A language for information commer ce processes *

Karl Aberer
DSC-LSIR

Swiss Federal Institute of Technology (EPFL)

1015 Lausanne, Switzerland
email: karl.aberer@epfl.ch

Abstract

Automatizng information commerce requires languages
to represent the typical information commerce processes.
Existing languages and standards cover either only very
specific types of business models or are too general to cap-
ture in a concise way the specific properties of informa-
tion commerce processes. We introduce a language that is
specifically designed for information commerce. It can be
directly used for the implementation of the processes and
communication required in information commerce. It al-
lowsto cover existing business modelsthat are known either
from standard proposals or existing information commerce
applications on the Internet. The language has a concise
logical semantics. In this paper we present the language
concepts and an implementation architecture.

1. Introduction

As modern markets move rapidly onto electronic plat-
forms, ecommerce and ebusiness are becoming key termsin
todays economy. Ecommerce addressesthe trading of phys-
ical goods, such as books, food, computers and appliances.
Information commerce, i.e. trading information goods, like
news, software, or reports, is even more attractive over elec-
tronic channels, since goods can be distributed through the
same infrastructure.

We find nowadays many popular examples of informa
tion commerce on the Internet. This ranges from commer-
cial services originating in the old economy, like digital li-
braries provided by scientific publishers, over new economy
applications, like auction market places or information por-
tals, to information exchange communities, like Napster or

*This work has been partially supported by the European Comission
under contract | ST-1999-10288 (OPEL1X) as part of the Information Tech-
nology Society program.

Andreas Wombacher
GMD-IPSI
Integrated Publication and
Information Systems Institute
64293 Darmstadt, Germany
wombach@darmstadt.gmd.de

Gnutella. The business models underlying these informa-
tion commerce applications are numerous and compl ex.

A limitation of the current situation isthat users are over-
whelmed by an enormous quantity of unstructured, uncerti-
fied data. Organizations, professionals but also private citi-
zenswilling to gain a profit from the knowledge of informa-
tion or to rely important decisions on information demand
value-added services like personalization, evaluation, cat-
egorization and combination of information. In addition,
they require that the origin of the information istrusted and
that the information is fresh, in order to ensure that they
base their decisions on up-to-date and accurate information.

Models and infrastructuresfor reliableinformation com-
merce, congdtitute an area of active research and devel-
opment with many technical challenges, such as delivery
mechanisms, copyright issues, tamper-resistance, adequate
payment facilities, non-repudiation and information quality.
We envisage an infrastructure for information vendors who
sell specific pieces of information, information mediators,
who buy, recombine and resell information, and informa-
tion brokerswho providedirectories of information vendors
together with added-value information. We assume that in-
formation has an associated value, that requires controlled
accessin an individualized manner and guarantees concern-
ing the quality and authenticity of the information. In such
a setting the different properties associated with an infor-
mation product and the corresponding interaction between
buyers and sellers need to be specified in a highly config-
urable business process language. This is an adequate as-
sumption for many application types, like portal sites, elec-
tronic new services, stock market information services, soft-
ware evaluation services, or directory services.

In this paper we introduce a business process language
that has been specifically developed to describe informa-
tion commerce processes. Though there exist a plethora of
approachesto specify and analyse business modelsfor el ec-
tronic commerce, we found that none of them exploits the
specific properties of information commerce processes suf-

ficiently. In order to specify information commerce pro-
cesses in a more concise and modular way we factored
out common constituents of all information commerce pro-
Cesses:

e Direct representation of the communication acts occur-
ring in a business process. we view information com-
merce processes as interdependent communications
among the participantsin which information goods are
exchanged. The communication actions are based on
the information good specifications and trading roles,
and are the elementary constitutent of the model.

e Rule-based process specification: The process specifi-
cations are composed from these communication acts
by means of condition-action-rules. From the pro-
cess specification al the message exchanges that are
required in an information commerce process are de-
rived. The process specification defines which actions
are possible to execute.

e Obligation semantics: by associating with certain
combinations of communication acts obligations we
can distinguish admissible execution of actions from
obligatory execution. This allows to make actions in-
terdependent in a way that all participants are driven
toward the completion of a business process in order
to achieve certain execution goals.

e Modelling of implicit state changes based on proper-
ties and relationships of information goods. Since in-
formation goods can be partitioned and sold easily in
many different forms, frequently the same outcome of
atrade can be reached in many different ways. Thus
theresult of an explicit state changeincurred by acom-
munciation action could also have been achieved by
alternative actions related to an alternative partitioning
of the same or related information goods. These equiv-
alent executions can be specified in the language.

Having such an information commerce language makes
it easier to develop, analyze and adapt the specifications of
information commerce processes. We will describe an im-
plementation architecture that we use for the ongoing im-
plementation of the language. In addition the language is
based on a concise semantics given by alogical model. This
provides the possibility for the analysis of specifications
given in the language, e.g. with respect to executability or
obligations.

In the following Section 2 we give an elaborate analysis
of related approaches and approachesthat incorporateideas
also we are using. This needsto be done in some detail in
order to motivate the necessity of anew kind of process|an-
guageand in order to position our approach. In Section 3we
introduce aworking example that on the one hand is used to

motivate why conventional process models, like Petri Nets
or Flowcharts are not an adequate means to specify infor-
mation commerce processes and on the other hand will be
used as running exampl eto introduce the language concepts
subsequently. Section 4 is the key section of the paper as it
introducesin a step-wise manner the language. We givealso
a short account on the language semantics there. In Section
5 we describe an architecture for the language implementa-
tion and different implementation issues. In Section 6 we
finally point out a number of issues that need to be explored
in the future on specifying and managing information com-
merce process.

2. Related Work

Mechanisms for the specification of interaction pro-
cessesin electronic commerce are described in many differ-
ent contexts, both in standardization and research. We sum-
marize in the following some of the important approaches:

EDI protocols
Web standardization

Crossorgani zational information systems

Secure protocols
e Agent communication languages

We analyze for these approaches what mechanismsfor pro-
cess specification they are based on, in what respects they
specifically address information commerce and where their
limitations with respect to information commerce process
specification lie.

EDI protocols: Web-based EDI is gaining substantial
momentum with the growing importance of the Web as a
B2B ecommerce infrastructure. Many initiatives are cur-
rently under way for defining - or redefining - EDI stan-
dardsfor the Web architecture using XML asthe underlying
data exchange language. Examples are ebXML [EBXML],
RosettaNet [ROSETTA], or the Internet Open Trading Pro-
tocol [IOTP], just to name a few. These standards are
based on predefined instances of data and process mod-
els that capture common, standard business processes for
electronic commerce. In this way they provide elaborate
but static specifications of ecommerce processes as well as
their corresponding domain models and message formats.
The data models are expressed as XML DTDs or XML
schemas. The process models are usually described either
informally or are given as conceptual process descriptions,
like flowcharts. From the viewpoint of modelling infor-
mation commerce processes these standards are normally
oriented toward the trading of physical goods and do not
specifically support information commerce. They capture

existing established business models, and due to the lack of
a modelling mechanism they do not alow to specify new
business models as they occur frequently in information
commerce.

Web standardization: In the context of Web standard-
ization anumber of standards have evolved that address dif-
ferent aspects of information commerce. The ones closest
to our work are the Micropayment Markup language [MI-
CRO] and the Information and Content Exchange Protocol
ICE [ICE]. The Micropayment markup language is in fact
a generic mechanism to implement information commerce
on the Web. It has, however, avery limited business model
whichislimited to a pay-per-view model and the use of mi-
cropayments. An interesting aspect of the micropayment
markup language is the possibility to relate the scope of
the validity of a payment to the structure of a Website. It
allows to access whole parts of a Website by acquiring ac-
cess to some entry point. Thisis a very restricted form of
a mechanism, we propose as one of the key elements of
our language and that allows to distinguish the direct ac-
quisition of rights for information, by the explicit exchange
of a message stating this fact, from the indirect acquisition
of rights implied by the contractual context. The informa-
tion and content exchange standard ICE is a protocol that
supports the exchange of content, like catalog data or news
items, in B2B applications. It provides a negotiation pro-
tocol to determine the delivery modalities and an exchange
protocol to perform the information exchange itself. In this
respect this standard shares similarity with our language as
we also support both a negotiation and delivery mechanism.
Inadditionto its protocolsI CE is based on acommunication
infrastructure for the Web, that we adopt for the implemen-
tation of our language. The business processes supported
by these two standards are test cases for the expressibility
of any generic language for information commerce.

Crossorganizational information systems. Crossor-
ganizational information systems are addressed in stan-
dardization initiatives [CORBA], middleware products
[BEA], and research projects[GAHL 00, KWA99, X FLOW,
MGTMWBL98]. In crossorganizationa information sys-
tems existing autonomous information systems of differ-
ent companies are directly connected in order to support
crossorganizational business processes. In order to deal
with the autonomity of the involved information systems,
contracts are specified, that specify a common view of the
shared data and processes for the crossorgani zational busi-
ness process. The models used to specify contracts are stan-
dard conceptua process model, like flowcharts [XFLOW,
BEA] or Petri-Nets [MGTMWBL98]. The business lan-
guage for information commerce that we will propose can
be viewed as an example of such a contract language that
is used to interconnect content management systems of dif-
ferent companiesfor the purpose of conducting information

commerce.

Secure protocols: Many protocols have been proposed
for electronic commerce and information commerce that
guarantee secure and fair exchanges. Netbill [NETBILL,
TYGAR99] is a protocol performing information good de-
livery and payment atomically. In [CHTY97] an atomic
protocol is proposed that supports anonymity of the con-
sumer. In[ASW98] an optimistic fair exchange protocol for
exchanging electronic goodsis proposed that requiresthird-
party involvement only for conflict resolution. The verifica-
tion of the execution guarantees of these information com-
merce protocols is either model-based or logic-based and
is a challenging task. A different approach is taken with
DigiBox [INTER], where digital content is strongly pro-
tected using special security infrastructures, even whenit is
resold. This infrastructure supports thus superdistribution
[C96]. Recently a language for expressing license rights
for DigiBox containers has been proposed [GWWO01]. The
protocols are in general too restricted in order to alow
the modelling of information commerce processes in gen-
eral. We view these protocols rather as potential atomic
building blocksto implement higher-level information com-
Merce processes.

Agent communication languages: Agent communica-
tion languages, like KQML [FFMM98] focus on the prob-
lem of communication among autonomous software agents.
We can view information commerce from this perspective.
These languages correlate the agentsinternal stateswith the
messages that are intended to change these states, called
performatives. They also specify the interaction languages
and interaction protocolsthat can be used to establish agent
communciation. There exist approaches to use agent com-
munication languages in order to model electronic com-
merce business processes, like FLBC [KIMB, WV98]. The
semantics of agent communication languages can be given
through logical models, that extend standard predicate logic
with concepts to capture dynamics of processes (dynamic
logic), modalities, like obligation (deontic logic) [MWD98,
LF94] and intention (illocutionary logic) [WVD95]. The
language that we will propose belongs to this class of ap-
proaches, but focuses in contrast to the existing proposals
specifically on the characteristics of information commerce
processes.

3. Anillustrating example

In this section we pursue two goals. We exhibit the
specific characteristics of information commerce processes
that need to be considered by introducing a simple infor-
mation commerce scenario. And, we give the specification
of the information commerce processin terms of a standard
method for process specification, namely colored Petri-Nets
[J92]. By doing so weillustrate some of the difficulties that

existing process models have when specifying information
commerce processes and to exhibit some of the benefits of
the language we will introduce. Models comparableto col-
ored Petri Nets are used in many approaches for describ-
ing business processes [AALST99]. For the sake of con-
creteness we choosefor this presentation colored Petri-Nets
as one typical representative of such process specification
mechanisms, but we expect that many of the observations
made, hold also for other, similar models.

In our scenario a portal site on the Web presents to its
visitors the following offer: All visitors can register and af-
terwards receive upon request news on a specific company.
The corresponding process can be specified by a colored
Petri Net as shown in Figure 1. A major differenceto stan-
dard business processes for which workflow models are de-
signed is, that we have to describe the parallel processing
of different information items in the business interactions.
For example, in our scenario news about different compa-
nies can be requested by the same customer and since these
requests are not independent we have to capture this within
one process instance.

We assume that the initial states names and companies
contain tokens for all potential user and company names.
Starting from the init state that contains an init token after
being requested by the portal a visitor n can register and
moves to state registered. ¢From there he can request an
item of company c. After an item has been requested the
portal can send the item. The types of the token variables
n and c are declared as string. The execution of this pro-
cess has some additional constraints. Since the portal has
promised the visitor that after registration news on compa
nies that are requested are also delivered, a process state
where atoken cisin state requested is not a valid termina-
tion state of the process. Thus we indicate all states which
may contain tokens in a terminal state by a double circle.
In addition, as the process describes an interaction process
among the portal and the visitor, it is necessary to indicate
the message exchanges that take place with each transition.
We specify this by denoting for each transition the message
name, direction and parameters.

Now let us assume that after a while the portal notices
that visitors register rarely. So it decides to add an aterna-
tive way of accessing the company news service. Users can
immediately request news, but are requested then to register
before the delivery. This requires a substantial extension of
the process description, which is shown in Figure 2.

In this modified process an alternative registration pro-
cedure is specified. Note that the state reg requested’ can
be terminal, if the user decides not to register. Also one can
see that after this sequenceis processed the token nis given
tothe ordinary registered state such that afterwards requests
can be handled in the normal way. Note that the registered
state in the alternative registration sequence can not be ter-

minal since in this state the portal is obliged to deliver the
requested information, since the visitor hasregistered. Nev-
ertheless, this state may not be necessarily reached, since
visitor may refuse to register. It is not under the control of
the portal whether it will have to deliver the information,
thusit is a conditional obligation. We will see later how we
will be ableto identify and analyse such forms of obligation
in our business process language.

One can also see from this example that a fairly simple
change in the model, which consists essentialy in the re-
ordering of some steps, requires a substantial extension of
the process description due to the duplication of states and
transitions, though the information goods and the messages
have not changed. After awhile, business is evolving well
and the portal decides to improve its service by providing
monthly summaries on selected topics. Each user should
receive those summaries that are related to the requests he
has made throughout the month. The new process is de-
picted in Figure 3.

In this extended process specification anew kind of tran-
sitions occurs. Up to now every transition was directly re-
lated to a message exchange, we call this an explicit state
change. In this process some of the transitions do not have
this property. The transition from state topics to requested
correspondsto an implicit state change that results from the
agreement among the portal and the visitor, but is not re-
flected in their communication. The fact that a requested
company is relevant for a topic is sufficient to imply that
the state of the topic changes to requested, without that this
is explicitely communicated.

This example should have made clear that traditional
methods of explicit process specification that are frequently
used in EDI standard specifications or workflow systems
have some difficulties with modelling the information com-
merce interaction processes for several reasons. We ob-
served that

e Since the parallel processing of multiple information
goods within one interaction is required, the result-
ing specifications are not necessarily very intuitive and
easy to understand. Thisisin contrast to process spec-
ifications as they are used e.g. in workflow systems,
where the process describes usually a single case, or
an EDI order protocol, where the processing of a sin-
gle order is treated.

e Small changesin the order of processing lead to a du-
plication of states and transitions in the model. This
is unavoidable since each different processing order
leads to a different history and thus to different inter-
mediate states and potential final states.

e Noformal criteriaexist to determine valid termination
states, in which obligations that have occurred are sat-
isfied. These execution constraints need to be derived

p->v:
request_| registration()

(}.m

v->p: register(n)

names

v- >p request(c)

init —@7|nlt
init reg_requeste reglstered

p->Vv: send(c,n)

{}Jr@

requested sent

companles

Figure 1. Scenario 1

p->v:
request_registration() v->p: register(n)

mn@ init
reg_requeste

init

init
reglstratlon()

requested

v->p: requ
registered ﬂi requested

companies
v->p:Yegister(n)

ROAL O

reg_requested'

p->v: send(c,n)

p->v: send(c,

c,n c,n

registered'

Figure 2. Scenario 2

from the informal knowledge of the semantics of the
business process.

e Though in most cases state transitions relate to com-
munication actions, due to implicit state changes this
is not always the case. The determination of the com-
muni cation actionsthat take placeisthus not supported
by the model and needsto be furnished additionally.

In particular the last two pointsindicate that different as-
pects of consistency of the specification are under the re-
sponsibility of the developer and his understanding of the
semantics of the interaction process. The model itself does
not support crucial concepts such as obligation and commu-
nication. So we propose to take a different approach. We do
not explicitely specify a process model and add specifica
tions for termination properties and communication actions
a posteriori. Rather we put the focus directly on the rele-
vant concepts of information commerce processes and de-
rive from that, among others, process specifications. To that
extent, we introduce in the next section a language that is

specifically designed to capture the commonalities of infor-
mation commerce processes within the language and allows
the user of the language to focus on the specific properties
of his proprietary business process.

4. Overview of the language

Thebusiness offer languagethat we introducein this sec-
tion has been devel oped by following a number of key prin-
ciples that we recognized as essential for the specification
of information commerce processes.

1. The main primitive of the language is the action of
exchanging an information good. We subsume un-
der the notion of information good all goods that are
exchanged electronically in an information commerce
process, including payments and certificates.

2. In order to specify such an exchange action we need to
provide the description of the information good itself

p->V:
request_registration() v->p: register(n)

init %©7init n
reg_requeste

init

init

requested’

1.0,

reg_requested'

if t\relevant T.n)
@t T {thn
c,n \ R
topics cn requested
Ve
"n,m,T

p->v: send(c,n)

requested

cnt

)

p->v: send

registered'

Figure 3. Scenario 3

as well as the description of the provider and receiver
of the information good.

. To express the business logic we have to be able to
constrain the execution of actions by conditions on the
information good, the process state and time. This
allows to express which actions are valid within the
agreement in a certain process state.

. Since the provider and receiver are autonomouswe re-
quire a minimal mechanism in order to establish an
agreement on an information good exchange action.
At least we have to give both parties the opportunity
to express their agreement to the exchange. This al-
lows to identify which actions become obligatory in a
certain process state.

. Weexplicitely differentiate state changesthat result di-
rectly from communication actions from those that re-
sult from implicit state changes. Thus the model al-
lows to determine the possible communications from

the specification.

We introduce now step by step the constructs of the lan-
guage that have been developed in order to realize those
principles.

4.1. Information goodsand roles

We assume that an information good is generally charac-
terized by a set of attributes, its metadata description. We
do not further constrain the types of the attributes, since
those are domain dependent. So generically an information
good is specified by an expression of the form

G(pl: Tl, vooy Pt Tn)

Examples of types for information good parameters are all
standard primitive datatypes, but also domain specific types
used to give properties of information goods. Examples
of domain-specific types would be URL for Web page ad-
dresses, SQL-QUERY for database access, XML-DOC for

structured documents, or US$ for payments. Without elab-
orating on details of such types, it is important to observe
that each type also provides certain functions and relations
which can be used to express conditions on the execution
of the business process. For example a relation DOC,
included-in DOC, on type XML-DOC could be used in or-
der to determine whether a certain document has already
been delivered as part of another document.

Similarly we have to specify who are the participants
in the process. We can define different roles that may be
parametrized.

R(P1: T1y ooy Pri Th)

As before we do not restrict what data types are used as
parameters. A potentia type could be ACCOUNT-TY PE
containing the classification of a customer as A, B or C ac-
count customer. For business process specifications where
the business partners are determined, the roles need not to
be parametrized. In such acasethe role specificationissim-
ply an enumeration of the participants, which we denotein
thefollowing as.

roles: Ry, ..., Ry;

Having defined the roles we can give the full specification
of the information goods by associating with them the di-
rection of exchange, for delivering the good. We denote
thisas

G(pl: Tl, cooy Pt Tn) R1 — R2

The declaration of all information goodsis then a finite set
of good declarations of this form, denoted as

goods: Gy, ...,Gy;

This completes the specification of information goods and
roles and thus covers point 2 of our design principles. For
illustration purposes we specify goods and roles for the ex-
amplefrom Section 3.

roles:
Visitor,
Portal;
goods:
company(c: NAME): Portal — Visitor,

summary(t: {TOPIC}, m: MONTH): Portal — Visitor,

registration(n: NAME): Visitor — Portal;
4.2. Actionsand States

As stated in point 1 of our design principles the basic
action related to an information good
GP1: T1,..,Pn: Tn): Rt 2 Ry

isits delivery, which we denote as

deliver(R1, Rz, G(p1, ..., Pn))

However, prior to delivery it is necessary to determine for
which information goods and which concrete parameters
Pi, ..., Pn this action has to be performed. This requires
that both parties involved in an exchange have the capabil-
ity to express their requirements and reach consensus on a
certain delivery action, as stated in our design principle 4.
To support this we introduce two negotiation actions

promise(R1, Rz, G(P1, - -, Pn))

where R; tells R, that it iswilling to deliver the good with
the specified parameters if it is requested by R2, and vice
versa

requeSt(R2, Rl, G(pln sy pn))

where R, tells R; that it is interested in the delivery of the
specified information good. As opposed to the delivery ac-
tion, where all parametersp, ..., p, haveto have assigned
concrete values, in the promise and request actions parame-
ters may be left purposely free to express that the sender of
the corresponding message does not care about its value.

These actions are defined in a way such that they ex-
actly correspond to message exchanges. Thus the only pos-
sible actions in the model are the communication actions
promise, request and delivery and they are implicitely given
by means of the specification of the information goods.

For each of the actionswe introduce a state predicate, ex-
pressing the fact that the corresponding action has occured.
These states are thus given as

promised(R1, Ra, G(p1, - - -, Pn))
requested(Rz, R1, G(p1, ..., Pn))
delivered(Ry, Rz, G(p1, - -, Pn))

In addition these state predicates can be parametrized by the
time of the occurrence of the action since this is frequently
an important criterion for the further flow of actions.

promised(R1, Rz, G(p1, ..., Pn)s t)
requested(R», R, G(p1, - .., Pn), 1)
delivered(R1, R2, G(P1, .-y Pr), t)

If a certain information good is both requested and
promised, then its delivery is presumed to become oblig-
atory. These leads to the state transition diagram in Figure
4, according to which the actions can occur

This state transition diagram associates with every infor-
mation good an elementary business process. Inthis process
al information goods are first by default in an initial state
init and can move by different transition sequencesto thefi-
nal delivered state. Note that not for all paths necessarily an
obligation occurs. If the information good is parametrized
the promise and request actions can constrain the possi-
ble parameter values without needing to determine them. If

init

promise request
romised
P requested
request
promise deliver
ised and deliver
promised an obligation
requested

deliver
delivered

Figure 4. State transitions associated with the
actions

theinformation good is in state promised and requested the
union of the parameter constraints is taken. The concrete
delivery parameters must then satisfy all the constraintsthat
have been specified.

We would like also to point out two important issues this
agreement mechanism is not intended to address. First, it
does not substitute negotiations prior to the execution of the
information commerce process. It is insofar limited as it
allows only to negotiate on the execution of the delivery
actions and the corresponding parameterization. The infor-
mation goods are specified as part of the business process.
No new information goods can, for example, be added and
no structural changesto the control flow, that will discussed
subsequently, are possible. Second, the introduction of an
obligation concept does not imply any specific way of how
to treat non-compliance with an obligation. Possible reac-
tions could range from taking notice of the violation and
deriving from that a reputation of the business partner to
taking legal actionsand using the execution history as proof
for the breach of a contractual obligation.

4.3. Rules

Up to now we can specify which actions are possible and
which obligations occur when certain actions have been ex-
ecuted. In general it is necessary to also create dependen-
cies among the delivery of different goods. We have seen
this in the example of Section 3 where the portal was only
willing to deliver company newsto visitors that have deliv-
ered a registration. Therefore the execution of actions can
be constrained as follows.

condition — [action]

where the condition expression is a Boolean combination
on the state predicates promised, requested and delivered,
on relations that are defined on the parameter domains of
the information goods and on the temporal parameters that
occur in the state predicates. In this way the execution of

one action can be made a precondition for the execution of
another action.

We introduce some definitions and short-hand notations
to deal with temporal specificationsin conditions and finite
repetitions of actions which are helpful to make specifica
tions more readable and expressive. We write START for
the starting time of the business process, and NOW for the
time of evaluation of the predicate. Furthermore we define

promised(Ry, Rz, G(py, ...
promised(Ry, Rz, G(py, ---

, Pn), ALREADY) as
, Pr), t) and t<NOW

and

promised(Ry, Rz, G(p1, --., Pn), NOTYET) as

not promised(R1, Rz, G(P1, ..., Pn)).
We will write
[action(py, ..., Px)]'™N

for actions that are repeated for a finite number of times
with arbitrary parameters. If the parameters are constrained
we will write

[action(p)]"dom | condition(p, i)

for actions that are performed for values satisfying condi-
tion(p, i) for i € dom where dom is afinite set. Similarly
we may use this notation in the init clause and in rule con-
ditions to specify multiple instances of states as follows

condition(py, ..., px)'n

(condition holds for n different instances of py, ..., Px)
condition(p)"dom | condition(p, i)

(condition holds for each parameter i € dom,

such that condition(p, i))

We illustrate the use of rules now for scenario 1 of our
portal example.

rules:
— [deliver (Visitor, Portal, registration(n))]
delivered(Visitor, Portal, registration(n)), ALREADY)
— [request(Visitor, Portal, company(c))]
requested(Visitor, Portal, company(c), ALREADY) A
delivered(Visitor, Portal, registration(n)), ALREADY)
— [deliver (Portal, Visitor, company(c))]

Three types of actions and corresponding message ex-
changes can occur according to this specification. In busi-
ness processes executing according to these rules never an
obligation occurs. On the other hand we have expressed
in the informal semantics of the portal example that there
exists a promise of the portal to deliver news for regis-
tered users. In order to deal with such a situation we al-
low the specification of initial states of the process that are

obtained without executing the corresponding message ex-
changesthat would lead to the state. This makes sense only
for the negotiation actions, thus the specification can have
theform

init:
promised(Ry, Rz, G1(p1, --., Pr), START)
| condition(py, ..., Pn)
or
init:
ra]uestaj(R2, Ry, G2(p1, ceey pn), START)

| condition(py, ..., Pn)
In our example we would thus add a clause
init: promised(Portal, Visitor, company(c), START);

which induces the conditional obligation we intend to ex-
press. Extending the specification to scenario 2 requiresthe
following rules

rules:

— [deliver (Visitor, Portal, registration(n))]

— [request(Visitor, Portal, company(c))]
requested(Visitor, Portal, company(c), ALREADY) A
delivered(Visitor, Portal, registration(n), NOTYET)

— [request(Portal, Visitor, registration(n))]
requested(Visitor, Portal, company(c), ALREADY) A
delivered(Visitor, Portal, registration(n)), ALREADY)

— [deliver (Portal, Visitor,company(c))]

For moving from thefirst specification to the second only
two changes had to be applied. First, the condition on the
request action is removed, which is the intended purpose
of the change, and second a rule is added that actively re-
quests registration in case non-registered users ask for in-
formation. Note that the condition on the delivery action
could have been simplified for scenario 1 by exploiting the
condition that is made there on the request action for com-
pany news. However, in order to make rules more robust
against changes all state-based conditions an action that are
required should be included explicitely into the rules.

Finally, let uslook at the scenario 3. To do so we intro-
duce an initial promise by the portal.

init:
promised(Portal, Visitor, summary(top, m),
START)™{1,.. .12} | m=i

Therule on the delivery of the summary is then given by

requested(Visitor, Portal, summary(top, m), ALREADY) A

delivered(Visitor, Portal, registration(n)), ALREADY) A
NOW = end_of _month(m)
— [deliver (Portal, Visitor, summary (top, m))]

The problem is here how to reach the requested state
for the summary, as this information is never explicitely
requested by the visitors, but is implied by his other re-
quests for company information. For that purpose we in-
troduce now another category of rules, that differentiate ex-
plicit state changes that are directly connected to message
exchanges to implicit state changes that emerge from the
properties of the agreement. Such arule has the form

substitution: condition = state
if asingle new state predicateisimplied or

substitution:
condition; = state(p)"dom | conditionz(p,i)

if we use our shorthand notation to imply afinite set. con-
dition is defined as for action rules and state is one state
predicate of the three possible types.

Using this rule type we can now specify the implicit re-
quest for summaries as follows

substitution:
delivered(Visitor, Portal, registration(n)) A
requested(Visitor, Portal, company(c))
= requested(Visitor, Portal, summary(top, m))
| relevant(top, c)

This completes the overview of the language concepts. We
have seen that the three scenarios could be modelled with
ease in the language. The specification we gave for the ex-
ample process produced implicitely the following:

1. the message exchanges, as they are directly linked to
the actions.

2. the process definition by means of the conditions for
the execution of actions.

3. the obligations as they are directly derived from the
promise and request actions occuring.

In our example only obligations on the portal side occurred.
They resulted frominitially assumed promises of the portal,
explicit requests from the visitor and implicit requests from
the visitors resulting from implicit state changes. They are
conditional in the sense that they only hold if the visitor
satisfies preconditions, i.e. the delivery of aregistration.

The specification could be easily extended with further
conditions, most notably temporal constraints on the execu-
tion of actions. For example the portal site could promise
to deliver any news with a limited delay of one hour. This
could be expressed as:

requested(Visitor, Portal, company(c), t) A

NOW < t+1h A

delivered(Visitor, Portal, registration(n)), ALREADY)
— [deliver (Portal, Visitor, company(c))]

Thus the execution of the deliver action can only take place
within one hour after the request and since it is obligatory
the portal has to do so in order not to violate the agreement.
Finally, if we want also be able to expressthat certain states
are reached within the process we provide a language con-
struct that introduces explicit obligations

goals: delivered(Ry, Rz, G(p1, - - ., Pn), 1).
4.4, Language Semantics

It is beyond the scope of this paper to discuss the seman-
tics of the languagein detail. We give here an indiciation of
the mapping of specification to alogical model. Thelogical
semanticsis given by first order dynamic logic [MWD98],
which allows to distinguish actions and states. The roles
and information goods are then the function symbols of the
logical model and the rules correspond to axioms of the lan-
guage. For example, arule of the form

condition(p) — [deliver (R, Rz, G(p)]
translates to an axiom

condition(p) and time(t) —

[deliver(Ry, Ry, G(p)); inc_time()] delivered(Ry, Ry, G(p), t)

where the action inc_time() increments the time predi-
cate time(t) according to the axiom

time(t) — [inc_time()] time(t+1)

The time expression NOW translates to time(t). Obli-
gations can be modelled by deontic extensions of dynamic
logic as described in [WV D95, MWD98].

5. Implementation Architecture

From an architectural viewpoint the business process
language allows to introduce a process level as an abstrac-
tion layer in information commerce systems which lies
above the content management systems, asis shown in Fig-
ure 5. This abstraction layer allows to specify and control
the processes that are executed when trading information
good abstracting from technical details of how the goodsare
delivered electronically at acontent level. Thusit facilitates
the specification, negotiation, verification and execution of
those processes.

Before starting such an information commerce process
the trading partners have to establish a common agreement
expressed as a business process specification, as indicated
by an agreement level in Figure 5. The mechanism used
to achieve such an agreement is out of the scope of the
business language itself. It can be performed by any au-
tomatic or interactive mechanism that results in a common

agreement (BOL spec)

&
&5
&
S

agreement (BOL spec)

@ deliver (pay 4 >
& b2) /4 request(pay)
oo@ﬁ promise(pay)™ /4 >
¢ Y/ o
request(info) — = request(info)
V =
> pay_msg3 "
/4 ay_msg2
N# ymsgl 2 — PR
< = >
) &
& content_delivery &
4
V[
trading partner A trading partner B

Figure 5. Overview of the architecture levels

agreement on a business process specification. However,
the agreement itself can be an information good that has
been exchanged in the context of another information com-
Mmerce process.

Once such an agreement is established the execution of
the business process can start. The execution of the business
process requiresthe following functions at the process level
interfaces to the content management applicationsrealizing
the information good delivery

e generation and verification of the messages inter-
changed

e implementation of the dataand control flow by the par-
ticipantsin the process

In addition, at any point during execution each partici-
pant can analyse the current state of the process execution
in order to plan his future actions. Such analyses are specif-
ically important with respect to the current obligations and
the reachability of states where the obligationsare satisfied.
In the following we focus our description on the three basic
functions at the process level.

5.1. Interfaces to Content Management for infor-
mation good delivery

As a key concept of the business process language al
actions are related to an information good and the generic
action is that of delivering an information good. For the
execution of a delivery action usually content management
systems of both participants are involved. As with informa-
tion goodswe use the notion of content management system
in afairly wide sense, i.e. it could be a payment system, if
theinformation good is apayment. In Figure 5 two cases of
a delivery action are depicted, the delivery of an informa-
tion good and the delivery of a payment. From these exam-
pleswe can see two different possibilities of how adelivery
action is implemented at the content management system

level. Inthefirst case, the delivery of aninformationitem, a
corresponding delivery operation at the content level is exe-
cuted. The delivery can be realized by any communication
mechanism that transfers the information content. Exam-
ples are the sending of an email, the access to a Web server,
or the use of a push system [HJ99]. In some, possibly ex-
ceptional cases, al the relevant information corresponding
to an information good may be transferred directly through
messages at the process level, requiring no corresponding
activity at the content level. In the second case, a payment,
we seethat asingle delivery action at the process|evel trans-
latesto the execution of a more complex (payment) protocol
at the content level. At the processlevel this protocol is ex-
ecuted as an atomic action.

In order to couplethedelivery actionsat the processlevel
with the execution of the corresponding operations at con-
tent level, the business process language interpreter needs
to be furnished with the specifications of the calls to the
content management systems APIs that realize the delivery
operation for every information good.

5.2. Communication at the process|evel

Every action at the process level results in a message ex-
change. For every information good and action type a mes-
sage structure is generated from the business process lan-
guage specification. This message structure is represented
in XML as the standard data exchange format. In order to
exchange these messages, in our implementation an XML
based request-response protocol isused, that is derived from
the ICE communication protocol [WKAO1]. This protocol
adds communi cation headers to the messages encoding ac-
tions and provides a communication error handling. Re-
ceived messages are analyzed by parsing the message and
creating internal data structures for further processing.

5.3. Implementation of Data and Control Flow

All participants in the business process need a runtime
component that coordinates the execution of the business
process. The runtime components orchestrate the enabling
of actions by evaluating their enabling conditions, the track-
ing of the executed actions and thus of the process state, the
generation and receipt of messages, and the callsto the con-
tent management systems required for the implementation
of the delivery actions. The runtime component providesan
interface for the triggering of enabled actions. This inter-
faceis either used by an application or directly by a user in-
terface. The implementation of the runtime component can
be based in a straightforward manner on a rule interpreter
using the business process language specifications.

For the evaluation of enabling conditions the runtime
component requires access to the domain specific imple-

mentations of the functions and predicates that are associ-
ated with the parameter domains of the information goods
androles.

6. Further work

We have already specified a number of example ap-
plications in the language including a portal site for ex-
changing technical information on object-oriented middle-
ware, which is currently being realized in the context of
the OPELIX project [OPELIX], the business model that
is underlying the Napster MP3 audio exchange community
[NAPSTER], and relevant parts of the ICE protocol [ICE].
It showed that the language allowed to express the busi-
ness processes underlying each of these applications very
directly and in an intuitive manner. Also the expressivity of
thelanguage proved to be sufficient. One possible extension
relevant for trading multimedia contents with long-lasting
deliveries would be to distinguish start and completion of
the delivery action, to relate different conditions to each of
both. Such an extension of the language can be done in a
straightforward manner.

The implementation of the system is ongoing. It is based
on the architecture that has been described in [WKAOQ1]
and focuses on the support of light-weight infrastructures.
When using heavy-weight middleware architectures such as
WebL ogic[BEA], whichincluderuleinterpreters, animple-
mentation of the language could provide as aspecialized ab-
straction layer for supporting information commerce based
on the integrated rule engines.

7. References

[AALST99] W.v.d.Aalst: Process-oriented architectures
for electronic commerce and inter-organizational work-
flows, Information Systems No. 8, Vol. 24, pp 639-671,
Elsevier, 1999.

[ASW98] N. Asokan, V. Shoup, M. Waidner: Asyn-
chronous Protocols for Optimistic Fair Exchange, Proc. of
S& P 98, Oakland, California, 1998.

[C96] B. Cox: Superdistribution, Addison-Wesley, 1996.

[CHTY97] J. Camp, M. Harkavy, J.D. Tygar, B. Yee:
Anonymous Atomic Transactions, USENIX, 1997.

[FFMM98] T. W. Finin, R. Fritzson, D. McKay, R.
McEntire: KQML AsAn Agent Communication Language.
CIKM 1994: 456-463, 1994.

[GAHLOO] P. Grefen, K. Aberer, Y. Hoffner, H. Ludwig:
CrossHow: Cross-organizational workflow management in
dynamic virtual enterprises, Int. Jour. of Computer Systems
Science & Engineering, Vol. 15, Nr. 5, pp 277-290, 2000.

[GWWO01] C. Gnther, S. Weeks, A. Wright: Models and
Languagesfor Digital Rights, Proc. HICSS 01, 2001.

[HJ99] M. Hauswirth, M. Jazayeri: A Component and
Communication Model for Push Systems. ESEC / SIG-
SOFT FSE 1999: 20-38

[J92] K. Jensen: Coloured Petri Nets, Springer, 1992.

[KIMB] S. Kimbrough: Forma Language for Business
Communication (FLBC): Sketch of a Basic Theory, forth-
coming in International Journal of Electronic Commerce.

[KWA99] J. Klingemann, J. Wsch, K. Aberer: Adaptive
Outsourcing in Cross-Organizational Workflows, Proc. of
the the 11th Conference on Advanced Information Systems
Engineering (Caise), Heidelberg, Germany, 1999.

[LF94] Y. Labrou, T. W. Finin: A Semantics Approach
for KQML - A General Purpose Communication Language
for Software Agents. CIKM 1994 447-455, 1994.

[MGTMWBL98] M. Merz, F. Griffel, M. T. Tu, S. Mller-
Wilken, H. Weinreich, M. Boger, W. Lamersdorf: Sup-
porting Electronic Commerce Transactions with Contract-
ing Services. 1JCIS 7(4): 249-274, 1998.

[MWD98] J. Meyer, R. Wieringa, F. Dignum: The Role
of Deontic Logic in the Specification of Information Sys-
tems, in: J. Chomicki, G. Saake (Eds) Logics for Databases
and Information Systems, Kluwer, 1998.

[TYGAR99] J. D. Tygar: Atomicity versus Anonymity:
Distributed Transactions for Electronic Commerce. VLDB
1998: 1-12, 1998.

[WH98] H. Weigand, W.J. van de Heuvel: Meta-patterns
for Electronic Commerce based on FLBC. Proc. HICSS' 98,
|EEE Press, 1998.

[WKAO1] A. Wombacher, P. Kostaki, K. Aberer, We-
bXIce: An Infrastructurefor Information Commerce on the
Web, Proc. HICSS 01, |EEE Press, 2001.

[WVD95] H. Weigand, E. Verharen, F. Dignum: In-
tegrated Semantics for Information and Communication
Systems.DS-6 1995: 500-525, 1995.

[BEA] BEA systems home page. www.bea.com

[CORBA] CORBA home page. www.corba.org

[EBXML] EBXML home page. www.ebxml.org

[ICE] www.ice.org

[INTER] Intertrust home page. www.intertrust.com

[IOTP] www.oasis-open.org/cover/otp.html

[MICRQ] Micropayment Markup Language home page.
www.w3c.org/ecommerce

[NAPSTER] Napster home page. www.napster.com

[NETBILL] NetBill home page. www.netbill.com

[OPELIX] OPELIX home page. www.opelix.org

[ROSETTA] www.rosettanet.com

[XFLOW] www.crossflow.org

