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ABSTRACT

Provenance is a directed acyclic graph that explains how a
resource came to be in its current form. Traditional access
control does not support provenance graphs. We cannot
achieve all the benefits of access control if the relationships
between the data and their sources are not protected. In
this paper, we propose a language that complements and
extends existing access control languages to support prove-
nance. This language also provides access to data based on
integrity criteria. We have also built a prototype to show
that this language can be implemented effectively using Se-
mantic Web technologies.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection—Ac-
cess Control

Keywords

Access Control, Provenance, RDF, SPARQL, Regular Ex-
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1. INTRODUCTION
Provenance is the lineage, pedigree and filiation of a re-

source (or data item) and is essential for various domains in-
cluding healthcare and intelligence. Provenance can be used
to drill down to the source of a medical record or an intel-
ligence report, to track the activities of a doctor or a field
agent, and to provide an audit trail that can be used later
for validation and verification tasks. Existing access control
specifications that define policies for resources do not eas-
ily support provenance [3]. Despite the current drawback of
provenance to divulge sensitive information, the security of
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provenance has not been given a high priority in the research
community. It is clear that the protection of provenance is
required by laws and regulations to avoid the disclosure of
sensitive information [10]. For example, in a security intel-
ligence agency, the improper disclosure of the source or the
ownership of a piece of classified information may result in
great and irreversible losses. Also, many compliance regu-
lations require proper archives and audit logs for electronic
records, e.g. HIPAA mandates that we properly log accesses
and updates to the histories of medical records [10].

In order to define an access control policy for provenance,
it is imperative that we identify the parts of the provenance
graph that we want to protect. Therefore, we must have a
clear definition of the users, their actions and the resources
to be protected. Provenance takes the form of a directed
acyclic graph (DAG) that establishes causal relationships
between data items [15]. Traditional access control models
focus on individual data items whereas in provenance we are
concerned with protecting both, the data items and their re-
lationships [3]. In this paper we refer to both, data items and
their relationships as resources, to be protected. In order to
protect a resource we need to first identify it in the prove-
nance graph. This identification is one of the major distin-
guishing factors between a provenance access control model
and existing access control models. The provenance graph
structure not only poses challenges to access control models
but also to querying languages [11]. The various paths in
a provenance graph from a resource to all its sources are
important in proving the validity of that resource. Further-
more, these paths contain the pertinent information needed
to verify the integrity of the data and establish trust between
a user and the data; however, we do not want to divulge any
exclusive information in the path which could be used by an
adversary to gain advantages, for example in military intel-
ligence.

We need appropriate access control mechanisms for prove-
nance that prevent the improper disclosure of any sensitive
information along a path in the provenance graph. We need
to extend the traditional access control definition that pro-
tects a single data item to one where we now want to protect
any resources along a path of arbitrary length. In this paper,
we propose a policy language that extends the definition of
traditional access control languages to allow specification of
policies over data items and their relationships in a prove-
nance graph. This language will allow a policy author to
write policies that specify who accesses these resources. The
language provides natural support for traditional access con-
trol policies over data items. We motivate this idea with the



following example. Consider a medical example where we
may want to give access to everything in a patient’s record
that was updated by processes controlled only by the pa-
tient’s physician and surgeon. For this example, the system
would evaluate two policies. The first policy would check if
the user has access to the medical record. This policy would
be applied over all the medical records in the system with
the traditional access control policies in place. The second
policy would check if the patient’s medical record has indeed
only been modified by the patient’s physician and surgeon.
This second policy would be applied over the provenance
graph associated with the given medical record. This ex-
ample not only shows how existing access control policies
can be integrated in our language, but also how traditional
access control can be used to allow access to provenance.
The traditional definition of access control policies is ex-

tended in our policy language to include relationships over
data items in the provenance graph by making use of regular
expressions. The use of an existing access control language
to build policies over the provenance graph would require
enumerating all the possible paths that we want to protect
in the graph as separate policies. The use of regular ex-
pressions in our language not only solves this problem, since
many paths can be specified using the same regular expres-
sion, but also allows the same policy to be applied to multi-
ple provenance graphs. In contrast to the first example these
regular expressions can be used to first verify the quality of
the data items and second, act as a “pseudo” access control
mechanism for giving data access to the user. Again, we
use the following example to motivate this idea. Consider a
military scenario where access to an intelligence report can
only be given to a user if the report was created by a particu-
lar field agent belonging to a specific agency in a particular
country. In this example, the system would evaluate the
regular expression in the policy over the provenance graph
for the given intelligence report to check if that report was
indeed created by the specified field agent belonging to the
given agency in the specified country. If such a path exists
in the provenance graph only then access is granted to the
querying user for the report. This example emphasizes how
provenance can be used to first determine integrity of the
data in order to guarantee high quality information before
access is given to the actual data items.
Our main contribution in this paper is the definition of

an access control policy language for provenance. This lan-
guage retains the properties of traditional access control to
gain access to data. Furthermore, the language provides an
additional advantage whereby provenance not only acts as
an access control mechanism but also as an integrity mecha-
nism for giving access to the data. We also build a prototype
using Semantic Web technologies that allows a user to query
for data and provenance based on access control polices de-
fined using our policy language.
The rest of the paper is organized as follows. Section 2

gives a basic idea of access control and shows the drawbacks
of using existing access control models for provenance. Sec-
tion 3 provides a formalism to represent access control poli-
cies for provenance. In Section 4 we present existing storage
mechanisms for provenance and we show how we can use
regular expressions to support our policy language using Se-
mantic Web technologies. In section 5 we show how the
complexity changes from that of protecting single resources
to that of protecting resources over relationships in a prove-

nance graph. Section 6 presents an architecture which incor-
porates our policy language in an access control prototype
system. Section 7 reviews previous work in the area of access
control for provenance. In closing, in Section 8 we provide
our conclusions and future work.

2. ACCESS CONTROL
An access control system has three levels of abstraction

[23]:

1. Policy. This is a high level requirement that specifies
how access is managed and who, under what condi-
tions, may access a resource.

2. Mechanism. This implements the regulations estab-
lished by a policy.

3. Model. This is a formal representation of a policy. The
model allows the verification of the security properties
provided by the system.

An access control policy authorizes a set of users to per-
form a set of actions on a set of resources within an en-
vironment. Unless authorized through one or more access
control policies, users have no access to any resource of the
system. There are many access control policies defined in
the literature. These can be grouped into three main classes
[23], which differ by the constraints they place on the sets of
users, actions and objects (access control models often refer
to resources as objects). These classes are (1) RBAC, which
restricts access based on roles; (2) DAC, which controls ac-
cess based on the identity of the user; and (3) MAC, which
controls access based on mandated regulations determined
by a central authority. There are two major concerns with
these policies. The first is the number of user to object as-
signments and the second is that these policies are defined
over a single resource.

Role-Based Access Control (RBAC) models have enjoyed
popularity by simplifying the management of security poli-
cies. These models depend on the definition of roles as an
intermediary between users and permissions (which is a com-
bination of actions and objects). The core model defines
two assignments: a user-assignment that associates users to
roles and a permission-assignment that associates roles with
permissions. In [8], the authors argue that there is a di-
rect relationship between the cost of administration and the
number of mappings that must be managed. The drawbacks
with using RBAC include, (i) each time a user does not have
access to an object through an existing role, a new role is
needed; and (ii) as the policies become more fine-grained, a
role is needed for each combination of the different resources
in the provenance graph [22]. Similar drawbacks apply to
the DAC and MAC access control models since they both
use mapping functions to associate users with objects.

Clearly, applying these traditional access control policies
for fine-grained access control in provenance would result
in prohibitive management costs. Moreover, their usage in
provenance would be an arduous task for the administrator.
In Section 5, we provide an analysis, which shows that the
number of resources in a provenance graph is exponential
in the number of nodes in the graph. We address these
drawbacks in this paper and provide an implementation of
a prototype mechanism, which shows that we can greatly
reduce these mappings.



In summary, the general expectations of an access control
language for provenance are (i) to be able to define policies
over a directed acyclic graph; (ii) to support fine-grained
access control on any component of the graph; and (iii) to
seamlessly integrate existing organizational policies.

3. POLICY LANGUAGE
A generalized language that extends existing access con-

trol languages such as XACML [14] was proposed in [17].
We extend the syntax of this XML-based policy language in
order to incorporate regular expressions in a policy. The
existing provenance language in [17] was developed as a
generalized model of access control for provenance, but did
not address resources with arbitrary path lengths within the
provenance graph. Therefore, this language suffers from the
fact that a resource must be identified before hand, rather
than be given as a string which is matched against the graph
at execution time. An example of our adaptation of the lan-

<policy ID="1" >
<target>
<subject>anyuser</subject>
<record>Doc1_2</record>
<restriction>

Doc1_2 [WasGeneratedBy] process AND
process [WasControlledBy] physician|surgeon

</restriction>
<scope>non-transferable</scope>

</target>
<condition>purpose == research</condition>
<effect>Permit</effect>

</policy>

Figure 1: Policy language

guage in [17] is given in Figure 1, which now allows the pol-
icy to be written using the regular expression syntax. We
place an emphasis on the target, effect and condition ele-
ments given in [17], but make slight modifications to their
meanings to incorporate regular expressions on a provenance
graph. Since our focus in this paper is on specifying a policy
for access control in provenance, we provide only the rele-
vant XML elements in this paper. The interested reader
can find other interesting elements of the language, such as
obligation and originator preference, in [17].
The description of each element in Figure 1 is as follows:

The subject element can be the name of a user or any col-
lection of users, e.g. physician or surgeon, or a special user
collection anyuser which represents all users. The record

element is the name of a resource. The restriction element
is an (optional) element which refines the applicability es-
tablished by the subject or record. The scope element is
an (optional) element which is used to indicate whether the
target applies only to the record or its entire ancestry. The
condition element is an (optional) element that describes
under what conditions access is to be given or denied to a
user. The effect element indicates the policy author’s in-
tended consequence for a true evaluation of a policy.
The scope element is useful, in particular, when we want

to protect the record only if it is along a specified path in
the provenance graph. This is achieved by using the prede-
fined value“non-transferable”. This element can also be used
when we need to protect a path in the provenance graph if
a particular record is along that path. This is achieved by

the predefined value “transferable”. The condition element
is necessary when we want to specify system or context pa-
rameters for giving access, e.g. permitting access to prove-
nance when it is being used for research. It is important
that we keep the number of policies to a minimum by com-
bining them using regular expressions. This will improve
the effectiveness of an access control system that protects
the sensitive information from unauthorized users. It was
also pointed out in [17] that when the policy size is not
small, detecting abnormal policies is essentially a SAT prob-
lem. The reason is that the effects of different semantics for
the predicates used in the condition and restriction elements
may cause incorrect policy specifications, which may gener-
ate conflicting or redundant policies.

We achieve fine-grained access control by allowing a record
value to be any (indivisible) part of a provenance graph. The
regular expressions in the “restriction” element allow us to
define policies over paths of arbitrary length in a provenance
graph that apply to a subject or record. Also, since XML
is an open and extensible language, our policy language is
both customizable and readily supports integration of other
policies.

3.1 The Grammar
In this section, we define a grammar for each of the tags

in the language we propose.

<exp> ::= <char>+ ("." <char>+)?

<char> ::= [a-z] | [A-Z] | "_" | "-" |

<reg> ::= "*" | "+" | "?"

<bool> ::= " AND " | " OR " | "|"

<op> ::= " == " | " <= " | " >= " | " < " | " > "

<num> ::= ([0-9])+

<sp> ::= "[" <exp> "]"

We now define the set of strings accepted by each element
in our language.

subject = <char>+ | <num>

record = <exp>

restriction = (<exp><num>?)+ (<op> | <sp><reg>?)

(<exp><num>?)+

(<bool> (<exp><num>?)+

(<op> | <sp><reg>?)? (<exp><num>?)+)*

scope = <char>+

condition = (<exp><num>?)+ (<op> | <sp><reg>?)

(<exp><num>?)+

(<bool> (<exp><num>?)+

(<op> | <sp><reg>?)? (<exp><num>?)+)*

effect = <char>+ | <num>

The grammar defined above allows us to evaluate the policy
for correctness and secondly, allows a parser to unambigu-
ously translate the policy into a form that can be used by
the appropriate layer in our architecture.

4. DATA REPRESENTATION
We require a suitable data representation for storing prove-

nance. Such a data representation must naturally support



the directed graph structure of provenance and also allow
path queries of arbitrary length. The Open Provenance
Model (OPM) [15] does not specify protocols for storing or
querying provenance information; but it does specify prop-
erties that any data model should have. One such prop-
erty includes allowing provenance information to be shared
among systems. Provenance data can be stored in the re-
lational database model, the XML data model or the RDF
data model [12]. Each of these in their current form has
drawbacks with respect to provenance [11]. A relational
model suffers from the fact that it needs expensive joins on
relations (tables) for storing edges or paths. Also, current
SQL languages that support transitive queries are complex
and awkward to write. XML supports path queries, but the
current query languages XQuery and XPath only support
a tree structure. RDF naturally supports a graph struc-
ture, but the current W3C Recommendation for SPARQL
(the standard query language for RDF) lacks many features
needed for path queries. There are recent works on extend-
ing SPARQL with path expressions and variables. These
include SPARQL Query 1.1 [9] which is now part of a pro-
posal put forward by the W3C recently. The SPARQL 1.1
query language includes new features such as aggregates,
subqueries, property paths, negation and regular expres-
sions, but this is still a W3CWorking draft as of this writing.
In the case of access control in provenance we may have

two different sets of access control policies, one for tradi-
tional access control and one for provenance access control.
This may result in the management of two different sets of
policies if both, the traditional data items and provenance
are placed in the same data store. If we allow this scenario,
all requests from a user would be evaluated against both,
the policies for the traditional access control and the poli-
cies for provenance. This would be the case even when the
user is only working with the traditional data, and is not
requesting the provenance information. In general, the lin-
eage or ancestry of a data item may involve many sources
and processes that influence a resource. Recording all these
sources and paths may result in very large databases. There-
fore, provenance may grow much faster than the actual data
items and may be better served by a separate database. To
this end, we will use a separate data store for provenance in
our design of an architecture and prototype for provenance.

4.1 Graph Data Model
Of the many data models in the literature, we model our

prototype based on a RDF data representation for prove-
nance. This data model meets the specification of the OPM
recommendation. RDF allows the integration of multiple
databases describing the different pieces of the lineage of a
resource; and naturally supports the directed structure of
provenance.
The RDF terminology T is the union of three pairwise

disjoint infinite sets of terms: the set U of URI references,
the set L of literals (itself partitioned into two sets, the set
Lp of plain literals and the set Lt of typed literals), and
the set B of blanks. The set U ∪ L of names is called the
vocabulary.

Definition 1. (RDF Triple) A RDF triple (s, p, o) is
an element of (U ∪B)×U ×T . A RDF graph is a finite set
of RDF triples.

A RDF triple can be viewed as an arc from s to o, where

p is used to label the arc. This is represented as s
p
→ o. Our

provenance graph is constructed from a set of these RDF
triples. RDF is intended to make assertions about a re-
source. This includes making multiple assertions about the
same two resources; for example, a heart surgery h was con-
trolled by a surgeon s, and the inverse relation: s performed
a heart surgery h. This would be modeled as a directed
loop in a RDF graph. In order to preserve the properties
of a provenance graph, we need to place restrictions on the
assertions made in a RDF graph. That is, we require a di-
rected acyclic RDF graph to retain the causal dependencies
among the nodes as needed in provenance.

Definition 2. (Provenance Graph) Let H = (V,E) be a
RDF graph where V is a set of nodes with |V | = n, and E ⊆

(V ×V ) is a set of ordered pairs called edges. A provenance
graph G = (VG, EG) with n entities is defined as G ⊆ H,
VG = V and EG ⊆ E such that G is a directed graph with
no directed cycles.

We define a resource in a provenance graph recursively as
follows.

• The sets VG and EG are resources.

• ε is a resource.

• The set of provenance graphs are closed under inter-
section, union and set difference. Let H1 and H2 be
two provenance graphs, then H1 ∪ H2, H1 ∩ H2 and
H1 −H2 are resources, such that if t ∈ H1 ∪H2 then
t ∈ H1 or t ∈ H2; if t ∈ H1 ∩ H2 then t ∈ H1 and
t ∈ H2; or if t ∈ H1 −H2 then t ∈ H1 and t /∈ H2.

4.2 Provenance Vocabulary
We define the nodes in the provenance graph using the

nomenclature in [15]. This nomenclature defines three en-
tities: artifacts, processes and agents. These entities form
the nodes in VG in our provenance graph G. An artifact
is an immutable piece of state, which may have a physical
embodiment in a physical object, or a digital representation
in a computer system [15]. A process is an action or series
of actions performed on or caused by artifacts and result-
ing in new artifacts [15]. An agent is a contextual entity
acting as a catalyst of a process, enabling, facilitating, con-
trolling, affecting its execution [15]. In RDF representation,
an artifact, a process and an agent could be represented as,

<opm:Agent> <rdf:type> <opm:Entity>

<opm:Artifact> <rdf:type> <opm:Entity>

<opm:Process> <rdf:type> <opm:Entity>

The property rdf:type is used to indicate the class of a
resource and the prefix opm: is reserved for the entities and
relationships in the OPM nomenclature in [15].

Let VG be the set of names appearing in a provenance
graph G and VP

G ⊆ VG be a set of names on the arcs in
G. The label on each e ∈ VP

G defines a relationship between
the entities in G and also allows us to navigate across the
different nodes by a single hop. A list of predicate names in
VP
G describing the causal relationships among the nodes in

G are as follows:

<opm:Process> <opm:WasControlledBy> <opm:Agent>

<opm:Process> <opm:Used> <opm:Artifact>

<opm:Artifact> <opm:WasDerivedFrom> <opm:Artifact>

<opm:Artifact> <opm:WasGeneratedBy> <opm:Process>

<opm:Process> <opm:WasTriggeredBy> <opm:Process>



Figure 2: Provenance Graph

These predicates are the ones defined in [15] and they form
the edges in our edge set, EG, in our provenance graph G.

Definition 3. (Path) A path in a RDF graph is a se-
quence of RDF triples, where the object of each triple in the
sequence coincides with the subject of its successor triple in
the sequence.

Definition 4. (Provenance Path) In G, a provenance

path (s ρ o) is a path s(
ρ

→)o that is defined over the prove-
nance vocabulary VP

G using regular expressions.

Definition 5. (Regular Expressions) Let Σ be an alpha-
bet of terms in U ∩ VP

G , then the set RE(Σ) of regular ex-
pressions is inductively defined by:

• ∀x ∈ Σ, x ∈ RE(Σ);

• Σ ∈ RE(Σ);

• ε ∈ RE(Σ);

• If A ∈ RE(Σ) and B ∈ RE(Σ) then:
A|B,A/B,A∗, A+, A? ∈ RE(Σ).

The symbols | and / are interpreted as logical OR and com-
position respectively.
Our intention is to define paths between two nodes by

edges equipped with * for paths of arbitrary length, includ-
ing length 0 or + for paths that have at least length 1.

Therefore, for two nodes x, y and predicate name p, x(
p
→)∗y

and x(
p
→)+y are paths in G.

The provenance graph in Figure 2 shows a workflow which
updates a fictitious record for a patient who went though
three medical stages at a hospital. In the first phase, the
physician performed a checkup on the patient. At checkup,
the physician consulted the history in the patient’s record,
med:Doc1 1 and performed the task of recording notes about
the patient. At the end of the checkup, the physician then
updated the patient’s record, which resulted in a newer ver-
sion, med:Doc1 2. In the second phase, the patient returned
for a follow-up visit at the physician’s request. During this

visit, the physician consulted with the patient’s record for a
review of the patient’s history and then performed a series
of tests on the patient. At the end of this visit, the physi-
cian then updated the patient’s record, which results in a
newer version, med:Doc1 3. In the third phase, the patient
returned to undergo heart surgery. This was ordered by the
patient’s physician and carried out by a resident surgeon.
Before the surgeon started the surgery, a careful review of
the patient’s record was performed by both the patient’s
physician and surgeon. During the surgery process, the sur-
geon performed the task of recording the results at each
stage of the heart surgery process. At the end of the surgery,
the patient’s record was updated by the surgeon, which re-
sulted in a newer version, med:Doc1 4. The number in the
suffix at the end of each process, agent and artifact is only
meant to show an implicit condition whereby a larger num-
ber means that the provenance entity is at a later stage in
the workflow process. The sameAs annotations on the light
shaded arrows are meant to illustrate that the reference to
physician is meant to be the same person in all the three
phases. We use Figure 2 as a running example through the
rest of the paper.

4.3 Path Queries
SPARQL is a RDF query language that is based around

graph pattern matching [19].

Definition 6. (Graph pattern) a SPARQL graph pattern
expression is defined recursively as follows:

1. A triple pattern is a graph pattern.

2. If P1 and P2 are graph patterns, then expressions (P1
AND P2), (P1 OPT P2), and (P1 UNION P2) are
graph patterns.

3. If P is a graph pattern and R is a built-in SPARQL
condition, then the expression (P FILTER R) is a
graph pattern.

4. If P is a graph pattern, V a set of variables and X ∈

U ∪ V then (X GRAPH P) is a graph pattern.



The current W3C recommendation for SPARQL does not
support paths of arbitrary length [7]; therefore, extensions
are needed to answer the queries over the provenance graph.
Many approaches to supporting paths of arbitrary length
have been proposed in the literature, which include [7, 2, 13].
A W3C working draft for extending SPARQL to support
property paths can be found in [9].
We use the following basic SELECT query structure to

map a regular expression that is part of a policy or part of
a user provenance query into a query over the provenance
graph.

SELECT #B WHERE P,

where P is a graph pattern and #B is a tuple of variables
appearing in P.
Using regular expressions as part of the SELECT query

above we can answer our policy example that gives access
to everything in a patient’s record that was updated by pro-
cesses controlled only by the patient’s physician or surgeon.
This would evaluate the following regular expression query
on the provenance graph:

Select ?x

{

med:Doc1_4 gleen:OnPath("([opm:WasDerivedFrom]*/

[opm:WasGeneratedBy]/

[opm:WasTriggeredBy]*/

[opm:WasControlledBy])" ?x).

}

The gleen:OnPath function [7] is used to determine the set of
nodes on the provenance path between med:Doc1 4 and ?x.

We can think of s, ρ and o for the provenance path, s(
ρ

→)o,
as placeholders for med:Doc1 4, the expression given to the
gleen:OnPath function and the variable ?x respectively.

4.4 Query Templates
We can use the set of names in VG to answer common

queries about provenance such as why-provenance, where-
provenance and how-provenance [16]. To anticipate the vary-
ing number of queries a user could ask, we create templates
which are parameterized for a specific type of user query.
This simplifies the construction of queries by allowing us to
map a user query to a suitable template. This in turn allows
us to build an interface through which a user could interact
with the system, as well as create an abstraction layer which
hides the details of the graph from the user.

Example 1. (Why Query)

med:Doc1_2 gleen:OnPath("([opm:WasDerivedFrom] |

[opm:WasGeneratedBy] | [opm:WasTriggeredBy] |

[opm:WasControlledBy] | [Used])*" ?x).

This allows us to specify all the resources reachable from
med:Doc1 2 by issuing a query against the provenance graph.
This query explains why med:Doc1 2 came to be in its cur-
rent form. Figure 3(c) shows the part of the graph from Fig-
ure 2 that would result from executing this why-provenance
query.

Example 2. (How Query)

compute leaf-set for med:Doc1_3

for each XXX in leaf-set

computeFreq(XXX)

The modified Gleen API [7] allows us to compute the leaf-
set given the starting resource med:Doc1 3. Each leaf in the
leaf-set {med:Physician 1, med:Physician 2, med:doc1 1} is
the end of a unique path from med:Doc1 3 to that leaf. We
then compute the frequency of each leaf in the leaf-set. This
query would return the following polynomials:

med:Physician_2^1, med:Physician1_1^1, med:Doc1_1^1

A how-provenance query returns a polynomial representa-
tion of the structure of the proof explaining how the resource
was derived. This normally involves counting the number of
ways a provenance entity influences a resource.

Example 3. (Where Query)

med:Doc1_4 gleen:OnPath("([opm:WasDerivedFrom] |

[opm:WasGeneratedBy])" ?x).

This query would return the following triples:

(med:Doc1_4, opm:WasDerivedFrom, med:Doc1_3)

(med:Doc1_4, opm:WasGeneratedBy, med:Results_1)

A where query would be useful if we need to pinpoint where
in the process a possible risk could occur as a result of per-
forming a surgery on the patient. For example, a where-
provenance could be used to identify at which phase in the
flow any medication administered to the patient had a neg-
ative interaction with the ones the patient is already taking.
By using this query, we could compare the information in
med:Doc1 3 with those in med:Doc1 4 (which incorporates
the recording of events during the surgery operation).

The Open Provenance Model [15] in general allows us to
extend VG to support annotations on the nodes and edges in
our provenance graph. These annotations allow us to cap-
ture additional information relevant to provenance such as
time and location that pertain to execution. The annota-
tions are not part of the vocabulary provided by OPM. The
idea of not providing annotations as part of the predicate vo-
cabulary is to allow a user the flexibility of creating his/her
own vocabulary for the nodes and edges. The annotations
themselves can be added as RDF triples since RDF allows
us to make assertions about any node in a RDF graph. This
allows us to capture more contextual information about re-
sources, which would allow us to model the provenance in-
formation to capture the semantics of the domain. While a
particular causal relation, such as process P2 was triggered
by process P1, may imply that P1 occurs before P2 on a sin-
gle logical clock, it does not tell us the exact physical time
both processes occur. Such additional information plays a
critical role in the intelligence domain. These additional an-
notations allow us to build more templates, which give our
prototype the ability to respond to queries like: when was
a resource generated, what was a resource based on, which
location a resource was created or modified at, etc. We show
a simple example of a when query below,

Example 4. (When Query)

Select ?x

{

med:Doc1_4 med:modifiedOn ?x.

}

This query would return the timestamp value as a bind-
ing for the variable ?x, if the graph pattern in the where
clause successfully matches a triple in the extended anno-
tated provenance graph.



Figure 3: Why Query

5. GRAPH ANALYSIS
In this section, we will evaluate the impact of querying

over a provenance graph with many subgraphs as resources.
We will first address the complexity of protecting the re-
sources in a provenance directed acyclic graph (digraph),
then we will examine the case where two digraphs overlap,
which may conflict with each other.

5.1 Analysis of Digraphs
We now provide a simple analysis addressing the concerns

from Section 2 of traditional access control policies. We use
the convention that a permission is a unique pair of (action,
resource). Given n resources, m users and a set of only two
actions (read, write), we have a maximum of 2× n possible
permissions. This gives m × (2 × n) = c1n mappings. To
analyze RBAC, we assume the case where there is at least
one role with two or more users assigned to it, from a possible
set of r roles. Therefore, we have r×(2×n) = c2n mappings
and we also assume that c2 ≤ c1.
We continue our analysis by considering the varying num-

ber of relationships among the resources in a provenance
graph. We assume that we have n nodes in our graph G.
The first case is when the provenance paths are of length
0. This is similar to the case of access control policies over
single resources. Next we consider the case where the prove-
nance paths are of length 1. This is equivalent to counting
the number of edges in EG. We use the notion that a re-
source is a set of triples in G, and therefore; a resource is a
directed acyclic graph (or digraph) from among all the al-
lowed digraphs that can be formed from G. In general, the
total number of ways of constructing a digraph from n nodes
is given recursively as

an =

n
∑

k=1

(−1)k−1

(

n
k

)

2k(n−k)an−k (5.1)

in [20, 21]. Given n nodes in a provenance graph G, an

would represent the upper limit of resources to be protected
in G. The work done in [20] shows that the number of ways
of constructing a directed acyclic graph is exponential in the
size of n single resources.
In general, a node in a digraph can have both, an in-degree

and an out-degree. OPM restricts the relationships we can
have among the nodes in a provenance graph (see [15] for a
formal definition of a provenance graph). This restriction is
on the dependency relationships involving agents; in simple

terms the only relation involving an agent is a directed edge
from a process to an agent. That is, agents in a provenance
graph can only have an in-degree. Although, this restriction
limits the maximum number of resources to be protected
(as given in equation 5.1) by a factor, the upper bound for
the maximum number of digraphs is still exponential. The
OPM specification for a provenance graph describes how to
trace an artifact or process back to their direct source (or
cause), which could be a process, an artifact or an agent,
using the edges in the graph. It does not however provide a
standard arc name which explains the causes or sources for
an agent in the graph. Therefore, a more useful definition of
provenance according to OPM in the context of our analysis,
would describe how an artifact or process came to be in their
current form. This definition is still consistent with the ones
in the literature. Hence, even in the cases where we only

consider n
′

artifacts and processes in our provenance graph,

where 2 ≤ n
′

≤ n, the number of digraphs is still exponential

in n
′

.
A traditional access control policy would first require iden-

tifying a provenance path and then, expressing a policy for
each of the resources on this path. The regular expressions
presented in Section 4 allow us to specify a pattern for re-
sources that need to be protected with an access control
policy. Since a regular expression pattern can match many
paths (each of arbitrary length), we can replace all policies
that protect a resource on any of these paths with one policy.

5.2 Composition of Digraphs
Access control systems normally contain policies that are

used to handle situations where two policies have opposite
values for the effect element of a policy. This happens when
one policy has a permit (or +ve authorization) effect when-
ever it evaluates to true, while another policy has a deny (or
-ve authorization) whenever it evaluates to true and both of
these policies protect the same digraph. The conflict could
be as a result of two policies overlapping with each other to
form a common digraph or when a digraph associated with
a -ve authorization overlaps with a digraph that results from
the execution of a user’s query.

Different conflict resolution policies [23] have been pro-
posed to resolve conflicts that result from opposite access
authorizations on a resource. These policies include Denials-
take-precedence, Most-specific-takes-precedence and Most-
specific-along-a-path-takes-precedence.



There are three possibilities that could occur when two di-
graphs overlap with each other. We will discuss these possi-
bilities when the Denials-take-precedence conflict resolution
policy is applied.

1. G1 ⊆ G2: The digraph G1 is associated with a pol-
icy that denies viewing its contents and the digraph
G2 is associated with a policy that permits viewing of
its contents. In this situation, the system would have
the effect of permitting viewing of the digraph G2−G1.

2. G1 ⊇ G2: The digraph G1 is associated with a policy
that denies viewing its contents and the digraph G2
is associated with a policy that permits viewing of its
contents. In this situation, the user would be denied
from viewing the contents of both, G1 and G2.

3. G1 ∩ G2: The digraph G1 is associated with a policy
that denies viewing its contents and the digraph G2
is associated with a policy that permits viewing its
contents. In this situation, the system would have the
effect of denying access to digraphs G1 and G1 ∩G2.

These three cases also apply when a user’s query execution
returns the digraph, G2, and the effect of the policy for G1
is “deny”.

6. ARCHITECTURE
Our system architecture assumes that the available in-

formation is divided into two parts: the actual data and
provenance. Both, the data and provenance are represented
as RDF graphs. The reader should note that we do not
make any assumptions about how the actual information is
stored. A user may have stored data and provenance in two
different triple stores or in the same store. Access control
policies are defined in our XML-based language for both,
the data and the provenance. These policies define access
for users on resources in the data graph and on agents, arti-
facts, processes and paths in the provenance graph. A user
application can submit a query for access to the data and
its associated provenance or vice versa. In this discussion
we first present the various modules in our prototype imple-
mentation. We then give an example of a scenario where the
user already has access to the data item and is requesting
additional information from the provenance. The same logic
applies when we want to give high quality information to a
user, where we would first verify the information against the
provenance store before allowing access to the data item.

6.1 Modules in our Architecture
We now present a detailed description of the different lay-

ers in our architecture followed by an example.

User Interface Layer

The User Interface Layer is an abstraction layer that allows
a user to interact with the system. A user can pose either a
data query or a provenance query to this layer. This layer
determines whether the query should be evaluated against
the data or provenance. Our interface hides the use of reg-
ular expression queries (i.e., the actual internal represen-
tation of a provenance query) from a user by providing a
simple question-answer mechanism. This mechanism allows

the user to pose standard provenance queries such as why
a data item was created, where in the provenance graph it
was generated, how the data item was generated and when
and what location it was created, etc. We show an example
of a provenance query in Figure 3(a) that a user would pose
to the system. This layer also returns results after they have
been examined against the access control policies.

Access Control Policy Layer

The Access Control Policy Layer is responsible for ensur-
ing that the querying user is authorized to use the system.
It also enforces the access control policies against the user
query and results to make sure that no sensitive information
is released to unauthorized users. This layer also resolves
any conflicts that resulted from executing the policies over
the data stores. An example of a provenance policy that can
be used in this layer is given in Figure 1.

Policy Parser Layer

The Policy Parser Layer is a program that takes as input a
policy set and parses each policy to extract the information
in each element. The parser verifies that the structure of the
policy conforms to a predefined XML schema. Further, the
parser also validates the value of each element in a policy
using the grammar specified in Section 3.1.

Regular Expression-Query Translator

The Regular Expression-Query Translator takes a valid reg-
ular expression string and builds a corresponding graph pat-
tern from these strings. This module works in two ways.
First it associates a provenance query from a user to a cor-
responding template query, by invoking the necessary pa-
rameters associated with the user’s provenance query, for
example, Figure 3(a) shows a user query and the correspond-
ing translation in Figure 3(b).

Data Controller

The Data Controller is a suite of software programs that
store and manage access to data. The data could be stored
in any format such as in a relational database, in XML files
or in a RDF store. The controller accepts requests for in-
formation from the access control policy layer if a policy
allows the requesting user access to a data item. This layer
then executes the request over the stored data and returns
results back to the access control policy layer where it is re-
evaluated based on the access control policies.

Provenance Controller

The Provenance Controller is used to store and manage
provenance information that is associated with data items
that are present in the data controller. The provenance con-
troller stores information in the form of logical graph struc-
tures in any appropriate data representation format. This
controller also records the on-going activities associated with
the data items stored in the data controller. This controller
takes as input a regular expression query and evaluates it
over the provenance information. This query evaluation re-
turns a sub-graph back to the access control layer where it
is re-examined using the access control policies.

We show an example of how a user query and a pol-
icy query are executed in our prototype system. The user
query given in Figure 3(a) is submitted to the User Inter-
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Figure 4: Architecture

Figure 5: A resource protected by a policy

face Layer. This query asks for a complete explanation of
why Doc1 2 came to be in existence. Doc1 2 is an internal
node in the example provenance graph. This means that
the user would have had access for the actual patient record
in the traditional database before submitting a query about
its provenance. Our Regular Expression-Query Translator
in the Access Control Layer would transform this query into
the query shown in Figure 3(b). The result of executing this
query against the provenance graph shown in Figure 2 re-
turns the results shown in Figure 3(c). This result is passed
back to the Access Control Policy Layer. This layer also
passes the policy given in Figure 1 to the Policy Parser Layer
that parses the policy against a XML schema and the gram-
mar given in Section 3.1. If the policy is well constructed, it
is passed to the Regular Expression-Query Translator Layer
that constructs the query given in Figure 5(a). This query
is also evaluated against the provenance graph in Figure 2.
The result of this query execution would return the digraph
shown in Figure 5(b). This digraph represents the resource
that the policy is protecting and is returned back to the Ac-
cess Control Layer. The Access Control Layer would then

compare the resource from Figure 3(c) with the digraph in
Figure 5(b). Since the digraph in Figure 3(c) contains the di-
graph in Figure 5(b), the Access Control Policy Layer would
need to execute the effect that is given in the policy. Since
in this case, the effect is Permit, the results in Figure 3(c)
are passed to the User Interface Layer which in turn will
return the results to the user. For the second case where
we want to verify the integrity of the data, the process will
be the same as described above, except that the user query
would be about a leaf node stored in the traditional database
and this leaf node is the last node of an ancestral chain in
provenance.

6.2 Prototype
To implement the layers in our architecture we use var-

ious open-source tools. To implement the Access Control
Layer, we use the policy files written in XML 1.0, and Java
1.6 to write the logic that enforces the policies. To imple-
ment the Policy Parser Layer, we use Java 1.6 and the XML
schema specification. The XML schema allows us to verify
the structure of our policy file. This layer was also pro-



Table 1: Workflows
Workflow # 1 2 3 4
Diameter(longest path) 13 13 13 13
no. of Artifacts 4 13 24 22
no. of Processes 6 41 23 58
no. of Agents 4 25 26 46
Annotated Graph(triples) 5347 7214 6743 8533

(a) Workflow 1 Structure

(b) Workflow 4 Structure

Figure 6: Workflow Topologies

grammed to apply the grammar in Section 3.1 against the
values in the elements in the policies stored in the policy file.
To implement the Regular Expression-Query Translator, we
use the Gleen1 regular expression library. This library ex-
tends SPARQL to support querying over a RDF graph using
regular expressions [7]. To create the provenance store, we
use the OPM toolbox2. This toolbox allows us to program-
matically build workflows that use the OPM vocabulary and
also allows us to generate RDF graphs corresponding to the
workflow (with some tweaking to generate the RDF graphs
for this prototype). There are other tools which support
automatic provenance generation such as Taverna [18], but
they are not as easy to use as the OPM toolbox. We use the
OPM vocabulary which is based on RDF rather than exist-
ing vocabularies which have support for a more expressive
representation of provenance, for example the vocabulary
specification in [25]. Our aim in this paper is to demonstrate
a general way of navigating a provenance graph, rather than
capturing the semantics of the domain associated with the
provenance paths.
We use synthetic data to build in-memory models, using

the Jena API3[5]. This tool allows us to add annotations

1http://sig.biostr.washington.edu/projects/
ontviews/gleen/index.html
2http://openprovenance.org/
3http://jena.sourceforge.net/

(a) Workflow 1 chain

(b) Workflow 4 chain

(c) Composite chain

Figure 7: Query Performance



to the existing RDF triples generated from executing the
provenance workflows. We then issue different provenance
queries, such as why, where, how, when and who against
each of the provenance graphs in the in-memory Jena model.
We have used in-memory models to simply show the feasi-
bility of our prototype; however, in a real world scenario our
prototype could query the provenance graphs stored in any
disk-based storage.

6.3 Experiments
We generated four template workflow structures, each con-

sisting of a varying number of provenance entities and RDF
triples (as annotations). The composition of each workflow
is shown in Table 1. Each workflow template has a different
topology, with workflow 1 being the simplest and workflow 4
being the most intricate; Figure 6(a) and Figure 6(b) show
the topology of workflow 1 and workflow 4 respectively.
We conducted three different experiments with our pro-

totype using only workflow 1, only workflow 4 and a com-
posite workflow consisting of all four workflows. For our
experiments we varied the size of the in-memory models as
shown in Figure 7. To vary the size of the experiment with
workflow 1, we daisy chain a set of workflow 1’s and record
the time to perform each query. The results are shown in
Figure 7(a). We similarly daisy chain a set of workflow 4’s
for our experiment involving only workflow 4 with the re-
sults shown in Figure 7(b). For our final experiment, we
created one composite workflow, which is formed by daisy
chaining six sets of workflow 1, followed by six sets of work-
flow 2, followed by six sets of workflow 3, followed by six sets
of workflow 4. We then daisy chain these composite blocks
and show the results of this final experiment in Figure 7(c).
Each point of the graph in Figure 7(a), Figure 7(b) and

Figure 7(c) is labeled with the number of nodes in it’s an-
cestry chain starting with the given node. This approx-
imates the maximum number of hops needed to create a
new digraph from the original provenance graph involving
the starting resource. The execution times vary for each
query template as well. A why-provenance query retrieves
the transitive closure of the edges that justifies the existence
of the resource, and so its execution time varies as the num-
ber of triples in its transitive closure grows. The structure
of this query is given in Example 1. The how-provenance
is like the why-provenance except that its execution time
accounts for an additional step in computing the polynomi-
als and therefore its execution time differs from the why-
provenance execution time by 100-500 milliseconds. This
difference is too small to be seen in Figure 7, therefore the
how and why provenance query timings look very similar.
The structure of this query is given in Example 2. As we
increase the complexity of the workflows (from workflow 1
to workflow 4), the query execution time also increases (as
shown in Figure 7). The other queries show almost constant
execution times, ranging from 1-2 milliseconds. This is not
surprising since these queries usually retrieve provenance in-
formation in the locality of the resource. For example, the
when query just returns the RDF triple whose subject is
the resource and whose predicate associates a time value
with the resource and the where-provenance query finds the
entities whose contents create the resource (i.e where the
resource was copied from).
Our experiments were conducted on a IBM computer with

8 X 2.5GHz processors and 32GB RAM. For each pair of

query and Jena model, we use the average execution time
for the longest diameter in the graph. For a very simple
topology (e.g. Figure 6(a)), our prototype is most efficient
for both, finding the provenance resources (which involves
single resources and their relationships) that an access con-
trol system is protecting and for finding the provenance re-
sources a querying user is requesting.

7. RELATED WORK
A lot of research has been devoted to the study of ac-

cess control in provenance. These include the work in [3],
which emphasizes the need for a separate security model for
provenance. This work also points out that existing access
control models do not support the directed acyclic graph
of provenance. The authors in reference [22] discuss the
shortcomings of RBAC and instead propose ABAC which
supports a fine-grained access control based on attributes
rather than roles. In reference [24], the authors present an
access control method for provenance over a directed acyclic
graph. They build their access control model over a rela-
tional database which controls access to nodes and edges.
They apply a grouping strategy to the provenance graph to
create resources that need to be protected. We want to ex-
tend our access control model to support RDF triple stores
in addition to relational databases. We support the idea
of grouping by defining dynamic paths that are evaluated
at query time based on incorporating regular expressions in
our policies. In reference [6], the authors propose a group-
ing of provenance into blocks, and then applying a labeling
strategy over these blocks. They also provide a language,
SELinks, to encode their security policies. Reference [17]
addresses the issues with existing access control models in
provenance by proposing a general language. This language
supports fine-grained policies and personal preferences and
obligations, as well as decision aggregation from different ap-
plicable policies. We adapt the language given in [17] with
support for regular expressions. Our language also incorpo-
rates other features of a general access control language such
as support for fine-grained access control over the indivisi-
ble parts of a provenance graph, and integration of existing
access control policies.

Research has also focused on general access control lan-
guages that are based on XML, logic and algebra. XACML
[14] is an OASIS standard for an access control language
that is based on XML. This language is very flexible and
expressive. The work in [17] builds on XACML features to
create a general access control language for provenance. Our
language extends the XML-based policies in [17] for reasons
such as, it is easy to write policies in XML and XML also
provides a schema that can be used to verify the policies.
Logic-based languages [1] offer features such as decidability
and a formal proof of security policies. The work given in [4]
shows how policies possibly expressed in different languages
can be formulated in algebra. The algebra offers a formal
semantics such as in logic-based languages.

8. CONCLUSION
In this paper we propose regular expressions as an ex-

tension to traditional access control policy specifications to
protect not only traditional data items but also their rela-
tionships from unauthorized users. We presented our policy
language, its XML-based structure and associated grammar



for specifying policies over a provenance graph. We imple-
mented a prototype based on our architecture that uses Se-
mantic Web technologies (RDF, SPARQL) in order to eval-
uate the effectiveness of our policy language. We are explor-
ing many directions for future research. We discuss some of
them. (i) Our current research has focused on in-memory
graphs. We plan to expand our experiments to include very
large provenance graphs that use disk-based storage. (ii)
The policies we have examined so far are those based on
access control. We plan to investigate other types of poli-
cies including disclosure policies and release policies. This
is necessary to further sanitize the resources that are being
accessed. (iii) The applications we have been considering
are in the areas of healthcare and intelligence. We plan to
apply our language to other applications, especially in the
area of e-science.
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