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Abstract. 

A Langlands Classification 

for Unitary Representations 

David A. Vogan, Jr. 

The Langlands classification theorem describes all admissible 

representations of a reductive group G in terms of the tempered 

representations of Levi subgroups of G. I will describe work with 

Susana Salamanca-Riha that provides (conjecturally) a similar de­

scription of the unitary representations of G in terms of certain very 

special unitary representations of Levi subgroups. 

§1. Introduction 

Suppose G is a real reductive Lie group in Harish-Chandra's class 

(see [HC], section 3). There are two powerful general techniques for con­

structing irreducible unitary representations of G. Parabolic induction 

is based on real analysis and geometry on certain compact homogeneous 

spaces G / P. Cohomological induction is based on complex analysis on 

certain indefinite Kahler homogeneous spaces G / L. When G is S£(2, JR), 
parabolic induction gives rise to Bargmann's unitary principal series rep­

resentations, and cohomological induction to Bargmann's discrete series. 

We are concerned here not with the details of these constructions, but 

rather with the question of classification: which unitary representations 

can be found (and which cannot be found) by these methods. In the 

case of S£(2, JR), what is missing are the complementary series repre­

sentations, the two "limits of discrete series representations," and the 

trivial representation. 

In general a precise answer is difficult to obtain, and from some 

perspectives even undesirable. By deformation arguments, one can push 

either construction to yield larger sets of unitary representations. Thus 

for example the complementary series representations of S£(2, JR) may 

be regarded as parabolically induced, and the limits of discrete series as 
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cohomologically induced. The trivial representation emerges from either 

construction as a kind of very singular limiting case. 

In this paper we will avoid such arguments entirely, using only the 

simplest versions of parabolic and cohomological induction. We seek 

especially a simple understanding of the unitary representations not ob­

tained from a smaller group by either kind of induction. For cohomo­

logical induction such a result (partly conjectural) appears in [SV]. For 

parabolic induction there is a result in [Knp], Theorem 16.10. Combin­

ing them, we will find 

Theorem 1. 1. Suppose G is a semisimple Lie group in H arish­

Chandra 's class. Define IIu,small(G) to be the set of equivalence classes 

of irreducible unitary representations ( 7r, H1r) of G with the property that 

the infinitesimal character of 1r (in the H arish-Chandra parametrization) 

belongs to the convex hull of the Weyl group orbit of the half-sum of 

positive roots. The representations in IIu,small ( G) are called unitarily 

small. 

Fix a Cartan decomposition G = K exp(,s0 ) of G, and a maximal 

torus T C K. Let R( /\,s) denote the convex hull of the weights of T in 

the exterior algebra of ,s. An irreducible representation of K is called 

small if its weights all belong to R( 1\,5). 

(1) Assume that Conjecture 0.6 of (SV} holds for G. Then any irre­

ducible unitary representation of G not belonging to IIu,small ( G) 

may be constructed by parabolic or cohomological induction from 

an irreducible unitary representation of a reductive subgroup of 

G of lower dimension. 

(2) The set IIu,small(G) is compact in the Fell topology. 

(3) The "extremal points" of IIu,small(G), the unitary representa­

tions of infinitesimal character equal to the half-sum of positive 

roots, are those with non-vanishing continuous cohomology de­

scribed in [VZ}. 

(4) Any unitarily small representation of G must contain a small 

representation of K. Conversely, assume that Conjecture 0. 6 of 

(SV} holds for G. Then any unitary representation of G con­

taining a small representation of K and having real infinitesimal 

character must be unitarily small. 

The notion of "real infinitesimal character" is taken for example 

from [Grn], Definition 5.4.11; we will recall it in section 2 below. 

Theorem 1.1 says that the unitarily small representations provide 

building blocks from which other unitary representations may be con­

structed by (parabolic or cohomological) induction. When G is SL(2, JR), 
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the unitarily small representations are the spherical complementary se­

ries (parametrized by a half-open interval [O, 1)), the first two discrete 

series representations ?Tf 1 , the trivial representation p, and the two limits 

of discrete series ?Tt. The Fell topology on this set makes the comple­

mentary series converge to the three points ?Tf1 and pas the parameter 

approaches l; it is not a Hausdorff topology, but the pathology is not 

very serious. Essentially we have a closed interval with one of the end­

points tripled, and two isolated points. 

There are some conjectural descriptions of large families of unitary 

representations of reductive groups, and it is interesting to see how 

these descriptions relate to Theorem 1.1. One of the most famous is 

the method of coadjoint orbits, which suggests that unitary representa­

tions of G should be related to orbits of G on g0. There are constructions 

of orbits parallel to parabolic induction and to cohomological induction; 

these are desq-ibed in some detail in [Vorb]. There is also an analogue of 

Theorem 1.1, describing precisely a family of orbits from which all others 

may constructed. (This is just the Jordan decomposition, Proposition 

4 of [Vorb]). They are the nilpotent coadjoint orbits, of which there are 

finitely many for each reductive group. This suggests 

Conjecture 1.2. Suppose G is a semisimple Lie group in Harish­

Chandra's class. Then the unitary representations associated to nilpo­

tent coadjoint orbits should be unitarily small in the sense of Theorem 

1.1. 

In the absence of a definition of the phrase "unitary representations 

associated to nilpotent coadjoint orbits," this should really not be called 

a conjecture; it might be thought of as a desideratum for the missing 

definition. Nevertheless, we can offer a little evidence for it. 

Example 1.3. One-dimensional representations. Suppose G is a 

semisimple Lie group in Harish-Chandra's class. One nilpotent coad­

joint orbit is the point {O}. The corresponding unitary representations 

are precisely the irreducible representations of the group of connected 

components G /Go. (This is a well-established desideratum for any corre­

spondence from orbits to representations.) Any such representation has 

infinitesimal character equal to the half-sum of a set of positive roots in 

Harish-Chandra's parametrization, and so is unitarily small. 

Example 1.4. Infinitesimal character zero. Suppose G is a semisim­

ple Lie group in Harish-Chandra's class. Let us consider the collection 

rr0 (G) of all irreducible admissible representations of G of infinitesimal 

character O in Harish-Chandra's parametrization. This is a finite set 



302 D. A. Vogan, Jr. 

(as it would be with O replaced by any fixed infinitesimal character). 

It follows from Harish-Chandra's work on asymptotics of matrix coef­

ficients that the representations in n° ( G) are automatically tempered, 

and therefore unitarizable. We therefore have n° ( G) C nu,small ( G). 

It turns out (again from Harish-Chandra's work on tempered rep­

resentations) that n° ( G) is non-empty if and only if G is quasisplit; 

that is, if and only if the minimal parabolic subgroup P = MAN of 

G has M 0 abelian. We assume this for the rest of the example. Then 

the representations in n°(G) are precisely the irreducible constituents 

of Indi0 (1). 

The assumption that G is quasisplit is equivalent to the existence 

of nilpotent coadjoint orbits of dimension equal to the number of roots. 

(This is the largest possible dimension for any coadjoint orbit.) Such 

nilpotent orbits are called principal. According to some standard desid­

erata for an orbit correspondence, the unitary representations attached 

to principal nilpotent orbits should include all of those in n°(G) (see 

[Orng], Definitions 12.1 and 12.4). Because these are unitarily small, 

this is at least consistent with Conjecture 1.2. 

It is a fairly simple matter to extend the discussion in Examples 

1.3 and 1.4 to cover all special unipotent representations (see [Orng], 

Definition 12.4). 

Our goal in this paper is to explain carefully the statement of Theo­

rem 1.1. Section 2 recalls Harish-Chandra's theory of infinitesimal char­

acters, the notion of "real infinitesimal character," and some related 

structure theory in the Lie algebra. Section 3 uses those ideas to formu­

late the part of Theorem 1.1 concerning parabolic induction. Section 4 

reviews briefly the notion of cohomological induction. Section 5 outlines 

the part of Theorem 1.1 concerning cohomological induction. Section 6 

gives a more precise version of the statement in Theorem 1.1(1). 

Here are some references for the rest of Theorem 1. 1. The asser­

tion (2) is elementary, although the necessary basic facts about the Fell 

topology (many of which are due to Milicic) are a little difficult to find 

in the literature. Some of them are discussed in the last section of [SV]. 

The result in (3) is a special case of the main theorem of [Sal]. Assertion 

( 4) is contained in [SV], mostly in Theorem 6. 7 there. 

§2. Infinitesimal character 

We continue to work with a reductive group G in Harish-Chandra's 

class. In general Lie groups will be denoted by upper case Roman letters, 

Lie algebras by the corresponding lower case German letters with a 
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subscript 0, and complexifications by dropping the subscript 0. For 

example, 

9o = Lie(G), (2.l)(a) 

We will often make use of a Cartan decomposition 

G = Kexp.s0 , (2.l)(b) 

with corresponding Cartan involution 0. Occasionally we will make use 

of a non-degenerate Ad(G)-invariant symmetric bilinear form (,) on g0 . 

We may arrange for this form to be preserved also by the Cartan invo­

lution, and to be positive definite on .s0 and negative definite on t0 . 

Recall that a Cartan subgroup of G is by definition the centralizer 

in G of a Cartan subalgebra of g0 . Any such subgroup is conjugate by 

G to one preserved by 0. If His a 0-stable Cartan subgroup, then the 

Cartan decomposition becomes a direct product 

H=TA, T=HnK, A= exp(~o n Po). (2.l)(c) 

Here the first factor is compact and the second is a vector group. A 

similar argument applies to the center Z(G) of the group G: there is a 

direct product decomposition 

Z(G) = Tz(G)Az(G), Tz(G) = Z(G) n K, Az(G) = exp(J(go) n.so). 

(2.l)(d) 

Definition 2.2. The center (as an abstract algebra) of the universal 

enveloping algebra U(g) is written 3(g). Because U(g) is generated by 

g, this is 

3(g) = {u E U(g) I Xu - uX = 0 (XE g)}. 

By definition of the adjoint action of g on U (g), this is 

3(g) = {u E U(g) I ad(X)(u) = 0 (XE g)}. 

Because the adjoint action of g0 is the differential of the adjoint action 

of the group G, this is equivalent to 

3(g) = {u E U(g) I Ad(g)(u) = u (g E G)}. 

This last equivalence uses in an essential way the assumption that G is 

in Harish-Chandra's class; without it, we would have to replace G by its 

identity component G0 • 

Theorem 2.3. Suppose ~ is a Cartan subalgebra of the reductive 

Lie algebra g, and W = W(g, ~) is the corresponding Weyl group. Then 
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there is an algebra isomorphism (the Har-ish-Chandra homomorphism) 

For any .\ E IJ*, evaluation at A is an algebra homomorphism from 

S(IJ) to(['._ Composition of this homomorphism with the Harish-Chandra 

homomorphism gives an algebra homomorphism 

(~ (.\): 3(9) -> CC. 

(1) Two such homomorphisms(~(.\) and(~(.\') are equal if and only 

if.\'= w.\ for some w E W(9, IJ). 
(2) Every homomorphism from 3(9) to CC is of the form (~ (.\) for 

some.\ E IJ*. 

A proof of this result of Harish-Chandra may be found for example 

in [Hmp], section 23. 

Definition 2.4. Suppose G is a reductive group in Harish-Chandra's 

class. The admissible dual of G is the set II( G) of equivalence classes 

of irreducible (9, K)-modules. It is the same thing to consider infini­

tesimal equivalence classes of irreducible admissible representations of 

G. The unitary dual of G is the subset Ilu ( G) of irreducible (9, K)­

modules admitting a positive definite invariant Hermitian form. These 

may be identified with unitary equivalence classes of irreducible unitary 

representations of G. 

Suppose lJ is a Cartan subalgebra of 9, and.\ E IJ*. A representation 

of 9 is said to have infinitesimal character A if 3(9) acts through the 

homomorphism (~ (.\) (Definitition 2.2). Any irreducible representation 

of 9, or any irreducible (9, K)-module, has some infinitesimal character. 

We now come to the central notions of real and imaginary infinites­

imal character. 

Definition 2.5. Suppose H C G is a 0-stable Cartan subgroup; 

write H = TA as in (2.l)(c). This gives a decomposition of the Lie 

algebra 

!Jo= to+ ao. (2.5)(a) 

The canonical real form of lJ is the subspace 

REIJ = ifo + no. (2.5) (b) 

Obviously this subspace is in fact a real form of IJ. It is clear from the 

discussion at (2.l)(b) that the bilinear form (,) is positive definite on 
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RE Q. Now Q has a decomposition into semisimple and central partis 

Qo = ([go,9o] n Qo) + 3(go) = Qg(g) + Qo(g). (2.5)(c) 

This decomposition is compatible with that of (2.5)(a), so we may write 

(2.5)(d) 

(The last two summands are the Lie algebras of the groups rz(G) and 

Az(G) of (2.l)(d).) It follows that 

Any linear functional>. E Q* has a unique decomposition 

>. = RE >. + i IM >., 

(2.5)(e) 

(2.5)(!) 

with RE>. and IM>. taking real values on RE Q. We call these the canon­

ical real and imaginary parts of >.. 

Lemma 2.6. Suppose Hand H' are 0-stable Cartan subgroups of 

a real reductive group G. Use the notation of Definition 2.5. 

(1) The canonical real part RE Q8 (g) of the semisimple part of Q may 

be characterized as the subspace on which all the roots of Q in g 

take real values. 

(2) Suppose g E Ad(g) is an inner automorphism of the complex 

Lie algebra carrying Q to Q'. Then g carries RE Q to RE Q1 • 

(3) The action of the Weyl group W(g, Q) preserves RE Q. 

Sketch of proof. Part (1) is standard. (The roots are differentials 

of characters of H, and so must take imaginary values on to. That they 

take real values on a0 can be deduced for example from the existence 

of a compact form of g with Lie algebra t0 + is0 .) For (2), part (1) 
guarantees that g carries RE Q8 to (RE Q1) 8 , and g acts trivially on 3(g). 
Part (3) is a special case of (2). Q.E.D. 

Corollary 2. 7. Suppose G is a real reductive group, and f 3(g) ---+ 

C is an infinitesimal character. Choose a 0-stable Cartan subgroup H 

of G and a weight>. E Q* so that e = elJ (>.) {Definition 2.4). Then the 

infinitesimal characters e!J (RE>.) and elJ (IM>.) depend only on e, and 

not on the choices of H and >.. In particular, the statement that e is 

real {meaning>.= RE>.) is independent of choices. 

We will see in section 3 that the imaginary part of the infinitesimal 

character of a unitary representation reveals how the representation is 
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parabolically induced. A similar but weaker statement for the real part 

appears in section 5: the real part of the infinitesimal character of a 

unitary representation reveals how the representation is cohomologically 

induced. 

§3. Parabolic induction and reduction to real infinitesimal 

character 

We continue to work with a real reductive group G in Harish­

Chandra's class, using especially the notation of (2.1). Suppose now 

that Pis a real parabolic subgroup of G (see for example [Knp], section 

V.5). Let Np be the unipotent radical of P, a connected normal nilpo­

tent subgroup. The intersection Lp = P n 0P is a reductive group in 

Harish-Chandra's class, having the restriction of 0 as a Cartan involu­

tion. There is a Levi decomposition 

P=LpNp, (3.l)(a) 

a semidirect product with Np normal. The Levi subgroup has a direct 

product decomposition 

(3.l)(b) 

respected by 0. The subgroup Ap is just Az (Lp ), the split factor of the 

center of Lp. Any irreducible admissible representation of Lp is of the 

form 8 ® v, with 8 E II(Mp )" and v E IT(Ap) :::c aj,. 

Lemma 3.2. In the setting (3.1), thefunctorlnd~ of normalized 

parabolic induction carries irreducible admissible representations of Lp 

to finite length admissible representations of G, preserving unitarity and 

infinitesimal character. More precisely, fix a 0-stable Cartan subgroup 

H of Lp; necessarily H is a product 

Suppose that 8 ® v is an irreducible representation of Lp, and that 8 

has infinitesimal character >. E Qi (Definition 2.4), so that 8 ® v has 

infinitesimal character(>., v) E Q*. 

(1) If 8 is unitary and v is purely imaginary (so that it defines a 

unitary character of Ap) then Ind~(8 ® v) is a unitary repre­

sentation of G. 

(2) The induced representation Ind~(8 ® v) has infinitesimal char­

acter (>.,v) E Q*. 
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(3) The canonical real and imaginary parts of the infinitesimal char­

acter (Corollary 2. 7} are given by (RE>., RE v) and (IM>., IM v) 
respectively. 

( 4) Suppose that 8 has real infinitesimal character and v is purely 

imaginary. Then the canonical real and imaginary parts of the 

infinitesimal character are given by >. and v respectively. 

(5) Suppose that 8 has real infinitesimal character and v is purely 

imaginary. Assume in addition that for every non-zero weight 

a E aj, of the adjoint representation, the inner product (v, a) 

is non-zero. Then the induced representation Ind~(8 ® v) is 

irreducible. 

Proof. Part (1) may be found for example in [Knp], section VII.2, 

and part (2) in [Knp], Proposition 8.22. Part (3) is immediate from (2) 

and Definition 2.5, and part (4) is a special case of (3). Part (5) is a 

fairly easy consequence of the results of [Sp V], although it is not stated 

explicitly there. (The bilinear form appearing in (5) is the one described 

after (2.l)(b).) Q.E.D. 

The setting of part ( 4) is in some sense the general explanation 

for the canonical real and imaginary parts of an infinitesimal character. 

Here is a statement. 

Theorem 3.3 [Knp], Theorem 16.10. Suppose 1r is an irreducible 

unitary representation of G. Then there is a parabolic subgroup P = 
MpApNp of G, a unitary representation 8 of Mp of real infinitesimal 

character, and a unitary character v of Ap, so that 1r is equivalent to 

Ind~(8 ® v). This may be done so that the non-degeneracy condition of 

Lemma 3.2(4) on v is satisified. 

There is a similar statement for Hermitian representations, but we 

will not need it. 

Theorem 3.3 evidently reduces the study of unitary representations 

to the case of real infinitesimal character. We conclude this section with 

some remarks on the organization of that reduction. 

Lemma 3.4. Suppose amin,o is a maximal abelian subalgebra of s0 

(the -1 eigenspace of 0 }. Define Mmin to be the centralizer of Amin = 
exp(amin,o) in K, M:n,in to be the normalizer, and Wres = M:n,in/Mmin 

the restricted Weyl group of Amin in G. Write R(g, amin) C a;,,in,O for 

the system of restricted roots. 

(1) The restricted Weyl group Wres is isomorphic to the Weyl group 

of the restricted root system R(g, amin). 
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(2) Any group A as in (2.l)(c) or Ap as in (3.1) is conjugate by K 

to a subgroup of Amin. 

(3) Two elements of amin,o are conjugate by Adg if and only if they 

are conjugate by Wres. 

(4) Suppose v E a;,.in• Regard a;,.in as a subspace of g* by using 

mmin and the root spaces as a complement to amin. Define 

Lv = {g E GI Ad*(g)(v) = v} :=) MminAmin, 

the stabilizer of v in the coadjoint action. Then Lv is the 0-stable 

Levi factor of a real parabolic subgroup of G; write Lv = Mv Av 

for its Langlands decomposition. This subgroup is characterized 

by its restricted root system 

RW,amin) = {a E R(g,amin) I (v,a) = O}. 

The subscript min on Amin may be a bit confusing, since Amin is 

maximal as a subalgebra of s 0 . It refers to a minimal parabolic sub­

group of G, which may be taken to have Langlands decomposition with 

split component Amin· Alternatively, one can think of it as meaning 

"minimally compact." 

Proof Parts (1) and (3) can be reformulated in a compact form of 

the symmetric space G / K; the references we give are for these reformu­

lations. Part (1) is [Hell, Corollary VIl.2.13. Part (2) is [Hell, Lemma 

V.6.3. Part (3) is [Hel], Corollary VIl.8.9. Part ( 4) is standard and 

straightforward. (That Lv contains MminAmin is obvious. It follows 

easily that the Lie algebra [v is spanned by mmin + amin and the indi­

cated restricted root spaces. The characterization of Lv as a real Levi 

subgroup can be deduced for example from the Bruhat decomposition 

of [Hell, Corollary IX.LS. Q.E.D. 

Corollary 3.5. Suppose as in Lemma 3.4 that amin,o is a maximal 

abelian subalgebra of s0 ; use the other notation defined there. Fix a 

maximal torus Tmin C Mmin, so that 

fJmin,O = tmin,O + amin,O 

is a Cartan subalgebra of 9o. 

(1) The imaginary part of the infinitesimal character of any uni­

tary representation of G is represented by a weight v E ia;',.in,o, 

unique up to the action of the restricted Weyl group Wres. From 
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now on we fix such a weight, and Lv = Mv Av as in Lemma 

3.4(4). 
(2) Fix a parabolic subgroup pv = Lv Nv with Levi factor Lv. Then 

unitary induction from pv provides a bijection from irreducible 

unitary representations of Mv with real infinitesimal character 

onto irreducible unitary representations of G whose infinitesi­

mal character has canonical imaginary part v. Explicitly, this 

bijection carries 8 to Indiv(8 (8) v). 

This result is more or less immediate from Theorem 3.3 and Lemma 

3.4. It is possible to avoid the restricted Weyl group ambiguity in the 

choice of v by first choosing a positive system R+(g, amin) of restricted 

roots; equivalently, a minimal parabolic subgroup 

We can then make v unique by requiring it to be dominant for R+. The 

parabolic subgroup pv may then be taken to be one of the 2£ standard 

parabolics containing Pmini here £ is the rank of the restricted root 

system. The possible v attached to each such parabolic constitute the 

corresponding face of the closed positive Weyl chamber in ia;,.in• 

§4. Cohomological induction 

The central idea of section 3 was that canonical imaginary parts of 

infinitesimal characters of unitary representations arise from parabolic 

induction. More precisely, one can begin with any unitary character 

of the split part of a Cartan subgroup ( the weight v in Theorem 3.3 

or Corollary 3.5) and use it construct a parabolic; then unitary repre­

sentations with imaginary part v arise nicely by induction from that 

parabolic. 

In this section we will lay the foundations for a similar analysis of 

the canonical real part of an infinitesimal character. By analogy with 

Corollary 3.5, one might hope that such real parts arise from a character 

of the compact part of a Cartan subgroup (compare Definition 2.5). It 

is therefore natural to begin by choosing a maximal torus 

Tmax,O CK. (4.l)(a) 

This torus will play a role analogous to that of Amin in section 3. Al­

though we will be concerned mostly with questions on the Lie algebra, 

we may as well record the definition 

(4.l)(b) 
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The centralizer of T max,o in G is a Cartan subgroup 

(4.l)(c) 

a fundamental Cartan subgroup of G. We will need the Weyl groups 

W(G, Hmax) = Na(Hmax)/Hmax• 

( 4.1 )( d) 

( 4.1 )( e) 

We call these the Weyl group of Tmax in Kand the Weyl group of Hmax 

in G. Here is the analogue of Lemma 3.4. 

Lemma 4.2. Write R(g, tmax) C t;,,ax for the set of non-zero 

weights of 4nax on g. 

(1) The set R(g, tmax) is a root system. The corresponding Weyl 

group W(g, tmax) may be identified with the restrictions to 4nax 

of elements of W(g, IJmax) commuting with the Cartan involu­

tion 0. That is, 

W(g, 4nax) C::' W(g, IJmax)°, 

with the isomorphism arising by restriction of linear transfor­

mations from IJmax to tmax. 

(2) The Weyl groups W(G, Hmax) and W(K, Tmax) are isomorphic, 

the isomorphism arising by restriction of group automorphisms 

from H max to T max. 

(3) Regard W(K, Tmax) as acting on tmax by differentiation. Then 

we have inclusions 

W(t, 4nax) C W(K, Tmax) C W(g, 4nax)-

If G ( or equivalently K) is connected, then the first inclusion is 

an equality. 

(4) Suppose Tis one of the groups in (2.l)(c). Then T0 is conjugate 

by K to a subgroup of T max ,o. 

(5) Two elements of tmax are conjugate by Adg if and only if they 

are conjugate by W(g, tmax)-

Notice that the statement here is significantly weaker than in Lemma 

3.4, because of the failure of the second inclusion in (3) to be an equality. 

The weights in it;,,ax are going to represent real parts of infinitesimal 

characters ( at least approximately); but each such infinitesimal character 

will correspond to several different W(K, Tmax) orbits of weights. 
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Proof. These facts are all fairly standard; here are some references. 

Part (1) may be found in [IC4], Proposition 3.12 (particularly the last 

isomorphism of part (c) there). For part (2), the main point is to show 

that every element x of Na(Hmax) has a representative (modulo Amax) 

belonging to K. To see this, consider the Cartan decomposition (2.l)(b) 

x = kexp(Z), with Z E .So. The fact that x normalizes Tmax,O implies 

that for every t E Tmax,o there is at' E Tmax,o so that 

kex.p(Z)t = t'kexp(Z). 

That is, 

ktexp(Ad(C1 Z) = t'kexp(Z). 

Now the uniqueness of the Cartan decomposition implies that Ad(t) fixes 

Z; that is, that Z E amax,o, as we wished to show. For part (3), the 

inclusions are clear. That the first is an equality when K is connected 

is standard (see for example [Hel], pages 256-7). Part (4) is just the 

conjugacy of maximal tori in a compact Lie group. Part (5) is analogous 

to Lemma 3.4(3), and can in fact be reduced to it. (For this one needs 

to construct an involutive automorphism of g whose restriction to IJmax 

is -0.) We omit the details. Q.E.D. 

Definition 4.3. Fix a maximal torus Tmax,o in K as in (4.1), and 

a weight >.. E it;,,ax,o· Identify t;,,ax with a subspace of g* by using amax 

and the restricted weight spaces as a complement for lmax· The 0-stable 

Levi subgroup associated to >.. is then the stabilizer of >.. in the coadjoint 

action: 

LA= {g E GI Ad*(g)(>..) = >..}::) Hmax· (4.3)(a) 

This is a 0-stable reductive subgroup of G in Harish-Chandra's class. It 

will play the same role for cohomological induction as the Levi subgroup 

Lp did for parabolic induction. In place of the split component Ap, we 

will use 
Tz(LA) = Z(LA) n K, 

(cf. (2.l)(d)), a subgroup of Tmax· For generic >.., LA 

TJ(LA) = Tmax,O· 

The restricted root system for LA is 

R((A, lmax) = { a E R(g, lmax) I (a,>..) = O}. 

(4.3)(b) 

Hmax, and 

(4.3)(c) 

As usual, the bilinear form is the one introduced after (2.l)(b). Ifwe use 

this form to identify >.. with an element XA E ilmax,o, then these roots 

are just the ones vanishing on XA. 
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We will also need a 0-stable nilpotent subalgebra uA, characterized 

by 

R(u\tmax) = {a E R(g,4nax) I (a,.X) > O}. (4.3)(d) 

In terms of a corresponding Lie algebra element XA as above, uA is 

the sum of the positive eigenspaces of ad(XA). The 0-stable parabolic 

subalgebra associated to A is by definition 

(4.3)(e) 

this is a parabolic subalgebra of g. Because the weights of 4nax,o take 

purely imaginary values, complex conjugation with respect to the real 

form g0 carries qA to an opposite parabolic subalgebra; we have a trian­

gular decomposition 

(4.3)(!) 

The next result establishes for cohomological induction some of what 

was done in Lemma 3.2 for parabolic induction. 

Lemma 4.4. Suppose we are in the setting of Definition 4.3; use 

the notation there. 

(1) The group LA is precisely the normalizer in G of qA. In partic­

ular, Ad(LA) preserves uA. 

(2) There is a G-invariant complex structure on G /LA, having qA /[A 

as holomorphic tangent space at the identity coset. We may 

identify G / LA as an open G-orbit on the projective variety of 

parabolic subalgebras of g conjugate to qA. This identification 

sends gLA to the parabolic Ad(g) ( qA). 

(3) Write 2p(uA) for the one-dimensional character of LA on the 

top exterior power ofuA. Suppose H C LA is a 0-stable Cartan 

subgroup; write 

(4.4)(a) 

as in Definition 2.5. Then the differential of 2p(u) vanishes on 

az((A) + ij 8 ([A). It is therefore natural to write also 2p(uA) for 

the restriction to P([A) of the differential of this character. 

( 4) Suppose Z is any irreducible ((A, LA n K)-module. Then the 

compact center Tz(LA) acts on Z by a unitary character A', 

having differential.A' E i(fo([A))*. ForH as in (3), suppose that 

the infinitesimal character of Z is given by a weight 'Y' E Q*. 

Then with respect to the decomposition (4.4)(a) of Q, we have 

'Y' = (.X',v'), (4.4)(b) 



Langlands classification 313 

(5) With notation as in (4), write z# for the tensor product of Z 

with the top exterior power of uA. Then z# has infinitesimal 

character 'Y' + 2p( uA). The induced (g, £A n K)-module 

has infinitesimal character 

The same is true of the produced module 

W' = pro9 A (z#). 
q 

(4.4)(c) 

(4.4)(d) 

The real and imaginary parts of this infinitesimal character are 

RE('Y' + p(uA)) = (>.' + p(uA), RE v'), IM('Y' + p(uA)) = (0, IM v'). 

(4.4)(e) 

A definition of the induced and produced modules may be found in 

[Grn], Chapter 6, or in [KV], page 105. 

Proof. For (1), that £A normalizes qA follows easily from Defini­

tion 4.3. Write NA :) £A for the full normalizer. Since a parabolic 

subalgebra of a reductive Lie algebra is self-normalizing, we must have 

nA C qA nqA =(A.From this it follows that NA is generated by £A and 

representatives for the normalizer of qA in the Weyl group W(K, Tmax) 

of ( 4.1) ( d). It is a straightforward exercise to show that this normalizer 

is precisely W(LA, Tmax), 

For (2), the existence of the complex structure follows from (1) and 

general principles (see for example [0mg], Proposition 1.19). The indi­

cated map evidently embeds G / £A in the variety of parabolics; that the 

image is open follows from the triangular decomposition (4.3)(!). 

Parts (3) and (4) are elementary, as is the first formula in (5). The 

infinitesimal characters of the induced and produced modules may be 

found in [KV], Theorem 5.24. The assertion about real and imaginary 

parts is then elementary. Q.E.D. 

We do not propose to attempt here a detailed explanation of co­

homological induction. For this we refer to the introduction of [KV]. 

The idea is that a representation Z of £A gives rise to an (infinite­

dimensional) holomorphic vector bundle V(Z) on G/L\ having z# as 

its fiber over the identity coset. The produced module W' of Lemma 
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4.4(5) may be identified with certain formal power series sections of 

V(Z) at the identity coset. Cohomological induction provides a fam­

ily of representations of G (more precisely, a family of (g, K)-modules) 

that are formally analogous to the Dolbeault cohomology of G / L>. with 

coefficients in V(Z). Explicitly, 

Here the functors £,j on the left carry ([>., L>. n K) modules of finite 

length to (g, K)-modules of finite length. They are defined by first twist­

ing Z by the one-dimensional character 2p(u>.); extending to q>. (by 0 

on rr>.); inducing to g; and finally applying a Bernstein-Zuckerman de­

rived functor to get a K -finite representation. This last step does not 

affect infinitesimal character, so (with notation as in Lemma 4.4) we see 

that the cohomological induction functors add p(u>.) to the infinitesimal 

character. 

This "p--shift" is annoying after the simple situation for parabolic 

induction recorded in Lemma 3.2(2). The reason for the difference is 

that parabolic induction involves a shift by a square root of the character 

2p( n p) ( of L p on the top exterior power of n p. (More precisely, one uses 

a positive character of L p that provides a square root of 2p( n p) on the 

identity component of Lp.) In the case of the 0-stable parabolic q\ the 

character 2p(u>.) need not admit a square root; we used a shift by the 

character itself rather than a square root, leading inevitably to the shift 

in the infinitesimal character formula. It is possible to avoid this shift 

at the expense of introducing a double cover of L>.. For a description of 

this we refer to [0mg], chapter 6. 

The following theorem complements Lemma 4.4, providing a fairly 

complete analogue of Lemma 3.2 for cohomological induction. 

Theorem 4.6. Suppose we are in the setting of Definition 4.3, 
so that q>. = [>. + u>. is a 0-stable parabolic subalgebra of G. Then the 

functors Cj of cohomological induction (see (4.5)) carry ([\ L>. n K) 

modules of finite length to (g, K)-modules of finite length. They are zero 

unless O :s; j :s; S = dim(u>. n t). 
Suppose now that Z is an irreducible ([>., L>. n K)-module of infini­

tesimal character,'=(>.', v') (notation as in Lemma 4-4(4)). 

( 1) The cohomologically induced representations £,j ( Z) have infini­

tesimal character 1 1 + p(u>. ). 

(2) Assume that the infinitesimal character satisfies the positivity 
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condition 

(a E ~(u\ ~)). (4.6) 

Then .C1(Z) = 0 for j < S. The module .Cs(Z) is irreducible or 

zero; it is unitary if Z is. 

(3) Assume that the inequalities in (4.6) are all strict. Then .Cs(Z) 

is non-zero (and irreducible). It is unitary if and only Z is 

unitary. 

Proof The assertions through (1) are fairly easy consequences of 

the definitions. The vanishing of .C1 for j > S is [KV], Theorem 5.35. 

The calculation of infinitesimal character, already mentioned after ( 4.5), 

follows from Lemma 4.4 and [KV], Theorem 5.21. The irreducibility in 

(2) and (3) is [KV], Corollary 8.28. The unitarity for .Cs(Z) is [KV], 

Theorem 9.1. The converse assertion in (3) (deducing unitarity for Z 

from .C8 (Z) is [VUn], Theorem 1.3(b). Q.E.D. 

Cohomological induction in certain respects requires more care than 

parabolic induction, as a tool for constructing unitary representations. 

Lemma 3.2 allowed us to begin with any unitary representation of Lp; 

Theorem 4.6 requires a rather restrictive positivity hypothesis on the 

representation Z of L>.. We will conclude this section with a discussion 

of a simple but important way that this positivity condition can be 

fulfilled. We will also take the opportunity to recast the notation without 

the weight A, which we used for the original construction of a 0-stable 

parabolic but not subsequently. 

Suppose therefore that 

q = (+u (4.7)(a) 

is a Levi decomposition of a 0-stable parabolic subalgebra of 9. Write 

L = normalizer in G of q ( 4. 7) (b) 

for the corresponding Levi subgroup, and H C L for a 0-stable Cartan 

subgroup. Recall from (2.l)(d) the compact and split components Tz(L) 

and Az(L) of the center of L, and then from Definition 2.5 the direct 

sum decomposition 

(4.7)(c) 

Now let Z be an irreducible ((, L n K)-module of infinitesimal character 

( 4. 7) ( d) 
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here we use the decomposition (4.7)(c) of ry. According to Lemma 4.4(4), 

A E i~(()* (4.7)(e) 

is the differential of the ( necessarily unitary) character by which Tz ( L) 

acts on Z. In the same way, we see that vz E (az([))* is the differential 

of the character by which Az(L) acts on Z. In particular, 

vz E ia~([)* ( Z unitary). (4.7)(!) 

Finally, v 8 is just the infinitesimal character of Z restricted to the semi­

simple derived group of L. Just as in Lemma 4.4, we can decompose 

the infinitesimal character 'Y + p( u) into its canonical real and imaginary 

parts; these are 

RE('Y+p(u)) = (>.+p(u),O,REv8 ), IM('Y+p(u)) = (O,-ivz,IMv 8
) 

( 4. 7)(g) 

(still assuming that Z is unitary). 

Here is the special setting for the positivity condition in Theorem 

4.6. 

Proposition 4.8. Suppose q = [ + u is a 0-stable parabolic subal­

gebra with Levi subgroup L. Let Z be an irreducible unitary ([, L n K)­

module of infinitesimal character 'Y = ( >., v) ( notation as in ( 4. 7)). As­

sume that 

(a) every weight a of tz([) in u is non-negative on >.: (>., a) 2: O; 

and 

(b) the weight RE v belongs to the convex hull of the W ( [, ry) orbit 

of p([), half the sum of a set of positive roots for ry in [. 

Then the strict positivity hypothesis ( 4.6) is satisfied: 

Re(-y + p(u), /3) > 0, (/3 E ~(u, b)). 

Consequently £s(Z) is an irreducible unitary (g, K)-module. 

Proof. The real part of an inner product with a root is the same 

as the inner product of the canonical real part with the root; so what 

we are trying to prove is that 

((>.+p(u),REv),/3) > 0, (/3 E ~(u, b)). (4.9)(a) 

By hypothesis RE v belongs to the convex hull of various half sums of 

positive roots; so it suffices to prove the inequality with RE v replaced 
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by one of these half sums. That is, it suffices to fix a set of positive roots 

~+((,IJ), to write p(() for half the sum of these roots, and prove 

((A+ p(u), p(()), ,6) > 0, (4.9)(b) 

Because q is a parabolic subalgebra, the roots 

(4.9)(c) 

constitute a positive system for 1J in g. The corresponding half sum of 

positive roots is 

P = (p(u),p(()). (4.9)(d) 

Combini:iig (4.9)(b) and (4.9)(c), we see that we need to prove 

(/J E ~(u, IJ)). (4.9)(e) 

In this last inner product, the term (A, /J) is non-negative by hypothesis 

(1) on Z. The term (p, /J) is strictly positive since fJ is a positive root by 

the construction of~+. So the sum of these two terms is strictly positive, 

as we wished to show. That .C8 (Z) is irreducible unitary follows from 

Theorem 4.6. Q.E.D. 

§5. Reduction to unitarily small representations 

Proposition 4.8 allows us to construct unitary representations of G 

having certain kinds of real infinitesimal character from unitary repre­

sentations of 0-stable Levi subgroups. This is more or less parallel to 

the construction of representations with partly imaginary infinitesimal 

character in Lemma 3.2. In the earlier setting we had a converse as 

well: Theorem 3.3 guaranteed that any unitary representation could be 

constructed. The point of [SV] is to try to prove a parallel result for 

cohomological induction. To formulate what is expected, we need a little 

preliminary geometry. 

Definition 5.1. Suppose H is a 0-stable Cartan subgroup of the 

reductive group G, and V = RE IJ* is the dual of the canonical real part. 

Write~= ~(g, IJ) C V for the roots of g, and W = W(g, IJ) C Aut V 

for the Weyl group. To each system of positive roots ~ + C ~ we attach 

the closed positive Weyl chamber 

(5.l)(a) 

Define Pc to be the projection from V onto C: Pc(w) is by definition 

the element of C closest to w. 
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Suppose I E V is an arbitrary element. We define a "truncation 

operator" T"Y: V --+ V as follows. Given v E V, choose a positive root 

system D,+ making v dominant; that is, so that v E C(D.+). Next, 

let ,' be the unique dominant weight conjugate to 1 : that is, ,' E 

W • 1 n C ( D. +). Finally, define 

T"Y(v) = Pc(v - ,'). (5.l)(b) 

Because the positive root system Do+ is not uniquely specified by 

v, the first issue is to show that T"Y ( v) does not depend on its choice. 

This fact and some other basic properties of T"Y are recorded in the next 

proposition. 

Proposition 5.2. In the setting of Definition 5.1, the truncation 

operator T"Y is well-defined. It depends only on the Weyl group orbit 

W · 1 , and has the following additional properties. 

(1) The operator T"Y is continuous and in fact a contraction: if 

v,w EV, then 

I T")' ( V) - T")' ( w) I ~ I V - w I . 

(2) The operator T"Y commutes with the action of W: T"Y(w · v) = 
w · T"Y(v). 

(3) The inverse image of O under T"Y is the convex hull of the Weyl 

group orbit of 1 . More generally, suppose vo E V, and let Wo be 

the stabilizer of v0 in W. Fix 10 E W · 1 belonging to a common 

positive Weyl chamber with v0 • Then 

T"Y- 1 (v0 ) = v0 + (convex hull of Wo · ,o)-

Proof. These facts are more or less elementary; proofs of most of 

them may be found in section 1 of [SV]. The idea of applying them to 

representation theory is taken from [Car]. Q.E.D. 

Corollary 5.3. Suppose G is a real reductive group, H is a 0-

stable Cartan subgroup of G, and~: 3(g) --+ (C is an infinitesimal char­

acter. Choose a weight <p E (J* defining the infinitesimal character (Def­

inition 2.4), and use the notation of Definition 5.1, so that RE>. EV. 
Write p E V for half the sum of a set of positive roots. Then the Weyl 

group orbit of Tp (RE¢) depends only on the infinitesimal character ~. 
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Corollary 5.4. Suppose we are in the setting of Proposition 4-8, 

so that C8 (Z) has infinitesimal character,+ p(u). Then Tp(RE(, + 
p(u)) = >., the weight by which the compact center iz([) acts on Z. 

Proof. Choose a positive root system A+(g, ~) as in (4.9)(c). By 

hypothesis (1) of Proposition 4.8, >. is non-negative on the roots of u. 

Because iz([) is central in l, >. is perpendicular to the roots of L Therefore 

>. is dominant for A+, and fixed by the Weyl group W ( l, ~). According 

to Proposition 5.2(3), the preimage under Tp of>. includes 

>.+(convex hull of W(l, ~) · p). 

Using the decomposition (4.9)(d), we can rewrite this as 

>. + p(u) + (convex hull of W(l, ~) • p(l)). 

According to hypothesis (2) of Proposition 4.8, this convex hull contains 

REv; so the real part RE((>.,v) + p(u)) of the infinitesimal character 

belongs to T,;-1 (>.), as we wished to show. Q.E.D. 

Recall that we are seeking an analogue of Theorem 3.3 for coho­

mological induction. Roughly speaking, it should say that any unitary 

representation for which the real part of the infinitesimal character trun­

cates (by Tp) to a weight>., ought to be cohomologically induced from a 

Levi subgroup defined by >.. In order to make sense of such a statement, 

we need to get the real part of the infinitesimal character ( at least after 

truncation) into it~ax 0 • This at least is possible. , 

Lemma 5.5. Suppose Hmax is a maximally compact Cartan sub­

group of G as in (4.1); use the notation there. Then the canonical real 

part of the infinitesimal character of any unitary representation of G is 

represented by a weight in it~ax,o, unique up to the action of W(g, tmax) 

(Lemma 4.2). Consequently the same is true of its truncation by Tp. 

Sketch of proof. That the representative (if it exists) has the desired 

uniqueness property follows from Lemma 4.2(5). That truncation by p 

preserves it~ax,o follows fairly easily from the definition of Tp, The 

main point is therefore the existence of a representative. This we can 

prove not just for unitary representations, but for arbitrary Hermitian 

representations. The advantage of the generalization is that Hermitian 

representations behave very simply in the classification by lowest K­

types described in [Grn] {see for example [SV], Theorem 2.9). Using 

this reduction, Lemma 5.5 may be reduced to the following fact. 
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Lemma 5.6. Suppose G is a quasisplit real reductive group in 

Harish-Chandra's class, and Hrnax and Hrnin are maximally and mini­

mally compact Cartan subgroups; use the notation of Corollary 3.5 and 

(4.1) accordingly. Suppose v E n;';,,ax,o, w E Wres, and wv = -v. Then 

v is conjugate by Adg to an element of it;';,,ax,o· 

For this fact we omit the elementary (although not trivial) proof. 

Here is a suggestive special case. Suppose G is complex. In this case we 

can choose Hrnax = Hrnin = H = TA, and the real Cartan subalgebra bo 
is actually complex. Its complexification b is isomorphic to a sum of two 

copies of bo ( corresponding to the +i and -i eigenspaces of the complex 

structure from G). The canonical real part respects this decomposition; 

it is the product of two copies of n0 • 

(5.7)(a) 

On the other hand, we have H = TA, so b = t + n. The identifications 

in (5.7)(a) may be arranged so that 

n = {(X,X) IX E bo},t= {(X,-X) IX Ebo}- (5.7)(b) 

Finally, the Weyl group W(g, b) is just a product of two copies of the 

Weyl group Wo of bo in {lo, and Wres ~ Wo is the diagonal subgroup. 

The weights v as in Lemma 5.6 are precisely 

{v = (vo, vo) I Vo Eno, wvo = -vo (some w E Wo)}. (5. 7) ( c) 

Such a weight vis obviously conjugate (by (1, w )) to the weight (v0 , -v0 ) 

in it~. This proves Lemma 5.6 for complex groups. 

We omit the remaining details in the proof of Lemma 5.5. Q.E.D. 

Here at last is a (partly conjectural) converse to Proposition 4.8. 

Theorem 5.8 [SV], Theorem 5.8. Suppose G is a real reductive 

group in Harish-Chandra's class, and that Conjecture 0.6 of {SVJ is true. 

Suppose X is an irreducible unitary (g, K)-module. Then there is a 0-

stable parabolic subalgebra q = (+u of g, with Levi subgroup L (Definition 

4.3), and an irreducible unitary ((, L n K)-module Z of infinitesimal 

character'"'(=(>., v) (cf. (4.7)), with the following properties. 

(1) Every weight a of e (() in u is positive on >.: (>., a) > 0. 

(2) The weight RE v belongs to the convex hull of the W((, b) orbit 

of p((), half the sum of a set of positive roots for ry in [. 

(3) The (g, K)-module X is isomorphic to Ls(Z). 
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Just as we unwound Theorem 3.3 into Corollary 3.5, we can unwind 

Theorem 5.8 into the following statement. 

Corollary 5.9. Suppose Hmax is a maximally compact Cartan 

subgroup of G as in (4.1); use the notation there. Fix a weight A E 

it;;_.ax,o, and representatives Ai, ... , Ar for the orbits of W(K, Tmax) on 

W(g, tmax) · A. To each Ai associate a 0-stable parabolic subalgebra 

qi = q>-i 

as in Definition 4.3, with Levi subgroup 

Li= L>.;_ 

For each i, define rrt; (Li) to be the set of irreducible unitary ([i, Li nK)­
modules Z having the following two properties. 

(a) The compact center tz(li) acts on Z by the weight Ai. 

(b) Write the infinitesimal character of Z as (Ai, v) in accordance 

with (4.7). Then REv belongs to the convex hull of W([i, I))• 

p(li). 

Then 

(1) The cohomological induction functor .Cs; is a bijection from 

rrt; (Li) to a set rrt; ( G) of irreducible unitary representations 

ofG. 

(2) As i varies, the sets rrt; ( G) are disjoint. 

(3) Suppose X is an irreducible unitary representation of G of in­

finitesimal character <p. Then X belongs one of the sets rrt; ( G) 

if and only if Tp(RE</J) is conjugate by Adg to A. 

Actually conclusions (1) and (2) do not depend on the conjecture 

of [SV]. Part (3) shows how to recover the W(g, tmax) orbit of Ai from 

( the infinitesimal character of) any representation X in rrt; ( G). The 

formulation of (2) suggests that we should actually be able to recover Ai 

(or at least its W(K, Tmax) orbit) from X. This is indeed possible, and 

is one of the main points of [SV] (see Definition 0.2 there). 

§6. Reduction to general Levi subgroups 

By combining Corollary 3.5 and Corollary 5.9, we can get a de­

scription of all unitary representations of G in terms of unitarily small 

representations of Levi subgroups. In this section we will make such a 

reduction explicit. 
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Definition 6.1. A Levi subgroup of G is one of the form 

L = centralizer in G of Co, 

with c0 a subspace of a 0-stable Cartan subalgebra ry of g. (We do not 

require c0 to be 0-stable.) This is a reductive group in Harish-Chandra's 

class, with Cartan involution 0. Decompose the Cartan subalgebra Qo 

as 

Qo = ryg([) + ~([) + nW) 

as in Definition 2.5. Suppose Z is an irreducible unitary representation 

of L, of infinitesimal character 

(Here the additional superscripts on cpz stand for "compact" and "non­

compact.") Necessarily 

cpz,c E i~([)* C REry*, 

and 

cpz,n E in~([)* C IMry*. 

We say that Z is unitarily small if 

cp8 E convex hull of W([, ry) · p C RE~-

This is consistent with the definition made in Theorem 1. 1 in the semi­

simple case. We write rr:~smau(L) for the set of unitarily small repre­

sentations of L with the indicated action of the center of L 

Finally, we say that cpz is maximally regular if it is orthogonal only 

to the roots of ry in L That is, we require 

for every non-zero weight of ~z([) in g. Suppose cpz is maximally regular. 

Then the centralizer L(cpz,n) is a Levi factor of a real parabolic subgroup 

P(cpz,n) in G. The weight cpz,c defines a 0-stable parabolic subalgebra 

q(cpz,c, cpz,n) = [(cpz,c, cpz,n) + u(cpz,c, cpz,n) 

for L(cpz,n) as in Definition 4.3; its Levi subgroup L(cpz,c, cpz,n) is just 

the original L. 

Theorem 6.2. Suppose Lis a Levi subgroup of G, and cpz E ~z([)* 
is a maximally regular weight (Definition 6.1). Define P(cpz,n) and 
q(cpz,c, cpz,n) as in Definition 6.1. 

(1) Cohomological induction from L to L(cpz,n), followed by para­

bolic induction from L( cpz,n) to G, carries the unitarily small 
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representations in IT!~smau(L) bijectively onto a set IIf (G) of 

irreducible unitary representations of G. 

(2) Two such sets of unitary representations of G can overlap if 

and only if the corresponding pairs (L, </Jz) are conjugate by K, 

in which case they coincide. 

(3) Suppose that Conjecture 0.6 of [SVJ holds for G. Then any 

unitary representation of G belongs to one of the sets IIf ( G). 

This is a combination of Corollary 3.5 and Corollary 5.9. It provides 

a rather precise form of the claim in Theorem 1.1(1). 

References 

[Car] J. Carmona, Sur la classification des modules admissibles irreduc-

tibles, in "Non-commutative Harmonic Analysis and Lie Groups", 

(J. Carmona and M. Vergne, eds.), Lecture Notes in Mathematics, 

Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983. 

[HC] Harish-Chandra, Harmonic analysis on reductive groups I. The theory 

of the constant term, J. Fune. Anal., 19 (1975), 104-204. 

[Hel] S. Helgason, "Differential Geometry, Lie Groups, and Symmetric 

Spaces", Academic Press, New York, San Francisco, London, 1978. 

[Hmp] J.E. Humphreys, "Introduction to Lie Algebras and Representation 

Theory", Springer-Verlag, Berlin-Heidelberg-New York, 1972. 

[Knp] A. Knapp, "Representation Theory of Real Semisimple Groups: an 

Overview Based on Examples", Princeton University Press, Prince­

ton, New Jersey, 1986. 

[Sal] S. Salamanca-Riha, On the unitary dual of real semisimple Lie groups 

and the Aq (.\) modules. The regular case, Duke Math. J., 96 

(1999), 521-546. 

[SV] S. Salamanca-Riha and D. Vogan, On the classification of unitary 

representations of reductive Lie groups, Ann. of Math., 148 (1998), 

1067-1133. 

[SpV] B. Speh and D. Vogan, Reducibility of generalized principal series 

representations, Acta Math., 145 (1980), 227-299. 

[Gm] D. Vogan, "Representations of Real Reductive Lie Groups", Birk-

hauser, Boston-Basel-Stuttgart, 1981. 

[IC4] D. Vogan, Irreducible characters of semisimple Lie groups IV. Char-

acter-multiplicity duality, Duke Math. J., 49 (1982), 943-1073. 

[VUn] D. Vogan, Unitarizability of certain series of representations, Ann. of 

Math., 120 (1984), 141-187. 

[0mg] D. Vogan, "Unitary Representations of Reductive Lie Groups", An­

nals of Mathematics Studies, Princeton University Press, Prince­

ton, New Jersey, 1987. 



324 D. A. Vogan, Jr. 

[Vorb] D. Vogan, Unitary representations of reductive Lie groups and the 

orbit method, in "New Developments in Lie Theory and Their Ap­

plications", (J. Tirao and N. Wallach, eds.), Birkhiiuser, Boston­

Basel-Berlin, pp. 87-114. 

[KV] A. Knapp and D. Vogan, "Cohomological Induction and Unitary Rep-

resentations", Princeton University Press, Princeton, New Jersey, 

1995. 

[VZ] D. Vogan and G. Zuckerman, Unitary representations with non-zero 

cohomology, Compositio Math., 53 (1984), 51-90. 

Department of Mathematics 

Massachusetts Institute of Technology 

Cambridge, Massachusetts 02139-4307 


