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We present a dataset with 272,700 two-alternative forced choice responses in a simple numerical task 
modeled after Tenenbaum’s “number game” experiment [6]. Subjects were shown a set (e.g. {16, 12}) and 
asked what other numbers were likely to belong to that set (e.g. 1, 5, 2, 98). Their generalization patterns 
reflect both rule-like (e.g. ‘even numbers,’ ‘powers of two’) and distance-based (e.g. ‘numbers near 50’)  
generalization. This dataset is available for further analysis of these simple and intuitive inferences, 
developing of hands-on modeling instruction, and attempts to understand how probability and rules  
interact in human cognition.
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(1) Overview
Collection Date(s)

March–April 2015.

Background

Numbers and related mathematical ideas form a complex 
set of interrelated concepts that can be used to study the 
origin and use of structured mental representations. To 
examine learning and generalization in this domain, we 
present an extension of the “number game” task originally 
developed by Tenenbaum [6]. In the number game, a sub-
ject is given a list of numbers sampled from an unknown 
rule. Subjects are asked to generalize from the samples and 
predict what other numbers (“targets”) are likely to obey the 
rule. For example, a subject could be told that an unknown 
program generated the numbers {4, 16, 8}, and then is 
asked to rate whether 12 might be generated as well. In 
this example, subjects might rate 12 as relatively unlikely 
since the observed data suggests a rule like ‘powers of 
two’. However, if the shown set were instead {4, 16, 8, 10},  
the concept of ‘even numbers’ now seems like a better 
explanation than ‘powers of two,’ and subjects should gen-
eralize accordingly. The simplicity of this setup provides an 
simple toy domain for studying rule-like generalization: 
the set of hypotheses is likely to be very simple and con-
crete (e.g. basic arithmetic concepts), the input sets pro-
vided to subjects are small, and the findings are intuitive. 

Tenenbaum [6, 7, 8] showed that subject generalizations 
in this task followed statistically sensible inferences com-
bining both rule-like generalizations (e.g. ‘even numbers,’ 

‘powers of two,’ ‘multiples of ten’) and magnitude/
similarity-based generalizations (e.g. ‘numbers near 50’).  
For instance, subjects’ patterns of generalization depend 
strongly on the amount of data provided, consistent 
with models that quantify the likelihood of sampling 
the observed set given a possible rule. For example, if 
the participant sees {80, 10, 30}, the likelihoods for the 
hypotheses ‘multiples of 10’ and ‘multiples of 5’ should be 
significantly higher than for ‘multiples of 2’ since the lat-
ter includes more numbers and thus assigns {80, 10, 30} a 
smaller likelihood of being sampled. With short input lists  
like {8, 32}, or even single-number lists like {8}, responses 
are much more revealing of a priori inductive biases. For 
instance, given {8}, we can measure whether a participant 
prefers to generalize to 10 (suggestive of ‘even numbers’), 
or 16 (suggestive of ‘powers of two’). A comparison of these 
generalization therefore may tell us what types of numerical  
concepts subjects possess before our experiment – that is, 
the mathematical concepts that are most likely (highest 
prior) before data is observed. The number game task has 
also been used to study information gathering behavior [4],  
similar to that of Wason’s 2-4-6 task [9]. 

In Tenenbaum’s original task [6], 8 subjects were pre-
sented with the same 8 sets of input numbers, each with a 
list of 30 hand-selected targets. Subjects rated each num-
ber on a scale of 1–7, according to how likely the number 
was to be accepted by the program; they were instructed 
to take as much time as needed. Our experiment aims to 
replicate this general framework, but with a much larger 
numbers of subjects, concepts, and targets. We constructed 

http://dx.doi.org/10.5334/jopd.19
http://dx.doi.org/10.5334/jopd.19
mailto:ebigelow@u.rochester.edu


Bigelow and Piantadosi: A Large Dataset of Generalization Patterns in the Number GameArt. e4, p.  2 of 6 

a large space of concepts by applying several simple and 
intuitive transformations (e.g. x → 2x) across a variety of 
basic number patterns (e.g. ‘even numbers,’ ‘prime num-
bers,’ etc.). We then sampled 255 sets from these concepts, 
and tested approximately 10 subjects on a two alternative 
forced choice (in the set or not) for the targets 1, 2, . . ., 100 
for each input set. This resulted in a total of 606 subject 
participants, providing 253,564 total responses after trim-
ming. We used a two-alternative forced choice instead of 
Tenenbaum’s Likert scale rating in order to simplify later 
data analysis and model comparisons. Our binary response 
data is easily incorporated into either mixed effect logistic 
regressions, or as a binomial likelihood in more general 
probabilistic models. In forthcoming work, we present 
analysis aimed at capturing people’s priors in the context 
of a Bayesian data analysis and model comparison [1]. 

(2) Methods
Sample

606 participants were recruited via Amazon Mechanical 
Turk (MTurk). We configured PsiTurk [3] to require partici-
pants to have an approval rating of at least 95% and be 
from the U.S. (note that the latter constraint is not absolute, 

as a small number of workers from outside the U.S. are able 
to circumvent this qualification). The first run included 510 
subjects, of which 25 were rejected on qualitative criteria 
of not adequately attempting the task (see Quality Control). 
Rejected MTurk Human Intelligence Task data (HITs) were 
replaced in follow-up runs. After the first 485 subjects, an 
additional 126 were run and five were rejected. The experi-
ment was run in March and April of 2015.

The modal education level participants reported was 
a “Bachelor’s degree,” accounting for 37.6% of subjects, 
followed by “some college” with 24.9%. Mean age of par-
ticipants was 34.2, the median was 31.0, and the stand-
ard deviation 11.0. Reported gender was nearly even, with 
51.1% of participants being male. The vast majority of sub-
jects (97.4%) reported English as their first language. Age 
and education level for our subjects is typical of the MTurk 
population [2], though we find a higher than average pro-
portion of male subjects.

Materials

Our version of the number game task was implemented 
in HTML and JavaScript, and distributed to Mechanical 
Turk workers via the PsiTurk interface [3]. Figure 1 (left) 

Figure 1: Sequence of instructions shown before the experiment begins (left) and the display shown for main data 
collection (right).
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shows the sequence of instruction pages shown before the 
beginning of the experiment. Once the experiment began, 
subjects rated a series of targets for each of 15 sets, shown 
in Figure 1 (right). For each concept, the subject first saw 
a screen with the concept shown on it, and when they 
were ready they proceeded by pressing the spacebar. The 
subject then saw a target, and responded ‘yes’ or ‘no’ to the 
question, “Is it likely that the program generates this num-
ber next?” by pressing either the ‘y’ or ‘n’ key. Once they 
responded, another target was shown. This was repeated 
for 30 targets, until the first screen for the next set.

Stimuli

Sets

Numerical sets used as stimuli were constructed with the 
goal of spanning an interesting space of generalization 
stimuli. To generate sets, first we generated a collection 
of concepts. Beginning with six “primordial sets”: all num-
bers, evens, odds, squares, cubes, and primes, the follow-
ing functions were then mapped across each primordial 
set: f(n) = n, f(n) = n + 1, f(n) = n − 1, f(n) = n + 2, f(n) = 
n − 2, f(n) = 2 * n, f(n) = 3 * n, f(n) = 2 * n + 1, f(n) = 3 * 
n + 1, f(n) = 3 * n − 1, f(n) = 2n, f(n) = 2n+1, f(n) = 2n + 1, f(n) = 
2n − 1. Numbers in our task were restricted to the domain 
of integers 1 through 100. We selected these primordial 
sets and functions in order to span concepts studied in 
previous work [6, 7, 8], and also to include some degree 
of pseudo-random number sets – for example, subjects 
are likely to perceive 2primes − 1 (i.e. {3, 7, 31}) as being a 
set of random numbers, perhaps limited to some interval. 
Duplicates and extremely short (length < 3) full concepts 
were removed. We then added 21 additional full concepts: 
4 * n, 5 * n, 6 * n, 7 * n, 8 * n, 9 * n, 10 * n, 5 * n + 1,2,3,4, 
and 10 * n + 1, . . . 9. 

Given these 79 full concepts, we generated sets by the 
following procedure: if the length of the full concept was 
greater than 4, we chose 4 random numbers from the list 
without replacement; if the length was greater than 3, 
we chose 3 numbers; if the length was greater than 2, we 
chose 2 numbers. For each full concept, between 1 and 3 
sets were created, for a total of 200 sets. Finally, 55 single-
item sets were added to these 200, for a total of 255 sets. 
16 of the single-item sets were hand selected, all integers 
1 through 15 and 100, and the rest were chosen randomly 
from the range of 16 to 99. See Table 1 for a full list of sets. 

While we generated sets like {16, 8} from underlying 
concepts (e.g. ‘powers of 2’), analysis of our data should 
primarily be interested in what generalizations the set 
{16, 8} leads subjects to, not whether subjects can recover 
the generating concept itself. There will often be too  little 
data to infer the generating concept, particularly given 
the profusion of close alternative concepts (e.g. ‘numbers 
between ten and twenty’). Examination of subjects’ gener-
alization from very little data like these small sets will be 
informative about their underlying inductive biases. 

Targets

These 255 sets were divided into 17 groups of 15 sets each, 
where each participant assigned one of these groups. For 
each set presented to a participant, 30 targets (in 1. . .100) 

were shown, randomly selected without replacement, so 
that each participant made 450 decisions. All together, 
at least nine two-alternative forced-choice ratings were 
collected for each number from 1 to 100. Due to a small 
randomization error, targets for each set were slightly 
non-independent relative to one another, with no obvious 
effect on the experiment. 

Procedures

After seeing the instructions, subjects provided 30 ratings 
for each of 15 different sets. At the conclusion of these 
forced-choice trials, the subject filled out a brief question-
naire. Basic demographics were collected: age, gender, 
first language, ZIP (postal) code, and highest level of edu-
cation. Subjects were also asked to describe in English 5 
sets randomly selected from the 15 they were shown dur-
ing the experiment. 

Quality Control

HITs were rejected based on qualitative criteria, under the 
determination that the task was not properly attempted. 
Many rejected HITs were exceedingly fast, including a 
number of HITs completed in less than 5 minutes. Other 
rejected HITs included significant repetitive answering 
patterns, such as many ‘yes’ responses followed by many 
‘no’s, or alternating ‘yes’/‘no’. A small fraction of reaction 
times were corrupted during data recording; these were 
replaced with NA in the dataset. 

The Dataset

The dataset contains a single row for each response col-
lected, with columns for rating (1 for ‘yes,’ 0 for ‘no’), set 
(“set”), target, subject id (“id”), trial number for subject 
(“trial”), reaction time (“rt”), subject demographics, num-
ber of HITs for this set and target pairing (“hits”), as well as 
probability of responding yes (“p”), entropy of responses 
(“H”), and a typicality measure. Probability was calculated 
as the number of ‘yes’ responses for a given set and tar-
get pairing, divided by the total number of responses 
for this pairing. Entropy was calculated as: − (p*log(p) +  
(1 − p)*log(1 − p)). Though not included, we have also 
used a response typicality metric to identify subjects 
whose responses strayed far from the average (e.g. due to 
low task effort) – calculated as log(p) for ‘yes’ ratings, and 
log(1−p) for ‘no’ ratings.

To illustrate our collected data, Figure 2 shows ratings 
for targets under three related sets: {3, 63}, {33, 3}, and 
{93, 43, 83, 53}. Plots in the left and right columns of the 
figure are colored according to two distinct rules, ‘num-
bers ending in 3’ (left) and ‘multiples of 3’ (right). The data 
for {93, 43, 83, 53} strongly supports the first, but not the 
second, pattern. The data for {3, 63} is more uniform, and 
seems to correspond more closely to ‘multiples of 3’. The 
distribution for {33,3} may be interpreted as a mixture of 
the two patterns – ‘numbers ending in 3’ are generally 
rated highest, with some probability mass assigned to 
‘multiples of 3’. The human ratings illustrate how the set 
may push generalizations one way or the other and reveal 
both categorical (all-or-nothing) and gradient generaliza-
tions across subjects. 
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1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 22 23

25 26 30 31 33

35 36 39 43 44

47 48 49 50 51

53 55 61 62 64

66 67 69 72 73

78 81 84 85 86

89 91 93 95 100

75, 4 81, 9 5, 51 13, 91 98, 83

16, 8 33, 9 3, 31 52, 24 25, 17

85, 7 71, 11 64, 4 5, 65 3, 63

55, 29 6, 74 3, 87 63, 67 94, 70

8, 92 2, 8 33, 3 7, 31 81, 25

26, 2 24, 35 83, 11 14, 47 50, 2

75, 27 19, 73 28, 13 2, 47 8, 64

28, 2 7, 63 10, 3 6, 25 16, 54

3, 81 55, 3 25, 82 23, 80 53, 2

60, 54 22, 96 59, 3 34, 26 15, 93

15, 11 94, 7 92, 56 8, 32 8, 16

5, 9 3, 7 83, 77 70, 15 6, 66

7, 67 73, 33 59, 14 10, 80 21, 71

42, 62 63, 43 64, 44 75, 95 76, 26

37, 57 68, 58 79, 59 84, 56 66, 78

28, 98 96, 48 90, 45 87, 8, 52 66, 93, 51

7, 51, 23 10, 55, 58 29, 62, 98 32, 4, 16 33, 3, 65

31, 3, 1 50, 76, 28 61, 9, 45 85, 19, 91 5, 77, 89

33, 5, 19 10, 74, 22 63, 27, 81 67, 99, 15 16, 82, 28

20, 32, 92 100, 1, 16 65, 26, 2 48, 99, 3 38, 18, 3

23, 62, 98 98, 18, 50 75, 48, 3 73, 33, 3 49, 76, 13

47, 2, 74 1, 8, 27 9, 65, 28 10, 66, 29 53, 47, 41

98, 54, 18 4, 16, 12 69, 19, 85 81, 87, 27 6, 34, 82

51, 39, 87 15, 39, 35 52, 22, 94 92, 68, 20 77, 17, 8

90, 100, 5 16, 26, 96 82, 67, 72 48, 63, 53 64, 94, 84

10, 50, 100 71, 31, 21 62, 32, 22 63, 23, 43 84, 94, 34

15, 85, 45 46, 76, 66 27, 37, 67 78, 48, 88 59, 89, 79

12, 84, 8 48, 30, 78 14, 98, 91 8, 80, 48 18, 45, 72

3, 33, 99 65, 47, 55, 13 39, 60, 12, 45 73, 35, 53, 59 31, 19, 49, 100

11, 41, 38, 92 16, 32, 2, 8 33, 17, 5, 9 31, 3, 1, 15 20, 8, 84, 100

29, 77, 37, 17 91, 25, 61, 31 17, 11, 65, 53 29, 9, 3, 31 34, 86, 30, 94

63, 27, 99, 33 99, 59, 31, 67 70, 10, 88, 40 68, 14, 8, 26 4, 64, 25, 81

17, 50, 5, 82 8, 24, 48, 63 6, 51, 66, 27 79, 47, 62, 98 18, 8, 72, 98

75, 48, 12, 3 9, 33, 73, 99 49, 28, 76, 13 11, 26, 74, 2 67, 31, 17, 61

98, 24, 30, 3 4, 66, 78, 96 43, 4, 91, 9 15, 17, 21, 5 22, 62, 26, 82

69, 9, 39, 21 23, 35, 95, 83 70, 88, 7, 22 92, 14, 20, 5 68, 20, 35, 92

55, 60, 25, 100 71, 61, 26, 81 92, 82, 27, 42 83, 38, 58, 68 59, 34, 14, 89

80, 70, 90, 100 81, 71, 21, 31 72, 92, 82, 42 93, 43, 83, 53 54, 14, 94, 34

55, 15, 75, 45 96, 86, 36, 66 97, 77, 87, 47 48, 78, 38, 98 59, 49, 99, 69

76, 44, 8, 48 96, 90, 6, 42 42, 35, 21, 84 64, 96, 24, 56 36, 45, 54, 81

Table 1: A complete list of sets used in experiment, sorted by length. Each cell shows a set of numbers that was pre-
sented to subjects, who then decide what other numbers in 1 . . . 100 are likely to be generated. 
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While we intended our experiment to present subjects 
with sets (unordered collections), it is possible that some 
subjects interpreted the goal as generalizing from sequences 
(ordered data). Further analysis may distinguish these pos-
sibilities in detail, although the sets were presented in 
random order and many subjects did not use sequential ter-
minology in their descriptions of the concepts. Out of 3030 
concept descriptions, only 21 included sequential terms 
such as “increasing order,” “decreasing,” or “ascending”.

Ethical issues

All data presented collected in this experiment was 
anonymized prior to public release. This work was 
approved by the Research Subjects Review Board at the 
University of Rochester as part of a protocol for experi-
mental data collection on Mechanical Turk. 

(3) Dataset description
Object name

Our dataset consists of one primary file, numbergame_
data.csv (described above), and 3 supplementary files 
including additional subject data:

• instructions_rt.csv : time spent looking at each instruc-
tion page

• set_descriptions.csv : qualitative set descriptions pro-
vided in questionnaire

• show_set_rt.csv : time spent looking at set presenta-
tion page, before responding to targets (see Figure 1, 
right)

To prevent ambiguity in file loading, commas have been 
replaced with underscores in the ‘set’ column of number-
game_data.csv, set_descriptions.csv, and show_set_rt.csv, 
and in the ‘descr’ column of set_descriptions.csv . 

Data type

Raw data file.

Format names and versions

All data is in comma-delimited CSV format; scripts pro-
vided in R and python.

Data Collectors

Eric Bigelow.

Figure 2: Human predictive distributions for 3 concepts (rows), selectively highlighting target numbers corresponding 
to ‘multiples of 3’ (left column) and ‘ends in 3’ (right column).
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Language

English.

License

Create Commons Attribution (CC-By).

Embargo

NA.

Repository location

DOI: http://dx.doi.org/10.7910/DVN/A8ZWLF
URL(alternate): https://dataverse.harvard.edu/ 

dataset.xhtml?persistentId=doi%3A10.7910%2FDVN%2
FA8ZWLF&version=DRAFT

Publication date

Submitted for review  – (5/20/15); edited and 
resubmitted – (7/28/15).

(4) Reuse potential
This data will be useful to basic research on human con-
ceptual representation and generalization. Because of 
the simplicity of the task, we expect that it will provide 
a compelling teaching example, showing ways in which 
structured concepts influence generalization in a domain 
that is both simple and intuitive. Work using this data to 
infer the priors on human concepts is ongoing as part of 
LOTlib, a Python library for Language of Thought mod-
els [5]. Information about this project is available here: 
https://github.com/piantado/LOTlib.
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