
that ϑ is continuous on X ..=

⋃
n Xn = Gs(f) ∪ {∞}.

Let x ∈ X. By assumption, x /∈ Λ(s) = {x0}. Hence by Corollary 6.6, z has a
neighborhood U in X on which the iterates escape to infinity uniformly. Then, for
sufficiently large n, fn(U) ⊂ J0

s (f), and hence U ⊂ Xn. Since ϑ is continuous on Xn

and U is a neighbourhood of x, ϑ is continuous at x.
Moreover, ϑ−1 is continuous on the sets

Yn
..= g−n

s (J0
σn(s̃)(g) ∩ J≥Q(g)) ∪ {∞}.

Hence, by the same argument as for f , the map ϑ−1 is continuous on the set
Y = Gs̃(g) ∪ {∞}, and ϑ : X → Y is a homeomorphism. In particular, it ex-
tends to a homeomorphism between their respective one-point compactifications
Ĝs(f) = X ∪ {x0} and Ĝs̃(g) = Y ∪ {y0}. ⊓⊔
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Remark It is plausible that the homeomorphism in Theorem 7.2 is ambient ; i.e., it
extends to a homeomorphism of C onto itself.

8 Landing Theorems for Dreadlocks

With the definition of dreadlocks in Definition 4.2 and their accumulation sets in
Definition 6.4 we can now state the main result of our paper. Recall that a dreadlock
Gs is periodic if the address s is periodic under the shift map. Equivalently, Gs is
periodic under the action of f as a subset of C.

Theorem 8.1 (Douady-Hubbard landing theorem for dreadlocks). Let f be a tran-
scendental entire function whose post-singular set P(f) is bounded.

Then every periodic dreadlock of f lands at a repelling or parabolic periodic
point, and conversely every repelling or parabolic periodic point of f is the landing
point of at least one and at most finitely many periodic dreadlocks.

We also obtain a corresponding theorem about landing properties at more general
hyperbolic sets.

Theorem 8.2 (Landing at hyperbolic sets). Let f be a transcendental entire func-
tion with bounded postsingular set. Moreover, suppose that K is a hyperbolic set
for f . Then every point z ∈ K is the landing point of a dreadlock at some bounded
external address s; if z is periodic, then so is s.

In fact, we establish the following more precise version of Theorem 8.2. Note that
the space of external addresses is equipped with the product topology; this is the
same as the order topology arising from the cyclic order on addresses.

Theorem 8.3 (Accessibility of points in hyperbolic sets). Let K be a hyperbolic
set of a postsingularly bounded entire function f . Then there exists a compact and
forward-invariant set SK of bounded addresses of f , with the following properties.

(a) For every s ∈ SK , the dreadlock at address s lands at a point z0(s) ∈ K.
(b) The function SK → K; s �→ z0(s) is surjective and continuous. In particular,

every point of K is the landing point of a dreadlock.
(c) If z0 is periodic, then all bounded-address dreadlocks landing at z0 are periodic

with the same period, and the number of such dreadlocks is finite.
(d) The dreadlocks at addresses in SK land uniformly at K, in the following sense.

Let ζ ∈ W0 and let ε > 0. Then there is n0 such that dist(ζn(s), K) ≤ ε for all
n ≥ n0 and all s ∈ SK . (Recall from Definition 6.1 that ζn(s) = f−n

s (ζ).)

Note that we do not claim that SK can be chosen to consist of all addresses of
dreadlocks landing at points of K. In particular, we do not prove that the function
s �→ z0(s) is continuous on the latter set.

The remainder of the paper will be dedicated to the proofs of these theorems.
Let us first show that they imply the theorems stated in the introduction.
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Proof of Theorem 1.1, using Theorem 8.1 Let ζ be a repelling or parabolic periodic
point. By Theorem 8.1, ζ is the landing point of a periodic dreadlock Gs. Let us
set A ..= Gs, and let p be the period of s. Recall that Gs ⊂ I(f) by definition, and
is unbounded and connected by Proposition 4.10. Since Gs lands at ζ, we see from
Corollary 6.6 that A = A ∪ {ζ} and that, for any neighborhood U of ζ, fn → ∞
uniformly on A\U . Furthermore, by Theorem 7.1, A does not separate the plane.
This proves that A satisfies properties (a) and (c) of Theorem 1.1. Since p is the
period of s, we have fp(A) = Gσp(s) = A and f j(A) ∩ A = Gσj(s) ∩ Gs = ∅ if
0 < j < p. ⊓⊔

Proof of Theorem 1.4, using Theorem 8.1 Recall that every periodic hair is a peri-
odic dreadlock (Proposition 5.5), and for criniferous functions, every periodic dread-
lock is a periodic hair (Corollary 5.4). Moreover, by Corollary 6.7 such a dreadlock
lands if and only if the corresponding hair lands in the sense of Definition 1.3.

Thus Theorem 1.4 follows immediately from Theorem 8.1. ⊓⊔

Proof of Theorem 1.5, using Theorem 8.3 Define A ..= {Gs : s ∈ SK}, where SK is
as in Theorem 8.3. Properties (a), (c) and (e) in Theorem 1.5 follow immediately,
as in the proof of Theorem 1.1. Furthermore, if f is criniferous, then every element
of A is an arc connecting its landing point ζ(A) to ∞, by Corollary 6.7.

Thus it remains to establish (d). Observe that, since SK is compact and forward-
invariant, only finitely many different fundamental domains can occur within the
addresses in SK . Let F be the collection of all these fundamental domains, as well
as of all fundamental domains whose closure intersects D. Let V be as in Lemma 6.10,
and let n0 be as in part (d) of Theorem 8.3 for ε/2. By Lemma 6.10, we can find
n1 ≥ n0 such that diamVn(s) < ε/2 for n ≥ n1. Thus dist(z, K) < ε for all z ∈ Vn(s).

Let z ∈ Gs for some s ∈ SK , and suppose that dist(z, K) ≥ ε. Then, by the above
z ∈ Gs\

⋃
j≥n1

Vj(s). By (5) of Lemma 6.10, the set of points with this property
escape to infinity at a rate that depends only on F and on n0 (and hence only on
ε). This completes the proof. ⊓⊔

Remark 8.4 (Shortcut to the landing theorems). Observe that Definition 6.1, con-
cerning accumulation sets, requires only the definition of the fundamental tails τn(s)
associated to an address s, rather than any properties of the dreadlock Gs itself.
Moreover, a key point in our proofs of Theorems 8.1, 8.2 and 8.3 is that we can
ignore the fine structure of dreadlocks and use only the sets Vn from Lemma 6.10.
We only require properties (1), (2) and (3) of this lemma, all of which are likewise
independent of the construction and analysis of dreadlocks in Sections 2, 4 and 5.

Hence it would be possible to prove these theorems without requiring any results
from those sections, and using only the elementary parts of Section 6. Furthermore,
while we used properties of dreadlocks above to deduce the statements of Theo-
rems 1.1 and 1.5, many of these can be established more easily a posteriori for the
dreadlocks under consideration, using the additional information that these dread-
locks land. Nonetheless, the general material concerning dreadlocks is crucial to the
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interpretation of our results as a natural extension of the classical Douady-Hubbard
landing theorem for functions without hairs.

9 Periodic Dreadlocks Land

We now prove the first half of Theorem 8.1, which we restate here as follows.

Theorem 9.1 [(Landing of periodic dreadlocks)]. Let f : C → C be a transcendental
entire function with bounded postsingular set.

Then every periodic dreadlock of f lands at a repelling or parabolic periodic
point of f , where the period of the landing point divides that of the dreadlock.

Proof of Theorem 9.1 Let Gs be a periodic dreadlock. Recall from Observation 4.13
that any dreadlock of f is also a dreadlock of any iterate of f (and vice versa).
Hence, it is no loss of generality to assume that s is fixed by σ; i.e., s = FFFF . . . ,
where F is a fundamental domain of f .

Fix ζ and V as in Lemmas 6.9 and 6.10. Let τn be the fundamental tail of level
n associated to s, and let ζn be the unique element of f−n(ζ) in τn.

Recall that ζ1 = ζF ∈ V , and let γ : [0, 1] → V be a rectifiable curve with
γ(0) = ζ1 and γ(1) = ζ. Then, by Lemma 6.10, for every n ≥ 1 there is a component
γn of f−n(γ) connecting ζn and ζn+1. We can hence combine these to a continuous
curve γ : [−∞, 1] → C, with f(γ(t)) = γ(t + 1) for t ≤ 0, where γ|[0,1] = γ, and
γ|[−n,1−n] = γn.

By Lemma 6.10 (1), the spherical diameter of γn tends to zero as n → ∞.
Therefore the set Λ(γ) of accumulation points of γ(t) as t → −∞ is precisely the
accumulation set Λ(Gs) = Λ(s, ζ) of Gs in the sense of Definition 6.1.

Claim As t → −∞, γ(t) converges to a fixed point of f .

Proof Re call that the spherical distance between ζn and ζn+1 tends to zero as
n → ∞, and f(ζn+1) = ζn. Hence, by continuity, any finite point of Λ(γ) = Λ(s, ζ) is
a fixed point of f . Since the set of fixed points is discrete in C, and Λ(γ) is connected,
the latter set is a singleton, whose sole element is either a fixed point or ∞. We must
exclude the second possibility.

So suppose, by contradiction, that γ(t) → ∞ as t → −∞. Recall that Ω is the
unbounded connected component of C\P(f). Let ρn

..= ℓΩ(γn) be the hyperbolic
length of γn in Ω. Since γn → ∞ and the postsingular set is bounded, formula (3.2)
of Proposition 3.1 implies that

ρn+1 ≤ ρn/2

for all sufficiently large n. It follows that the hyperbolic length of γ is bounded. As
the hyperbolic metric on Ω is complete, this contradicts our assumption that γ tends
to ∞. ⊓⊔
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The classical snail lemma of Douady and Sullivan (see [DH85, Exposé VIII, Propo-
sition 2, p. 60] or [Mil06, Lemma 16.2]) shows that the limit point of γ is either
repelling or parabolic with multiplier 1, and the proof is complete. ⊓⊔

Remark In fact, the above claim follows already from [Rem08, Theorems B.1 and
B.2]. Here Theorem B.1 is a hyperbolic expansion argument going back to the proof
by Douady and Hubbard [DH85, Exposé VIII] of the first half of the landing theo-
rem for polynomials. On the other hand, the proof of [Rem08, Theorem B.2], which
shows that γ(t) cannot converge to infinity as t → −∞, used the notion of “extend-
ability”, which was developed for more general purposes in [Rem08]. For the reader’s
convenience, we gave the complete and much simpler proof above, in the spirit of
Deniz [Den14].

It is possible that the landing point in Theorem 9.1 is also the landing point
of other dreadlocks. However, as we now observe, there can only be finitely many
of these, and they all need to be periodic. The idea of the proof is very similar to
the polynomial case [Mil06, Lemma 18.12], but we need to take into account the
non-compactness of the space of addresses. Compare also [RS08a, Lemma 3.2] for
the case of exponential maps.

Lemma 9.2 Let f be a transcendental entire function with bounded postsingular
set, and let z be the landing point of a dreadlock with periodic address. Then the
number of bounded-address dreadlocks landing at z is finite, and their addresses are
all periodic of the same period.

Proof Let s0 be the address of the periodic dreadlock landing at z; we may assume
that its period p is minimal with this property. Replacing f by fp, we may then
assume that p = 1. Let Sz be the set of bounded external addresses s for which Gs

lands at z.

Claim There is a finite collection F of fundamental domains with the following
property. Every address s ∈ Sz contains some element of F infinitely many times.

Proof Let F consist of all fundamental domains F such that either D ∩ F �= ∅, or
z ∈ F . Clearly F is finite. Suppose that s = F0F1F2 . . . is such that Fn /∈ F for
n ≥ n0. Then σn0(s) is of disjoint type, and z /∈ Fn0

⊃ fn0(Gs). In particular, s does
not land at z.

So any address in Sz contains infinitely many entries from F ; since the latter set
is finite, at least one of these is itself repeated infinitely many times. ⊓⊔

Since f maps a neighborhood of z to another neighborhood of z as an orientation-
preserving homeomorphism, it preserves the cyclic order of the dreadlocks landing
at z. As remarked at the end of Section 13, this implies that f also preserves the
cyclic order of these dreadlocks at ∞. In other words, the shift map σ : Sz → Sz is
injective and preserves the cyclic order of addresses on Sz.
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Recall that s0 is a fixed address, say s0 = F 0F 0F 0 . . . . Hence σ also preserves
the (linear) order <, where s < s̃ means that s0 ≺ s ≺ s̃ in the cyclic ordering. So
if s = F0F1F2 . . . is an element of Sz, then (σn(s))∞

n=0 is monotone. If F ∈ F is the
domain from the claim above, then we clearly must have Fn = F for all sufficiently
large n. By injectivity of σ, we conclude that s = FFF . . . is itself a fixed address.
As F is finite, the proof is complete. ⊓⊔

Remark 9.3 Recall that we defined dreadlocks only for maps with bounded postsin-
gular sets, and landing of dreadlocks only for dreadlocks at bounded addresses. This
allows us to state the lemma in the above simple form, which is all that will be
required for the purpose of our main results.

However, observe that the proof of the lemma is purely combinatorial, and does
not utilise either assumption in an essential manner. In particular, let f ∈ B be
arbitrary (not necessarily with bounded postsingular set), and let z0 ∈ J(f) be a
fixed point of f . Suppose that Sz is a forward-invariant set of external addresses s
of f , and that for every s ∈ S there is an unbounded connected set As with the
following properties:

• the cyclic order of the sets As at infinity agrees with the cyclic order of their
external addresses;

• z0 ∈ As for all s ∈ Sz;
• As ∩ As̃ = ∅ for s �= s̃;
• As does not separate the plane;
• f(As) = Aσ(s).

If S contains a periodic element, then it follows as above that Sz is finite and
contains only periodic addresses. In particular, for any f ∈ B, the landing point of
a periodic hair cannot be the landing point of a non-periodic hair.

10 Landing at Hyperbolic Sets

Proof of Theorem 8.3 Let K be a hyperbolic set of f . Replacing f by a sufficiently
high iterate, there is a neighbourhood U of K such that |f ′(z)| ≥ 2 for all z ∈ U . (It
is easy to see that proving the theorem for an iterate of f also establishes it for f
itself; we leave the details to the reader.) We may additionally assume that the disc D
in the definition of fundamental domains is chosen so large that K ⊂ D. Finally, by
Corollary 6.3, it is enough to prove (d) for some specific choice of ζ ∈ W0. Therefore
we may fix ζ belonging to an unbounded connected component of W0 ∩ f−1(D), as
required in the hypothesis of Lemma 6.9.

Set δ ..= dist(K, ∂U). For z ∈ K, define B0(z) ..= B(z, δ), and let Bn(z) denote
the connected component of f−n(B0(f

n(z))) containing z. Then Bn+1(z) ⊂ Bn(z)
for all n, and f : Bn+1(z) → Bn(f(z)) is a conformal isomorphism. For n ≥ 0, define

Un
..=

⋃

z∈K

Bn(z).
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Then Un+1 ⊂ Un ⊂ U and f(Un+1) = Un for all n. Clearly K =
⋂

n≥0 Un =
⋂

n≥0 Un.
By the blowing-up property of the Julia set (see e.g. [Bak84, Lemma 2.2]), and
compactness of K, there is some N1 with the following property: if n ≥ N1 and
z ∈ K, then f−n(ζ) ∩ B0(z) �= ∅. In particular, for all such n and z there is a finite
external address of length n such that ζn(s) ∈ B0(z), and hence τn(s) ∩ B0(z) �= ∅.
Define

ε ..=
δ

2
≤ min

z∈K
dist(∂B0(z), B1(z)).

Now let V be as in Lemma 6.9 for the finite collection F of fundamental domains
that intersect D. Similarly as in Lemma 6.10, if s is an infinite external address
or a finite external address of length at least n, we define Vn(s) to be the unique
component of f−n(V ) containing ζn(s) ..= f−n

s (ζ) ∈ τn(s).
By Lemma 6.2, there exists N ≥ N1 with the following property. Suppose that

n ≥ N and that s is a finite or infinite external address of length at least n with
Vn(s) ∩ U0 �= ∅. Then

diam Vn(s) < ε. (10.1)

For n ≥ N and z ∈ K, we now define Sn(z) to be the set of finite external
addresses s of length n for which the tail τn(s) intersects Bn−N (z). Observe that

Sn
..=

⋃

z∈K

Sn(z)

is finite for every n by Lemma 2.1. We also define SK to be the set of infinite
addresses s such that every prefix of length n ≥ N of s is an element of Sn. In order
to show that this set has the properties asserted in Theorem 8.3, we investigate the
sets Sn(z) more closely.
Claim 1. The following hold for all n ≥ N and all z ∈ K.

(i) SN (z) �= ∅.
(ii) The shift map σ maps Sn+1(z) onto Sn(f(z)).
(iii) Sn(z) �= ∅.
(iv) Suppose that s = F0F1 . . . Fn ∈ Sn+1(z). Let πn(s) be the prefix of length n of

s; i.e., πn(s) = F0F1 . . . Fn−1. Then πn(s) ∈ Sn(z).
(v) In particular, πN (σj(s)) ∈ SN

(
f j(z)

)
for j = 0, . . . , n − N .

Nb. In (ii), we would like to claim that σ : Sn+1(z) → Sn(f(z)) is a bijection.
However, it is conceivable that a tail τ of level n intersects Bn−N (f(z)) in more than
one connected component, and that τ ∪ Bn−N (f(z)) surrounds a singular value of
f . In this situation, there may be two different components of f−1(τ) that intersect
Bn+1−N (z), and σ may therefore not be injective on Sn+1(z). Nonetheless, Claim 3
below implies that this situation can arise only for small n. Hence, for sufficiently
large n, the map σ : Sn+1(z) → Sn(f(z)) will turn out to be a bijection after all (see
Claim 4).
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Proof The first claim holds by choice of N1. Part (ii) is immediate from the fact that
f : Bn+1−N (z) → Bn−N (f(z)) is a conformal isomorphism. Claim (iii) follows from
these first two claims by induction.

Now let us prove (iv). So suppose that s ∈ Sn+1(z), and let w ∈ τn+1(s) ∩
Bn+1−N (z). Recall from Lemma 6.10 that τn+1(s) ⊂

∞

τn+1(s) ∪ Vn(s). First consider
the case where w ∈

∞

τn+1(s). Then s ∈ Sn(z) since w ∈
∞

τn+1(s) ∩ Bn+1−N (z) ⊂
τn(s) ∩ Bn−N (z).

Now suppose that w ∈ Vn(s). By definition,

ζn(s) ∈ Vn(s) ∩ τn(s). (10.2)

Set s̃ ..= σn−N (s), z̃ ..= fn−N (z) and w̃ ..= fn−N (w). Then w̃ ∈ VN (s̃) ∩ B1(z̃).
By definition of ε and choice of N , it follows that VN (s̃) ⊂ B0(z̃). Now Bn−N (z)
is mapped conformally to B0(z̃) by fn−N . Since Vn(s) is a connected component
of fN−n(VN (s̃)) and intersects Bn−N (z), we see that Bn−N (z) ⊃ Vn(s) ∋ ζn(s).
By (10.2), we see that τn(s) ∩ Bn−N (z) �= ∅. This proves (iv)).

The final claim (v) follows by induction from (ii) and (iv). ⊓⊔

Claim 2. There is a finite collection F̃ ⊃ F of fundamental domains such that all
entries of addresses in

⋃
n≥N Sn are in F̃ .

Proof Let F̃ be obtained by adding to F all fundamental domains appearing in the
finitely many external addresses in SN . By part (v) of Claim 1, it follows that all
entries of s ∈ Sn belong to F̃ , for all n ≥ N . ⊓⊔

Applying Lemma 6.10 again, this time to the collection F̃ , we obtain a simply-
connected domain Ṽ that we can use to study the accumulation sets of the addresses
in SK .

Claim 3. For every k ≥ 0 there is an n0 ≥ N with the following property. If z ∈ K,
n ≥ n0 and s ∈ Sn(z), then Ṽ n(s) ⊂ Bk(z).

Proof By assumption, K ⊂ D. In particular, there exists M > 0 such that no
fundamental tail of level N intersects the neighbourhood UM of K. Recall that
f(Uj+1) = Uj for all j, and that the image of a fundamental tail of level j + 1 is a
tail of level j. Hence it follows inductively that, if n ≥ N + M , no fundamental tail
of level n − M intersects Un−N .

Let n ≥ N + M , let z ∈ K, and let s ∈ Sn(z). Then

τn(s) ⊂ τn−M (s) ∪
n−1⋃

ñ=n−M

Ṽ ñ(s)

by Lemma 6.10 (2). Observe that τn(s) intersects Bn−N (z) ⊂ Un−N by definition of
Sn(z), while τn−M (s) is disjoint from Un−N by the above. Hence there exists some
ñ ∈ {n − M, . . . , n − 1} such that Ṽ ñ(s) ∩ Bn−N (z) �= ∅.
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Let k ≥ 0. If n1 ≥ N is sufficiently large, then by Lemma 6.2,

diam(Ṽ n(s)) < εk
..=

minz∈K dist(Bk+1(z), ∂Bk(z))

M + 1

whenever n ≥ n1, s ∈ Sn(z) for some z ∈ K, and Ṽ n(s) ∩ U0 �= ∅. Set

n0
..= max(n1 + M, k + N + 1) ≥ N + M

and suppose that z, n and s are as in the statement of Claim 3.
Let ñ be as above; i.e., ñ ≥ n−M ≥ n1 is such that Ṽ ñ(s)∩Bn−N (z) �= ∅. Since

n − N ≥ n0 − N ≥ k + 1, we see that Ṽ ñ(s) intersects Bk+1(z).
It follows inductively for j = ñ, ñ + 1, . . . , n that, for all ζ ∈ Ṽ j(s),

dist(ζ, Bk+1(z)) < (j + 1 − ñ) · εk ≤ dist(Bk+1(z), ∂Bk(z)).

(In the inductive step, we use that Ṽ j(s)∩Ṽ j−1(s) �= ∅ by Claim 2 and Lemma 6.10 (3),
and that j ≥ n1.) In particular, Ṽ n(s) ⊂ Bk(z), as required. ⊓⊔

Claim 4. Let n0 be as in Claim 3, for k = 1. Then σ : Sn+1(z) → Sn(f(z)) is a
bijection for all n ≥ n0 and z ∈ K.

Proof By Claim 1 (ii), it remains to show that σ : Sn+1(z) → Sn(f(z)) is injective.
Let z ∈ K and let s1, s2 ∈ Sn+1(z) with σ(s1) = σ(s2) =.. s̃. Then, for j = 1, 2, we
know that Ṽ n+1(s

j) ⊂ B1(z) by choice of n0, and Ṽ n(s̃) = f(Ṽ n+1(s
j)) ⊂ B0(f(z)).

Since f : B1(z) → B0(f(z)) is univalent, it follows that Ṽ n+1(s
1) = Ṽ n+1(s

2), and
hence s1 = s2, as required. ⊓⊔

Now consider the directed graph G whose vertices are the elements of

V(G) ..=
⋃

n≥N

Sn,

and which contains an edge from πn(s) to s for every s ∈ Sn+1. Note that G is
a locally finite, infinite graph on countably many vertices. For z ∈ K, let Gz be
the induced subgraph of G whose vertices are the elements of

⋃
n≥N Sn(z). By (iii)

and (iv) of Claim 1, we can apply König’s lemma, and Gz contains an infinite path
for every z ∈ K.

Recall that SK is the set of infinite external addresses s such that πn(s) ∈ Sn

for all n ≥ N . If s ∈ SK , the sequence (πn(s))∞
n=N forms an infinite path in G.

Conversely, every infinite path in G determines an associated address s ∈ SK . For
z ∈ K, denote by Sz the set of all s ∈ SK with πn(z) ∈ Sn(z) for all n ≥ N . By the
above, Sz �= ∅ for all z ∈ K.

The set SK is shift-invariant by part (ii) of Claim 1. Furthermore, SK is contained
in the compact set of addresses all of whose entries are taken from F̃ ; we need to
show that SK is itself compact. Suppose that (sk)∞

k=0 is a sequence of addresses in
SK converging to some address s. Then the prefixes πn+1(s) and πn+1(s

k) agree for
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all sufficiently large k, and in particular πn(s) and πn+1(s) are two vertices of G
connected by an edge. It follows that s is indeed represented by an infinite path in
G, and hence s ∈ SK as required.

To prove claim (a) of Theorem 8.3, we must show that Gs lands at a point
z0(s) ∈ K for all s ∈ SK . By Claim 3, there is some n0 such that, for all n ≥ n0 and
all s ∈ SK , there is z ∈ K such that Ṽ n(s) ⊂ B0(z). In particular, diam Ṽ n0

(s) ≤ 2δ,
and by expansion of f on U , we conclude that

diam Ṽ n(s) ≤ 2n0−n+1 · δ. (10.3)

In particular, ζn(s) is a Cauchy sequence, and hence convergent. So Gs lands at
a point z0(s) with

dist(z0(s), Ṽ n(s)) ≤ 2n0−n+1 · δ, (10.4)

for all n ≥ n0. It is clear from Claim 3 that the landing point z0(s) belongs to K.
Furthermore, if z ∈ K and s ∈ Sz, then z0(s) = z by Claim 3.

As Sz �= ∅ for all z ∈ K, this shows that the function s �→ z0(s) is surjective.
To prove continuity, suppose that s, s̃ ∈ SK agree in the first n ≥ n0 entries. Then
Ṽ n(s) = Ṽ n(s̃), and hence

dist(z0(s), z0(s̃)) ≤ 3 · 2n0−n+1 · δ

by (10.3) and (10.4). This completes the proof of (b).
Part (d) follows directly from Claim 3. It remains to establish (c).
So let z ∈ K be a periodic point of period p. By Lemma 9.2 and (a), it is enough

to show that Sz contains a periodic address. Let n0 be as in Claim 4; by increasing
n0 if necessary, we can assume that p divides n0. Let ψ : Sn0

(z) → S2n0
(z) be the

inverse of σn0 |S2n0
(z). Since Sn0

(z) is finite, the function ϕ ..= πn0
◦ ψ has a periodic

element; say ϕk0(s) = s. For k ≥ 0, let sk be the unique preimage of s under σkn0 in
S(k+1)n0

(z). We claim that

πn0
(sk+1) = ϕ(πn0

(sk))

for all k ≥ 0. This is true for k = 0 by definition. If k > 0, we have

π2n0
(sk+1) = ψ(σn0(π2n0

(sk+1))) = ψ(πn0
(σn0(sk+1))) = ψ(πn0

(sk)).

Hence

πn0
(sk+1) = πn0

(ψ(πn0
(sk))) = ϕ(πn0

(sk)).

So πn0
(sk) = ϕk(s) for all k ≥ 0. Hence sk can be written as a concatenation

sk = ϕk(s)sk1 = · · · = ϕk(s)ϕk−1(s) . . . ϕ1(s)s.

Since s is periodic under ϕ, of period k0, we conclude that sk = π(k+1)n0
(sk+k0).

Hence there is an infinite path in Gz passing through the vertices sj·k0 , j ≥ 0. The
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associated address is the periodic sequence (ϕk0−1(s) . . . ϕ1(s)s)∞, and the proof is
complete. ⊓⊔

We note the following corollary, which proves the accessibility of certain singular
values. For definitions, we refer to [RvS11].

Corollary 10.1 (Accessibility of non-recurrent singular values). Let f be a postsin-
gularly bounded transcendental entire function, and let v ∈ J(f) be a non-recurrent
singular value for f whose forward orbit does not pass through any critical points.
Suppose that the ω-limit set of v does not contain parabolic points, and does not
intersect the ω-limit set of a recurrent critical point or of a singular value contained
in a wandering domain. Then there is a bounded-address dreadlock of f that lands
at v.

Proof By [RvS11, Theorem 1.2], if the postsingular set is bounded then any forward
invariant compact subset of the Julia set is hyperbolic provided it does not contain
parabolic points, critical points, or it intersects the ω-limit set of a critical point
or of a singular value contained in wandering domains. Hence P (a) :=

⋃
n fn(a) is

hyperbolic and every point in P (a) is the landing point of a dreadlock. ⊓⊔

11 Landing at Parabolic Points

We now complete the proof of our analogue of the Douady-Hubbard landing theo-
rem, Theorem 8.1, by showing that parabolic periodic points are also accessible by
dreadlocks.

Theorem 11.1 (Parabolic points are accessible by dreadlocks). Let f ∈ B with
bounded postsingular set, and let z0 be a parabolic periodic point. Then there is a
periodic dreadlock of f that lands at z0.

Let f be as in the statement of the theorem. By passing to an iterate, we may
assume that f ′(z0) = 1. So z0 is a multiple fixed point of f , say of multiplicity
m+1 for f . Then there are m unit vectors v1 . . . vn, called repelling directions at z0.
Any backward orbit of f converging to z0 must asymptotically converge to z0 along
one of these directions; see [Mil06, Lemma 10.1]. Similarly, there are n attracting
directions wn such that any forward orbit (fn(z))∞

n=0 converging to z0 must converge
to z0 along one of these attracting directions wn.

Let U be a small simply connected neighborhood of z0 on which f is univalent,
and let ψ : f(U) → U be the branch of f−1 that fixes z0. A petal for an attracting
(resp. repelling) direction w (resp. v) is an open set P ⊂ U containing z0 on its
boundary, such that

(1) f(P ) ⊂ P (resp. ψ(P ) ⊂ P );
(2) an orbit z → f(z) → . . . (resp. z → ψ(z) → . . .) is eventually absorbed by P if

and only if it converges to z0 from the direction w (resp. v).
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Petals for a given repelling or attracting direction are far from unique. For each
repelling direction v, we can choose a repelling petal Pv for v which is simply con-
nected, and such that ψ(Pv) ⊂ Pv ∪{z0} and ψn|Pv

→ z0 uniformly on Pv. Similarly,
for each attracting direction w we choose a simply connected attracting petal Pw

such that fn → z0 uniformly on Pw. We furthermore require that the union of
these n attracting and n repelling petals forms a punctured neighborhood of z0 (see
Definition 10.6 and Theorem 10.7 in [Mil06] and the subsequent discussion).

Definition 11.2 (Landing of dreadlocks along a repelling direction). Let ζ ∈ W0,
let Gs be a periodic dreadlock of f , and let v be a repelling direction at z0. We say
that Gs lands at z0 along v if the backwards orbit (ζn(s))∞

n=1 converges to z0 along
the direction v.

We remark that it is not difficult to see that this is equivalent to requiring that
Vn(s) ⊂ Pv for all sufficiently large n, where V is as in Lemma 6.10. In particular,
the definition is independent of the choice of the base point ζ.

The following establishes Theorem 11.1.

Proposition 11.3 (Accessibility along repelling directions). Let v be a repelling
direction of f at z0. Then there is at least one periodic dreadlock landing at z0

along v.

Proof Let ζ ∈ W0 and let V be as in Lemma 6.10, with F once again the finite
collection of fundamental domains whose closure intersects D. Since V ⊂ C\P(f)
and z0 ∈ P(f) ⊂ D, we may assume that the repelling petals Pv and attracting
petals Pw chosen above all have closures disjoint from V ∪ W0.

Let us define Bi
..= ψi(Pv) for i ≥ 0. Let A be the union of the attracting petals

Pw. Since the union of attracting and repelling petals is a punctured neighbourhood
of z0, all points of ∂B0 that are sufficiently close to z0 must lie in A ∪ {z0}. So
∂B0\(A ∪ {z0}) is a compact set disjoint from B1, and

ε ..= dist
(
(∂B0)\(A ∪ {z0}), B1

)
> 0.

Since B1 intersects J(f), there is an N1 such that f−n(ζ) ∩ B1 �= ∅ for n ≥
N1. In particular, there exists some finite external address of length n such that
τn(s) ∩ B1 �= ∅. By Lemma 6.2, there is N ≥ N1 such that, for all n ≥ N and all
infinite external addresses s with Vn(s) ∩ B0 �= ∅, diamVn(s) < ε whenever n ≥ N .
Observe that Vn(s) ∩ A = ∅ by our choice of petals. In particular, if n ≥ N and
Vn(s) ∩ B1 �= ∅, then Vn(s) ∩ ∂B0 = ∅, and hence Vn(s) ⊂ B0.

As in the proof of Theorem 8.3, for n ≥ N we define Sn to consist of those finite
external addresses of length n for which τn(s) intersects Bn−N . The remainder of
the proof then proceeds analogously. ⊓⊔

In the case that all periodic dreadlocks are hairs (for example, if f is criniferous),
our Proposition 11.3 is a corollary of the Main Theorem in [BF15] (since the hy-
pothesis that periodic rays land is implied by assuming bounded postsingular set),
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with a completely different proof. We remark that it is plausible that the results of
[BF15] can also be extended to non-criniferous functions, using dreadlocks instead
of hairs.

Proof of Theorem 8.1 That every periodic dreadlock lands at a repelling or parabolic
point was proved in Theorem 9.1. Let z0 be a repelling or parabolic point. If z0 is
repelling, then the orbit of z0 is a hyperbolic set, and it follows from Theorem 8.3
that z0 is the landing point of a periodic dreadlock. If z0 is a parabolic point, then
this fact follows from Theorem 11.1. By Lemma 9.2 there are only finitely many
dreadlocks landing at z0 and they are all periodic of the same period. ⊓⊔

12 Dreadlocks Landing Together at Points in a Hyperbolic Set

Recall from Theorem 8.1 that, for a repelling periodic point z0 of a postsingularly
bounded function f , the number of dreadlocks landing at z0 is finite. In the polyno-
mial case, this holds also for every point z0 in a hyperbolic set K of f . It is plausible
that this remains true also in the transcendental entire case. For postsingularly
bounded exponential maps, the claim is proved in [BL14, Proposition 4.5], where it
is proved that the number of hairs in question is even uniformly bounded (depending
on K). However, the proof uses the fact that postsingularly bounded exponential
maps are non-recurrent, and hence the postsingular set is itself a hyperbolic set.

Here we shall be content with proving that the number of dreadlocks of a postsin-
gularly bounded function f landing at a given point of a hyperbolic set is (pointwise)
finite, in the important special case where f belongs to the Speiser class; i.e., the
set of singular values S(f) is finite.

Theorem 12.1 (Finitely many dreadlocks landing together). Let f be a postsin-
gularly bounded entire function with finitely many singular values. Suppose that
z0 ∈ J(f)\I(f) is neither a Cremer periodic point nor a preimage of such. Then the
number of bounded-address dreadlocks Gs landing at z0 is finite.

Remark 1. The assumption that f is postsingularly bounded implies, via Theo-
rem 8.1 and Lemma 9.2, that one can restrict to the case where z0 is not
(pre-)periodic. In addition, this hypothesis and the restriction to bounded addresses
s ensure that we can speak about the dreadlocks Gs and their landing properties
at all. (Recall Remark 9.3.) However, the argument can be applied also in more
general circumstances. For example, the same proof can be used to show the fol-
lowing: if S(f) is finite (but the postsingular set is not necessarily bounded), and
z0 ∈ J(f)\I(f) is not periodic and also is the landing point of at least one bounded-
address hair, then the number of hairs landing at z0 is finite, and all of them have
bounded addresses.

Remark 2. The assumption that z0 /∈ I(f) is made to avoid complications in the
case where z0 itself belongs to one of the dreadlocks landing at z0. An escaping
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point in a bounded-address dreadlock cannot in fact be accessible by the same or
another dreadlock, due to the presence of other dreadlocks accumulating on it from
both sides; recall the proof of Corollary 6.7, and compare [Rem16, Theorem 2.3].
Assuming this fact, the assumption that z0 /∈ I(f) could be omitted.

Corollary 12.2 (Finiteness of dreadlock portraits at hyperbolic sets). Let f be a
postsingularly bounded entire function with finitely many singular values. If K is a
hyperbolic set for f , then every point z0 ∈ K is the landing point of at least one
and at most finitely many bounded-address dreadlocks.

Proof By definition, a hyperbolic set contains no Cremer periodic points, their preim-
ages, or escaping points. Hence this is a combination of Theorems 8.2 and 12.1.

⊓⊔

We now fix a postsingularly bounded entire function f with #S(f) < ∞ for the
remainder of the section. The key property that we need to establish in the proof
of Theorem 12.1 is that the addresses of dreadlocks landing at z0 are uniformly
bounded, in the sense that they all take their entries from a common finite family
of fundamental domains. This is the content of the following lemma.

Lemma 12.3 Let F1 be a finite collection of fundamental domains for f . Then there
exists another finite collection F2 ⊃ F1 of fundamental domains such that the fol-
lowing holds. Suppose that s1 takes only entries from F1 and that Gs1 lands at a
non-escaping point z0 ∈ C. If s2 is bounded and Gs2 also lands at z0, then all entries
of s2 belong to F2.

Let us suppose for a moment that the function f is criniferous. Then the idea of
the proof of Lemma 12.3 can be described as follows. If Gs1 and Gs2 land together at
a point z0, the dreadlocks Gσ(s1) and Gσ(s2) also land together at f(z0), by continuity
of f . There is a branch ϕ of the inverse of f on the hair Gσ(s1) that maps it to Gs1 .
The curve Gs1 ∪ {z0} ∪ Gs2 is then obtained by analytic continuation of ϕ along the
image curve Gσ(s1) ∪ {f(z0)} ∪ Gσ(s2). For this reason, the homotopy class of the
latter curve in C\S(f), together with the first entry of s1, essentially determines the
first entry of s2. As different pairs of hairs landing at the same point are disjoint, and
S(f) is finite, there are only finitely many possible such homotopy classes. The claim
follows. In order to make this argument precise in the general case, i.e. where the
dreadlocks are not necessarily hairs, we should clarify what we mean by “homotopy
classes”. Let us fix the postsingularly bounded function f with finite singular set for
the remainder of the section.

Let Γ be the class of continuous curves γ : R → C\S(f) that tend to infinity
within W0 in both directions. We shall say that such curves γ1 and γ2 are homotopic
(in Γ) if they are homotopic (relative to their endpoints at infinity) in C\(S(f)∪ δ̃),
for some infinite piece δ̃ of the curve δ used in the definition of fundamental domains.

Similarly, let Γ̃ denote the set of curves connecting a finite endpoint z0 ∈ C

(possibly belonging to S(f)) to infinity within C\S(f), again tending to infinity
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within W0. Then we analogously define homotopy classes for curves in Γ̃ having the
same endpoint.

We can now introduce a convenient notion for homotopy classes of bounded-
address dreadlocks. Suppose that s is a bounded external address, and that the
dreadlock Gs lands at a point z0 ∈ C\Gs. Then there is an infinite piece δ̃ of δ not
intersecting Gs. It follows that there is a Jordan curve J , passing through infinity,
that separates Gs from δ̃ and all of the finitely many points of S(f)\{z0}. Let γ be
an arc connecting z0 to infinity in the connected component V of C\J containing
z0. The homotopy class of Gs is the homotopy class of γ in Γ̃, as defined above.

Note that this homotopy class depends only on s. Indeed, suppose that Ṽ is a
second domain as above, and γ̃ ⊂ Ṽ connects z0 to infinity. Since Gs ⊂ V ∩ Ṽ =.. U ,
this open set U contains a curve α connecting z0 to infinity. See Lemma A.1 of
[Rem08]. Since V is simply-connected, α is homotopic to γ in V , and hence in Γ̃.
For the same reason, α is homotopic to γ̃.

Observation 12.4 (Disjoint curves representing homotopy classes). Let S1, . . . ,Sn

be finitely many different bounded external addresses, such that each GSj
lands at

a non-escaping point zj ∈ C for all j. (We do not assume that all zj are distinct.)
Then there exists a collection (γj)

n
j=1 of arcs to infinity, with γj in the homotopy

class of Gs, such that these arcs are pairwise disjoint apart from common endpoints.

Proof Similarly as above, we can find a finite collection of Jordan curves (Jℓ)
m
ℓ=1,

disjoint from δ̃ ∪
⋃n

j=1 GSj
, such that any two distinct landing points zj1 and zj2 are

separated by some Jℓ. (Here, as above, δ̃ is an infinite piece of the curve δ that does
not intersect any of the dreadlocks under consideration.)

Let Vj be the connected component of C\
⋃m

ℓ=1 Jℓ containing zj . We can choose
the curve Γ in the definition of the homotopy class of GSj

in such a way that Γ
additionally separates zj from ∂Vj . This shows that the γj may be chosen disjoint,
except possibly for those having a common endpoint. But any curves with a common
endpoint belong to the same Vj , and therefore can also be moved by homotopy
within the simply-connected domain Vj to be disjoint, except at that endpoint. This
completes the proof. ⊓⊔

If two bounded-address dreadlocks Gs1 and Gs2 land at a common non-escaping
point z0, we shall refer to these two dreadlocks as a dreadlock pair. If z0 /∈ S(f),
then we can form a curve in Γ by combining two arcs γ1 and γ2, in the homotopy
class of Gs1 and Gs2 , respectively. The corresponding homotopy class is called the
homotopy class of the dreadlock pair.

Lemma 12.5 (Finitely many homotopy classes). There are only finitely many dif-
ferent homotopy classes of dreadlock pairs not landing at singular values.

Similarly, for any z0 ∈ C, there are only finitely many homotopy classes of dread-
locks landing at z0.
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Proof The curves representing the homotopy class of two different dreadlock pairs
are disjoint, except for the endpoints at infinity, and possibly a single additional
point (if the dreadlock pairs land at the same point). Also recall that neither curve
self-intersects. It follows that, if both curves wind around the same collection of
singular values in positive orientation, and both either surround or do not surround
an infinite piece of δ, they represent the same homotopy class. As there are only
finitely many singular values, the set of homotopy classes is finite.

The second claim follows in the same manner. ⊓⊔

The following is immediate from the homotopy lifiting property.

Observation 12.6 (Connecting fundamental domains). Let γ ∈ Γ. Suppose that
F is a fundamental domain, and let γ̃ : (−∞, ∞) → C\f−1(S(f)) be the unique
lift of γ under f such that γ̃(−t) ∈ F for all sufficiently large t. Then there is a
fundamental domain F̃ such that γ̃(t) ∈ F̃ for large t, and F̃ depends only on F
and the homotopy class of γ in Γ.

Similarly, let γ ∈ Γ̃ connect a finite point z0 ∈ C to ∞. If F is a fundamental
domain, and γ̃ is the lift of γ under f that tends to infinity within F , then the finite
endpoint w0 of γ̃ depends only on F and the homotopy class of γ in Γ̃.

Proof of Lemma 12.3 Let F̃2 consist of all domains F̃ as in Observation 12.6, where
F ranges over the finitely many elements of F1, and the homotopy class of γ ranges
over the finitely many homotopy classes of dreadlock pairs of f .

Now suppose that Gs1 and Gs2 form a dreadlock pair, with F 1
0 ∈ F1. Let z0 be

the common landing point of the two dreadlocks. If f(z0) /∈ S(f), then it follows
from Observation 12.6 (applied to the curve γσ(s1) ∪ {f(z0)} ∪ γσ(s2)) that F 2

0 ∈ F̃2.
On the other hand, suppose that s = f(z0) ∈ S(f). Then, by Observation 12.6,

z0 depends only on the homotopy class of γσ(s1), and the entry F 1
0 . Hence, for each

singular value s, there are only finitely many possible preimages z0 that can arise as
landing points of dreadlocks whose first entry is in F1.

Consider such z0, and the curve γ = γσ(s2) ∈ Γ̃ connecting f(z0) to ∞. Then γ
has d different lifts starting at z0, where d is the local degree of f at z0, tending
to infinity within fundamental domains F̃ 1, . . . , F̃ d. This collection of fundamental
domains depends only on the homotopy class of γ by Observation 12.6. In particular,
there is a collection F(z0) of at most m · d fundamental domains, where m is the
(finite) number of homotopy classes of dreadlocks connecting s to ∞, such that
F 2

0 ∈ F(z0) whenever s2 is as above.
Recall that there are only finitely many singular values s, and for each of these

only finitely many preimages z0 as above. Thus we can add the finitely many sets
F(z0) to F̃2 to obtain a set F2 with the desired property. ⊓⊔

Proof of Theorem 12.1 If z0 is (pre-)periodic, then by assumption fn(z0) is a re-
pelling or parabolic periodic point for some n ≥ 0. As remarked above, in this case
the conclusion of the theorem holds by Theorem 8.1 and Lemma 9.2. Hence we can
assume that z0 is not a pre-periodic point.
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Since f is postsingularly bounded, every orbit of f passes through only finitely
many critical points. Indeed, points with unbounded orbits cannot go through critical
points at all, and the intersection of any bounded orbit with the (discrete) set of
critical points is finite. Hence, passing to a forward iterate, we may additionally
assume that the forward orbit of z0 does not contain a critical point. Let F1 be the
set of fundamental domains occurring in s, and let F2 be the set whose existence is
guaranteed by Lemma 12.3; say F2 = {F 0, F 1, . . . , Fm−1}, where we assume that

F 0 ≺ F 1 ≺ · · · ≺ Fm−1 ≺ F 1

with respect to the cyclical order at infinity.
Let X be the set of points on the unit circle S1 = R/Z having an (m+1)-ary ex-

pansion that contains only the entries 0, . . . , m−1. Via the (m+1)-ary expansion, this
set is order-isomorphic to {0, . . . , m− 1}N, which in turn is clearly order-isomorphic
to FN

2 . Let ϕ : FN
2 → X be this order-isomorphism; then ϕ conjugates the shift on

FN
2 to the (m + 1)-tupling map on X.

Suppose that T0 is a collection of p ≥ 1 bounded external addresses that land
at z0; we claim that p ≤ m + 1. Indeed, for j ≥ 0, define Tj

..= σj(T0). Then all
dreadlocks at addresses in Tj land at f j(z0). Since z0 is not pre-periodic and its
orbit does not pass through any critical points, the Tj are pairwise disjoint, and
σ : Tj → Tj+1 is an order-preserving bijection for all j. Furthermore, the Tj are
pairwise unlinked. That is, if j �= j̃, then all elements of Tj lie between the same two
adjacent elements of Tj̃ with respect to circular order.

This means that the set ϕ(T0) is a wandering p-gon for the (m + 1)-tupling
map on S1. Kiwi [Kiw02, Theorem 1.1] proved that polynomials of degree d do
not have wandering (d + 1)-gons. A combinatorial version of this result (see [BL02,
Theorem B]) implies that p ≤ m + 1 as claimed. ⊓⊔

Remark It seems likely that one can also directly prove the absence of wandering
d + 2-gons for maps with at most d singular values. (Compare [AR17] for the proof
of the case d = 1, i.e. the no wandering triangles theorem for exponential maps.)
This would imply that the number of dreadlocks in Theorem 12.1 is always bounded
by d + 1 (assuming that z0 is not pre-critical).

13 Appendix: Cyclic Order of Unbounded Closed Connected Sets

In this section, suppose that A is any pairwise disjoint collection of unbounded,
closed, connected subsets of C such that, for every A ∈ A, all elements of A\{A}
belong to the same connected component of C\A. Observe that the latter condition
holds, in particular, if no A ∈ A separates the plane.

The purpose of this section is to note that there is a natural cyclic order (at
∞) on A. Recall that a cyclic order is a ternary relation A ≺ B ≺ C that is cyclic,
asymmetric, transitive and total [Čec69, § 5].
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In our case, the relation A ≺ B ≺ C means that B lies between A and C in
positive orientation. To make this precise, let us begin by defining a circular order
on any finite subset of A. So suppose that A1, . . . , An (n ≥ 3) are distinct elements
of A. Let Wj be the connected component of C\Aj that contains Ai for i �= j, and

set Ãj
..= Ĉ\Wj . Then K ..=

⋃n
j=1 Ãj is a compact, connected and full set in Ĉ, and

its complement is

W ..= Ĉ\K =

∞⋂

j=1

Wj .

In other words, the simply-connected domain W is the unique connected component
W of C\

⋃n
j=1 Aj whose boundary intersects Aj for each j.

We now consider the space of prime ends of W ; see [Pom92, Section 2.4]. Re-
call that these form a topological circle, and therefore possess a natural cyclic order.
Note that the connected components of K\{∞} are precisely the Ãj\{∞}. It follows
(e.g. as a consequence of the plane separation theorem [Why42, Theorem 3.1, Chap-
ter VI]) that there are exactly n different accesses ζ1, . . . , ζn to ∞ from W . They
separate the circle of prime ends into n complementary intervals I1, . . . , In, which
may be labeled such that Ij consists of those prime ends that can be represented
by a sequence of cross-cuts both of whose endpoints belong to Aj . We define the
circular order of the sets Aj at ∞ (in positive orientation) to be the circular order
of these intervals, taken in negative orientation.

If we add a new element An+1 of A to our collection, then it is easy to check that
this does not change the definition of the circular order of A1, . . . , An. Hence we do
indeed obtain a well-defined circular order on all of A. Moreover, suppose that Ã is
a second collection as above, where every element of Ã is contained in an element of
A and every element of A contains exactly one element of Ã. Then the cyclic order
on Ã coincides with the corresponding order on A.

We can use this observation to define cyclic order also for pairwise disjoint col-
lections of open unbounded domains, each of which contains exactly one homotopy
class of curves to infinity. (Simply replace each domain by a representative in the
mentioned homotopy class.)

Furthermore, suppose that U and Ũ are unbounded domains in C, that ϕ : U → Ũ
is a conformal isomorphism. Also suppose that A and Ã are collections as above,
whose elements are contained in U and Ũ , respectively, that ϕ maps every element
of A to an element of Ã, and that all elements of Ã arise in this manner. Then the
action of ϕ on A preserves cyclic order.

Finally, let A be a pairwise disjoint collection of closed, connected sets in the
punctured plane C∗ = C\{0}, and that the closure of each element of A contains
both 0 and ∞. Then we can define the cyclic order at ∞ on A, by replacing each
element of A by an unbounded connected subset that is closed in C, and applying
the above definition. Analogously, we can define a cyclic order on A at 0. It is easy
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to see (again using the plane separation theorem) that both orders coincide, and
depend only on A rather than any choices made in the construction.

Remark There are some subtleties to the definition of circular order on connected
sets, compared with the case of arcs to infinity which has been previously considered
in the complex dynamics literature. For example, note that the assumption that
the sets in A are closed is crucial. Indeed, consider the case of a Knaster bucket-
handle continuum X, whose terminal point (that is, the initial point of the half-ray
running through all of the endpoints of the complementary intervals of the ternary
Cantor set) has been placed at ∞, and consider the collection of path-connected
components of this set. Every such component is unbounded and connected, but
since each component accumulates everywhere upon X, there is no sensible circular
order among them.

14 Appendix: Unbounded Postsingular Sets

As mentioned in the introduction, the Douady-Hubbard landing theorem no longer
holds for polynomials with escaping singular values. It is still true that every repelling
(or parabolic) periodic point is accessible from the basin of infinity, and even by a
dynamic ray, if we extend this notion appropriately to the case where the ray passes
through critical points; compare [EL89, LP96]). However, it is possible for the set of
landing rays to be uncountable, and for none of these rays to be periodic; compare
[GM93, Appendix C] and [LP96].

Let us now briefly discuss the case of transcendental entire functions f with un-
bounded postsingular set P(f). When f /∈ B, the structure of the escaping set may
change dramatically within a given parameter space (compare [RS17, Appendix B]),
and hence it is not clear whether questions concerning the landing of rays or dread-
locks are even meaningful in this setting. Let us hence restrict to the case of f ∈ B.

First suppose that f has an escaping singular value. In addition to the above-
mentioned behaviour that occurs already for polynomials, it is also possible for a
repelling periodic point to not be accessible from the escaping set at all (by hairs
or dreadlocks). Indeed, this is the case for the fixed point of the exponential map
z �→ ez having imaginary part between 0 and π, and shows that the question of
landing behaviour at periodic points becomes considerably more subtle when P(f)
is unbounded.

However, consider now the full family of exponential maps, fa : z �→ ez + a.
Suppose that the singular value a has an unbounded orbit but does not belong to
the escaping set. Then fa is criniferous. In [Rem06a], it is shown that that all periodic
hairs of fa land. Conversely, every periodic point, with the exception of at most one
periodic orbit, is the landing point of a periodic hair. The exceptional orbit cannot
be parabolic, but it is an open question whether it can be repelling. It is shown in
[Rem06a] that a plausible conjecture about parameter space of exponential maps
(the “no ghost limbs conjecture”) would imply that this is not the case.
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Hence it is plausible that the Douady-Hubbard landing theorem remains valid
for exponential maps as above, which raises the question whether the main theorem
of our paper may also have an extension for functions f ∈ B with unbounded but
non-escaping singular orbits. A crucial step is to ensure the landing of periodic rays
(or dreadlocks). Indeed, if periodic rays land and the function has good geometry in
the sense of [RRRS11], one can show that the number of rationally invisible repelling
periodic orbits is bounded by the number of free singular values [BF20], just as for
the exponential family. Unfortunately, the proofs in [Rem06a] that periodic rays land
use sophisticated results on the structure of the (one-dimensional) parameter space
of exponential maps, and it appears that fundamentally new approaches would be
required to resolve this question in full generality.
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[BF20] Anna Miriam Benini and Núria Fagella. A bound on the number of rationally
invisible repelling orbits. Advances in Mathematics 370, (2020).

[Bin51] R. H. Bing. Snake-like continua. Duke Math. J. 18 (1951), 653–663.
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[Mih10] Helena Mihaljević-Brandt. A landing theorem for dynamic rays of geomet-
rically finite entire functions, 2010, pp. 696–714.

[Mil06] John Milnor. Dynamics in one complex variable, third edition ed., vol. 160,
Annals of Mathematics Studies, Princeton University Press, Princeton, NJ, 2006.

[Min17] David Minda. Quotients of hyperbolic metrics. Comput. Methods Funct. Theory
(4)17 (2017), 579–590.
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