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1. INTRODUCTION 

1 .l Motivation 

A primary goal of database management is the reduction of software costs by 
promoting data independence. In the database literature, practical aspects of the 

development of applications software that use a database system are often treated 
as peripheral to the main thrust of database research. Until recently, applications 
programming has usually been considered in the context of a data sublanguage 
embedded in a conventional applications programming language. Some of the 

better examples of this approach include papers by Date [5] and Schmidt [17]. 
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A more recent trend is to design the programming language with database 

facilities as a single unit [16, 221. This paper takes a step along this path by 
presenting an applications programming language that tightly integrates data 
with the procedures that use it (in the style, say, of SIMULA [4]). 

Our language, called TAXIS,’ is designed primarily for applications systems 

that are highly interactive and make substantial use of a database. These 

applications, which we call interactive information systems (IIS), are character- 
ized by their handling of large volumes of transactions that are short, of predict- 
able structure, and update intensive. Examples include credit card verification, 

student-course registration, and airline reservations. By applying our tools to a 
more limited domain, we can customize them to the domain. Also, by defining 
our problem more narrowly than that of “applications systems,” it will be easier 
to evaluate the efficacy of our approach. 

In the future, we see TAXIS at the center of a programming system that would 
permit a designer to interactively build an IIS with the help of specialized text- 
editing and graphics facilities. The system would include a relational database 

management system (DBMS). The DBMS provides an interface into which the 

database operations of the IIS can be compiled. 

1.2 Design Principles 

TAXIS is eclectic, combining concepts from three areas of computer science 

research: artificial intelligence (AI), programming languages, and database man- 
agement. From AI we have used the concept of semantic network for data and 
procedure modeling [2,11]. From programming languages we have borrowed the 
concept of abstract data type [12, 181 and exception handling [21]. Finally, from 
database management we have built on the concept of a relational database [8]. 

These ideas are married to form a concise language framework, yielding a novel 
and powerful collection of facilities. First, the semantic network modeling con- 
structs represent a qualitative improvement in abstraction mechanisms over 

conventional programming languages. Database operations can work on hierar- 
chies of objects, instead of independent tuples and relations (similar to [20]). 
Data can thereby be manipulated at varying levels of abstraction. We extend our 
semantic structures beyond relations and apply them equally to procedures, 
integrity constraints, and exception handling. 

Second, by associating operations with the data they use, the semantics of the 

database can be represented in the applications program. This is in contrast to 
the sharp distinction between DDL and DML in most database languages. The 

semantic information can be used by the compiler to solve many integrity, 
security, and concurrency problems at compile time. 

Finally, since the application is described in a formal semantic model, “meta- 
level” commands allow the application description itself to be manipulated by 
programming language commands. This permits database administrator functions 
to peruse the logical design on-line. 

Four principles guided much of the TAXIS design: 

(1) The language must offer relations and associated operations for database 

1 Taxis (T&&S): Greek noun meaning order as in “law and order” or class as in “social class,” “university 

class,” etc. 

ACM Transactions on Database Systems, Vol. 5, No. 2, June 1980. 



Designing Database-Intensive Applications * 187 

management, transactions for the specification of application programs, and 
exception-handling facilities to enhance the development of interactive systems. 

(2) Each conceptual object represented in the language must have associated 

semantics that involve both a behavioral and a structural component. These 
semantics are expessed in terms of the notions of class, property, and the IS-A 
hierarchy (cf. “generalization” in [20]). 

(3) As much of the language as possible should be placed into the framework 
of classes, properties, and the IS-A hierarchy. 

(4) The schema (i.e., the collection of classes, along with their properties and 
the associated IS-A hierarchy) should be compilable into a language such as 

Pascal, enriched with a relation data type and associated operations (as proposed, 
for instance, in [17]). 

The first principle is a consequence of the intended scope of the language. The 
second reflects our belief that much of the difficulty of designing and implement- 
ing IISs (usually translated into high costs of initial implementation and main- 
tenance) is due to the lack of appropriate programming constructs in “conven- 
tional” languages (e.g., Cobol and PL/I) for handling the semantics of any one 
application. The third and fourth principles are the results of our concern for 
linguistic uniformity and efficiency. We consider both of them quite important 

given the multiplicity of sources of ideas and the complexity of the problem at 
hand. 

Section 2 of the paper discusses the basic entities that constitute a TAXIS 
program. Section 3 describes the IS-A hierarchy as an organizational principle 
(abstraction mechanism) for the classes constituting a program. In Section 4 we 
present more details about the different categories of classes. Concluding remarks 
and directions for further research appear in Section 5. 

The presentation of the language is rather informal and necessarily sketchy 
due to space limitations. The interested reader is referred to [14, 251 for more 
details. 

2. OBJECTS AND PROPERTIES 

There are three types of objects in TAXIS: tokens, which represent constants; 

classes, which describe collections of tokens; and metaclasses, which describe 
collections of classes. 

2.1 Tokens and Classes 

Tokens are the constants of a TAXIS program. For example, john-smith (repre- 
senting the particular person called John Smith), ‘SMITH,JOHN,B’ (represent- 
ing the string SMITH,JOHN,B), and 7 (representing the number 7) are all tokens. 
Tokens are denoted throughout the paper by identifiers in lowercase letters and 
numerals; strings are delimited by single quotes. 

A class is a collection of tokens sharing common properties. If a token t is an 
element of the collection associated with a class C we say that t is an instance of 
C. It may be helpful for the reader to compare TAXIS classes with SIMULA 
classes or programming language types as points of reference. 

Some sample classes are PERSON, whose instances are tokens such as john- 
smith, representing particular persons, PERSON-NAME, whose instances are 
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(string) tokens, such as ‘SMITH,JOHN,B’ that can serve as proper names, and 
INTEGER, whose instances are integers such as 7. We use identifiers in uppercase 
letters to denote classes. 

We call the collection of all tokens which are instances of a class C the extension 
of c. 

2.2 Properties 

Classes and tokens have properties through which they can be related to other 
classes and tokens. Some of the properties that may be associated with the class 
PERSON represent the following information: 

“each person has a name, an address, an age, and a phone number” 
“each person’s name consists of a first and last name and possibly a middle 

initial” 

For tokens, properties represent specific facts rather than abstract rules such as 
those presented above. Thus, john-smith will have properties expressing facts 
such as 

“john-smith’s name is ‘SMITH,JOHN,B’, hia address is 38 Boston Dr., Toronto, 
his age is 32, and his telephone number is 762-4377” 

Properties are triples consisting of one or more subjects, an attribute, and a 
property value (or p-value). For example, PERSON may have the following 
properties: 

(PERSON, name, PERSON-NAME) 

(PERSON, address, ADDRESS- VAL UE) 

(PERSON, age, AGE-VALUE) 

(PERSON, phone#, PHONE-VALUE) 

The same applies for properties of tokens, i.e., 

(john-smith, name, ‘SMITH,JOHN,B’) 

(john-smith, address, john-smith’s-address) 

(john-smith, age, 32) 

(john-smith, phone#, 7624377) 

Note that the properties of PERSON provide information about the structure of 
instances of that class, while the properties of john-smith specify the structure of 
the token itself. This distinction was already made in the notation just introduced 
for properties, with the properties of a class delimited by angular brackets and 
those of a token by parentheses. We call the former type of property definitional 
and the latter factual. 

Some properties may have more than one subject. For example, 

((FLIGHT+ DATE), fit, FLIGHT) 

defines a (definitional) complex property with subjects the classes FLIGHT# and 
DATE and p-value the class FLIGHT. This property may represent the infor- 
mation: 

“each combination of a flight number and a date has an associated flight” 
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As the reader may have suspected, there is a strong relationship between the 
definitional properties of a class and the factual properties of its instances. The 
relationship may be expressed in terms of the following property induction 
principle. 

Property Induction Principle. The definitional properties of a class induce 
factual properties for its instances. 

If classes G, . . . , C, are the subjects of a definitional complex property with 
attribute p, the TAXIS expression (Ci, . . . , C,,) . .p (or Ci . .p if n= 1) returns 
the p-value of that property. For example, PERSON . . age returns the class 
AGE-VALUE, while (FLIGHT#, DATE) . . fit returns FLIGHT. In other words, 
“ . . ” is a “schema selector” and allows the traversal of the schema defined with 
a TAXIS program by its classes and their definitional properties. For the “ . . ” 
operator to be unambiguous, no two definitional properties can have the same 
subject(s) and attribute. 

Turning to factual properties, if ( (Cl, . . . , C,), p, C) is a definitional property 
and tl is an instance of Ci, 19 i 5 n, then (tl, . . . , t,).p (or t1.p if n = 1) evaluates 
to an instance of C, say t, such that ((tl, . . . , tn), p, t) is a factual property. Thus 
john-smith.age returns 32 while (802, may-l-1979).flt returns the particular flight 
associated with those two tokens through the fit property (i.e., the property with 
attribute “fit”). 

2.3 Metaclasses 

If one wishes to represent the information 

“the average age of (known) persons is 28” 

or 

“the number of (known) flights is 473” 

he may be tempted to express these facts by 

(PERSON, average-age, 28) 

(FLIGHT, cardinal&y, 473) 

However, this representation is incorrect since definitional properties represent 
information about the structure of instances of a class, not the class itself. Instead, 
factual properties must be used to represent these facts: 

(PERSON, average-age, 28) 

(FLIGHT, cardinal&, 473) 

But to be consistent with the property induction principle, these factual properties 
must be induced by definitional properties which have the classes PERSON and 
FLIGHT as instances. This observation leads to the introduction of a third type 
of TAXIS object called metaclass. A metaclass is similar to a class in every 
respect, except that its instances are classes rather than tokens. For instance, the 
metaclass PERSON-CLASS may be defined with instances of all classes whose 
instances denote persons (e.g., PERSON, STUDENT, EMPLOYEE, MAN- 
AGER). Then the definitional property 

(PERSON-CLASS, average-age, AGE-VALUE) 
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allows the association of an average-age factual property with every instance of 

PERSON-CLASS. 

(PERSON, average-age, 28) 

(STUDENT, average-age, 19), etc. 

We refer to the relationships between a token (class) and the class (metaclass) 
it is an instance of as the INSTANCE-OF relationship. 

Generally, a TAXIS program includes tokens which can only have factual 
properties associated with them, classes which can have factual and definitional 

properties, and metaclasses which can only have definitional properties. For a 
more sophisticated treatment of the INSTANCE-OF relationship which allows 
an arbitrary number of levels of metaclasses, see [ll] and [19]. We expect that 
the three levels allowed in TAXIS will suffice for most practical situations. 

For metaclasses, we use identifiers in uppercase letters which end in -CLASS. 
As with classes, the collection of all instances of a metaclass is called its extension. 

2.4 Examples 

Classes and metaclasses are defined by specifying their name and their simple 

properties. For example, the metaclass PERSON-CLASS can be defined by 

metaclass PERSON-CLASS with 
attribute-properties 

average-age: AGE-VALUE; 
end 

Here PERSON-CLASS is defined to have one simple (i.e., noncomplex) property 

(PERSON-CLASS, average-age, AGE-VALUE) 

The metaclass definition also specifies that the property defined is of the attri- 

bute-property category which means that the average-age factual property of 
an instance of PERSON-CLASS may change with time. Generally, every defini- 
tional property defined in a TAXIS program is classified into a unique property 
category at the time of its definition, which determines the functional and 
operational characteristics of the property. 

Property categories allow the specification of information such as that the 

function defined by a property is time varying or l-l or should be used in a 
particular manner when instances of its subject(s) are created. The following 

examples illustrate the different uses of property categories. 
The class PERSON can now be defined as an instance of the metaclass 

PERSON-CLASS by 

PERSON-CLASS PERSON with 
keys 

person-id: (name, address); 
characteristics 

name: PERSON-NAME; 
address: ADDRESS-VALUE; 
phone+ PHONE-VALUE, 

attribute-properties 
age: AGE-VALUE; 

status: STATUS-IN-CANADA; 
end 
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According to this definition, PERSON has two attribute (i.e., time-varying) 
properties and three characteristic properties which are time invariant. The key 
property described in the definition of PERSON specifies the complex property 

((PERSON-NAME, ADDRESS-VALUE), person-id, PERSON) 

Thus (‘SMITH, JOHN, B’, john-smith’s-address).person-id returns the person 

with ‘SMITH, JOHN, B’ as name and john-smith’s-address as address, if any. If 
there is none, the expression returns the special TAXIS token nothing. 

The class FLIGHT can be defined in a similar fashion: 

VARIABLE-CLASS FLIGHT with 
keys 

fit: (flight#, date); 
characteristics 

flight#: { /1::9991} 
departure: [ 1 city: CITY, country: COUNTRY ( 1; 
destination: [ 1 city: CITY, country: COUNTRY I]; 
aircraft: AIRCRAFT- TYPE; 
date: DATE-VALUE; 

attribute-properties 
seats-left: NONNEGATIVE-INTEGER; 

end 

Here VARIABLE-CLASS stands for a special metaclass whose instances can 
have their collections of tokens changed in terms of explicit insertions or removals. 
Thus, since FLIGHT is an instance of VARIABLE-CLASS, it can have tokens 
added to or removed from its collection of instances. Clearly, variable classes 

behave very much like relations [3]. PERSON can also be made an instance of 
the metaclass VARIABLE-CLASS, in addition to its being an instance of PER- 
SON-CLASS, by relating the metaclasses PERSON- and VARIABLE-CLASS 
through the IS-A relationship. This is discussed in more detail in Section 3. 

The class defined by { ( 1:: 999 I} is finitely defined in the sense that it has a 
finite, time-invariant collection of instances which includes all integers from 1 to 
999: Since this class does not have an associated name, it can only be referenced 
through expressions such as PERSON. . flight#. 

The class defined by [ ] city: CITY, country: COUNTRY ( ] has as instances all 
tuples with the first component an instance of CITY and the second an instance 
of COUNTRY. Classes such as this are instances of the special metaclass 
AGGREGATE-CLASS. Generally, an instance of AGGREGATE-CLASS, say A, 
has a collection of instances which is the cross product of the collections of 
instances of classes that serve as p-values of A’s characteristic properties. In this 
respect, aggregate classes are quite different from variable classes. 

In other words, if aggregate class C has characteristic properties pl, . . . , p,, 
with p-values Cl, . . . , CL, respectively, and if the extensions of these classes are 
ext(C1, a), . . . , ext(C,, a) in some database state 0, then 

edC, a) = ext(C1, a) X ext(C2, IJ) x . . . x ext(C,, u). 

The class [ ( city: CITY, country: COUNTRY ] ] could have been defined 
separately. 
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AGGREGATE-CLASS LOCATION with 
characteristics 

city: CITY, 
country: COUNTRY; 

end 

with LOCATION replacing [ 1 city: CITY, country: COUNTRY I]. If that second 
method were used, 

FLIGHT. . departure = FLIGHT. . destination 

With the original definition of FLIGHT, however, the above equality does not 
hold. In other words, each class definition that appears in a TAXIS program 
causes the introduction of yet another class in the schema described by the 
program. 

Turning to some of the classes mentioned in the definitions presented so far, 
let us first define PHONE-VALUE as 

FORMATTED-CLASS PHONE-VALUE with 
{ 1 ‘(’ I> @ REPEAT(DIGIT, 3) @ { 1 ‘)’ I> @ REPEAT(DIGIT, 7) 

end 

Formatted classes (i.e., instances of FORMATTED-CLASS) have as instances 
all strings which are consistent with a given string pattern. In particular, PHONE- 
VALUE instances have the format ‘(dddlddddddd’ where d is any digit. Here 
{ 1 ‘) ’ I} defines a class with only instance the string ‘) ‘, and A @ B defines a 
class with instances strings obtained by concatenating an instance of B to an 
instance of A. Moreover, 

REPEAT(A, n) = A @A @ . -. @ A(n times) 

Finally, DIGIT is assumed to be the class { I ‘O’, ‘l’, . . . , ‘9’ I }. 

It was mentioned in the introduction that all TAXIS constructs are treated 
within the framework described so far. Thus transactions are classes too. For 
example, the transaction RESERVE-SEAT may be defined as follows: 

TRANSACTION-CLASS RESERVE-SEAT with 
parameter-list 

reserve-seat: (p, f); 
locals 

p: PERSON; 
f: FLIGHT; 
x: INTEGER; 

prereqs 
seats-left? :fi seats-left > 0; 

actions 
make-reservation: 

insert-object in RESERVATION with 
person t p, flight + fi 

decrement-seats: fi seats-left c f. seats-left - 1; 
assign-aux variable: x + f. seats-left; 

returns 
rtrn: x; 

end 
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The above definition specifies the parameter list of RESERVE-SEAT through 
the parameter-list property which defines a complex property 

((PERSON, FLIGHT), reserve-seat, RESERVE-SEAT) 

Local properties (locals) define either parameters or local variables of the 
transaction. The body of the transaction is given in terms of zero or more 
prerequisite, action, and result properties (prereqs, actions, result, respectively) 
whosep-values are invariably expressions. Finally, the returns property (returns) 
associates with a transaction an expression to be evaluated when execution of the 
body of the transaction has been completed. The value of the expression is also 
the value returned by the transaction. 

It is assumed in the definition of RESERVE-SEAT that RESERVATION has 
already been defined as a variable class and that it has two characteristics with 
attributes person and flight, respectively. Thus the insert-object expression 
inserts another instance into the extension of this class and sets its two charac- 
teristic properties to p and f, respectively. The other two action properties 
decrement the seats-left property of flight f by 1 and set the local variable x to 
the value to be returned by the transaction. 

A transaction class is similar to a variable class in that it has a time-varying 
extension. When an expression involving a call to RESERVE-SEAT is evaluated, 
a new token is first created and added to the extension of RESERVE-SEAT. 
This token is essentially an execution instance of RESERVE-SEAT, and the 
factual properties associated with it indicate the values of local variables at any 
one time. In fact, for the expressions which appear inside the transaction, mention 
of a local variable or parameter, i.e., p, f, or x for RESERVE-SEAT, is interpreted 
as equivalent to selfp, selfif, se&x, where self denotes the execution instance with 
respect to which these expressions are evaluated. Something analogous applies to 
prereqs, actions, result, and returns properties which initially have p-value 
unknown (another special TAXIS token), until the corresponding expression 
has been evaluated. From that point on, the p-value of such a property is the 
value returned by the expression. Thus if the identifier make-reservation appears 
in an expression, before the make-reservation action property is evaluated its 
value is unknown, while after it is evaluated, it is the value returned by the 
insert-object expression. 

As mentioned earlier, execution of a transaction begins by adding a token to 
the extension of the transaction (class). Execution then proceeds by evaluating 
each prerequisite p-value expression to make sure that it returns the value true. 
If any of the prerequisite expressions are found to have a value other than true, 
an exception is said to arise and execution is suspended. Otherwise, action 
expressions and then result expressions, which must also return true values, are 
evaluated. Thus prerequisite and result properties can be thought of as precon- 
ditions and postconditions which must be satisfied if execution of the transaction 
is to be meaningful. If they are not, an exception is raised and an exception- 
handling transaction is called to correct the situations. The exception-handling 
mechanism of TAXIS is discussed in Section 4.4. 

When thep-value of a definitional property ((Cl, . . . , C,,),p, T) is a transaction, 
the meaning of the property changes in that T specifies not the type of p-values 
of factual properties induced by ((Cl, . . . , C,), p, T), but rather an algorithm for 
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getting them. For example, suppose the property 

(PERSON, birthdate, COMPUTER-BIRTHDATE) 

is added to the definition of PERSON where 

TRANSACTION-CLASS COMPUTE-BIRTHDATE with 
parameter-list 

birthdate: (p); 
returns 

rt: this-year - p.age; 
end 

and this-year is an identifier that denotes the current year. Clearly, to every 

particular person this property associates not an instance of COMPUTE-BIRTH- 
DATE, but rather a token returned by the p-value of the rt property. 

This convention of treating transactions as a means for obtaining p-values 

rather than as types of p-values is consistent with the SIMULA class concept. 

Thus in TAXIS 
p. birthdate = COMPUTE-BIRTHDATE 

where p is an instance of PERSON. Similarly, for the parameter-list complex 
property associated with RESERVE-SEAT, 

(prsn, flt).reserve-seat = RESERVE-SEAT(prsn, fit) 

3. THE /S-A HIERARCHY 

We envision a TAXIS program as a large collection of tokens, classes, and 
metaclasses interconnected through their properties. Perhaps the most important 

feature of TAXIS is the facility it provides for organizing the collection of classes 
and metaclasses into a hierarchy (taxonomy). 

3.1 Preliminaries 

The IS-A (generalization) relationship is defined over classes and metaclasses. 
Informally, we say that (A IS-A B) where A, % are both classes (metaclasses) if 

every instance of A is an instance of B. For example, (ADULT IS-A PERSON) 
specifies that every adult is a person and (CHILD IS-A PERSON) that every 
child is a person. 

If (A IS-A B) then every definitional property of % is also a definitional 

property of A. Moreover, A can have additional properties that % does not have 
at all, or it can redefine some of the properties of B. For example, the class 
ADULT inherits the name, address, and phone# properties of PERSON but 

must redefine the age property by restricting age p-values to instances of the 
class OVER-U. Similar remarks apply for CHILD which, in addition, has the 
guardian property that PERSON does not have at all. In defining the classes 

ADULT and CHILD, one need not mention the properties these classes share 
with PERSON: 
VARIABLE-CLASS ADULT is-a PERSON with 

attribute-properties 
age: OVER-@ 

end 
VARIABLE-CLASS CHILD is-a PERSON with 

attribute-properties 
age: UNDER-l& 
guardian: ADULT 

end 
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Properties cannot be redefined arbitrarily. For example, redefinition of age only 
makes sense if (UNDER-18 IS-A AGE-VALUE). As the reader may have 
suspected, the IS-A relationship referred to above is the reflexive transitive 
closure of the relationship is-a used in class definitions. 

3.2 /S-A Relationship Postulates 

The formal properties of the IS-A relationship can be summarized in terms of the 

following postulates: 

I. All classes (metaclasses) constituting a TAXIS program are organized into 

an IS-A hierarchy in terms of the binary relation IS-A which is a partial order. 
II. There is a most general (maximum) and a most specialized (minimum) 

class with respect to IS-A called, respectively, ANY and NONE. Similarly, there 
is a most general and a most specialized metaclass called, respectively, ANY- 
CLASS and NO-CLASS. 

III. (Extensional IS-A Constraint) If (C IS-A D) for classes (metaclasses) C 
and D, then every instance of C is also an instance of D. 

IV. (Structural IS-A Constraint) If (A IS-A B) and B is the subject of a 

definitional property ( (C,, . . . , B, . . . , C,,),p,D), thenAisalsothesubjectofa 
definitional property ( (C,, . . . , A, . . . , C,), p, E) and moreover (E IS-A D). 

Note that these postulates define necessary not sufficient conditions for the 
IS-A relationship to hold. 

It is assumed that there exist classes ANY-FORMATTED, ANY-VARIABLE, 
ANY-TRANSACTION, etc., which are specializations of ANY and below which 
one finds all formatted classes, variable classes, etc. For example, the definition 
given earlier 

VARIABLE-CLASS FLIGHT with 
.a. 

end 

places FLIGHT below ANY-VARIABLE and is therefore equivalent to 

VARIABLE-CLASS FLIGHT is-a ANY-VARIABLE with 
. . . 

end 

For metaclasses the IS-A hierarchy must be defined explicitly by the TAXIS 
user. For example, the metaclass PERSON-CLASS should be a specialization of 
VARIABLE-CLASS, as suggested in Section 2.4, and for this purpose its defini- 
tion should be changed to 

metaclass PERSON-CLASS is-a VARIABLE-CLASS with 
. . . (as before) 

end 

After this change, all instances of PERSON-CLASS are also instances of VAR- 
IABLE-CLASS according to Postulate III, and therefore PERSON is a variable 

class. 
The Hasse diagram of the IS-A relationship need not be a tree. For example, 

the definition 
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PERSON-CLASS MALE-STUDENT is-a MALE, STUDENT with 
. . . 

end 

makes MALE-STUDENT a specialization of MALE and STUDENT which may 

not be IS-A-comparable. 
The class ANY has as instances all tokens available to a TAXIS program, 

while NONE has no instances at all. Similarly, ANY-CLASS has all classes as 
instances, while NO-CLASS has no instances at all. 

3.3 More on Seat Reservations 

We return to the world of persons, flights, and seat reservations to illustrate the 

use of the IS-A hierarchy. 
First, let us define a few specializations of previously defined classes. 

INTERNATIONAL-FLIGHlrAc := { I500 :: 999 I} is-a FLIGHT. . flight# 
FLIGHT- WITHIN-CANADA := ( Il::499 I} is-a FLIGHT. . flight# 

places the finitely defined classes with extensions the ranges 500 :: 999 and 1:: 499, 
respectively, below FLIGHT . . flight# (= ( 11::999 I}) on the IS-A hierarchy. 
Similarly, 

CANADA:= { ) ‘CANADA’ ) } is-a COUNTRY 

makes CANADA a class with a single instance. Presumably, COUNTRY has as 
instances many other strings such as ‘USA’, ‘CHINA’, and ‘GREECE’, in addition 
to ‘CANADA’. 

It is now possible to define two specializations of FLIGHT 

VARIABLE-CLASS INTERNATIONAL-FLIGHT is-a FLIGHT with 
characteristics 

end flight#: INTERNATIONAL-FLIGHT#; 

VARIABLE-CLASS FLIGHT- WITHIN-CANADA is-a FLIGHT with 
characteristics 

flight++ FLIGHT#- WITHIN-CANADA; 
departure: [ ( country: CANADA I] is-a FLIGHT. . departure; 
destination: [ ) country: CANADA ) ] is-a FLIGHT . . destination; 

end 

When a class is defined “on-line” in terms of the match-fix operators { 1, I} or 

[ I, I], one can place it at the same time on the IS-A hierarchy, as illustrated in 
the departure and destination properties of FLIGHT- WITHIN-CANADA. Of 
course, since the aggregate class defined by [ 1 country: CANADA I ] is a speciali- 
zation of FLIGHT , . departure (= [ I city: CITY, country: COUNTRY I I), it has 
two (not one) characteristic properties, as city is inherited. 

According to the definition of RESERVE-SEAT, the definitional complex 

PropeW 

((PERSON, FLIGHT), reserve-seat, RESERVE-SEAT) 

is part of the TAXIS program being constructed. It follows then from Postulate 
IV (the structural IS-A constraint) that any combination of specializations of the 
classes PERSON and FLIGHT must have a reserve-seat complex property whose 
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p-value, a transaction, is a specialization of the transaction RESERVE-SEAT. 
Intuitively, this means that the reserve-seat for, say, CHILD, and INTERNA- 
TIONAL-FLIGHT must have at least the prerequisites, actions, and results of 
RESERVE-SEAT and possibly more of each. For example, suppose that we wish 
to enforce a (rather conservative) constraint whereby each child must be accom- 

panied by his/her guardian on an international flight. This is clearly a constraint 
concerning the transaction (CHILD, INTERNATIONAL-FLIGHT) . . reserve- 
seat. It can be added to that transaction as a prerequisite as follows: 

prereq accompanied-by-guardian? on 
(CHILD, INTERNATIONAL-FLIGHT) . . reserve-seat is 
not ((pguardian, f). reservation = nothing) 

This definition adds accompanied-by-guardian? as a prerequisite property of the 
transaction (CHILD, INTERNATIONAL-FLIGHT) . . reserve-seat, which, of 

course, also inherits all properties of RESERVE-SEAT. The expression 
(pguardian, f).reservation has value nothing when there is no instance identi- 
fied by the key value (p.guardian, f) in the (variable) class RESERVATION; 

otherwise, it returns the instance of RESERVATION identified by that key 

value. 
As another example, suppose that any person (adult or child) entering Canada 

must be a citizen, landed-immigrant, or visitor: 

prereq Can-enter-Canada? on 
(PERSON, INTERNATIONAL-FLIGHT) . . reserve-seat is 
p.status instance-of { ) ‘CITIZEN’, ‘LANDED-IMMIGRANT’, ‘VISITOR’ 1) 

or not f.destination.country = ‘CANADA’ 

As a final example of how specializations of RESERVE-SEAT might be 
modified to suit particular combinations of specializations of PERSON and 
FLIGHT, suppose that the income tax office must be notified for any citizens or 
landed immigrants leaving Canada: 

action notify-income-tax people on 
(ADULT, INTERNATIONAL-FLIGHT) , . reserve-seat is 
if (pstatus = ‘CITIZEN’ or pstatus = ‘LANDED-IMMIGRANT 

and f.departure.country = ‘CANADA’ 
and not (f.destination.country = ‘CANADA’) 

then NOTIFY-INCOME-TAX-PEOPLE(p, f) 

This action has no effects if its Boolean condition is not true. 
Once these properties have been added to their corresponding transactions, the 

expression (p, f).reserve-seat has quite different meaning depending on whether 
p is an adult, a child, or just a person and f is an international or local flight. 
Generally, 

(p, f).reserve-seat = (Type(p), Type (f)) . . reserve-seat(p, f) 

where Type(z) returns (one of) the least general class that has x as an instance. 
If there is more than one such class, then it is assumed that choosing between 
them does not affect the value or the side effects caused by the call. 

The examples presented illustrate the following points about the IS-A relation- 
ship. 
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(1) It is not only data objects that can be organized into an IS-A hierarchy but 

also semantic integrity constraints, expressed as prerequisites, results, and data- 
base actions. 

(2) Parts of the IS-A hierarchy determine the structure of other parts through 
the definition of properties. For example, the part of the IS-A hierarchy which 
appears below the transaction RESERVE-SEAT is structurally homomorphic to 

the cross product of the IS-A hierarchies which appear below PERSON and 
FLIGHT. This is a direct consequence of Postulate IV (the structural IS-A 
constraint) and it can serve as a powerful guiding principle for the construction 

of a TAXIS program. 

4. MORE ON CLASSES AND METACLASSES 

We return to the topic of classes and metaclasses in order to provide additional 
details about them. 

4.1 Variable Classes 

The built-in metaclass VARIABLE-CLASS has the special feature that only its 

instances can have their extensions altered through the expressions insert- 
object, remove-object. For example, 

VARIABLE-CLASS PASSENGERS with 
p: PERSON 

end 

defines an instance of VARIABLE-CLASS which initially has no instances of its 

own. However, 

insert-object in PASSENGERS with p + john-smith 

adds a new token to the extension of PASSENGERS with “p” p-value the person 
job-smith, and returns that new token as value. A token x can be removed from 
the extension of a class C through the expression 

remove-object x from C 

Note that when a token is added to the extension of a class, it is also added to the 
extensions of all its generalizations, and when it is removed from a class, it is 
removed from the extensions of all its specializations. Thus Postulate III for the 

IS-A relationship is never violated as a result of an insertion or removal of a 
token. 

In addition to insert-object and remove-object, TAXIS provides three other 
QUEL-like ([7]) expressions which allow general searches of the extension of one 
or more variable classes. Thus the expression 

for x in EMPLOYEE 
for y in MANAGER 

retrieve into FATCATS with name + x.name, sal c x.sal 
where x.depth = y.dept and xsal > y.sal 

retrieves into the variable class FATCATS employees making more than one of 

their managers. Note that the assumption (MANAGER IS-A EMPLOYEE) 
implies that MANAGER has the properties of EMPLOYEE, in particular, sal 
and dept. 

In addition to retrieve, append and delete expressions are also provided and 
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are similar in form and semantics to retrieve (or corresponding QUEL com- 
mands) . 

Variable classes are the only classes which are allowed to have key properties. 
Going from a key to the corresponding token is handled in terms of the mecha- 
nisms already introduced. Thus if address-l is a particular address, 

(‘SMITH, JOHN, B’, address-l).person-id 

returns either the person identified by this key or nothing. 
The attribute factual properties of a variable class instance can be changed 

through the update operator “t”. For instance, 

john-smithage + 35 

changes john-smith’s age from whatever it was to 35. 

4.2 Aggregate Classes 

A second important category of classes consists of instances of the built-in 
metaclass AGGREGATE-CLASS. The extension of an aggregate dlass is deter- 
mined at all times by the cross product of the extensions of its p-values. For 

example, the extension of the aggregate class [ 1 city: CITY, country: COUN- 
TRY ] ] is the cross product of the extensions of CITY and COUNTRY. The only 
way to change the extension of an aggregate class is to change the extension of 
one of its p-values. 

Instances of aggregate classes can be referenced but never created or destroyed. 
Thus 

[city: ‘TORONTO’, country: ‘CANADA’] 

references a tuple which is an instance of any aggregate class whose extension 
includes the tuple (‘TORONTO’, ‘CANADA’). We call the tokens referenced 
through the matchfix operators [ ,] aggregates. 

All the simple properties of an aggregate class are characteristic properties and 
cannot be changed for any one aggregate. However, there is an expression in 
TAXIS which allows the identification of an aggregate related to a given one 

with respect to some of its components. For example, if x is the aggregate 
[(‘TORONTO’, ‘CANADA’] then the expression 

x but city c ‘MONTREAL’ 

identifies the tuple obtained from x by replacing its city p-value with ‘MON- 
TREAL’. 

4.3 Finitely Defined Classes 

Instances of the built-in metaclass FINITELY-DEFINED-CLASS have their 
extensions specified once and for all at the time they are defined, e.g., 

CANADIAN-METROPOLES := ( 1 ‘MONTREAL’, ‘TORONTO’, ‘VANCOUVER’ I> 

or 

INTERNATIONAL-FLIGHT# := (1500 :: 9991) is-a FLIGHW 

Finitely defined classes are very similar to Pascal scalar types. For instance, 
the functions succ and pred return the successor or predecessor of an instance in 
the ordering of instances specified by the class definition. Similarly, there are 
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special relations It, gt, le, ge which compare two instances of a finitely defined 
class with respect to this ordering. 

4.4 Test-Defined Classes 

Aggregate, finitely defined, and formatted classes are all special cases of the 
general collection of -test-defined classes. Such classes are characterized by the 
fact that membership in their extension is determined by a transaction defined 
for this purpose: 

( (ANY, TEST-DEFINED-CLASS), test, TEST-TRANSACTION) 

This complex property specializes for aggregate classes to 

((ANY-AGGREGATE, AGGREGATE-CLASS), test, TEST-AGGREGATE) 

where AGGREGATE is a specialization of ANY with all possible aggregates as 
instances. Similarly, we have 

((ANY-FINITELY-DEFINED, FINITELY-DEFINED-CLASS), test, 
FINITE- TEST) ) 

and 
( (STRING, FORMATTED-CLASS), test, FORMAT-TEST) 

where STRING’s extension contains all strings and TEST-AGGREGATE, FI- 
NITE-TEST, and FORMAT-TEST are all specializations of TEST-TRANS- 

ACTION. The essence of these three transactions was already given in the 
discussion of aggregate, finitely defined, and formatted classes. For instance, 
TEST-AGGREGATE(x, C) checks that the components of aggregate x are 
instances of the p-values of C’s attribute properties. FINITE-TEST&C), on the 
other hand, checks whether x is one of the tokens defined to be in the extension 
of C. Generally, if C is a test-defined class, then 

x instance-of C = (Type(x), Type (C)) . . test (x,C) 

Not all test transactions are predetermined as they are for aggregate, finitely 
defined, and formatted classes. For example, we can define the metaclass 

metaclass TRAVELER-TO-CANADA-CLASS is-a TEST-DEFINED-CLASS 

and then the transaction 

TRANSACTION-CLASS TEST-TRAVELER-TO-CANADA is-a TEST- 
TRANSACTION with parameter-list 

test:(p, class); 
locals 

p: PERSON; 
class: TRAVELER-TO-CANADA-CLASS; 

returns 
rtrn: not (nothing = 

get-object x from RESERVATION 
where (xqerson = p and 

x.flight.destination.country = ‘CANADA’)) 
end 

thereby setting up the definitional property 

((PERSON, TRAVELER-TO-CANADA-CLASS), test, 
TEST-TRAVELER-TO-CANADA) 
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Now, the class defined by 

TRAVELER-TO-CANADA-CLASS TRAVELER-TO-CANADA is-a PERSON 

has as instances alI persons who have booked a reservation for a flight with a 
destination in Canada. 

4.5 Expressions 

Expressions can only appear in TAXIS programs as p-values of prerequisite, 
action, result, or return properties.2 

Conditional, block, and looping constructs are provided in the language for the 
construction of compound expressions from simpler ones. 

Expressions are classes and can have definitional properties of their own (which 
associate exceptions with them). However, expressions are special types of classes 

in two respects: 

(1) their extension is invariably empty; 

(2) their IS-A hierarchy is determined by the following rule: If (T,p,E) and 
(T’,p,E’) and (T IS-A T’), then (E IS-A E’), where T, 2” are transactions, 

and E, E’ are expressions. 

Thus there is no need to specify explicitly the IS-A hierarchy of expression classes 

since that is determined by the transactions to which they are attached. 
The fact that expression classes have empty extensions means that Postulate 

III (the extensional IS-A constraint) is trivially satisfied for expressions. As a 
replacement we propose the following postulate. 

III’ (Behavioral IS-A Constraint) (a) If E, E’ are Boolean expressions and (E 
IS-A E’), then it must be that E + E’ (E implies E’) and E causes at least the 
side effects of E’. 

(b) If E, E’ are non-Boolean expressions and (E IS-A E’), then it must be that 

when value (E) # nothing, value (E) = value (E’) and moreover E causes at 
least the side effects of E’. 

Consider, for example, a specialization of the RESERVE-SEAT transaction, 
say T, for which the prerequisite seats-left? must be redefined. It makes sense, 

according to the Postulate III’ (the behavioral IS-A constraint), to redefine it as 

prereq seats-left? on T is fseats-left > 10, 

since (f.seats-left > 10) + (fseats-left > 0). The redefinition, however, 

prereq seats-left? OII T is fseats-left > 0 or p.age c 2 

is inappropriate because 

(fiseats-left > 0 or p.age C 2) 74 fseats-left > 0) 

Similarly, the block expression E defined by 

begin 
insert-object in RESERVATIONS with 

person c p, flight + f; 
insert-object in PASSENGERS with p cp; 

end 

’ This discussion does not apply to expressions involving @, [ I, I], and ( I, I} which define new classes 

and are evaluated at compilation time. 
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can be made a specialization of RESERVE-SEAT. . make-reservation because 

its side effects, which involve two insertions, include those of RESERVE- 
SEAT. . make-reservation. The same statement is not true if the first insert- 
object expression is deleted from E. 

Postulate III’ (the behavioral IS-A constraint) is formalized in [25] and its 

consequences are discussed. 

4.6 Transactions 

We have already presented the basic categories of properties one can associate 

with a transaction. Through prerequisites, actions, and results, the TAXIS user 
can “factor out” a transaction body into semi-independent constraint checks and 
actions that may be associated with a transaction directly, during its definition, 
or indirectly, through inheritance. 

4.7 Exceptions 

We have adapted Wasserman’s [21] procedure-oriented exception-handling mech- 
anism with modifications that allow exceptions and exception-handling to be 
treated within the framework of classes, properties, and the IS-A relationship. 

Exception classes are defined and organized into an IS-A hierarchy, like all 
other classes. The built-in metaclass EXCEPTION-CLASS has as instances all 
exception classes which are also specializations of the built-in class ANY-EX- 

CEPTION. For a particular TAXIS program, or a collection thereof, we may 
have below ANY-EXCEPTION the classes SECURITY-EXCEPTION, CON- 
STRAINT-EXCEPTION, etc. Below these, one may wish to attach exception 
classes such as 

EXCEPTION-CLASS NO-SEATS-LEFT is-a CONSTRAINT-EXCEPTION with 
attribute-properties 

pers: PERSON, 
flk FLIGHT; 

end 

When an instance of this exception class is created (i.e., is raised), its factual 
properties are assignedp-values through which one can obtain information about 
the circumstances under which the exception was raised. 

Exceptions are raised when a prerequisite or result expression evaluates to a 
value other than true. To specify which exception is raised, one must associate 
with a prerequisite or result p-value, which is always an expression class, an 
exception class. For RESERVE-SEAT, for example, this can be done either by 
replacing the seats-left? property of the transaction with 

TRANSACTION-CLASS RESERVE-SEAT with 
. . . 

seats-left k fseats-left > 0 exe 
NO-SEATS-LEFT (pers: p, fit: f ); 

. . . 
end 

or by adding a definitional property to the p-value of the seats-left? property 

with 

exception-property exe on RESERVE-SEAT. . seats-left? is NO-SEATS-LEFT ( pers: 

P, fit: f) 
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In both cases, the associations pers: p, fit: f indicate the p-values to be assigned 
to the factual properties of the NO-SEAT-LEFT instance raised when the 

prerequisite seats-left? fails. 
When an exception is raised within a transaction T, it is up to the caller of T 

to specify what should be done to handle it. Such specifications come in the form 

of complex properties called exception-handlers that take as subjects an expres- 
sion E and an exception EXC and p-value an exception-handling transaction Th. 
When an instance of EXC is raised during the evaluation of E, then Tt, is called 
with the exception raised as its only argument. Suppose, for example, that the 
transaction CALLER calls RESERVE-SEAT or one of its specializations during 
the execution of one of its actions, say act. To indicate that the transaction 
FIND-ALTERNATIVE should be called if the exception NO-SEATS-LEFT is 

raised, we write 

TRANSACTION-CLASS CALLER with 
. . . 

actions 
. . . 

act: RESERVE-SEAT(p1, f 1) 
em-handler eh for NO-SEATS-LEFT is 

FIND-ALTERNATIVE 
. . . 

end 

which defines the complex property 

((RESERVE-SEAT(p1, fl), NO-SEAT-LEFT), eh, FIND-ALTERNATIVE) 

Now, if an instance of NO-SEATS-LEFT is raised during the evaluation of 
RESERVE-SEAT (pl, fl), FIND-ALTERNATIVE wiU be called with the 
newly created exception instance as argument. From the properties of this 
instance, FIND-ALTERNATIVE will determine the circumstances of the excep- 
tion and, we hope, what should be done. 

Treating exceptions and exception-handling in terms of classes, properties, and 

the IS-A relationship means that the already existing IS-A hierarchy of data 
classes and transactions can be used to structure exception-handling within any 
one TAXIS program. We illustrate this point by extending the example we have 
used so far so that if a NO-SEATS-LEFT instance is raised for a child, it is not 
only for the child that an alternative is found but also for his or her guardian. 

First, we create a specialization of NO-SEATS-LEFT: 

EXCEPTION-CLASS NO-SEAT-FOR-CHILD is-a NO-SEATS-LEFT with 
attribute-properties 

guardian: ADULT; 
end 

Then we redefine the exception property em of the seats-left? prerequisite for 
the transaction (CHILD, INTERNATIONAL-FLIGHT) . . reserve-seat 

exception-property exe on (CHILD, INTERNATIONAL-FLIGHT) . . 
reserve-seat. . seats-left? is 

NO-SEAT-FOR-CHILD (pers: p, fzt: f, guardian: p.guardian) 
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Finally, we augment the exception handler FIND-ALTERNATIVE for the 
exception-handling property eh of CALLER.. act and NO-SEAT-FOR-CHILD: 

action find-alternative-for-guardian-too on 
(CALLER.. act, NO-SEAT-FOR-CHILD) . . eh is 
/*remove the child’s guardian from the flight fit and reserve a seat for him or her as 
well on the alternative flight selected*/ 

According to this, another action property is added to the (transaction) class 
specified by the expression (CALLER. . act, NO-SEAT-FOR-CHILD) . . eh. 
CALLER . . act evaluates to the expression class RESERVE-SEAT(pl, f 1) (see 
definition of CALLER), and RESERVE-SEAT(p1, f l), NO-SEATS-LEFT have 
a complex property eh whose p-value is the (exception-handling) transaction 
FIND-ALTERNATIVE. It follows then that the expression (CALLER . . act, 

NO-SEAT-FOR-CHILD) . . eh evaluates to a specialization of FIND-ALTER- 
NATIVE which inherits all the actions of that transaction in addition to the new 
action defined by the find-alternative-for guardian-too action. 

We will not present code for the new action defined for the exception-handler 
of NO-SEATS-LEFT exceptions. It is worth noting, however, that the IS-A 
hierarchy of exception-handlers is patterned after that of PERSON, FLIGHT, 
and their specializations, along with the transactions that operate on them. 

When an exception-handling transaction completes it execution, control returns 
to the point where the exception was raised and the expression following the 
prerequisite or result where the exception was raised is evaluated. Thus each 
prerequisite or result expression E can be interpreted as a conditional expression 

if E then nil else. . . 

where the blank is filled by the caller of the transaction where E appears. 

5. CONCLUSIONS 

Several other research efforts are related and/or have influenced our work. 
PLAIN [22] is one of the few examples of a language designed with goals similar 
to those of TAXIS. The main difference between the two languages is that 
PLAIN does not use the IS-A relationship as a structuring construct for data or 
procedures. We have adapted PLAIN’s exception-handling mechanism, but mod- 
ified it to make it consistent with the TAXIS framework. Moreover, due to the 
structure of transactions, we have managed to restrict the kind of situation under 
which an exception is raised to failure of a prerequisite or a result. 

A recent proposal in [13] for the use of type hierarchy is basically identical to 
the IS-A hierarchy described in this paper. Our work seems to differ from Mealy’s 
only in that his is applied to EL1 data structuring mechanisms [23] rather than 
the design of an application language. 

Our IS-A hierarchy is also similar to the generalization hierarchy proposed in 
[20], although we do not use the “unique key” assumption they impose on their 
hierarchy, nor do we use their notion of image domains which defines a particular 
implementation of the IS-A relationship within a relational database framework. 
Another difference between IS-A and the generalization hierarchy proposed by 
the Smiths is that it is possible to redefine a property for a specialization of a 
class in TAXIS (subject to Postulate IV structural IS-A constraint), but that is 
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not the case for the generalization hierarchy. We consider this ability to redefine 
properties (by specializing their p-values) an important component of the struc- 
turing mechanism offered by the IS-A relationship. Hammer and McLeod [6] 
and Lee and Gerritzen [9] have also proposed data models which offer an IS-A 
relationship. 

The treatment of the INSTANCE-OF relationship in TAXIS is based on the 
treatment this relationship receives in PSN (procedural semantic network for- 
malism) described in [lo, 111. However, PSN allows an arbitrary number of 
metaclass levels, as well as the possibility for a class to be an INSTANCE-OF 
itself. We have avoided such a scheme because experience has taught us that two 
levels of classes are sufficient for most situations. Lee [8] and Smith and Smith 
[ 191 also offer proposals concerning the INSTANCE-OF relationship. 

The high-level relational database operations of QUEL (e.g., retrieve [7]) are 
very similar to the compound expressions used to manipulate variable classes. 
Obviously, variable classes share many features with relations of the relational 
model. In embedding variable classes in a programming language we have taken 
a very different approach from that described in [17] which treats relations as 
data objects that can be created dynamically as results of relational operations. 
Instead, in TAXIS no classes (variable or otherwise) can be created as results of 
run-time operations. We rejected Schmidt’s proposal very early in our work 
because it raises a design dilemma for which we do not have a good solution: 
either we allow the inclusion of classes in TAXIS programs that do not have the 
usual TAXIS semantics (i.e., properties and a position on the IS-A hierarchy), 
contrary to design principle (2) of Section 1, or we include run-time facilities for 
obtaining the TAXIS semantics for derived classes, as done in [15], contrary to 
design principle (4). 

Finally, Abrial’s work [l] has been very influential in directing us toward “data 
models” or “representation schemes” [26] which offer procedural as well as data- 
oriented facilities for the definition of a model. 

From an AI point of view, our work is a direct descendant of PSN, with much 
of the power of the formalism left out to accommodate the design principles of 
TAXIS. 

As far as contributions are concerned, we believe that this paper has provided 
evidence on how a framework involving classes, properties (of classes), the IS-A 
relationship, and to a lesser extent the INSTANCE-OF relationship, can be used 
to account not only for data-oriented (declarative, to use the terminology in 
[26]) aspects of a model of some enterprise, but also procedural ones, e.g., 
expressions, exceptions, and transactions. 

Acceptance of the TAXIS framework for the design of IISs can have far- 
reaching consequences: 

(1) It provides a methodology for dealing with semantic integrity constraints, 
which in TAXIS are treated as prerequisite and result properties of transactions 
and are organized into an IS-A hierarchy consistent with those defined for data 
classes and operations on them. 

(2) It provides a general design methodology based on “stepwise refinement 
by specialization” as opposed to “stepwise refinement by decomposition” [24], 
which has been the main design tool used so far in program development. For 
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data structures, an account of what stepwise refinement by specialization means 

and how it relates to stepwise refinement by decomposition has already been 

given in [20]. TAXIS proposes a similar framework for all aspects concerning a 
program design, not just its data structures. Further evidence for the importance 
of this notion is provided in [25]. 

There are four directions along which research on TAXIS is proceeding: 

(1) Formalization. TAXIS offers some unusual constructs and a formal defi- 
nition of what they mean appears highly desirable. Wong [25] provides an 
axiomatization of the language as well as a denotational semantics to account for 
these constructs. A by-product of this work is the ability to prove TAXIS 

programs correct with respect to some logical specification. 

(2) Definition of Input/Output Facilities. TAXIS does not offer input/output 
facilities at this time. To extend it in order to have it provide such facilities, we 
are considering the possibility of using the same framework (classes et al.) for the 

definition of all syntactic and pragmatic aspects of a user interface. 
(3) Implementation. A TAXIS parser and code generator, and possibly an 

interactive system through which a designer can use TAXIS, is an important step 
toward testing the language. Also, there are important theoretical problems such 

as the mapping of variable and transaction classes into relations and procedures, 
respectively. 

(4) Applications. Apart from the design of individual IISs in TAXIS, we wish 
to explore the possibility of extending TAXIS to make it suitable for the design 
of IISs from one particular applications area, say, accounting or inventory control. 
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