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ABSTRACT

Lifelog systems, inspired by Vannevar Bush’s concept of
“MEMory EXtenders” (MEMEX), are capable of storing a
person’s lifetime experience as a multimedia database. De-
spite such systems’ huge potential for improving people’s
everyday life, there are major challenges that need to be ad-
dressed to make such systems practical. One of them is how
to index the inherently large and heterogeneous lifelog data
so that a person can efficiently retrieve the log segments that
are of interest. In this paper, we present a novel approach to
indexing lifelogs using activity language. By quantizing the
heterogeneous high dimensional sensory data into text rep-
resentation, we are able to apply statistical natural language
processing techniques to index, recognize, segment, cluster,
retrieve, and infer high-level semantic meanings of the col-
lected lifelogs. Based on this indexing approach, our lifelog
system supports easy retrieval of log segments representing
past similar activities and generation of salient summaries
serving as overviews of segments.

Categories and Subject Descriptors

H.3 [Information Storage and Retrieval]: H.3.3 Infor-
mation Search and Retrieval

General Terms

activity languages
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Indexing Heterogeneous Multimedia, Lifelogs,

1. INTRODUCTION

Our life experiences are fleeting and immaterial. Memory,
our ability to store, retain and recall information, is cru-
cial for day to day life. However memories, unlike digital
recordings, fade and are forgotten. Memory problems can
be very serious for people who have suffered brain injuries or
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have memory diseases like the Alzheimer’s. As of Septem-
ber 2009, more than 35 million people around the world have
been diagnosed with Alzheimer’s disease for which episodic
memory impairment (EMI) is the main sympton [12]. And
according to [3], the prevalence of Alzheimer’s is expected
to reach approximately 107 million people by 2050.

In 1945, Vannevar Bush proposed a prototype computer
system named MEMEX, whose main functionality is to share
people’s burden in remembering. Such a system has great
potential in a variety of applications and is particularly use-
ful for people who suffer from EMI. To assist the ever grow-
ing population of EMI sufferers, Bush’s MEMEX concept
seems to be a promising solution and thus gives birth to the
personal lifelog research area. To fulfill Bush’s vision, a per-
sonal lifelog system must be able to 1) store a large volume
of personal multimedia data and 2) efficiently retrieve the
relevant data based on user requests.

Technologies today make it possible to capture life expe-
riences in digital format. Advancements in mobile sensors
and prevailing computing allows LifeLog systems to record
almost every aspect of a person’s life [7]. While recording
and storing all sensor information in a database poses an en-
gineering challenge, indexing them is key to making lifelog
systems useful. An index allows retrieving important pieces
of memory from the lifelogs. We cannot expect users to
annotate and create an entire index. Yet understanding the
semantics of images, audio and video is still an open research
problem.

In this paper, we present a novel approach to indexing
lifelog data using activity languages. In this ongoing re-
search, we convert the ambulatory sensor inputs such as ac-
celerometer readings into an activity language and using it
as the main index of multimedia lifelogs. This approach en-
ables the use of statistical natural language processing meth-
ods to index, retrieve, cluster, summarize lifelogs which are
not easy or possible for images, audio and video information.

The rest of the paper is organized as follows. We first
describe our LifeLogger system in Section 2. Section 3 in-
troduces the concept of “Activity as Language” where we
quantize the sensory input and convert it into a text rep-
resentation to interpret the underlying meaning of lifelogs.
In Section 3.2, 3.3, 3.4 and 4, we present algorithms and
preliminary results on activity recognition, similar activity
retrieval and geo-trace pattern recognition. Finally, we con-
clude our findings and discuss the future works.

2. OUR LIFELOG SYSTEM

Our lifelog system consists of four major parts, namely,
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Figure 1: Sensor helmet for collecting activity data.

the Lifelogger Mobile Client, the Lifelogger Server Appli-
cation, the Similar Activity Retrieval Service, and the Geo
Trace Service.

2.1 Lifelogger Mobile Client

Thanks to the rapid advancement of commercial mobile
devices, we are able to build our Lifelogger client devices
from off-the-shelf products. Our LifeLogger Mobile Client is
a helmet mounted with two Nokia N95 phones (Figure 1).
The client records various types of sensory data including
GPS coordinates for outdoor locations, gyroscope readings
for rotation, microphone recordings for sound, camera im-
ages for pictures, and WiFi signal strength for indoor lo-
cationing. All data is collected with timestamps in JSON
format and transmitted to the LifeLogger Server Applica-
tion using the HTTP protocol via wireless connections.

2.2 Lifelogger Application Server

The LifeLogger Application Server is responsible for stor-
ing, pre-processing, and modeling recorded data as an activ-
ity language. It is also in charge of supplying the user inter-
face for users to interact with their lifelogs. This server-side
module is implemented as a web application so that users
can access it easily through web browsers. The application
provides an easy-to-use interface for end users to browse, an-
notate, and search their lifelogs. To make it easy for users
to recall their past living experiences, we fit the collected
images, audio, and GPS location data into one screen (Fig-
ure 2) to let users intuitively combine these memory clues.
Moreover, since all sensory data are associated with syn-
chronized timestamps, users can navigate through the data
set by simply dragging the time-line at the center of the
screen, and the three types of data would be updated si-
multaneously. Users can also annotate a selected segment
of lifelog by providing a short text description. Such text
descriptions will be used to learn the association between
natural language queries and the stored lifelog data. If the
user is interested in a specific part of the lifelog and would
like to find all lifelog segments that are similar to it, all the
user need to do is first select that specific lifelog part using
the time-line control and then click the “Find Similar Activ-
ities” button beside it. The similar lifelog segments will be
returned and listed in a table at the bottom of the screen
(Figure 2) and are sorted based on their relevance.
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Figure 3: An example of quantizing accelerometer
readings to activity language representation.

2.3 Similar Activity Retrieval and Geo Trace
Services

The LifeLog system supports similar activity retrieval on
two levels of time granularity. At the micro or more fine-
grained level, accelerometer readings are used to identify
the user’s physical activity at a given moment. And at the
macro level, i.e., at a higher granularity, GPS coordinates
are used to identify patterns and in the user’s daily move-
ments. Similar activity detection at higher granularity levels
increase in importance when dealing large collections of data
pertaining long periods of a person’s life. The importance
of being able to detect similar activities at high granularity
is seen by two features that it enables in lifelog systems,

e Automatic classification of activities that are similar
in nature to previously manually labeled activities.

e Irregular activity detection, i.e., detecting activities
that may be of special interest to the user.

3. LANGUAGE-BASED INDEXING
3.1 Main Idea

One of challenges in indexing, retrieving and interpret-
ing lifelogs is that a lifelog is a collection of heterogeneous
sensory information and each sensory data type requires a
special method to process the raw input. In most exist-
ing lifelog applications, raw input from sensors is classified
into predefined classes by trained classifiers for further pro-
cessing, usually limiting the scope of the systems to those
predefined activities.

In this paper, we propose a novel method of represent-
ing sensory input as “activity language” through quantizing
raw sensory input. Here we use motion information as an
example. To record users’ motion, we use 3-axis accelerom-
eters. For the accelerometers used in our experiments, the
raw readings for each axis ranges from -360 to 360 which
translates into 373,248,000 different (as,ay,a.) combina-
tions. We quantize the raw accelerometer reading into V'
groups using the K-Means clustering algorithm. Once the
clustering algorithm converges resulting in V' cluster cen-
troids, we label each cluster arbitrarily (e.g. - “D”, “GC”
and “DFR”). We label each accelerometer sample by assign-
ing it the nearest cluster centroid’s label, thus converting
the ambulatory activity into “activity text” (Figure 3).

The main benefits from quantizing the raw sensory input
into an “activity language” representation are,

e Dimension reduction of sensory input - Higher dimen-
sional input data is reduced into a single dimension
reducing the computation complexity. In the case of
accelerometer readings, the original 3-dimension input
of (az, ay, a.) is now reduced to one dimension.

e Efficient indexing and searching of lifelogs - Searching
an indexed text corpus is much easier than searching
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Figure 2: Web interface of browsing/searching/annotating life logs.

a database of real numbers. Compared to the infinite
real-number space, the limited “vocabulary” size of the
text representation allows the search algorithm to be
much more efficient. Index and search algorithms such
as the Inverted Index and Suffix Arrays [11] developed
for strings can be applied on the “activity language”
representations. This is more straight forward than
searching the lifelogs based on the the cosine or Eu-
clidean distances between the query and the logged
activities.

e Uniformed representation of heterogeneous input - By
converting various sensory input into a single type of
“activity language” representation, we can develop and
apply the same “activity language processing” algo-
rithms on different types of data. In this paper, we
demonstrate that motion from accelerometer readings
and geo-trace from GPS recordings can all be pro-
cessed by n-gram language model algorithms.

We call this representation “activity language” based on
the analogy between human activity and natural languages.
The similarity between human activity and language has
been articulated by Burke [4] and Wertsh [19]. Based on
the “principle of language as action”, natural languages and
human activities indeed share some important properties.
For instance, they are both “mediational means” or tools by
which we achieve our ends. Additionally, they both exhibit
structure and satisfy “grammars”.

Table 1 illustrates that human ambulatory activities share
alot in common with natural languages at all levels. Anatom-
ical limitations of the human body allows only a limited set
of atomic movements(e.g. - “turn upper body left” is possi-
ble, “jump up at 10g acceleration” is not possible). The set of
possible atomic movements form the vocabulary of the activ-
ity language. A sequence of atomic movements performed in
a meaningful order creates a movement such as an action of
“standing up”. Actions such as “climbing up stairs” are cre-
ated by performing actions in a particular order, analogous

Natural Activity Example

Language | Language

Word Atomic Movement Turn upper body left

Phrase Movement Stand up

Sentence Action Climb up stairs

Paragraph | Activity Enter building, climb
up stairs and walk
into office

Document | Event Left home and cycled to
campus, arrived at my
office on 2nd floor

Table 1: Activity as language at different levels.

to creating a sentence with words. A sequence of actions
builds up an activity. The higher level concept event is com-
posed of a series of activities, as documents are composed of
sentences.

3.2 Activity Recognition

Before applying the activity language concept in our lifelog
system, we performed a series of predefined-activity recog-
nition experiments to justify the benefits of modeling hu-
man activities as a language. In our approach, we view
the labeled data for each activity a; as the training corpus
and train a smoothed n-gram language model over the con-
verted activity language text using the SRI language model
toolkit [17]. For each testing “activity sentence” ¢, we input
it to each of the pre-built language models to calculate the
probability of ¢ being generated by activity a; and we predict
the activity of the testing sentence to be i* such that,

i* = arg max P(t|a;) (1)
An issue of using language models for activity recogni-

tion is that language model probabilities are not directly
comparable if their respective training data have different



Predicted Activity
walking running cycling
walking | 94% 95% | 3% 1% | 3% 4%
running | 6% 4% | 92% 94% | 2% 2%
cycling [ 8% 2% | 0% 0% | 92% 98%

Table 2: Classification accuracy on corpus with vo-
cabulary = 100 and with vocabulary = 200 respec-
tively.
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Figure 4: Recognition accuracy vs. n-gram order.

vocabulary sizes. To solve this problem, each training data
set is augmented with a universal vocabulary list built from
all training data sets. As a result, all our activity language
models have the same vocabulary size, and their generated
probabilities are comparable.

Our preliminary results of using smoothed n-gram lan-
guage model for activity recognition demonstrated an aver-
age accuracy rate of 94% in distinguishing among basic ac-
tivities such as walking, running, and cycling. Table 2 com-
pares the recognition accuracy of language models trained
over corpora of vocabulary size 100 and 200 words. With a
larger vocabulary size (i.e. - more atomic movement types)
the activity language has greater discriminative power to
differentiate human activities. Figure 4 shows the average
activity recognition accuracy vs. the order of n in language
model training. Overall, for this basic activity recognition
task, the order of history does not play a significant role.
The promising results of these experiments increased our
confidence in using the activity language to improve index-
ing in lifelog systems.

3.3 Similar Activity Retrieval

In many cases, we want to find out information about ac-
tivities that are not predefined such as “how many tennis
games did I play in the past two months?” or “how much
time did I spend sitting in front of TV last week?”. It is not
possible to enumerate all possible activities and train Hid-
den Markov Models ahead of time to answer such questions.
In our approach, we convert the lifelogs, in particular, the
main indexing sensory information into a text representa-
tion. This allows us to apply Information Retrieval tech-
niques to “retrieve’ relevant activities from the past logs to
answer user queries.

In our implementation, a user can select a segment from
his/her lifelogs on the web interface and indicate that he/she
may want to find similar activities from the past logs. The
highlighted segment does not need to be annotated by nat-
ural language descriptions such as “playing tennis”. The
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Table 3: Calculating the similarity between two ac-
tivity sentences using averaged n-gram precision.

system will search past lifelogs and return the most relevant
segments for the user to review.

The key here is to calculate “similarity” between two lifelog
segments. Inspired by the BLEU metric [15] where averaged
n-gram precision is used to measure the similarity between
a machine translation hypothesis and human generated ref-
erence translations, we use averaged n-gram precision to es-
timate the similarity between two lifelog segments.

Assuming that P and @ are two activity language sen-
tences of the same length [. P is the sequence of P1, Pa, ...,
Pr, and Q is the sequence of Q1, Q2, ..., QL. Denote the
stmilarity between P and Q as S(P, Q). Define the n-gram
precision between P and @ as Prec,(P,Q) =

ZEE{AH n-gram types in P} min(freg(ﬁ7 P)’ fTGQ(ﬁ7 Q))
ZﬁE{All n-gram types in P} freq(ﬁ, P)

) (2)

and the similarity between P and @ is defined as:

S(P,Q) = 1 O Preca(P,Q) 3)

Prec, (P, Q) calculates the percentage of n-grams in P that
can also be found in @ and S(P,Q) averages the precision
over 1-gram, 2-gram and up to N-gram. In our experiments,
we empirically set N = 5.

Table 3 shows an example of calculating the similarity
between activity sentence P (“NB NB P P P P P P NB
NB”) and @ (“NBP P NBNB P NBP P P”).

Given a query sentence of [ words, we assume that similar
activities in the lifelog should also be of length . This as-
sumption makes the retrieval algorithm easier to implement
as varied length activity retrieval would require activity seg-
mentation. For a lifelog with G words, there are G — [ dif-
ferent strings of | words long. In our current setting, a 24
hours lifelog contains about 200 million activity words. Cal-



5 V Window Sizes: 1288 —_—
500
< B
5
3 350 “ n\ I ‘J ‘l ]
< | |
[} Bl i W i ‘ 'n ‘ |
@ 5l l b \ A !A“Nw\m ” h\m f\ﬁ |
g (A ML e ”'J‘ A,
c R | | \ iy LT f
8 o2sk 4 WA W YW Wt \
SN AW A
A | 0 “"" ‘w"‘x;,j
2 H«L r\'\\ Ukv,‘!“;:v !
15} | \J ]
' 3000 2500 3000 3500 2000

Time

Figure 5: Activity changes calculated by different
size of sliding windows.

culating the similarity between each of the G —1 strings with
the query can be computationally expensive. To speed up
retrieval, we use suffix arrays to pre-select strings in the cor-
pus that have high order n-gram matches with the query and
calculate S(P, Q) scores for those strings only. The observa-
tion is that if a string in the lifelog is similar to the query,
then it should have many high order n-grams matched with
those in the query string.

Top R similar activity segments are returned to the user
on the web interface (as shown in lower panel in Figure 2).
The user can load each segment to “play” the correspond-
ing lifelog and for our ongoing experiments evaluate if the
segment is truly “similar” to the query.

3.4 Hierarchical Segmentation of Lifelogs

Lifelog records a user’s daily life as a continuous sequence
of sensory data. After converting the sensory data to activity
language text, a lifelog is now a long string of text. Just as
we need punctuations, sentence boundaries and paragraph
boundaries in written text, it would make lifelogs more read-
able if we could automatically segment the data based on
user activities.

The underlining assumption of our segmentation algorithm
is that when a user switches his/her activity at time ¢, the
similarity between string [t —w, t — 1] and [t, t+w] should be
much lower than if ¢ is inside the same activity for a window
of size w. For a window size w, we define the “change of
activity” at time ¢ as:

H(t,w) = —1og(0.00001+ S ([t —w, t—1], [t,t+w—1])). (4)

The higher the value of H(t,w), the more likely a change of
activity at time ¢ would have occurred. Figure 5 shows the
H value at each data point given different window sizes for
segmenting a lifelog.

It can be noticed that: (1) peaks of activity change iden-
tified by larger windows are also peaks identified by smaller
windows but not vice versa; and (2) activity changes over
larger windows are smoother than smaller windows. Intu-
itively, larger window sizes capture changes of larger-scale
activities whereas smaller window captures changes of smaller
activities. Based on this finding, we first segment the lifelog
data using larger window sizes and then recursively segment
the data using smaller windows. This results in a hierarchi-
cal segmentation of lifelogs which allows user to efficiently
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Figure 6: Identifying peaks in the behavior-change-
curve.
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Figure 7: Hierarchically segmented lifelog. Activ-
ity boundaries detected automatically by the system
and descriptions are added by the user

browse through the lifelog instead of playing the whole lifel-
ogs. (Figure 7).

4. GEO-TRACE PATTERN RECOGNITION

To detect similar activities at macro time scales we use a
language model based approach. Training a language model
on GPS coordinates to model a user’s daily movement re-
quires the conversion of the GPS coordinates into “words”.
The successive GPS coordinates, logged by a user’s position,
form “sentences” relating to his daily routine. To perform the
conversion of GPS coordinates into “words” in the LifeLog
system two approaches were considered, 1) dividing the spa-
cial domain covered by the coordinate system into cells and
assigning each cell a unique word, or 2) to perform clus-
tering over logged GPS coordinates and assign each cluster
centroid a unique word. The first approach has been imple-
mented and tested showing promising results. The second
approach is also being considered as an improvement for the
existing system.

In our implementation of the first approach, division of
spacial regions covered by the GPS coordinate system is per-
formed by considering only the longitudinal and latitudinal
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Figure 8: Quantizing GPS coordinates with time
information into text representation.

values and ignoring the altitude values. The longitudinal-
latitudinal coordinates are separated into regions of roughly
equally size across the surface of the globe, creating a two
dimensional grid which is augmented with a third dimen-
sion by incorporating time (time-of-day), forming a lattice.
Therefore the “word” of a GPS sample is formed using lon-
gitude, latitude, and timestamp of the reading (Figure 8).

Various aspects of the detection mechanism were tested
in a series of experiments described below. As experimental
data the location tracks of ten people collected over a pe-
riod of four weeks were used. This constitutes 40 week-long
location tracks. For each test the system is trained using
a week-long location track of a person. The testing data
is created from the remaining 39 week-long tracks, but di-
viding each track into segments. Each of the segments are
presented to the model learned by the system, which clas-
sifies whether or not it falls into the daily routine of the
person. Ground truth for the experiments were established
using the LifeLogger system to manually classify each seg-
ment of the location tracks using the visual, topographical
and audio hints provided by the systems interface.

In the first experiment we maintain the granularity of spa-
cial and time divisions, and segment sizes constant. In this
experiment the language models are varied, using respec-
tively a unigram model, a bigram model, up to a 10-gram
model. For each model the prediction accuracy is measured.
The results from this experiment are shown in Table 4 and
Figure 9.

The results show that prediction accuracy increases as the
number of past states considered by the language model in-
crease. The increasing trend levels-off after the number of
past states considered is greater than five.

In the second experiment we employ a 10-gram language
model while varying the granularity of spacial division. The
segment sizes and time divisions are kept constant in this
experiment. For each granularity level, vocabulary size and
measured prediction accuracy are noted. From the results
of this experiment (depicted in Figure 10) it can be seen
that accuracy is very dependent on the granularity level.
Extremely high granularity levels could push the algorithm
into a hyper sensitive state where noise from the GPS device
and minute changes in a person’s routine heavily affects the
results. While low granularity levels cause the algorithm to
loose important features required for an effective classifica-
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Figure 9: Variation of prediction accuracy with var-
ious language models.
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Figure 10: Variation of prediction accuracy with
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tion.

In the third experiment we employ a 10-gram language
model and maintain fixed spacial and temporal granularity.
Spacial granularity is maintained at one million divisions
each for longitudinal and latitudinal coordinates. Temporal
granularity is maintained at 1 hour divisions. In this exper-
iment we vary the testing segment size from 1 hour to 12
hours while observing the prediction accuracy. The results
from this experiment shown in table 6 and figure 11.

As the size of the segment provided for classification in-
creases in length, thereby increasing the available features
for classification, the accuracy of the predictions increase.

S. RELATED WORK
5.1 Activity Recognition

There have been several techniques for recognizing or dis-
tinguishing basic human activities. They can be categorized
into two flavors: heuristic threshold-based classifiers and
pattern recognition techniques such as decision trees, near-
est neighbor, Naive Bayes, support vector machines (SVM),
neural networks, Hidden Markov Models (HMM) and Gaus-
sian mixture models [13]. For recognizing high-level human
activities, several attempts had been made in [1, 16]. Among
these techniques, the most popular ones we see so far are
those based on HMM. Single-layer HMM-based approaches
classify the input sensory information into one of the pre-
defined activities such as walking, running, and standing.



n 1 2 3 4 5 6 7 8 9 10
Prediction accuracy (%) | 70.34 | 73.04 | 79.95 | 84.82 | 85.71 | 86.61 | 86.61 | 86.61 | 86.61 | 86.61

Table 4: Variation of prediction accuracy with various language models.

Approx. Cell Size (m x m) | 4000 | 800 400 80 40 8 4
Accuracy (%) 50.34 | 66.47 | 77.28 | 88.89 | 86.61 | 81.41 | 52.47

Table 5: Variation of prediction accuracy with granularity of spacial “word” grid
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Figure 11: Variation of prediction accuracy with
various language models.

However, since HMM assumes the first order Markov chain
in the state space and usually does not consider the inherent
“grammar” or “structure” of human activities, the activities
that can be recognized by HMM are limited to those pre-
defined in the training data, which as a result limits HMM'’s
application in people-centric computing.

Layered probabilistic representations using HMM is much
more powerful for sensing, learning and inferencing human
activities at multiple levels [5, 14]. Using Multi-level HMM,
such as the Hierarchical Hidden Markov Model (HHMM)
[6] allows for unsupervised discovery of structures at multi-
ple level in video segmentation and activity recognition [20].
We will compare our approach with the existing multi-level
HMM approach by means of system robustness and the cost
of training.

5.2 Lifelog System

Different approaches have been used to implement a lifelog
system. The MyLifeBits system [7] is designed to store and
manage everything in a person’s lifetime that can be cap-
tured in digital format. Its initial goal was to store all per-
sonal information found in PCs such as articles, video, of-
fice documents, email, keystrokes, and screen mouse clicks,
etc. It then evolved into storing all ambient information of
a person’s daily life via a specialized camera device named
SenseCam. MyLifeBits supports capture, storage, manage-
ment, and retrieval of many media types, and its sophisti-
cated database design is capable of storing a large volume
of multimedia data. However, MyLifeBits only applies a ba-
sic metadata-based indexing approach which requires users
to manually annotate most of the collected data in order to
have meaningful search results. Our works address this is-
sue well by providing a more effective indexing scheme which

requires less user involvement and provides more meaning-
ful search results by taking the “meaning” of the collected
media into account. Another lifelog system implementation
is discussed in [9]. This work focuses on real-time storage
and retrieval of lifelog in a ubiquitous environment. The
developed system supports semi-automatic activity analy-
sis and provides an intuitive graphical interface for users to
browse their lifelogs that correlates the space and temporal
information of the displayed sensory data.

In addition to our language approach to indexing lifelog,
Kim et al presented a multi-modal sensor fusion technique
which supports automatic generation of lifelog’s metadata [10].
The key idea is to combine the analysis results of different
kinds of low-level sensory data to better infer higher-level
context information about the collected lifelog. For example,
by combining the analysis of audio, GPS, and accelerometer
readings, the system is able to better identify the environ-
ment in which the lifelog was taken. Machine learning tech-
niques such as decision tree and Gaussian Mixture Model
(GMM) are used to analyze the collected low-level sensory
data. Similar techniques to this sensor fusion approach are
explored in [2, 18]. The former uses video key frame summa-
rization and conversation scene detection to fulfill efficient
lifelog retrieval. The latter proposes an integrated technique
to process lifelog data using correlations between different
types of the captured data from multiple sensors.

5.3 Geo-trace Pattern Recognition

Pattern detection in location traces is an area of research
that has some previous work [8]. The majority of these
research work focus on detecting short time duration pat-
terns [8], where as our system uses frequently occurring
short-time duration patterns to classify the similarity of
larger time segments.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we present a novel yet straightforward ap-
proach of processing lifelogs of heterogeneous sensory data.
We verify the similarity between activity and language by
demonstrating Zipf’s distribution over our activity language
corpus. The experimental results presented in Section 3.2
demonstrate high accuracy of using language models for hu-
man activity recognition. Unlike the traditional HMM ap-
proach which is limited to activity recognition task, mod-
eling activity as language enables many other applications
such as similar activity retrieval, and hierarchical activity
segmentation. Besides, this language-based modeling ap-
proach can be applied to other types of sensory input such
as geo-locations. We will conduct user study to evaluate
the effectiveness of our similar activity retrieval service and



Segment length (hours) | 0.25 | 0.50 | 0.75

1

2 4 6 8 10 12

60.58 | 62.16 | 63.78

Prediction accuracy (%)

66.37

77.42 | 81.09 | 86.61 | 86.46 | 91.43 | 91.67

Table 6: Variation of prediction accuracy with testing segment length.

extend our work of hierarchical activity segmentation to au-
tomatic lifelog summarization.
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