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Abstract

We give a complete description of the arboreal Galois representation of a certain
postcritically finite cubic polynomial over a large class of number fields and for a large
class of basepoints. This is the first such example that is not conjugate to a power map,
Chebyshev polynomial, or Lattès map. The associated Galois action on an infinite
ternary rooted tree has Hausdorff dimension bounded strictly between that of the
infinite wreath product of cyclic groups and that of the infinite wreath product of
symmetric groups. We deduce a zero-density result for prime divisors in an orbit under
this polynomial. We also obtain a zero-density result for the set of places of
convergence of Newton’s method for a certain cubic polynomial, thus resolving the
first nontrivial case of a conjecture of Faber and Voloch.

1 Introduction
Let K be a field and f ∈ K [z] a polynomial of degree d ≥ 2. Consider the Galois groups of
polynomials of the form

f n(z) − x,

where x ∈ K , and f n = f ◦· · ·◦f is then-th iterate of f (with the convention that f 0(z) = z).
Such groups are called arboreal Galois groups because (under certain hypotheses) they
can be made to act on trees.
Let Tn be the graph whose vertex set is

⊔

0≤i≤n
f −i(x),

and where we draw an edge from α to β if f (α) = β . Let Gn = Gal (f n(z) − x/K ). Clearly,
Gn acts faithfully on Tn, so that Gn ↪→ Aut(Tn). Provided there is no critical point of f
among the points of the above vertex set, the graph Tn is a regular d-ary rooted tree with
root x. For such f , Aut(Tn) is isomorphic to the n-fold iterated wreath product [Sd]n

of the symmetric group Sd on d letters. Odoni and Juul [9,12] showed that if char(K )
and the degree are not both 2, and if f is chosen generically (in the Zariski sense), then
Gn ∼= Aut(Tn) ∼= [Sd]n.
By contrast, for specific choices of f and x, the corresponding Galois groups may be

much smaller (see [6, §3] for a high-level explanation and [2,4,8,14] for detailed examples).
Consider a polynomial f that is postcritically finite, or PCF for short, meaning that all of
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its critical points have finite orbit under the iteration of f . The simplest examples of PCF
polynomials are the power maps f (z) = zd and the Chebyshev polynomials defined by
f (z + 1/z) = zd + 1/zd . These two examples arise from the d-power endomorphism
of the algebraic group Gm, which gives a foothold on the associated arboreal Galois
representation. (A third type of example, Lattès maps, arises from an endomorphism of
an elliptic curve; however, Lattès maps are never conjugate to polynomials. See [15, §6.4].)
Jones and Pink [6, Thm. 3.1] have shown that for PCF maps, the Galois groups Gn have

unbounded index inside Aut(Tn) as n → ∞. However, their proof does not explicitly
describe Gn. One can give an upper bound for Gn inside Aut(Tn) by realizing it as a
specialization of Gal (f n(z) − t/K (t)), with t transcendental over K . The latter group
may be embedded in the profinite monodromy group π ét

1 (P1
K � P), where P is the strict

postcritical orbit; this is precisely the tack taken by Pink [14] in the case of quadratic PCF
polynomials.
In this paper, we give the first complete calculation of the arboreal Galois group attached

to aPCFpolynomial over anumberfield that isnot associatedwith an endomorphismof an
algebraic group. More specifically, we describe the Galois groupsGn = Gal (f n(z) − x/K )
for the polynomial

f (z) = −2z3 + 3z2

over a number field K , where x is chosen to satisfy a certain local hypothesis at the primes
2 and 3. In Sect. 2 we will define groups En that fit between Aut(Tn) ∼= [S3]n and its Sylow
3-subgroup [C3]n—the iterated wreath product of cyclic groups of order 3. The groups
En are somewhat tricky to handle because their action on the tree lacks a certain rigidity
property: for m < n, the kernel of the restriction homomorphism En → Em is not the
direct product of copies of En−m. That is, in contrast to [S3]n and [C3]n, the action of En
on one branch of the tree above Tm is not independent of its action on another branch.
Our main result is the following.

Theorem 1.1 Let K be a number field, let f (z) = −2z3 + 3z2 ∈ K [z], and let x ∈ K.
Suppose there exist primes p and q lying over 2 and 3, respectively, such that vq(x) = 1,
and either vp(x) = ±1 or vp(1 − x) = 1. Then for each n ≥ 1,

(1) The polynomial f n(z) − x is irreducible over K .
(2) We have an isomorphism Gal (f n(z) − x/K ) ∼= En ⊂ Aut(Tn).

Let E∞ = lim←−En and Aut(T∞) = lim←−Aut(Tn) be the corresponding inverse limits. Then
the Hausdorff dimension of E∞ in Aut(T∞) is

lim
n→∞

log |En|
log |Aut(Tn)| = 1 − 1

3
log 2
log 6

≈ 0.871. (1)

Remark 1.2 In this article, we implicitly work in the category of groups with an action on
the regular rooted tree Tn. This applies, for example, to the isomorphism between En and
the Galois group in the theorem.

The Galois group Gal (f n(z) − x/K ) depends a priori on the number field K and the
basepoint x, but Theorem 1.1 shows that many choices of K and x give the same isomor-
phism type. One key reason is that the discriminant of the second iterate is a square:

For any x, Disc
(
f 2(z) − x

) =
[
216 · 39 · x2(x − 1)2

]2
. (2)
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This observation will be vital for forcing the Galois group of f n(z) − x to lie inside En.
To fill out the entire group En, we utilize ramification above the primes 2 and 3. (See the
proof of Proposition 3.6.) These two features are the only arithmetic-dynamical inputs to
the theorem; the rest is general theory of groups acting on regular rooted trees.
We are also able to deduce that the geometric Galois group has the same structure:

Corollary 1.3 Let f (z) = −2z3 + 3z2. Let t be transcendental over Q. For every n ≥ 1, we
have

Gal
(
f n(z) − t/Q̄(t)

) ∼= En.

For a polynomial g ∈ Q[x], there are two profinite monodromy groups:

Ggeom
g = lim←

n
Gal

(
gn(z) − t/Q̄(t)

)
(geometric monodromy)

Garith
g = lim←

n
Gal (gn(z) − t/Q(t)) (arithmetic monodromy).

In general, one knows that Ggeom
g ⊂ Garith

g . Theorem 1.1 and its corollary imply that
Ggeom
f = Garith

f for our special cubic PCF polynomial f (z) = −2z3+3z2. By contrast, Pink
has shown that Ggeom

g � Garith
g for all quadratic PCF polynomials g over the rationals

[14, Thm. 2.8.4, Cor. 3.10.6]. Similar statements hold upon replacing Q by essentially any
other number field.
While En is not an iterated wreath product, it does satisfy the following self-similarity

property: the action of En on the subtree of height n − 1 stemming from any fixed vertex
at level 1 is isomorphic to En−1. This self-similarity is a property of geometric iterated
monodromy groups [11, Prop. 6.4.2], and En is such a group by Corollary 1.3.
Odoni [13] has shown that descriptions of iterated Galois groups of this sort give rise

to applications on the density of prime divisors in certain dynamically defined sequences.
(See also [5,9,10].) More precisely, after counting elements of En that fix a leaf of the tree
Tn, we have the following arithmetic application.

Theorem 1.4 Let K be a number field for which there exists an unramified prime above 2
and above 3. Let y0 ∈ K � {0, 1, 3/2,−1/2}, and define the sequence yi = f i(y0). Then the
set of prime idealsP such that

yi ≡ 0 or 1 (mod P) for some i ≥ 0

has natural density zero. In particular, the set of prime divisors of the sequence (yi) has
natural density zero.

Our choice of the polynomial f (z) = −2z3 + 3z2 was originally motivated by the fol-
lowing conjecture of Faber and Voloch [3].

Conjecture 1.5 (Newton Approximation fails for 100% of primes) Let g be a polynomial
of degree d ≥ 2 with coefficients in a number field K and let y0 ∈ K. Define the Newton
map N (z) = z − g(z)/g ′(z) and, for each n ≥ 0, set yn+1 = N (yn). Assume the Newton
approximation sequence (yn) is not eventually periodic. Let C(K, g, y0) be the set of primes
P of K for which (yn) converges in the completion KP to a root of f . Then the natural
density of the set C(K, g, y0) is zero.
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Faber and Voloch showed that Conjecture 1.5 holds for any polynomial g with at most
2 distinct roots. Thus, the first nontrivial case of the conjecture is a separable cubic
polynomial. For reasons explained in [3, Cor. 1.2], the simplest such cubic polynomial is
g(z) = z3 − z, whose associated Newton map turns out to be conjugate to our polynomial
f (z) = −2z3 + 3z2. Our results therefore yield a proof of the first nontrivial case of the
Faber–Voloch conjecture:

Theorem 1.6 Let K be a number field for which there exists an unramified prime over
2 and over 3. Let g(z) = z3 − z. Choose y0 ∈ K such that the Newton iteration sequence
yi = Ni(y0) does not encounter a root of g. Then the set of primes P of K for which the
Newton sequence (yi) converges in KP to a root of g has natural density zero.

The first and third authors, in collaboration with several others, obtained a weak form
of Theorem 1.6 for a wide class of polynomials [1, Thm. 4.6]. More precisely, they showed
that the density of primes as in the theorem has natural density strictly less than one.
The outline of the paper is as follows. In Sect. 2, we will define and discuss the group

En and compute the Hausdorff dimension of Eq. (1). We will then prove the rest of
Theorem 1.1 in Sect. 3. Next, we consider the case that K is the field of rational functions
Q̄(t), proving Corollary 1.3 in Sect. 4. In Sect. 5, we compute the proportion of elements
of En that fix at least one leaf of the tree Tn, and in Sect. 6, we prove Theorems 1.4 and 1.6.

2 Tree automorphisms
Let Tn denote the regular ternary rooted tree with n levels, as in Fig. 1. Note that Tn has
3n leaves and 1+3+· · ·+3n vertices. Our results andmany arguments will depend on an
implicit labeling of the vertices ofTn. We will make this labeling explicit now for purposes
of rigor, but we will not comment on it again afterward.

• The level of a vertex is its distance from the root.
• A vertex at level i is given a label (�1, . . . , �i), where �j ∈ {1, 2, 3}. The root is given the

empty label ().
• No two vertices at the same level have the same label.
• The unique path from the root to the vertex with label (�1, . . . , �i) consists of the

vertices with labels (), (�1), (�1, �2), . . . , (�1, �2, . . . , �i).

This labeling enables us to identify certain canonical subtrees of Tn. For example, for each
i ∈ {1, 2, 3}, we consider the subtree T that is induced by the set of vertices with labels of
the form (i, ∗, . . . , ∗); then T is isomorphic to Tn−1.
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Fig. 1 The ternary rooted tree Tn with n levels



Benedetto et al. Res. Number Theory (2017) 3:29 Page 5 of 21

The automorphism group Aut(Tn) of the regular rooted ternary tree is isomorphic to
the n-fold iterated wreath product [S3]n. Indeed, we may decompose Tn as a copy of T1
(vertices of level at most 1) with 3 copies of Tn−1 attached along the leaves of T1, so that

Aut(Tn) ∼= Aut(Tn−1) � Aut(T1) ∼= [S3]n−1 � S3 = [S3]n. (3)

Our labeling has the effect of fixing an isomorphism Aut(T1) ∼= S3. For any elements
a1, a2, a3 ∈ Aut(Tn−1) and any b ∈ Aut(T1), the element

(
(a1, a2, a3), b

) ∈ Aut(Tn−1) � Aut(T1) ∼= Aut(Tn)

acts on the tree by first acting on the 3 copies of Tn−1 via a1, a2, and a3, respectively, and
then by permuting these Tn−1’s via b. More precisely, if we label a vertex y of Tn by (x, i),
where x is a vertex of Tn−1 and i ∈ {1, 2, 3} is the vertex at level 1 that lies below y, then

(
(a1, a2, a3), b

)
.(x, i) = (ai.x, b.i).

A labeling of the leaves of Tn induces an injection Aut(Tn) ↪→ S3n . Changing the
labeling corresponds to conjugating by an element ofS3n , and so each automorphism of
Tn has a well-defined sign attached to it, corresponding to the parity of the number of
transpositions needed to represent it. Thus, for each n ≥ 1, we have a homomorphism

sgn : Aut(Tn) → {±1}.

Lemma 2.1 Let g = (
(a1, a2, a3), b

)
be an element of Aut(Tn) for some n ≥ 2, where

b ∈ Aut(T1), and ai ∈ Aut(Tn−1) for i = 1, 2, 3. Then

sgn(g) = sgn(b)
3∏

i=1
sgn(ai).

Proof Partition the leaves of Tn into three disjoint sets L1, L2, L3 so that the elements of
Li lie over leaf i of T1, for i = 1, 2, 3. Note that |Li| = 3n−1. With this notation, sgn(ai) is
the sign of ai acting as a permutation on the set Li.
Consider first the case that b = 1. Then g permutes the elements of each Li separately;

hence, sgn(g) = ∏
sgn(ai).

Next, consider the case that g = (
(1, 1, 1), b

)
for arbitrary b ∈ Aut(T1). We have already

proven the desired result if b = 1. If b is a 2-cycle—say b = (ij)—then the induced
permutation on the leaves of Tn decomposes as a product of 3n−1 disjoint 2-cycles (aiaj),
where ai ∈ Li and aj ∈ Lj . Therefore,

sgn(g) = (−1)3
n−1 = −1 = sgn(b).

Similarly, if b is a 3-cycle, then the induced permutation on the leaves of Tn decomposes
as a product of 3n−1 disjoint 3-cycles. Hence,

sgn(g) = 1 = sgn(b).

Finally, we consider the general case g = (
(a1, a2, a3), b

)
. Define h = (

(1, 1, 1), b−1).
Then hg = (

(a1, a2, a3), 1
)
. The previous two paragraphs show that

3∏

i=1
sgn(ai) = sgn(hg) = sgn(h) sgn(g) = sgn(b−1) sgn(g).

��
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For anym ≤ n, we have a restriction homomorphism πm : Aut(Tn) → Aut(Tm), where
Tm is the subtree withm levels with the same root vertex asTn. We write sgnm = sgn◦πm
for the compositionof restriction followedby the signmap.Definea sequenceof subgroups
En ⊂ Aut(Tn) by the following formula:

En =
⎧
⎨

⎩
Aut(T1) if n = 1,

(En−1 � Aut(T1)) ∩ ker(sgn2) if n ≥ 2.

Here we use the embedding

En−1 � Aut(T1) ↪→ Aut(Tn−1) � Aut(T1) ∼= Aut(Tn)

from Eq. (3). Thus, for n ≥ 2, writing a given automorphism σ ∈ Aut(Tn) as σ =(
(a1, a2, a3), b

)
, we have

σ = (
(a1, a2, a3), b

) ∈ En if and only if a1, a2, a3 ∈ En−1 and sgn2(σ ) = 1.

(4)

Proposition 2.2 For n ≥ 1, we have |En| = 23
n−1 · 3 3n−1

2 .

Proof Since Aut(T1) ∼= S3, the result is clear for n = 1. Suppose it holds for some n ≥ 1.
Let φ be the composition

En � Aut(T1) ↪→ Aut(Tn+1)
sgn2→ {±1}.

By definition, En+1 = ker(φ), and φ is onto because ((1, 1, 1), ε) �→ −1 for any transposi-
tion ε of the leaves of T1. Thus,

|En+1| = 1
2

∣∣En � Aut(T1)
∣∣ = 1

2
|Aut(T1)| · |En|3 = 1

2
· 6 ·

(
23

n−1 · 3 3n−1
2

)3

= 23
n · 3 3n+1−1

2 .

��

Our construction of En depends on an identification ofTn−1 with the subtree ofTn lying
above a vertex at level 1, which in turn depends on the labeling we have assigned to Tn. In
other words, En is not normal in Aut(Tn) (for n ≥ 3): a different labeling yields a conjugate
subgroup in Aut(Tn).

Proposition 2.3 En is normal in Aut(Tn) if and only if n = 1 or 2.

Proof We have E1 = Aut(T1), and E2 has index 2 in Aut(T2). It remains to show that En
is not normal in Aut(Tn) for n ≥ 3. To that end, we first construct some special elements
of Aut(Tn).
Define νn ∈ Aut(Tn) inductively for n ≥ 1 as follows:

νn =
⎧
⎨

⎩
(12) n = 1,
(
(νn−1, 1, 1), 1

)
n ≥ 2.

Thus, νn transposes two leaves at the n-th level and acts trivially on the rest of Tn. In
particular, sgn(νn) = −1. This yields ν2 /∈ E2, and by induction, it follows that νn /∈ En for
n ≥ 2. Note further that ν−1

n = νn.
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Next, for fixed n ≥ 3, define a = (
(1, 1, 1), (123)

) ∈ Aut(Tn). Then a ∈ En by (4).
However,

νn a ν−1
n = (

(νn−1, 1, 1), 1
)(
(1, 1, 1), (123)

)(
(νn−1, 1, 1), 1

) = (
(νn−1, 1, νn−1), (123)

)
,

which does not belong to En since νn−1 /∈ En−1 for n ≥ 3. It follows that En is not normal
in Aut(Tn), as desired. ��

Write T∞ = ⋃
n≥1 Tn for the infinite ternary rooted tree, which has automorphism

group

Aut(T∞) = lim←−Aut(Tn),

where the inverse limit is taken with respect to the restriction homomorphisms

πm : Aut(Tn) → Aut(Tm) for m ≤ n.

The recursive definition of En implies that we also have restriction homomorphisms
En → Em form ≤ n. Passing to the inverse limit gives a subgroup

E∞ = lim←−En

of Aut(T∞).

Corollary 2.4 The Hausdorff dimension of E∞ in Aut(T∞) is given by Eq. (1).

Proof Using the facts that Aut(Tn) ∼= Aut(Tn−1) � Aut(T1) and that Aut(T1) ∼= S3, a
simple induction shows that

|Aut(Tn)| = 6
3n−1
2 . (5)

Combining this fact with Proposition 2.2 gives the desired result. ��

Corollary 2.5 E∞ has infinite index in Aut(T∞).

Comparing the cardinalities of En and Aut(Tn), we see that they share a Sylow 3-
subgroup. We can describe one such subgroup explicitly as follows. Let C3 be the cyclic
3-subgroup of Aut(T1) ∼= S3. Define a sequence of groups Hn by the following formula:

Hn =
⎧
⎨

⎩
C3 if n = 1,

Hn−1 � C3 if n ≥ 2.

We identify Hn with a subgroup of Aut(Tn) using the embedding

Hn = Hn−1 � C3 ↪→ Aut(Tn−1) � Aut(T1) ∼= Aut(Tn).

Evidently, Hn ∼= [C3]n, the iterated wreath product. By induction, we see that

|Hn| = 3
3n−1
2 , (6)

so that Hn is a Sylow 3-subgroup of Aut(Tn).

Proposition 2.6 For n ≥ 1, Hn is a Sylow 3-subgroup of En. It is normal in En if and only
if n = 1.
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Proof For n = 1, Hn is an index-2 subgroup of E1 = Aut(T1) and, hence, it is normal.
Next, for some n ≥ 1, suppose we know that Hn is a subgroup of En. By their recursive
definitions, to see that Hn+1 ⊂ En+1 it suffices to show that any h ∈ Hn+1 restricts to an
even permutation on T2. The restriction of h to T2 has the form

(
(a1, a2, a3), b

)
, where

each of a1, a2, a3, and b is either trivial or a 3-cycle. By Lemma 2.1, we conclude that
sgn2(h) = 1. Hence, h ∈ En+1, as desired.
Since |Hn| is the 3-power part of |En|, we have proven the first statement of the propo-

sition. It remains to show that Hn is not normal in En for n ≥ 2.
For each n ≥ 1, define τn ∈ Aut(Tn) inductively as follows:

τn =
⎧
⎨

⎩
(12) n = 1,
(
(τn−1, 1, 1), (12)

)
n ≥ 2.

(7)

We claim that τn ∈ En for all n ≥ 1. This is clear for n = 1. Suppose that it holds for
some n ≥ 1. Then

(
(τn, 1, 1), (12)

) ∈ En+1 if and only if its restriction to T2 acts by an even
permutation. The restriction to E2 is given by

(
((12), 1, 1), (12)

)
, which has positive sign

by Lemma 2.1.
Note that for n ≥ 2, we have τ−1

n = (
(1, τ−1

n−1, 1), (12)
)
. Note also that for n ≥ 1, we have

τn /∈ Hn, since the restriction of τn to T1 is (12) /∈ C3.
Next, for fixed n ≥ 2, define a = (

(1, 1, 1), (123)
) ∈ Hn. Then

τn a τ−1
n = (

(τn−1, 1, 1), (12)
)(
(1, 1, 1), (123)

)(
(1, τ−1

n−1, 1), (12)
)

= (
(1, τ−1

n−1, τn−1), (132)
)
,

which does not belong to Hn, since τn−1 /∈ Hn−1. ��
Proposition 2.7 The Hausdorff dimension of H∞ in Aut(T∞) is

lim
n→∞

log |Hn|
log |Aut(Tn)| = log 3

log 6
≈ 0.613.

Proof Immediate from Eqs. (5) and (6). ��
Since Hn ⊆ En ⊆ Aut(Tn), the preceding proposition and Corollary 2.4 show that for

large n, En is substantially larger than Hn, but much smaller than Aut(Tn).
Finally, we will need a lemma that constructs certain special elements of En:

Lemma 2.8 Let n ≥ 2 and let g ∈ Aut(Tn) be any element that acts as follows:

• On the copy of Tn−1 with the same root as Tn, g acts by the identity.
• On each copy of T2 rooted at a vertex of Tn of level n−2, g acts by an even permutation

of the 9 leaves.

Then g ∈ En.

Proof We proceed by induction on n. For n = 2, the second condition on g implies that
sgn(g) = 1, so g ∈ E2. Suppose that the lemma holds for n − 1, and let g ∈ Aut(Tn)
satisfy the given conditions. Let u1, u2, u3 be the vertices of Tn at level 1. Write Tn−1(ui)
for the copy of Tn−1 inside Tn that is rooted at ui. Then g restricts to an element of
Aut(Tn−1(ui)) that satisfies the two conditions of the lemma. By the induction hypothesis,
g |Tn−1(ui) ∈ En−1 for i = 1, 2, 3. In addition, g is the identity and, hence, is even, on T2.
Thus, g ∈ En by the criterion of Eq. (4). ��
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3 Main theorem
Let K be a field of characteristic zero, and consider the polynomial

f (z) = −2z3 + 3z2 ∈ K [z].

The critical points of f in P
1 are 0, 1, and ∞, all of which are fixed by f . Hence, f is PCF

and, in fact, the union of the forward orbits of its critical points is {0, 1,∞}. Choose a point
x ∈ K � {0, 1} to be the root of our preimage tree. Note that there is no critical point in
the backward orbit of x—i.e., the set f −1(x) ∪ f −2(x) ∪ · · ·.
For each n ≥ 1, define

Kn = K
(
f −n(x)

)
and Gn = Gal(Kn/K ). (8)

Lemma 3.1 For any field K of characteristic zero and any x ∈ K � {0, 1}, the Galois group
Gn of Eq. (8) is isomorphic to a subgroup of En.

Proof Because there is no critical point in the backward orbit of x, the set f −i(x) consists
of exactly 3i distinct elements for each i ≥ 0. Identify the vertices of the ternary rooted
tree Tn with the set

⊔
0≤i≤n f −i(x), with vertex y lying immediately above y′ if and only if

f (y) = y′. This identification induces a faithful action of Gn on Tn and, hence, Gn may be
identified with a subgroup of Aut(Tn).
To see that this subgroup Gn lies inside En, we proceed by induction on n. For n = 1,

this is clear because E1 = Aut(T1).
Fix n ≥ 2, and assume we know the lemma holds for n − 1. Write f −1(x) = {y1, y2, y3}.

For each i = 1, 2, 3, applying the lemma to the field K (yi) with root point yi shows that

Gal
(
K

(
f −(n−1)(yi)

)
/K (yi)

)

is a subgroup of En−1 (The labeling of Tn allows us to identify the portion of Tn above yi
with Tn−1). Since Gal(K1/K ) is a subgroup of Aut(T1), it follows that Gn is isomorphic to
a subgroup Bn of En−1 � Aut(T1).
It remains to show thatBn ⊆ ker(sgn2). Direct computation shows that the discriminant

of the degree-nine polynomial f 2(z) − x is given by Eq. (2). Since this discriminant is a
square inK , all elements of Bn act as even permutations of the nine points of f −2(x). Thus,
Bn ⊆ ker(sgn2), as desired. ��

Our goal is to compute the arboreal Galois groups Gn in the case that K is a number
field and that the basepoint x ∈ K � {0, 1} satisfies the following local hypothesis:

There exist primes p and q of K lying above 2 and 3, respectively, (†)

such that vq(x) = 1, and either vp(x) = ±1 or vp(1 − x) = 1.

If this hypothesis holds, we will say that the pair (K, x) satisfies property (†) (relative to p

and q).

Example 3.2 If K = Q, then the pairs (Q, 3) and (Q, 3/2) both satisfy property (†). The
latter pair will be important for our arithmetic applications.

Lemma 3.3 Suppose that (K, x) satisfies (†) relative to p and q. Then f n(z)−x is Eisenstein
at q for all n ≥ 1. In particular, f n(z) − x is irreducible for all n ≥ 1.
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Proof Asimple induction shows that f n(z) ≡ z3n (mod q) and f n(0) = 0. Since vq(x) = 1,
it follows immediately that f n(z) − x is Eisenstein at q. ��
Proposition 3.4 Let K be a number field, and let x ∈ K. Suppose that (K, x) satisfies
property (†) relative to primes p and q. Let n ≥ 0, and let y ∈ f −n(x). Then:

(1) There are primes p′ and q′ of K (y) lying above p and q, respectively, such that

e(p′/p) = 2n and e(q′/q) = 3n.

(2) The pair (K (y), y) satisfies property (†) relative to p′ and q′.

Proof We proceed by induction on n. The statement is trivial for n = 0. We therefore
assume for the rest of the proof that n ≥ 1 and that the statement holds for n − 1.
Given y ∈ f −n(x), let y′′ = f (y) ∈ f −(n−1)(x). By our inductive hypothesis, there are

primes p′′ and q′′ of K (y′′) lying over p and q satisfying the desired properties for n − 1.
The polynomial

f (z) − y′′ = −2z3 + 3z2 − y′′ ∈ K (y′′)[z]

is Eisenstein at q′′. Thus, there is only one prime q′ ofK (y) lying above q′′, with ramification
index e(q′/q′′) = 3, and with vq′ (y) = 1. Moreover,

e(q′/q) = e(q′/q′′) · e(q′′/q) = 3 · 3n−1 = 3n.

Meanwhile, by statement (2) for n − 1, we have either vp′′ (y′′) = 1, vp′′ (1 − y′′) = 1, or
vp′′ (y′′) = −1. We consider these three cases separately.
If vp′′ (y′′) = 1, then the Newton polygon of f (z) − y′′ at p′′ has a segment of length 2

and height 1. Thus, there is a prime p′ of K (y) lying above p′′, with ramification index
e(p′/p′′) = 2, and with vp′ (y) = 1. Moreover,

e(p′/p) = e(p′/p′′) · e(p′′/p) = 2 · 2n−1 = 2n.

If vp′′ (1− y′′) = 1, note that f is self-conjugate via z �→ 1− z; that is, 1− f (1− z) = f (z).
Thus, 1 − y ∈ f −1(1 − y′′), and the previous paragraph applied to 1 − y gives the desired
conclusion.
Finally, if vp′′ (y′′) = −1, then because vp′′ (−2) ≥ 1, the Newton polygon of f (z) − y′′ at

p′′ has a segment of length 2 and height −1. Thus, there is a prime p′ of K (y) lying above
p′′, with ramification index e(p′/p′′) = 2, and with vp′ (y) = −1. Once again, then, we have
e(p′/p) = 2n. ��
Corollary 3.5 Let K and x be as in Proposition 3.4. Let n ≥ 1 and let Kn be the splitting
field of f n(z) − x over K . Then

6n
∣∣[Kn : K ].

Proof Pick y ∈ f −n(x), and let p′ and q′ be the primes of K (y) given by Proposition 3.4.
Since Kn/K has intermediate extension K (y)/K , the ramification index of some prime of
Kn over p must be divisible by e(p′/p) = 2n. Similarly, the ramification index of some
prime of Kn over qmust be divisible by e(q′/q) = 3n. Thus, 6n | [Kn : K ]. ��
Proposition 3.6 Let K and x be as in Proposition 3.4. Then

Gal
(
K

(
f −1(x)

)
/K

) ∼= E1 ∼= S3 and Gal
(
K

(
f −2(x)

)
/K

) ∼= E2.



Benedetto et al. Res. Number Theory (2017) 3:29 Page 11 of 21

Proof Let K1 = K (f −1(x)) and K2 = K (f −2(x)). Then, as a splitting field of a cubic
polynomial, K1 is Galois over K with Gal(K1/K ) isomorphic to a subgroup of S3. By
Corollary 3.5 with n = 1, we have 6 | [K1 : K ]. Hence, Gal(K1/K ) ∼= S3.
By Lemma 3.1, Gal(K2/K ) acts on f −2(x) as a subgroup of E2. It suffices to show that

every element of E2 is realized in Gal(K2/K ).
Write f −1(x) = {u1, u2, u3}, and for each i = 1, 2, 3, write

f −1(ui) = {vi1, vi2, vi3}.

Claim 1 There exists τ ∈ Gal(K2/K1) ⊆ Gal(K2/K ) that

• fixes v1j for each j = 1, 2, 3,
• acts as a 2-cycle on the set f −1(u2) = {v21, v22, v23}, and
• acts as a 2-cycle on the set f −1(u3) = {v31, v32, v33}.
To prove Claim 1, note that 36 | [K2 : K ] by Corollary 3.5 and, hence, 6 | [K2 : K1],

since [K1 : K ] = 6. By Cauchy’s Theorem, there is some τ1 ∈ Gal(K2/K1) of order 2. Since
τ1 fixes each ui, it must act on each set f −1(ui) as an element of S3 of order dividing 2.
Thus, for each i = 1, 2, 3, τ1 acts as either a 2-cycle or the identity on f −1(ui). In addition,
τ1 is even as a permutation on f −2(x) but (being of order 2) is not the identity. Thus, τ1
acts as a 2-cycle on the preimages of exactly two of u1, u2, u3, and as the identity on the
preimage of the third, um.
Choose γ ′ ∈ Gal(K1/K ) with γ ′(u1) = um, and lift γ ′ to γ ∈ Gal(K2/K ). Let τ =

γ −1τ1γ . Then τ (ui) = ui for each i, and τ satisfies each of the three bulleted properties,
proving Claim 1.
Claim 2 There exists ρ ∈ Gal(K2/K1) ⊆ Gal(K2/K ) that acts as

• a 3-cycle on f −1(u1) = {v11, v12, v13},
• either a 3-cycle or the identity on f −1(u2) = {v21, v22, v23}, and
• either a 3-cycle or the identity on f −1(u3) = {v31, v32, v33}.
To prove Claim 2, we again note that 6 | [K2 : K1]. Hence, by Cauchy’s Theorem, there

is some ρ1 ∈ Gal(K2/K1) of order 3. We have ρ1(ui) = ui for each i, with ρ1 acting as a
3-cycle on either one, two, or all three of f −1(ui), and as the identity on the others. Lifting
some appropriate γ ′ ∈ Gal(K1/K ) to γ ∈ Gal(K2/K ), we can ensure that ρ = γ −1ρ1γ

satisfies the desired properties, proving Claim 2.
By the conclusions of Claims 1 and 2, the permutation τρ acts as

• a 3-cycle on f −1(u1) = {v11, v12, v13},
• a 2-cycle on f −1(u2) = {v21, v22, v23}, and
• a 2-cycle on f −1(u3) = {v31, v32, v33}.

Let σ = (τρ)2. Then σ acts as a 3-cycle on f −1(u1) and as the identity on f −1(u2)∪f −1(u3).
Conjugating σ by permutations γ as in the proof of Claim 1 and then composing the

resulting conjugates with one another, we see that Gal(K2/K1) contains each element of
E2 that is the identity on f −1(x) and is either the identity or a 3-cycle on each f −1(ui).
There are 33 = 27 such permutations.
Conjugating τ by permutations from the previous paragraph, as well as by permutations

γ as in the proof of Claim 1, we also see that Gal(K2/K1) contains each element of E2 that
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is the identity on f −1(x), is a 2-cycle on exactly two of f −1(u1), f −1(u2), and f −1(u3), and
is the identity on the third. There are 33 = 27 such permutations.
Composing the maps of the previous two paragraphs, we see that Gal(K2/K1) contains

each element of E2 that is the identity on f −1(x), is a 2-cycle on exactly two of f −1(u1),
f −1(u2), and f −1(u3), and is a 3-cycle on the third. There are 33 ·2 = 54 such permutations.
Thus, [K2 : K1] ≥ 27 + 27 + 54 = 108, and, hence,

[K2 : K ] ≥ 6 · 108 = 648 = |E2|.
Since Gal(K2/K ) is isomorphic to a subgroup of E2, we must have Gal(K2/K ) ∼= E2. ��
We are now prepared to prove part (b) of Theorem 1.1, which we restate here.

Theorem 3.7 Let K and x be as in Proposition 3.4. Then for any n ≥ 1,

Gal
(
K

(
f −n(x)

)
/K

) ∼= En.

Proof By Lemma 3.1, we know that the Galois group is isomorphic to a subgroup of En.
Wemust show that this subgroup is En itself. We proceed by induction on n. For n = 1, 2,
we are done by Proposition 3.6. Assuming we know the statement (for any such K and x)
for a particular n ≥ 2, we will now show it for n + 1.
Let

Kn = K
(
f −n(x)

)
and Kn+1 = K

(
f −(n+1)(x)

)
.

Write f −1(x) = {u1, u2, u3}. By Proposition 3.4, each of the pairs (K (ui), ui) satisfies prop-
erty (†) for i = 1, 2, 3. Thus, our induction hypothesis says that Gal(Kn/K ) and all three of
the Galois groups

Gal
(
K

(
f −n(ui)

)
/K (ui)

)
, for i = 1, 2, 3

are isomorphic to En. Pick

y ∈ f −(n−2)(u3) ⊆ f −(n−1)(x).

See Fig. 2.
Our main goal, which we will achieve at the end of Step 3 below, is to construct an

element λ ∈ Gal(Kn+1/K ) that is the identity on

f −(n+1)(x) � f −2(y) and on f −1(y),

but which acts as two disjoint 2-cycles on f −2(y).
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Fig. 2 The locations of x , u1, u2, u3 and y in Tn+1
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Step 1. Define

H = Gal
(
K

(
f −n(u3)

)
/K (u3)

)
.

By the induction hypothesis, H ∼= En. By Lemma 2.8 there is some σ1 ∈ H that is the
identity on

f −n(u3) � f −2(y) and on f −1(y)

and acts as two 2-cycles on f −2(y). Lift σ1 to

σ ∈ Gal
(
Kn+1/K (u3)

) ⊆ Gal(Kn+1/K ).

Thus, σ acts as we would like λ to act on f −n(u3), but we have no idea how it acts on
f −n(u1) and f −n(u2).
Step 2. By Lemma 2.8, we may pick τ1 ∈ Gal(Kn/K ) ∼= En that is the identity on

f −n(x) � f −1(y)

and acts as a 3-cycle on f −1(y). Lift τ1 to τ ∈ Gal(Kn+1/K ).
Then τστ−1 ∈ Gal(Kn+1/K ) acts as

• the identity on f −n(u3) � f −2(y) and f −1(y),
• two 2-cycles on f −2(y), and
• the same as σ on f −(n−1)({u1, u2}),

where the two 2-cycles on f −2(y) for τστ−1 do not occur above the same two elements of
f −1(y) as the two 2-cycles for σ .
Thus, τστ−1σ−1 ∈ Gal(Kn+1/K ) acts as

• the identity on f −n(u3) � f −2(y) and f −1(y),
• two 2-cycles and (perhaps) a separate 3-cycle on f −2(y), and
• the identity on f −(n−1)({u1, u2}).

Cubing to kill the possible 3-cycle in f −2(y), we see that

ρ = (τστ−1σ−1)3 ∈ Gal(Kn+1/K )

acts as

• the identity on f −n(x),
• the identity on f −n(u3) � f −2(y), and
• two 2-cycles on f −2(y).

Step 3. Consider the permutations τ , ρ ∈ Gal(Kn+1/K ) of Step 2. Then τρτ−1ρ−1 acts as

• the identity on f −n(x),
• the identity on f −n(u3) � f −2(y),
• two 2-cycles and (perhaps) a separate 3-cycle on f −2(y), and
• for each v ∈ f −(n−1)({u1, u2}), an even permutation of f −1(v).

The even permutations of the last bullet point above are even permutations in S3, and,
hence, each is either the identity or a 3-cycle. Cubing, we see that

λ = (τρτ−1ρ−1)3 ∈ Gal(Kn+1/K )
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acts as the identity on

f −(n+1)(x) � f −2(y) and on f −1(y),

and it acts as two 2-cycles on f −2(y), achieving the main goal from the start of the proof.
Step 4. Recall H = Gal(K (f −n(u3))/K (u3)) ∼= En. Pick w ∈ f −1(y). By Lemma 2.8, we can
pick γ1 ∈ H that is the identity on

f −n(u3) � f −1(w)

and acts as a 3-cycle on f −1(w). Lift γ1 to γ ∈ Gal(Kn+1/K ).
Conjugating the permutation λ (of Step 3) by various products of γ and the permutation

τ (of Step 2), we see that Gal(Kn+1/K ) contains each of the 27 permutations that is the
identity on

Y = (
f −(n+1)(x) � f −2(y)

) ∪ f −1(y)

and acts as two disjoint 2-cycles on f −2(y). In addition, taking products of pairs of such
permutations, Gal(Kn+1/K ) contains all 27 permutations that are the identity on Y and
products of disjoint 3-cycles on f −2(y). Still taking products of pairs, Gal(Kn+1/K ) also
contains all 54 permutations that are the identity on Y and the product of a disjoint 3-
cycle and two 2-cycles on f −2(y). Together, then, Gal(Kn+1/K ) contains a subgroup Hy
that acts trivially on Y , with |Hy| = 108 = 22 · 33.
Since f n−1(z) − x is irreducible over K , for each root y′ ∈ f −(n−1)(x) there is some

δ1 ∈ Gal(Kn−1/K ) ∼= En−1

with δ1(y′) = y. Lift δ1 to δ ∈ Gal(Kn+1/K ). Then,

Hy′ = δ−1Hyδ

is a 108-element subgroup of Gal(Kn+1/K ) that acts trivially on

Y ′ = (
f −(n+1)(x) � f −2(y′)

) ∪ f −1(y′).

There are 3n−1 choices for y′, and any two of the resulting subgroups Hy′ act nontrivially
on disjoint portions of the preimage tree. In addition, they all act trivially on f −n(x) and,
hence, trivially onKn. Thus, theproduct of all of them formsa subgroupB ⊆ Gal(Kn+1/Kn)
of order

(
22 · 33)3(n−1) = |En+1|

|En| ,

by Proposition 2.2. Hence,
∣∣Gal(Kn+1/K )

∣∣ = ∣∣Gal(Kn+1/Kn)
∣∣ · ∣∣Gal(Kn/K )

∣∣ ≥ |B| · |En| = |En+1|.
SinceGal(Kn+1/K ) is isomorphic to a subgroup of the finite groupEn+1, wemust therefore
have Gal(Kn+1/K ) ∼= En+1. ��

4 The geometric representation
Let L be a number field, and consider the rational function field K = L(t). Since t ∈
L(t) � {0, 1}, Lemma 3.1 states that the Galois group of L(f −n(t)) over L(t) is a subgroup
of En. In fact, we have the following much stronger statement.
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Proposition 4.1 Let L be a number field and t a transcendental element over L. Then

Gal
(
L
(
f −n(t)

)
/L(t)

) ∼= En.

Proof LetGn = Gal(L(f −n(t))/L(t)).We can choose x ∈ L such that the pair (L, x) satisfies
property (†) of Sect. 3. By Theorem 3.7, we have

Gal
(
L
(
f −n(x)

)
/L(x)

)
= Gal

(
L
(
f −n(x)

)
/L

) ∼= En.

Therefore, the specialization lemma of [12, Lem. 2.4] implies that Gn has a subgroup iso-
morphic to En. On the other hand, applying Lemma 3.1 toGn shows thatGn is isomorphic
to a subgroup of En. Since En is finite, Gn must be isomorphic to En. ��

Corollary 4.2 Gal
(
Q̄

(
f −n(t)

)
/Q̄(t)

) ∼= En.

Proof Since the previous proposition holds for any number field, Q must be algebraically
closed in Q(f −n(t)). Hence,

Gal
(
Q̄

(
f −n(t)

)
/Q̄(t)

) ∼= Gal
(
Q

(
f −n(t)

)
/Q(t)

) ∼= En.

��

5 Counting elements that fix leaves of Tn
Write En,fix for the set of elements of En that fix at least one leaf of Tn. We have already
seen that E∞ = lim←−En is the geometric monodromy group of the PCF polynomial f (z) =
−2z3+3z2. Using this fact, one could apply [7, Thm. 1.1] to show that the ratio |En,fix|/|En|
tends to zero with n. And while this would be sufficient for the arithmetic applications in
the next section, we are able to obtain a more refined statement by working directly with
the group structure of En:

Theorem 5.1 The proportion of elements of En that fix a leaf of Tn is

|En,fix|
|En| = 2

n

(
1 + O

(
log n
n

))
as n → ∞.

Remark 5.2 The proportion of elements of Aut(Tn) that fix a leaf of Tn obeys the same
asymptotic as for En [12, §4]. By way of contrast, consider Hn ∼= [C3]n, the Sylow 3-
subgroup of En from Proposition 2.6. The proportion of elements of Hn that fix a leaf of
Tn is half that of En: 1

n

(
1 + O

(
log n
n

))
.

Webeginbyfinding a recursive formula for |En,fix| in termsof certain auxiliary quantities.
For n ≥ 1 and i ∈ {1, 2, 3}, we define the following:

An,i =
∣∣∣
{
s ∈ En

∣∣ s acts as an element of order i on T1
}∣∣∣,

A′
n,i =

∣∣∣
{
s ∈ En | s acts as an element of order i on T1 and fixes a leaf of Tn

}∣∣∣.

For example, if n = 1, we have

A1,1 = 1 A′
1,1 = 1

A1,2 = 3 A′
1,2 = 3

A1,3 = 2 A′
1,3 = 0.
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For any n ≥ 1, note that A′
n,3 = 0, because an element s that permutes the leaves of T1

by a 3-cycle cannot fix a leaf of Tn. It follows that

|En,fix| = A′
n,1 + A′

n,2 and |En| = An,1 + An,2 + An,3.

Lemma 5.3 For n ≥ 1, we have

An,2 = 3An,1, An,3 = 2An,1, |En| = 6An,1, and |En+1| = 3|En|3.

Proof The restrictionhomomorphismπ : En → E1 ∼= S3 is onto sinceπ
(
(1, 1, 1), (123)

) =
(123) and π (τn) = (12), where τn was defined in Eq. (7). The first three equalities follow
from the fact that An,1 = | ker(π )|. For the final equality, apply Proposition 2.2. ��

Lemma 5.4 For n ≥ 1, we have

A′
n+1,1 = 54A2

n,1
(
A′
n,1 + A′

n,2
) − 9An,1

(
A′
n,1 + A′

n,2
)2 + 3A′

n,1
(
A′
n,2

)2 + (
A′
n,1

)3 .

Proof Let s ∈ En+1 be an element that acts as the identity on T1. Then the restriction of s
to T2 is of the form

(
(a1, a2, a3), 1

)
for some a1, a2, a3 ∈ Aut(T1). By Lemma 2.1, the fact

that this element lies in E2 means 1 = ∏
sgn(ai). So among the ai ’s, there are either zero

2-cycles or exactly two 2-cycles. We treat these cases separately.
Case 1: Zero 2-cycles. As an element of En+1, we have s = (

(ã1, ã2, ã3), 1
)
, where each

ãi ∈ En restricts to either the identity or a 3-cycle onT1. The total number of elements ãi of
this shape isAn,1+An,3, while the number that do not fix a leaf ofTn is

(
An,1+An,3−A′

n,1
)
.

Thus, the number of elements of En+1,fix that act as the identity on T1 but with no 2-cycle
on T2 is

(An,1 + An,3)3 − (
An,1 + An,3 − A′

n,1
)3 = 27A2

n,1A
′
n,1 − 9An,1

(
A′
n,1

)2 + (
A′
n,1

)3 , (9)

where we applied Lemma 5.3 when we expanded the two expressions.
Case 2: Two 2-cycles. As an element of En+1, we have s = (

(ã1, ã2, ã3), 1
)
, where two of

the ãi ∈ En restrict to 2-cycles on T1, and the remaining ãi restricts to the identity or a
3-cycle. There are three choices for the index i0 such that ãi0 is the identity or a 3-cycle.
For a given choice of i0, there are

(A′
n,1 + A′

n,3)A
2
n,2 = A′

n,1A
2
n,2 = 9A2

n,1A
′
n,1

choices of triples (ã1, ã2, ã3) such that s fixes a leaf of the copy of Tn above the i0-leaf of
T1.
For s not to fix a leaf of the Tn above the i0-leaf, at least one of the other two ãi ’s (each

of which acts as a 2-cycle on T1) must fix a leaf of Tn. By inclusion-exclusion, the number
of choices for this pair of ãi ’s is

2An,2A′
n,2 − (

A′
n,2

)2 = (
6An,1 − A′

n,2
)
A′
n,2.

For i = i0, the element ãi ∈ En acts as the identity or as a 3-cycle on T1 but fixes no leaf
of Tn. The number of such elements of En is

An,1 + An,3 − A′
n,1 = 3An,1 − A′

n,1.

(Again, we have applied Lemma 5.3 in all three displayed equations above.)
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Thus, the number of elements s ∈ En+1,fix that act as the identity on T1 and as two
2-cycles on the leaves of T2 is

3
[
9A2

n,1A
′
n,1 + (

3An,1 − A′
n,1

) (
6An,1 − A′

n,2
)
A′
n,2

]
. (10)

Adding Eqs. (9) and (10) and expanding yields the desired result. ��

Using the same counting technique as in the preceding proof, one obtains:

Lemma 5.5 For n ≥ 1, we have

A′
n+1,2 = 54A2

n,1
(
A′
n,1 + A′

n,2
)
.

Lemma 5.6 Let φ(t) = t − 1
2 t

2 + 1
3 t

3. Then φ is increasing on (0, 1), and

φn(1) = 2
n

(
1 + O

(
log n
n

))
as n → ∞.

Proof The first statement is evident from looking at the derivative. For the second, we set

ψ(z) = 1
φ(z−1)

= z + 1
2

− z + 2
2(6z2 − 3z + 2)

.

Let R(z) = z+2
2(6z2−3z+2) be the final term. Then, by induction, we have

ψn(z) = 1
φn(z−1)

= z + n
2

−
n−1∑

i=0
R

(
ψ i(z)

)
.

Since φn(1) = 1/ψn(1), to complete the proof it suffices to show that
∑n−1

i=0 R
(
ψ i(1)

) =
O(log n).
By elementary algebra, one verifies that R(z) ≤ 1

3z for all z > 0. Now we show, by
induction, that ψn(1) ≥ (n + 5)/5 for n ≥ 1. Both sides equal 6/5 for n = 1. Given n ≥ 1
for which the inequality holds, we find R(ψn(1)) ≤ 1

3ψn(1) ≤ 5
3n+15 , and hence

ψn+1(1) = ψn(1) + 1
2

− R(ψn(1)) ≥ n + 5
5

+ 1
2

− 5
3n + 15

= n + 6
5

+ 9n − 5
30(n + 5)

>
n + 6
5

,

completing the induction.
Using our inequalities for R(z) and ψn(1), we conclude that

0 ≤
n−1∑

i=0
R

(
ψ i(1)

)
<

n−1∑

i=0

1
ψ i(1)

< 5
n−1∑

i=0

1
i + 5

= O(log n).

��
One can apply the technique in the previous proof to obtain the following similar result:

Lemma 5.7 Let ρ(t) = t − 1
2 t

2. Then ρ is increasing on (0, 1), and

ρn(2/3) = 2
n

(
1 + O

(
log n
n

))
as n → ∞.
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Proof of Theorem 5.1 By adding the terms
(
A′
n,2

)3 and 3A′
n,2

(
A′
n,1

)2 to the formula in
Lemma 5.4, we obtain the estimate

A′
n+1,1 ≤ 54A2

n,1
(
A′
n,1 + A′

n,2
) − 9An,1

(
A′
n,1 + A′

n,2
)2 + (

A′
n,1 + A′

n,2
)3 .

Adding this to the formula in Lemma 5.5, we find that

|En+1,fix| = A′
n+1,1 + A′

n+1,2

≤ 108A2
n,1

(
A′
n,1 + A′

n,2
) − 9An,1

(
A′
n,1 + A′

n,2
)2 + (

A′
n,1 + A′

n,2
)3

= 3 (6An,1)2 |En,fix| − 3
2
(6An,1) |En,fix|2 + |En,fix|3

= 3|En|2 · |En,fix| − 3
2
|En| · |En,fix|2 + |En,fix|3,

where we have used Lemma 5.3 to write 6An,1 = |En|. Dividing by |En+1| = 3|En|3, we
find that

|En+1,fix|
|En+1| ≤ |En,fix|

|En| − 1
2

( |En,fix|
|En|

)2
+ 1

3

( |En,fix|
|En|

)3
= φ

( |En,fix|
|En|

)
, (11)

where φ is the polynomial from Lemma 5.6.
Similarly, by discarding the final two terms of the formula in Lemma 5.4 and adding the

formula from Lemma 5.5, we obtain the estimate

|En+1,fix| = A′
n+1,1 + A′

n+1,2 ≥ 108A2
n,1

(
A′
n,1 + A′

n,2
) − 9An,1

(
A′
n,1 + A′

n,2
)2

= 3|En|2 · |En,fix| − 3
2
|En| · |En,fix|2.

As above, this yields

|En+1,fix|
|En+1| ≥ |En,fix|

|En| − 1
2

( |En,fix|
|En|

)2
= ρ

( |En,fix|
|En|

)
, (12)

where ρ is the polynomial from Lemma 5.7.
Set xn = |En,fix|

|En| ∈ [0, 1]. Equations (11) and (12) show that ρ(xn) ≤ xn+1 ≤ φ(xn). As ρ

and φ are increasing on (0, 1), we find that

ρn(2/3) = ρn(x1) ≤ ρn−1(x2) ≤ · · · ≤ ρ(xn) ≤ xn+1

and

xn+1 ≤ φ(xn) ≤ φ2(xn−1) ≤ · · · ≤ φn(x1) ≤ φn(1).

ByLemmas 5.6 and 5.7, the first and last quantities have the same asymptotic value, namely
2
n

(
1 + O

(
log n
n

))
, and hence, so does xn+1. The proof is complete since this asymptotic

is unchanged upon replacing n with n − 1. ��
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6 Arithmetic applications
We now prove our applications on density of prime divisors in orbits and Newton’s
method. If K is a number field and P is a prime ideal of the ring of integers of K with
residue field k(P), there is a surjective reduction map K → k(P) ∪ {∞}. We write x ≡ y
(mod P) whenever x, y ∈ K have the same reduction.

Proposition 6.1 Let K be a number field and x ∈ K an element such that (K, x) satisfies
property (†) of Sect. 3. Choose y0 ∈ K �(x) and define a sequence (yi)i≥0 ⊆ K by yi = f i(y0).
Then the set of prime idealsP of K such that

yi ≡ x (mod P) for some i ≥ 0

has natural density zero.

Proof Note that for all i ≥ 0, we have yi �= x. This inequality holds for i = 0 by hypothesis.
Furthermore, if it failed for some i > 0, y0 would be a K -rational root of f i(z) − x, which
is absurd since this polynomial is irreducible over K by Lemma 3.3.
For each n ≥ 1, define Sn to be the set of prime idealsP of K such that

• x is not integral atP, or
• yi ≡ x (mod P) for some 0 ≤ i ≤ n − 1.

Then Sn is finite.
Let n ≥ 1. Let P /∈ Sn be a prime ideal of the ring of integers of K such that

yi ≡ x (mod P) for some i ≥ n. Then f n(yi−n) ≡ x (mod P), and therefore the polyno-
mial f n(z)− x has a k(P)-rational root. Write δ(S) for the natural density of a set of prime
ideals S (if it exists). For each n ≥ 1, the Chebotarev Density Theorem and the finiteness
of Sn yield

δ
({
P

∣∣ yi ≡ x (mod P) for some i ≥ 0
})

≤ δ
({
P

∣∣P /∈ Sn, f n(z) − x has a k(P)-rational root
})

=
∣∣∣
{
s ∈ Gal

(
K (f −n(x))/K

) ∣∣∣ s fixes some root of f n(z) − x
}∣∣∣

∣∣Gal
(
K (f −n(x))/K

)∣∣ = |En,fix|
|En| .

The final equality uses Theorem 3.7 to identify the Galois group of f n(z) − x over K with
En. By Theorem 5.1, this last quantity tends to zero as n → ∞. ��

Recall that the critical points for f are 0, 1,∞, and that they are all fixed by f .

Corollary 6.2 Let K be a number field for which there exist unramified primes above 2
and above 3. Let y0 ∈ K�(0, 1, 3/2,−1/2), and define a sequence (yi)i≥0⊆K by yi=f i(y0).
Then the set of prime idealsP of K such that

yi ≡ 0 or 1 (mod P) for some i ≥ 0

has natural density zero. In particular, the set of prime divisors of the sequence (yi)i≥0 has
natural density zero.

Proof We begin by showing that the set of primesP such that yi ≡ 0 (mod P) for some
i ≥ 0 has natural density zero. Let S be the set of primesP of K for which
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• P lies above 2, or
• y0 ≡ 0 (mod P).

Notice that since y0 �= 0, S is a finite set, and we may safely ignore primes in S for the
remainder of the proof.
Suppose now that P /∈ S is such that yi ≡ 0 (mod P) for some i ≥ 1. We may assume

without loss that i is minimal with this property. Then

yi = f (yi−1) = −2y3i−1 + 3y2i−1 = −2y2i−1

(
yi−1 − 3

2

)
,

which implies that yi−1 ≡ 3
2 (mod P). We claim that yi−1 �= 3

2 . This is true by hypothesis
if i = 1. If it were to fail for some i > 1, then the polynomial f i−1(z) − 3/2 would have y0
as a K -rational root. But our hypothesis on K implies that (K, 3/2) satisfies property (†),
and so we have a contradiction to Lemma 3.3. It follows that

δ
({

P
∣∣ yi ≡ 0 (mod P) for some i ≥ 0

})

= δ

({
P

∣∣∣ yi ≡ 3
2
(mod P) for some i ≥ 1

})
.

Since (K, 3/2) satisfies property (†), the density on the right is zero by Proposition 6.1.
Now we show that the density of primes P such that yi ≡ 1 (mod P) for some i ≥ 0

also has natural density zero. Define wi = 1 − yi for i ≥ 0. As y0 /∈ {1,−1/2}, we see that
w0 /∈ {0, 3/2}. Moreover, because 1 − f (z) = f (1 − z), we find that

f (wi) = f (1 − yi) = 1 − f (yi) = 1 − yi+1 = wi+1.

Thus, we may apply the first part of the proof to the sequence (wi)i≥0 to deduce that

δ
({P ∣∣wi ≡ 0 (mod P) for some i ≥ 0}) = 0.

Since wi ≡ 0 (mod P) ⇔ yi ≡ 1 (mod P), we are done. ��
We now prove a special case of the Faber–Voloch conjecture. Recall that the Newton

map associated to a polynomial g(z) ∈ K [z] is the rational function

Ng (z) = z − g(z)
g ′(z)

.

The simple roots of g are critical fixed points ofNg . Hence, for any completionKv ofK , the
roots of g are super-attracting fixed points of the map Ng , viewed as a dynamical system
acting on P

1(Kv).

Corollary 6.3 Let K be a number field for which there exist unramified primes above 2
and above 3. Let g(z) = z3 − z. Choose y0 ∈ K such that the Newton iteration sequence
yi = Ni

g (y0) does not encounter a root of g. Then the set of primes P of K for which the
Newton sequence (yi)i≥0 converges in KP to a root of g has natural density zero.

Proof The Newton map for g is

Ng (z) = 2z2

3z2 − 1
.

Let η(z) = 1/(1 − 2z). Then

η−1 ◦ Ng ◦ η(z) = −2z3 + 3z2 = f (z). (13)
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For each i ≥ 0, definewi = η−1(yi).Then it is immediate fromEq. (13) thatwi+1 = f (wi).
Moreover, if we hadw0 ∈ (0, 1, 3/2,−1/2,∞), then the sequence (wi)i≥0 would encounter
a fixed point of f , in which case (yi)i≥0 would encounter a fixed point of Ng and, hence,
a root of g , contradicting our hypotheses. Thus, w0 /∈ (0, 1, 3/2,−1/2,∞). Corollary 6.2
therefore shows that the set of prime idealsP for which wi ≡ 0 or 1 (mod P) has density
zero.
On the other hand, the proof of the main theorem of Faber–Voloch [3] shows that for

all but finitely many prime idealsP ofK , the sequence (yi)i≥0 converges inKP to a root of
g if and only if g(yi) ≡ 0 (mod P) for some i ≥ 0. Factoring g , this condition is equivalent
to saying that yi ≡ 0,±1 (mod P) for some i ≥ 0, which in turn is equivalent to saying
that wi ≡ 0, 1, or ∞ (mod P). (Here, w ≡ ∞ (mod P) means w is not integral at P).
Clearly, the set of primes P for which wi ≡ ∞ (mod P) is zero, since f is a polynomial,
and so the proof is complete. ��
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