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Abstract—The problem of maximume-likelihood (ML) estima-
tion of discrete tree-structured distributions is consideed. Chow
and Liu established that ML-estimation reduces to the constic-
tion of a maximum-weight spanning tree using the empirical
mutual information quantities as the edge weights. Using th
theory of large-deviations, we analyze the exponent assated
with the error probability of the event that the ML-estimate of
the Markov tree structure differs from the true tree structu re,
given a set of independently drawn samples. By exploiting #
fact that the output of ML-estimation is a tree, we establishthat
the error exponent is equal to the exponential rate of decayfoa
single dominant crossover event. We prove that in this dominant
crossover event, a non-neighbor node pair replaces a true gd
of the distribution that is along the path of edges in the truetree
graph connecting the nodes in the non-neighbor pair. Usingdeas
from Euclidean information theory, we then analyze the sceario
of ML-estimation in the very noisy learning regime and show
that the error exponent can be approximated as a ratio, which
is interpreted as thesignal-to-noise ratio (SNR) for learning tree
distributions. We show via numerical experiments that in ths
regime, our SNR approximation is accurate.

Index Terms—Error exponent, Euclidean information the-
ory, Large-deviations principle, Markov structure, Maxim um-
Likelihood distribution estimation, Tree-structured dis tributions.

|I. INTRODUCTION

that are similar together. Then the construction of a gieihi
model provides a visualization of the relationship between
genes. Those genes that have high degree are highly cedelat
to many other genese(g, those in its neighborhood). The
learning of a graphical model may also provide the means
to judiciously remove redundant genes from the model, thus
reducing the dimensionality of the data, leading to more
efficient inference of the effects of the genes subsequently

When the underlying graph is a tree, the Chow-Liu al-
gorithm [3] provides an efficient method for the maximum-
likelihood (ML) estimation of the probability distributiofrom
a set of i.i.d. samples drawn from the distribution. By explo
ing the Markov tree structure, this algorithm reduces the- ML
estimation problem to solving a maximum-weight spanning
tree (MWST) problem. In this case, it is known that the ML-
estimator learns the distribution correctly asymptotjcaind
hence, is consistent [10].

While consistency is an important qualitative property for
any estimator, the study of the rate of convergence, a @ecis
guantitative property, is also of great practical interése
are interested in the rate of convergence of the ML-estimato
(Chow-Liu algorithm) for tree distributions as we incredise
number of samples. Specifically, we study the rate of decay of
the error probability or the error exponent of the ML-estiona

The estimation of a multivariate distribution from sample l€aming thetree structureof the unknown distribution. A
is a classical and an important generic problem in machilff9er exponent means that the error probability in stmectu

learning and statistics and is challenging for high-dinnemesl
multivariate distributions. In this respect, graphicaldats [2]

learning decays more rapidly. In other words, we need rela-
tively few samples to ensure that the error probability itwe

provide a significant simplification of joint distributiorsahe SOMe fixed leved > 0. Such models are thus “easier” to learn.

distribution can be factorized according to a graph defimed ¥V& address the following questions: Is there exponentiziyle

the set of nodes. Many specialized algoriths [3]-[9] ekist of the probability of error in structure learning as the n@mb

exact and approximate learning of graphical models Mark& Samples tends to infinity? If so, what is the exact error
on sparse graphs. exponent, and how does it depend on the parameters of the

There are many applications of learning graphical modegi,stribution? Which edges of the true tree are most-likely t

including clustering and dimensionality reduction. Suppwe

be in error; in other words, what is the nature of the most-

haved genetic variables and we would like to group the ond&®@ly error in the ML-estimator? We provide concrete and
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intuitive answers to the above questions, thereby progidin
insights into how the parameters of the distribution inflteen
the error exponent associated with learning the structfire o
discrete tree distributions.

A. Main Contributions

There are three main contributions in this paper. Firshgisi
the large-deviation principle (LDP) [11] we prove that the
most-likely error in ML-estimation is a tree which diffen®fn
the true tree by a single edge. Second, again using the LDP,
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we derive the exact error exponent for ML-estimation of tregptimal projection P* onto the set of trees. Importantly, if
structures. Third, we provide a succinct and intuitive etbs P is not a tree, there may be several trees that are optimal
form approximation for the error exponent which is tighthet projections [[10] and this requires careful consideratidn o
very noisylearning regime, where the individual samples arte error events. We derive the error exponent even in this
not too informative about the tree structure. The approt@émascenario.
error exponent has a very intuitive explanation as stgmal-
to-noise ratio(SNR) for learning.

We analyze theerror exponent(also called the inaccuracyB' Related Work
rate) for the estimation of the structure of the unknown tree The seminal work by Chow and Liu iri][3] focused on
distribution. For the error event that the structure of thie-M learning tree models from data samples. The authors showed
estimator &,. given n samples differs from the true treethat the learning of the optimal tree distribution esséigtia
structure€ p of the unknown distributio®, the error exponent decouples into two distinct steps: (i) a structure learrstep

is given by and (ii) a parameter learning step. The structure learriey, s
1 which is the focus on this paper, can be performed efficiently
Kp = 1Lm - logP({&w. # EpP}). (1) using a max-weight spanning tree algorithm with the empir-

~ical mutual information quantities as the edge weights. The
To the best of our knowledge, error-exponent analysis f8hrameter learning step is a maximum-likelihood estinmatio
tree-structure learning has not been considered before (Peocedure where the parameters of the learned model aré equa
Section[I-B for a brief survey of the existing literature ony, those of the empirical distribution. Chow and Wagrief [10]
learning graphical models from data). _ in a follow-up paper, studied the consistency propertiethef
_Finding the error exponert» in (D) is not straightforward chow-Liu algorithm for learning trees. They concluded tifiat
since in general, one has to find teminanterror event the trye distribution is Markov on a unique tree structunent
with the slowestrate of decay among all possible errofhe Chow-Liu learning algorithm is asymptotically coneist
events [[11, Ch. 1]. For learning the structure of trees,ethefnjs implies that as the number of samples tends to infiriity, t
are a total ofd’~2 — 1 possible error evenfswhered is probability that the learned structure differs from theigue)
the dimension (number of variables or nodes) of the unknowie structure tends to zero.
tree distributionP. Thus, in principle, one has to consider ynfortunately, it is known that the exact learning of gehera
the information projection_[13] of> on all these error trees. raphical models is NP-hard [16], but there have been severa
This rules out brute-force information projection appiua® \yrks to learn approximate models. For example, Chechetka
for finding the error exponent in(i(1), especially for highang Guestrin[4] developed good approximations for leanin
dimensional data. _ ~ thin junction trees[[17] (junction trees where the sizeshaf t
In contrast, we establish that the search for the domingfkximal cliques are small). Heckerman|[18] proposed leayni
error event for learning the structure of the tree can betdithi {he structure of Bayesian networks by using the Bayesian
to a polynomial-time search space (#). Furthermore, we |htormation Criterion [18] (BIC) to penalize more complex
gstaplish that this domin_ant error event of the ML-estimat,qdels and by putting priors on various structures. Other
is given by a tree which differs from the true tree byihors used the maximum entropy principle or (sparsity-
only a single edge. We provide a polynomial algorithm witRnsorcing) ¢, regularization as approximate graphical model
O(diam(T'p) d*) complexity to find the error exponent il (1),jearning techniques. In particular, Dudik al. [9] and Leeet
wherediam(7p) is the diameter of the tre€p. We heavily 5 [6] provide strong consistency guarantees on the learned
exploit the mechanism of the ML Chow-Liu algorithin [3] forgjistribution in terms of the log-likelihood of the samples.
tree learning to gstablish thes_e rgsullts, and specifita8yfact  jonnsonet al. [7] also used a similar technique known as
that the ML-estimator tree distribution depenaisly on the aximum entropy relaxation (MER) to learn discrete and
relative order of the empirical mutual information quae8t Ga,ssian graphical models. Wainwrigét al. [5] proposed
between all the node pairs (and not their absolute values). 5 regularization method for learning the graph structuseta
Although we provide a computationally-efficient way tqyn ¢, |ogistic regression and provided strong theoretical guar-
compute the error exponent [ (1), it is not available in etbs antees for learning the correct structure as the number of
form. In Sectiori VI, we use Euclidean information the(WJ[l“sampIes, the number of variables, and the neighborhood size
[15] to obtain an approximate error exponent in closed-{orrw, In a similar work, Meinshausen and Buehimahh [8]
which can be interpreted as the signal-to-noise ratio (SN&)nsidered learning the structure of arbitrary Gaussiadeiso
for tree structure learning. Numerical simulations on wasi using the Lasso[[20]. They show that the error probability
discrete graphical models verify that the approximatiaight  of |earning the wrong structure, under some mild technical
in the VEry noisy regime. conditions on the neighborhood size, decays exponentially
In Section[VIl, we extend our results to the case wheg,en when the size of the graphgrows with the number
the true distributionP is not a tree. In this case, givengs samplesn. However, the rate of decay is not provided
samples drawn independently from we intend to learn the expiicitly. Zuk et al. [21] provided bounds on the limit inferior
e . and limit superior of the error rate for learning the struetaf
Since the ML outputbw. and the frye structurép are both spanning gy esian networks but, in contrast to our work, these bounds
trees overd nodes and since there afé—2 possible spanning tre€s [12], we Y ’ )
haved®—2 — 1 number of possible error events. are not asymptotically tight. In addition, the work in Zuk



et al. [21] is intimately tied to the BIC[[19], whereas our Except for Sectiof_VlI, we limit our analysis in this paper
analysis is for the Chow-Liu ML tree learning algorithir [3]to the set of strictly positi@agraphical model$>, in which the
A modification of the Chow-Liu learning algorithm has als@raph of P is a tree on thel nodes, denoted’» = (V,Ep).
been applied to learning the structure of latent trees wherbus, T is an undirected, acyclic and connected graph with
only a subset of variables are observed [22]. vertex setY = {1,...,d} and edge sef€p, with d — 1
There have also been a series of papérs [23]-[26] theatges. LetT“ be the set ofspanning treeon d nodes, and
quantify the deviation of the empirical information-thetc hence,7p € T¢. Tree distributions possess the following
qguantities from their true values by employing techniqudactorization property [2]

from large-deviations theory. Some ideas from these papers P, j(zi, ;)
will turn out to be important in the subsequent development P(x) = H Pi(z;) H W’ 3)
because we exploit conditions under which the empirical i€V (ijyeep TN

mutual information quantities do not differ “too much” fromwhere P, and P; ; are the marginals on nodes V and edge
their nominal values. This will ensure that structure l&agn (i, j) € £p respectively. Sincdr is spanning,P; ; # PiP;

succeeds with high probability. for all (4,5) € Ep. Hence, there is a substantial simplification
of the joint distribution which arises from the Markov tree
C. Paper Outline dependence. In particular, the distribution is complesggc-

. . . . ified by the set of edge§p and pairwise marginal®; ; on
This paper is organized as follows: In Sectidds Il e ed}ées of the tree'gj)Pe p Fn Sectiorm? we éj><tend

we s_,tate the system mode_l "?md _the F’“’b'ef“ statement _%nLﬁi analysis to general distributions which are not necégsa
provide the necessary preliminaries on undirected graph"fvlarkov on a tree

models and the Chow-Liu algorithm|[3] for learning tree
distributions. In Section 1V, we derive an analytical exgzien B.
for the crossover rate of two node pairs. We then relate the
crossover rates to the overall error exponent in Se€lion ¥. W

; - we are
also discuss some connections of the problem we solve here

Problem Statement

In this paper, we consider a learning problem, where
given a set ofn ii.d. d-dimensional samples

with robust hypothesis testing. In Sectibnl VI, we levera X”:l: rEXlr;l\}lxnk} fror_1t1h an unktntowntd|str|bl;E|;)rf£ eh
on ideas in Euclidean information theory to state sufficie t( ), which is arkovwith respec oaTrQQD € /. mac
sample or observatiory, := [zk,1,...,Zkq]" IS a vector ofd

conditions that allow approximations of the crossover eatd
the error exponent. We obtain an intuitively appealing etbs .
form expression. By redefining the error event, we extend oﬂvgl_ber OLV?AUTAI'_” tht? aIE)habﬁth K distributiah
results to the case when the true distribution is not a tree in > cn x . the Mi-estimator ot the unknown distributi

Section VIl. We compare the true and approximate crossm}%rdefmed as

rates by performing numerical experiments for a given graph

. ) 2 . . Py = argma lo , 4
ical model in Section_VIIl. Perspectives and extensions are " Qeé‘%ﬁ?d) kz::l 8 Qx) “)
discussed in Sectidn1X.

dimensions where each entry can only take on one of a finite

n

whereD(x4,74) c P(X?) is defined as the set of all tree
distributions on the alphabét? over d nodes.

In 1968, Chow and Liu showed that the above ML-estimate
A. Graphical Models PB,. can be found efficiently via a MWST algorithrn [3], and

An undirected graphical moddP] is a probability distribu- is described in Section 1Il. We denote the tree graph of the
tion that factorizes according to the structure of an unyitegl ML-estimate B, by T, = (V, &) With vertex set) and

undirected graph. More explicitly, a vector of random vialis €dge set,. o _ -
x := [z1,...,24)7 is said to beMarkovon a graptg = (V, €) Given a tree distributionP, define the probability of the

Il. SYSTEM MODEL AND PROBLEM STATEMENT

with vertex setV = {1,...,d} and edge sef C (V) if error event that the set of edgesnist estimated correctly by
° the ML-estimator as
P(zi|lzy\ ) = P(zi|lzppae), VYVieV, (2)
(@ilzygy) (@i|Tnbai)) A, = {Ea £ Ep) 5)

wherenbd(:) is the set of neighbors afin G, i.e,, nbd(s) :=
{j €V : (1,7 € &} Eq. [@) is called the (local) Markov
property and states that if random variableis conditioned
on its neighboring random variables, thepis independent
of the rest of the variables in the graph.

In this paper, we assume that each random variaple X,

We denotdP := P as then-fold product probability measure
of the n samplesx™ which are drawn i.i.d. fromP. In this
paper, we are interested in studying thee or error exponelﬁ
Kp at which the above error probability exponentially decays
with the number of samples, given by,

and we also assume that = {1,...,|X|} is aknown finite Kp = lim _1 log P(A,), (6)
sefd Hence, the joint distributio® € P(X?), whereP(Xx4) nooo N
is the probability simplex of all distributions supporten &'“. 3A distribution P is said to be strictly positive iP(x) > 0 for all x € x4,

4In the maximum-likelihood estimation literature (e[a.[229]) if the limit
°The analysis of learning the structure of jointly Gaussiariables where in (B) exists, K p is also typically known as the inaccuracy rate. We will be
X = Ris deferred to a companion paper|[27]. The subsequent asalysies using the terms rate, error exponent and inaccuracy ragechngeably in
over straightforwardly to the case whei¢is a countably infinite set. the sequel. All these terms refer fp.



whenever the limit exists. Indeed, we will prove that theilimwhere we use the fact that the empirical distribut®rin @

in (@ exists in the sequel. With the notatioff, (6) can be assigns a probability mass ofn to each sample;,. ]
written as The minimization over the second variable (9) is also
P(A,) = exp(—nKp). (7) known as thereverse |-projection[13], [33] of P onto the

set of tree distribution® (X, 7). We now state the main
result of the Chow-Liu tree learning algorithrnl [3]. In this
paper, with a slight abuse of notation, we denote the mutual
|nformat|0n I(z;; ;) between two random variables and

x; corresponding to nodesandj as:

A positive error exponentKp > 0) implies an exponential
decay of error probability in ML structure learning, and we
will establish necessary and sufficient conditions to emghis.
Note that we are only interested in quantifying the prob
bility of the error in learning thestructure of P in (E). We
are not concerned about the parameters that define the ML P, i(x;,xy)
tree distributionP,, . Since there are only finitely many (but I(Fj) = Z Pij(wi, z5) log P (j )P (;j)' (12)
a super-exponential number of) structures, this is in faoi a (@i,25)ex? '
to an ML problem where the parameter space is discrete dddte that the definition above uses only the marginalPof
finite [31]. Thus, under some mild technical conditions, weestricted to(z;,z;). If e = (4, ), then we will also denote
can expect exponential decay in the probability of error dse mutual information ag(P.) = I(P; ;).
mentioned in[[31]. Otherwise, we can only expect convergenc Theorem 1 (Chow-Liu Tree Learningl[3])The structure
with rate O, (1/+/n) for estimation of parameters that belongind parameters of the ML-estimaR, in () are given by
to a continuous parameter spacel [32]. In this work, we gfyanti ~
the error exponent for learning tree structures using the ML b = . gé%?ﬁfﬂ) Z I(Pe), (13)
learning procedure precisely. AQ ’ cfq
PML(.I'i,.%'j) = Pm(xi,xj), V(Z,]) S SML, (14)
[1l. M AXIMUM -LIKELIHOOD LEARNING OF TREE ~
DISTRIBUTIONS EROMSAMPLES whereP is_the empirical distribution in[{8) given the data

n, andI(P.) = I(P; ;) is theempirical mutual information
of random varlables«:Z and z;, which is a function of the
empirical distribution?..

Proof: For a fixed tree distributiod) € D(X?, 79), Q
admits the factorization ii{3), and we have

In this section, we review the classical Chow-Liu algo
rithm [3] for learning the ML tree distributio®,. given a set
of n samplex™ drawn i.i.d. from a tree distributio®. Recall
the ML-estimation problem in.{4), whe#, denotes the set of
edges of the tre@,,. on whichP,, is tree-dependent. Note that®
since P, is tree-dependent, frorh](3), we have the result that D(P || Q) + H(P)
it is completely specified by the structufg, and consistent
pairwise marginals,, (z;, ;) on its edgesi, j) € Ew. _ Z ﬁ( ) log H Qy(x:) Qij(xi, x5) (15)

In order to obtain the ML-estimator, we need the notion of o i(2i)Qj(x;)

d eV i,J
a typeor empirical distributionof P, givenx™, defined as xex © ()esa
1 & = - Z Z 5171 1Og Qz z)
— ~ Z]I{Xk — x}, (8) i€V T, €X .y )
k=1 5 0,4 (Ti, Tj
- P j(wi, xj)log === ~=——=. (16)
wherel{x; = x} = 1 if x;, = x and equals 0 otherwise. (i_ge:gcg (zig):ep ! ! Qi(w:)Q;(z;)

For convenience, in the rest of the paper, we will denote the
empirical distribution byP( ) instead ofP(x x™").

Fact 1: The ML-estimator in[(4) is equivalent to the fol-
lowing optimization problem:

rI]—'or a fixed structuregy, it can be shown[[3] that the above
quantity is minimized when the pairwise marginals over the
edges of¢,, are set to that of, i.e., for all Q € D(X?, T%),

P, = argmin D(P||Q), 9) D(P(|Q) + H(P)
QEDXAT) > — Z Z Pi(x;) log Pi(x;)
where P is the empirical distribution ok™, given by [8). i€V zieX
In @, D(P|Q) = YycyaP(x)logLE denotes the P, j(z, ;)
x (x) - I\ G
Kullback-Leibler divergence (or relative entropy) [30, .CH Z Z ZP”(Il’xj)log P, («fci)ﬁj (xj)' (17)
between the probability distribution8, Q € P(X4). (Bi)€eq (woa)eX®
Proof: By the definition of the KL- d|vergence we have :ZH(R-) - Z I(P.). (18)
—~ i€V i,
nD(P||Q) = —nH )—n Z x)log Q(x), (10) 6. _( )eEa _ .
xeXd The first term in [(IB) is a constant with respect €
Furthermore, sincé€, is the edge set of the tree distribution
= —nH(P Z log Q(x4), (11) Q € D(x4,T9), the optimization for the ML tree distribution
P, reduces to the MWST search for the optimal edge set as
. . . . . . in ([@3). [}
5The = notation (used in[[30]) denotes equality to the first ordettha . - L . .
exponent. For two real sequences,} and {bn}, an = by if and only if Hence, the optimal tree probability distributidn,. is the

limy,— 00 + log(an /bn) = 0. reverse |-projection of” onto the optimal tree structure given

n



by (I3). Thus, the optimization problem il (9) essentialy r assuming the limit in[(20) exists. Indeed, we show in the proo

duces to a search for ttstructureof B, . The structure of?,.  of Theoren{ 2 that the limit exists. Intuitively (and as seen i

completely determines its distribution, since the paranssire our numerical simulations in Sectién_MIll), if the differem

given by the empirical distribution if_(14). To solMe [13)gw between the true mutual information quantitiés’.) — I(Pe/)

use the sampleg™ to compute the empirical distributio? is large (e, I(P.) > I(P.r)), we expect the probability of the

using [8), then use” to computel(P.), for each node pair crossover everdl. .- to be small. Thus, the rate of decay would

e € (’2’) Subsequently, we use the set of empirical mutubk faster and hence, we expect the crossover.fate to be

information quantities/(P.) : e € (%)} as the edge weights large. In the following, we see that .. depends not only on

for the MWST problenff the difference of mutual information quantitié&P.) — I (P.),
We see that the Chow-Liu MWST spanning tree algorithiput also on thelistribution P, .. of the variables on node pairs

is an efficient way of solving the ML-estimation problemg ande’, since the distributiorn”, .. influences the accuracy

especially when the dimensiod is large. This is becauseof estimating them.

there ared?~2 possible spanning trees over nodes [[I2]  Theorem 2 (Crossover Rate for Empirical Misjhe

ruling out the possibility for performing an exhaustive méa crossover rate for a pair of empirical mutual information

for the optimal tree structure. In contrast, the MWST ca@uantities in[(2D) is given by

be found, say using Kruskal's algorithin [34], [35] or Prim’s _ . ) _

algorithm [36], inO(d? log d) time. Jer = Qe%;n(fm) D@ Peer) - 1(Qer) = 1(Qe)}, (21)

whereQ., Q.. € P(X?) are marginals of) over node pairs
IV. LDP FOREMPIRICAL MUTUAL INFORMATION ¢ ande’, which do not share common nodés.,

The goal of this paper is to characterize the error exponent

for ML tree learningK p in (6). As a first step, we consider a Qe(ze) = Z Q(ze, Ter), (22a)
simpler event, which may potentially lead to an error in ML- T €EX?
estimation. In this section, we derive the LDP rate for this Qo (zer) = Z Q(e, Ter). (22b)
event, and in the next section, we use the result to deftive e

the _exponent assoc_|ated to the error ev_é_mdeﬂned m_[@i). The infimum in [Z1) is attained by some distributi@t ., e
Since the ML-estimate uses the empirical mutual informas, ~ , e €

. o : . (X*) satisfyingI(Q?) = I(Q}) and J. . > 0.
tion quantities as the edge weights for the MWST algorithm, ) € ¢ : ,

. g : . : Proof: (Sketch The proof hinges on Sanov’s theoreml[30,
the relative values of the empirical mutual information fiisa : 2T -
. . L Ch. 11] and the contraction principle in large-deviatiohd,
ties have an impact on the accuracy of ML-estimation. Inioth . L

ec. lll.5]. The existence of the minimizer follows from the

words, if the order of these empirical quantities is diffdre . ) )

. . compactness of the constraint set and Weierstrass’ extreme
from the true order then it can potentially lead to an ermror. e theorem [37, Theorem 4.16]. The r i strictl
in the estimated edge set. Hence, it is crucial to study the = T atg. y

probability of the event that the empirical mutual inforinat ggzltlyes}astlig?el\zvﬁ ? iSl}T;d;plzrlétPangiwo;loge p:'r:i
guantities of any two node pairs is different from the tru N yille e ' e.e’

order %( i || Peer) > 0. See AppendiXA for the details. m
Formally, let us consider two distinct node pairs with

In the above theorem, which is analogous to Theorem 3.3
no common nodes, ¢/ ¢ (12;) with unknown distribution "™ [25], we derived the crossover ratk . as a constrained
P, € P(X*), where the notatio®, ., denotes the marginal

minimization over a submanifold of distributions R(X*)
. ; (See Fig[h), and also proved the existence of an optimizing
of the tree-structured graphical modelon the nodes in the
set {e,e’}. Similarly, P, is the marginal ofP on edgee.

distribution@Q*. However, it is not easy to further simplify the
Assume that the order of the true mutual information quistit rate expression irL(21) since the optimization is non-canve
follow I(P.) > I(P.). A crossover evelitoccurs if the

Importantly, this means that it is not clear how the param-
corresponding empirical mutual information quantities af eters of the distributior. .- affect the rate/e.., hence [(21)
the reverse order, given by

is not intuitive to aid in understanding the relative ease or
difficulty in estimating particular tree-structured dibtrtions.
Ceer = {I(ﬁe) < I(ﬁe,)}_ (19) In Section[V], we assume tha? satisfies some (so-called
very noisy learning) conditions and use Euclidean inforamat
As the number of samples — oo, the empirical quantities theory [14], [15] to approximate the rate in{21) in order to
approach the true ones, and hence, the probability of theeabgain insights as to how the distribution parameters affieet t
event decays to zero. When the decay is exponential, we havg@ssover rate, .. and ultimately, the error exponeftp for
LDP for the above event, and we term its rate asaiossover |earning the tree structure.
rate for empirical mutual informatiomuantities, defined as Remark 1:Theorem[2 specifies the crossover rafg.,
) 1 when the two node pairs and e’ do not have any common
Jeer 1= nll{{io_ﬁ logP (Ce,er) , (20) nodes. Ife and ¢ share one node, then the distribution

P.. € P(X?) and here, the crossover rate for empirical
61f we use the true mutual information quantities as inputsho MWST, mutual information is
then the true edge sélp is the output.

"The eventC, ., in (I9) depends on the number of samplesbut we , = : ) ) —
suppress this dependence for convenience. e Qéan(fxa) D@ FPeer) : 1{Qer) = 1(Qe)} - (23)



non-neighbor pair in the symmetric star graph. We state this
formally in the following proposition.

Proposition 3 (Error Exponent for symmetric star graph):
For the symmetric graphical model with star graph &pg,
as described above, the error exponent for structure tegrni
Kp in (@), is equal to the crossover rate between an edge
and a non-neighbor node pair

Kp = Jee, forany ecép, e ¢&p, (25)

where from [(21L), the crossover rate is given by

Fig. 1. The star graph witlh = 9. Q, is the joint distribution on any pair

of variables that form an edge e.g; andz2. Qy is the joint distribution on Jeye’ = inf {D(R1,273,4||Qa7b) : I(RI.Q) :I(RBA)} )
" : Ri,2,3,4€P(X*)
any pair of variables that do not form an edge exg.andxzs. By symmetry, o (26)

all crossover rates are equal. . .
with Ry » and R34 as the marginals oR; 2 3 4, €.0,

Ria(x1,22) = Z Rip3.a(x1,22,23,24).  (27)

In Sectior V], we obtain an approximate closed-form expres-
(z3,24)€X?

sion for J. ... The expression, provided in Theoréin 8, does
not depend on whetherande’ share a node. Proof: Since there are only two distinct distributiog,
(which corresponds to a true edge) apgl(which corresponds
to a non-edge), there is onlgne unique rateJ. .-, namely
the expression in[(21) withP. . replaced byQ, ;. If the

It is now instructive to study a simple example to see hoaventC. ./, in (19), occurs, an error definitely occurs. This
the overall error exponenk'p for structure learning in({6) corresponds to the case whargy oneedgee € £p is replaced
depends on the set of crossover rafds. : e, e’ € (‘2’)} We by any othernode paire’ not in £ [ |
consider a graphical modét with an associated treé€p = Hence, we have derived the error exponent for learning a
(V,Ep) which is ad-order star with a central nodeand outer symmetric star graph through the crossover rate between
nodes2,...,d, as shown in Figl]l. The edge set is given bgny node paie which is an edge in the star graph and another
Ep={(1,i):i=2,...,d}. node paire’ which is not an edge.

We assign the joint distribution§),,Q, € P(Xx?) and The symmetric star graph possesses symmetry in the distri-
Qup € P(X?) to the variables in this graph in the followingbutions and hence it is easy to reldkg to a sole crossover

Example: Symmetric Star Graph

specific way: rate. In general, it is not straightforward to derive theoerr
1) P;=Q, forall 2<i<d. exponentKp from the set of crossover ratgs/. .} since
2) Py=Qyforall2<i,j<d, i#j. they may not all be equal and more importantly, crossover
3) Prijr=Qapforall2<ijk<d i#j#k events for different node pairs affect the learned strecfiyr

in a complex manner. In the next section, we provide an exact
expression forK p by identifying the (sole) crossover event
related to a dominant error tree. Finally, we remark that the
crossover evert, .- is related to the notion of neighborhood
selection in the graphical model learning literature [&]. [

Thus, we have identical pairwise distributiofs; = Q, of
the central nodd and any other nodé, and also identical
pairwise distributionsP; ; = @, of any two distinct outer
nodesi andj. Furthermore, assume tha{Q,) > I(Q) > 0.
Note that the distributio), , € P(X*) completely specifies
the above graphical model with a star graph. Also, from the

above specifications, we see tlaf andQ, are the marginal V. ERROREXPONENT FORSTRUCTURE LEARNING
distributions 0fQ,,, with respect to to node paife,i) and  The analysis in the previous section characterized the rate
(J, k) respectivelyi.e., Je for the crossover evenf. . between two empirical

mutual information pairs. In this section, we connect these

Qal1,2:) = Z Prijn(@n, @iz, 28),  (248) oot o rate functiond J. .-} to the quantity of interest, viz.,

(@m0 €X the error exponent for ML-estimation of edge g€p in (g).
Qv(zj, 1) = Z P jk(x,xi,xj,z).  (24b) Recall that the evert. .. denotes an error in estimating the
(w1,2:)€X? order of mutual information quantities. However, such ¢sen

Ce,er Need not necessarily lead to the error evdiptin (B)
Note that each crossover event between any non-edgethat the ML-estimate of the edge s&}. is different from the

(necessarily of length 2) and an edgealong its path results true setSp. This is because the ML-estimate, is a tree and

. . . . P .

Idn aln e:jror n ctjhe I.ea:neg s';r;ctu;e tst:nce I Iea?s;tdnlielng hthis global constraint implies that certain crossover é&vean
eclared an edge Instead arbue 1o the symmetry, afl such, ignored. In the sequel, we will identify useful crossover

i / t - . .
crossover “”Ftes,, between paarande_a_re equal. _I3y the “worst events through the notion of dominant error tree
exponent-wins” rule([11, Ch. 1], it is more likely to have a

single crossover event than multiple ones. Hence, the errofai, see theorerfils and its proof for the argument that the tamierror
exponent is equal to the crossover rate between an edge amdeadiffers from the true tree by a single edge.



A. Dominant Error Tree U e ¢&Ep

We can decompose the error event for structure estimation
A, in @) into a set of mutually-exclusive events

]P)(An) = P< U un(T)> = Z P (un (T)) )

TeTN{Tpr} TeT\{Tpr}

r(e’) € Path(e’;Ep)

l ®
(28) Fig. 2. The path associated to the non-edge= (u,v) ¢ Ep, denoted
where eachi/,,(T') denotes the event that the graph of thBath(e’;Ep) C Ep, is the set of edges along the unique path linking the

: . . end points ofe’ = (u, v). The edger(e’) = argmingcpasn(er;ep) Je,er 1S
ML-estimateT,, is a treeT different from the true tre€p. the dominant replacement edge associated i £p. ep
In other words,

Tw =T}, if TeTe\{Tp},
{ é, . ) if T — TP-\{ it (29)  ML-estimation in the event of an error. As a result, all such

crossover eventg. .. need to be considered for the error
Note thatls,, (') N Un(T") = O wheneverI’ # T". The large- event for structure learning.,, in (5). However, for the error
deviation rate or the exponent for each error evéptl’) is  exponentk p, again by the “worst-exponent-wins” principle,
) 1 we only need to consider the crossover event between each
T(T) = Jim n log P (Un(T)) , (30) non-neighbor node pair’ and its dominant replacement edge

) .
whenever the limit exists. Among all the error evettgT), () € £r defined below.

we identify the dominant one with the slowest rate of decay. Pehfl')n't'onj (Do_m/mang Rgltola(;:em_ent tEdgélaor eachtnog-
Definition 1 (Dominant Error Tree):A dominant error tree neighbor node pait” ¢ £p, its dominant replacement edge

; ) , . -
T* — .Y ing t : r(e’) e 5_p is defined as the gdge in th_e_unlque path al6pg
p = (V,€p) Is & spanning tree given By connecting the nodes it having the minimum crossover rate
T5 = argmin Y(T). (31)

I T R, )

U (T) =

Roughly speaking, a dominant error tree is the tree that i

the most-likely asymptotic output of the ML-estimator ireth W%V?/ree;rheencor\?vsrseogder {gtfﬁgr:cg ;/iig t?lye%z;r expodentin
event of an error. Hence, it belongs to the g&t\ {T}. In y P

the following, we note that the error exponent[ih (6) is equzt;ffrmS O.f the crossover rate between non-neighbor node pairs
) and their dominant replacement edges.
to the exponent of the dominant error tree.

Proposition 4 (Dominant Error Tree & Error Exponent): Th‘léhgr(i:)ern;XS (()Eg(r:tr E));p,\(;.rﬂi?és se:tiir;%lgncg S((S;())\:: r ?\y;nn%
The error exponenkp for structure learning is equal to the P 9 y

exponentY (T}) of the dominant error tre@’;. Kp = Jrer),er = Hélgn mhl(n . Jeer (36)
’ e’¢Ep ecPath(e’;Ep
Kp =T(Tp). (32) wherer(e*) is the dominant replacement edge, definedin (35),
Proof: From [30), we can write associated te* ¢ £p ande* is the optimizing non-neighbor
) node pair
P Un(T)) = exp(—nY(T)), VT € T*\{Tp}. (33) ¢ = argmin Jy(e) e (37)
e'¢Ep

Now from (28), we have

The dominant error tre@’;, = (V,&5) in (31) has edge set
P(A,) = Y exp(—nY(T)) = exp (—nY(T})), (34)

TETN{Tp) Ep =EpU{e"} \ {r(e")}- (38)
from the “worst-exponent-wins” principlé [11, Ch. 1] anceth In fact, we also have the following (finite-sample) upper ibdu
definition of the dominant error treg;, in (37). m on the error probability:

Thus, by identifying a dominant error tréé5, we can find (d—1)2(d—2) (n+1+|Xx[*
the error exponenfsp = Y(T%). To this end, we revisit P(An) < f( nt1 >6Xp(—nKP),
the crossover eventS. . in (19), studied in the previous (39)
section. Consider a non-neighbor node pdirwith respect for gll n € N.
to £p and the unique path of edgesd connecting the two Proof: (Sketch)The edge set of the dominant error tree

nodes, which we denote &th(e’; £p). See FiglR, where we ¢ differs from £p in exactly one edge (See AppendiX B).
define the notion of the path given a non-edgeNote thate’  This is because i€}, were to differ from&p in strictly more

and Path(e’; Ep) necessarily form a cycle; if we replace anghan one edge, the resulting error exponent would not be the
edgee € Ep along the path of the non-neighbor node paiminimum, hence contradicting Propositibh 4. To identifg th
¢/, the resulting edge sefp \ {e} U {¢'} is still a spanning dominant error tree, we use the union bound adin (28) and
tree. Hence, all such replacements are feasible outputseof the “worst-exponent-wins” principlé [11, Ch. 1], to condki

9 ) _ ) N _ that the rate that dominates is the minimui., .- over all
We will use the notatiomargmin extensively in the sequel. It is to be ibl iahb d irs S A di
understood that if there is no unique minimueng(in (31)), then we arbitrarily POSSIDI€ NON-NEIGNDOr node par ¢ Ep. See AppendiX B
choose one of the minimizing solutions. for the details. [ |



The above theorem relates the set of crossover fafes }, Pi(z1) @ %1
which we characterized in the previous section, to the divera
error exponenkK p, defined in[(6). Note that the result in {36) Py (x2]r1)
and also the existence of the limit il (6) means that the
error probability istight to first order in the exponenin | @ T2 @ 3 Ti@
the sense thaP(A4,,) = exp(—nKp). This is in contrast : :
to the work in [21], where bounds on the upper and lower P GEGREEI EECECEE RS B '
limit on the sequence-1logP(A,) were established] We
numerically compute the error exponehip for different
discrete distributions in Sectidn VIII. ubd(2) @ ubd(3) nbd(4)

From [36), we see that if at least one of the crossover rafég 3. lllustration for ExamplelL.
Je,er In the minimization is zero, the overall error exponent
Kp is zero. This observation is important for the derivation N
of necessary and sufficient conditions fiit> to be positive,  condition (b) states that, for each non-edde we need

and hence, for the error probability to decay exponentially I(P./) to be strictly smaller than the mutual information of its
the number of samples. dominant replacement edd¢P,..)). Condition (c) is a more

intuitive condition for exponential decay of the probatyilof

. , errorP(A4,,). This is an important result since it says that for

B. Conditions for Exponential Decay any non-degenerate tree distribution in which all the pairwise
We now provide necessary and sufficient conditions thgfint distributions are not product distributionse(, not a

ensure thak'p is strictly positive. This is obviously of crucial proper forest), then we have exponential decay in the error

importance since if{p > 0, this implies exponential decay of probability. The learning of proper forests is discussedin

the desired probability of errdP(.A,,), where the error event companion papef [38].

A, is defined in[(5). In the following example, we describe a simple random
Theorem 6 (Equivalent Conditions for Exponential Decayjiocess for constructing a distributid? such that all three
Assume thatl'’p, the original structure is acyclia.¢., it may conditions in Theoreni]6 are satisfied with probability one

not be connected). Then, the following three statements q@p. 1). See Fig3.
equivalent. Example 1:Suppose the structure d?, a spanning tree
(@) The probability of erroP(.A,,) decays exponentiallye.,  distribution with grapi’e = (V, £p), is fixed and¥ = {0, 1}.
Kp>0 (40) Now, we assign the parameters &f using the following
' procedure. Letr; be the root node. Then randomly draw the
(b) The mutual information quantities satisfy: parameter of the Bernoulli distributiaf; () from a uniform

distribution on[0, 1] i.e,, Pi(z1 = 0) = 6,0 andf o ~ U]0, 1].
/. ! Ty Ty
I(Pe) <I(Fe), VeePath(c:&p), ¢ ¢ Ep. (41) eyt letnbd(1) be the set of neighbors af,. Regard the set of

Py (walzy)

(c) Tp is not a proper foreéf variables{z; : j € nbd(1)} as the childreH of z;. For each
Proof: (Sketch We first show that (a)> (b). j € nbd(1), sample bothP(z; = Olz1 = 0) = 01,9 as well

(=) We assume statement (a) is trie, Kp > 0 and aSP(z; =0lz1 =1) = 0,0),1 from independent uniform dis-

prove that statement (b) is true. Suppose, to the conttaay, ttributions on[0, 1] i.e., 60,0 ~ U0, 1] andt 0,1 ~ U[0, 1].

I(P./) = I(P.) for somee € Path(e’; Ep) and some’ ¢ £p.  Repeat this procedure for all children of. Then repeat the

Then Jy(n, = 0, wherer(e’) is the replacement edgeProcess for all other children. This construction resufisai

associated te’. By (36), Kp = 0, which is a contradiction. joint distribution P(x) > 0 for all x € X¢ w.p. 1. In this

(<) We now prove that statement (a) is true assuming staf@se, by continuity, all mutual informations are distincpw

ment (b) is truei.e., I(P.) < I(P.) for all e € Path(¢/;Ep) 1, the graph is not a proper forest w.p. 1 and the fate> 0

ande’ ¢ £p. By Theoreni 2, the crossover ralg. .- in (21) W-p. 1.

is positive for alle’ ¢ £p. From [36),Kp > 0 since there are  This example demonstrates tif4t4,,) decays exponentially

only finitely manye’, hence the minimum i (37) is attainedfor almost everytree distribution. More precisely, the tree

at some non-zero valuee., Kp = ming¢g, Jy(ery,er > 0. distributions in whichP(.4,,) does not decay exponentially
Statement (c) is equivalent to statement (b). The proof bs measure zero R(X?).

this claim makes use of the positivity condition thagx) > 0

for all x € X% and the fact that if variables;, z, and x5

form Markov chainsr; — x5 — z3 andx; — z3 — 22, thenz; €. Computational Complexity

is necessarilyointly independenof (x, x3). Since this proof Finally, we provide an upper bound on the computational

is ra_ther lengthy, we refer the reader to Apperldlx C for ﬂ'@omplexity to computek p in (38). Our upper bound on the
details. B computational complexity depends on tiameterof the tree

10However, in[21], the authors analyzed the learning of gaingron-tree)
Bayesian networks. 12 et 21 be the root of the tree. In general, the children of a nage
1A proper forest ond nodes is an undirected, acyclic graph that hagk # 1) is the set of nodes connected 4g that are further away from the
(strictly) fewer thand — 1 edges. root thanzy,.



Pe,e’

D(Qz,e'HPe,e/)

{Q € P(X4) : I(Qe/) = I(Qe)}

Fig. 5. A geometric interpretation df (1) whef& .. is projected onto the
submanifold of probability distribution$@ € P(X4) : I(Qer) = 1(Qe)}-
Fig. 4. The partitions of the simplex associated to our liegrproblem are
given by B;, defined in[(44). In this example, the tyge belongs toBs so
the tree associated to partitidss is favored.

In addition, we note that the probability simpl@XX'<) can
be partitioned intalM/ subsetdl Bi,...,By C P(X%) where

Tp = (V,Ep) which is defined as eachB;,i =1,..., M is defined as

diam(7Tp) := Inax, L(u,v), (42) B; = P/LgJQ» {Q :D(P'|Q) < RegifniQi D(P'|| R)} .
where L(u, v) is the length (number of hops) of the unique . . - (44
path between nodes and v. For exampleL(u,v) = 4 for See Fig[#. According to the ML criterion ifl(9), if the type
the non-edge’ = (u,v) in the subtree in Fid]2. P belongs toB;, then thei-th tree is favored.

Theorem 7 (Computational Complexity fafp): The In [43], a subset of the authors of this paper considered the
number of computations of, .. to computeKp, denoted Neyman-Pearson setup of a robust binary hypothesis testing
N(Tp), satisfies problem where the null hypothesis corresponds to the true

1 tree modelP and the (composite) alternative hypothesis cor-
N(Tp) < §diam(Tp)(d —1)(d—2). (43) responds to the set of distributions Markov on some erroseou

_ ) ) treeT # Tp. The false-alarm probability was constrained to
Proof: Given a non-neighbor node paif ¢ £p, We pe smaller tham > 0 and optimized for worst-case type-
perform a maximum ofliam(7) calculations to determine || (missed detection) error exponent using the ChernadiSt
the dominant replacement edgée’) from (33). Combining | emma [30, Ch. 12]. It was established that the worst-case

tf;is with the fact that there are a total of?) \ €r| = error exponent can be expressed in closed-form in termseof th
(5) = (d=1) = 3(d — 1)(d — 2) node pairs not ir», we mutual information of so-calletottieneck edgese., the edge
obtain the upper bound. B and non-edge pair that have the smallest mutual information

Thus, if the diameter of the treéiam(T'p) is relatively difference. However, in general, for the binary hypothesis
low and independent of number of nodésthe complexity testing problem, the error evedbes notdecompose into a
is quadratic ind. For instance, for a star graph, the diametgfnion of local events. This is in contrast to error exponent
diam(T'p) = 2. For a balanced tré8,diam(7p) = O(logd), for learning the ML treek p, which can be computed by
hence the number of computations(®d* log d). consideringocal crossover events, .., defined in [(ID).

Note that{P € B;} corresponds to @lobal eventsince
D. Relation of The Maximum-Likelihood Structure LearningachB; C P(X?). The large-deviation analysis techniques we
Problem to Robust Hypothesis Testing utilized to obtain the error exponeifr in Theorenb show

We now take a short detour and discuss the relation betwdB@t Such global error events can be also decomposed into a
the analysis of the learning problem andust hypothesis test- collection of local crossover even@;e/.. These local events
ing, which was first considered by Huber and Strassef ih [3§}EP€nd only on the typeestrictedto pairs of nodes and¢’
Subsequent work was done [ [40/=42] albeit for differgnti@nd are more intuitive for assessing (and analyzing) whehn an
defined uncertainty classes known as moment classes. how an error can occur during the Chow-Liu learning process.

We hereby consider an alternative but related problem. Let

T.,..., Ty be theM = d% 2 trees withd nodes. Also let VI. EUCLIDEAN APPROXIMATIONS
Q1,...,9u C DX T be the subsets of tree-structured In order to gain more insight into the error exponent, we
graphical models Markov offy,...,Ths respectively. The make use ofEuclidean approximation§l5] of information-

structure learning problem is similar to tié-ary hypothesis theoretic quantities to obtain an approximate but closethf
testing problem between the uncertainty classes of distribsolution to [21), which is non-convex and hard to solve dyact
tions 91, ..., Qur. The uncertainty clasg®); denotes the set In addition, we note that the dominant error event results
of tree-structured graphical models with differqgrairameters from an edge and a non-edge that satisfy the conditions for
(marginal {P; : ¢ € V} and pairwise distributiondP; ; : which the Euclidean approximation is valide., the very-
(i,7) € Ep}) but Markov on the same treE. noisy condition given later in Definitionl 4. This justifiesrou

13A balanced tree is one where no leaf is much farther away fraraot 14From the definition in[{44), we see that the relative intedbthe subsets
than any other leaf. The length of the longest direct pativéen any pair of are pairwise disjoint. We discuss the scenario witelies on the boundaries
nodes isO(log d). of these subsets in Sectipn VII.
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P ao are in thed neighborhood of each othére., |a; — as| <
“° 5[ we will also need the following notion of information
Q. — P density to state our approximation fdg ..
2l%ee T OClP o Definition 3 (Information Density)Given a pairwise joint
distribution P; ; on X2 with marginalsP; and P;, the infor-
Qr o L(P,.or) mation densityi45], [46] function, denoted by; ; : X* — R,
is defined as

Fig. 6. Convexifying the objective results in a least-segaproblem. The Pl-_j (:ci, arj) 2
objective is converted into a quadratic as[inl(52) and theslized constraint  Si,j (i, Ij) = log EYPRY R v (2, xj) € X°. (50)
setL(P, ) is given [B3). Pl(xz)P- (xﬂ)
Hence, for each node pair= (i, j), the information density
se IS also a random variable whose expectation is simply the
approach we adopt in this section. Our use of Euclideafutual information between; andz;, i.e, E[s.] = I(P.).
approximations for various information-theoretic qutes is Recall that we also assumed in Sect[oh Il tHat is a
akin to various problems considered in other contexts #panning tree, which implies that for all node pdirsj), P; ;
information theory([14],[[15],[44]. is not a product distributionj.e,, P;; # P,P;, because if
We first approximate the crossover rafg. for any two it were, thenTp would be disconnected. We now define a
node pairse and ¢/, which do not share a common nodecondition for which our approximation holds.
The joint distribution one and ¢’, namely P .- belongs to  Definition 4 ¢-Very Noisy Condition):We say thatP. .. €
the setP(x*). Intuitively, the crossover ratel. .. should P(x*), the joint distribution on node paitsande’, satisfies
depend on the “separation” of the mutual information valueie e-very noisy conditiorif
I(P,) andI(P, ), and also on the uncertainty of the difference
between mutual information estimatégP.) and I(P.). We [Pe = Per oo T e |Pe(wi, x) — Per(, 25)[ <e. (51)
will see that the approximate rate also depends on theseautu . o :
information quantri)tliaes given by a simple epxpression whiah ¢ 'IL'Jh|s condition is ne_eded be_causem(sl)_ holds, then by eonti
be regarded as the signal-to-noise ratio (SNR) for IearningnUIty of the mutual |r!format|on, there existsia- 0 .SUCh tha_t
Roughly speaking, our strategy is to “convexify” the objecZ(PE) s I(Pe')’. Wh'Ch means th.at the mutual mformathn
tive and the constraints ifi.(21). See Figs. 5 Bhd 6. To do é]éj’antme_s are d|ff|clt to distinguish qn(_j the approxiroati
we recall that if P and @) are two discrete distributions with in @9 s accurat Note tha_t proximity - of the_ mu_t ual
the same suppo@, and they are close entry-wise, the KLLnform_ann values is not sufficient for the approximatian t
divergence can be approximatéd|[15] as old since we have seen from.TheorEh? .2 that/ depends_
P(a) not only on the mutual information quantities but on the renti

D P)=— log —2/ 45) Joint distribution P ..
@IlF) %Q(a) *®Qa)’ (45) We now define theapproximate crossover raten disjoint

=~ Y Q(a)log {1 N (M)} s node pairse ande’ as

~ 1
ey Qa) Joo = inf {§|Q ~Pul Qe L(Pe,e,)} . (52)

T +o(|Q - Pl%), (47 where the (linearized) constraint set is

T2
acy
1 L(P.o):=4QeP(X): I(P.)+ (Vp,I(P.),Q — Peo
= 51Q = Pl +o(lQ - PI%) gy CPe) = {QEPEY IR + (VR I(R), QP
= I(P.)+(Vp, I(P)),Q—P. )}, (53
where ||y||2, denotes the weighted squared normipfi.e., (Per) + (Ve 1 (P), Q ' >} (53)
lyll2 = >, y?/w;. The equality in [47) holds becausewhereV p I(P.) is the gradient vector of the mutual informa-

log(1+t) = > o, (1)1t /i for t € (—1,1]. The difference tion with respect to the joint distributio®.. We also define
between the divergence and the Euclidean approximatite approximate error exponent as

becomes tight as = | — Q|| — 0. Moreover, it remains - . . ~

tight even if the subscrip in (48) is changed to a distribution Kp = SdEr cePath(c/:Ep) Jeer- (54)
Q' in the vicinity of  [15]. That is, the difference between
|Q — P|lg and||Q — P| ¢ is negligible compared to either
term when@’ ~ Q. Using this fact and the assumption that

and @ are two discrete distributions that are close entry-wis

We now provide the expression for the approximate crossover
rate J. ., and also state the conditions under which the
gpproximation is asymptotically accuratedft]

1 9 15In the following, we will also have continuity statements et given
DQI|IP) = =|Q— Pl5. (49) > o0anda; ~ az, implies that there exists sonfe= §() > 0 such that
2 B1 ~g B2. We will be casual about specifying what this are.
In fact, it is also known[[15] that iﬂp — QHOO < ¢ for some _16Here and in the following, we do not specify the exact valug btit we
e >0, we also haveD(P || Q) ~ D(Q || P). S|n1”|7ply note that ag — 0, t.he approxmapon _|rﬂ§9) becomes tighter.
. . . We say that a collection of approximatio§¥(e) : ¢ > 0} of a true
In the following, to make our statements precise, we Will US§rametes is asymptotically accurate ia (or simply asymptotically accurate)
the notatiorn; =5 s to denote that two real numbetis and if the approximations converge tbase — 0, i.e., lim._,o 0(¢) = 0.
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Theorem 8 (Euclidean approximation 8f .): The
approximate crossover rate for the empirical mutual
information quantities, defined ib_(b2), is given by

7, = (Efser — Se])Q _ (I(Per) — I(Pe))2

“e 2 Var(se — Se) 2Var(ser — Se)
where s, is the information density defined ii_(50) and the
expectation and variance are both with respecPtq.. Fur-
thermore, the approximatiof (55) is asymptotically actajra
i.e, ase — 0 (in the definition ofe-very noisy condition), we Fig. 7. Reverse I-projectiori [13] of onto the set of tree distributions
have thatfe,e/ — Jeer. D(x?, T4 given by [G6).

Proof: (Sketch Egs. [52) and(33) together define a least

(55)

squares problem. Upon simiplification of the solution, we Sl (E/i;tibgi(oln/f (_XL)
obtain [55). See Appen_d.IED for the details. _ [ | 010 1T (a2Z+ad/2—r)
We also have an additional result for the Euclidean approx- 0 1] 0 1A/3+ &k
imation for the overall error exponeifp. The proof is clear ‘1’ (1) (1) (g/g Ik
from the definition of X' in (64) and the continuity of the T o1 Elf?’lgz
min function. T 1] 0 || A2=98)1/2=r)
Corollary 9 (Euclidean approximation akp): The  ap- 11111 [arz+Hd2-—x
proximate error exponert p is asymptotically accurate if all TABLE |
joint distributions in the sefP, .- : e € Path(e;Ep), e’ ¢ Ep} TABLE OF PROBABILITY VALUES FOREXAMPLE[Z.

satisfy thee-very noisy condition.

Hence, the expressions for the crossover rate and the
error exponenk p are vastly simplified under thevery noisy
condition on the joint distributions, .,. The approximate
crossover ratefe,e/ in (G8) has a very intuitive meaning. It

this section, we extend the preceding large-deviationyaisl
to deal with distributionsP that may not be tree-structured

is proportional to the square of the difference between titi)%t in which we gstlmate atree (.j'Str'bUt'o.n fro_m the given se
of samples™, using the Chow-Liu ML-estimation procedure.

mutual information quantities aP. and P,.. This corresponds _. . o .
9 ; ; b Since the Chow-Liu procedure outputs a tree, it is not péssib

exactly to our initial intuition — that iff(P,) and I(P./) are L
to learn the structure a? correctly. Hence, it will be necessary
well separated(P.) > I(P./)) then the crossover rate has ,
to be Iarge.fe o IS also weighted by the precision (inversegO redefme. the error eve.nt.. . .
' WhenP is not a tree distribution, we analyze the properties

variance) of(s., — s.). If this variance is large then we are . .
.) (ser — se) . = = 9 of the optimalreverse I-projectior13] of P onto the set of
uncertain about the estimatéP.) — I(P./), and crossovers L - T
~ tree distributions, given by the optimization prob

are more likely, thereby reducing the crossover thte .
We now comment on our assumption &% ., satisfying Im*(P) := min D(P|| Q). (56)
the e-very noisy condition, under which the approximation is QED(X,TT)

tight as seen in Theorel 8. Whét ./ is e-very noisy, then 11+(p) is the KL-divergence ofP to the closest element in
we havel(F.) ~; I(P.), which implies that the optimal p(xd 74) See Fig[]7. As Chow and Wagnér [10] noted, if
solution of [21) Q¢ ., ~s FPe.. Whene is an edge and p js not a tree, there may be several trees optimizing [$6).
¢’ is a non-neighbor node pair, this implies that it is venye denote the set of optimal projections7s(P), given by
hard to distinguish the relative magnitudes of the emgsica

I(P,) and I(P./). Hence, the particular problem of learning P*(P) := {Q € D(X?,T%): D(P||Q) =1I"(P)}. (57)
the d_|s_tr|but|onPe_,e/ from sa_lmp_les Ivery noisy Under these We now illustrate thatP*(P) may have more than one
conditions, the approximation if_(b5) is accurate. . .

element with the following example.

In summary, our approximation if_(b5) takes into account : . . .
Y PP ) Example 2:Consider the parameterized discrete probabil-

not only the absolute difference between the mutual inferm L 3 .
tion quantities/(P.) and I(P.), but also the uncertainty in &ly distribution P € P({0,1}*) shown in Table[ll where
RE (0,1/3) andk € (0,1/2) are constants.

I ing them. Th ion in_{55) is, in fact, the SN . . - .
earning tem e expression INI55) is, in fac © Proposition 10 (Non-uniqueness of projectiojor suffi-

for the estimation of the difference between empirical mutu . ; ) . .
: . - : iently smallx, the Chow-Liu MWST algorithm (using either
information quantities. This answers one of the fundamenjgyuskal,S [35] or Prim’s [36] procedure) will first includéie

guestions we posed in the introduction, viz., that we are n Ve (1.2). Th it will arbitrarily ch bet the t
able to distinguish between distributions that are “easy” £ ge( J )- Then, it will arbitrarily choose between the two
maining edges2, 3) or (1, 3).

learn and those that are “difficult” by computing the set df
SNR quantities{.J, - } in (53).

18The minimum in the optimization problem i {56) is attaineztause the
KL-divergence is continuous and the set of tree distrimgi®(x¢, 79) is
VIlI. EXTENSIONS TONON-TREEDISTRIBUTIONS compact.
. . . . 19This is a technical condition of theoretical interest irsthection. In fact,
In all the precedlng sections, we dealt eXC|US|Ve|y with th?can be shown that the set of distributions such that themare than one

case where the true distributioR is Markov on a tree. In tree optimizing[[5B) has (Lebesgue) measure zer® {i'?).
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DX T, ) Note that this new error event essentially reduces to the
original error eventd,, = A, ({P}) in @) if 7p-(p) contains
Peft)) only one member. So if the learned structure belongs to
Ep«(p), there is no error, otherwise an error is declared.
We would like to analyze the decay of the error probability
of A,(P*(P)) as defined in[(62)ij.e, find the newerror
exponent

e-flat manifolds

Fig. 8. Each tree defines amflat submanifold [[4)7], [[4B] of probability . 1 «
distributions. These are the two lines as shown in the figlirehe KL- KP*(P) = nh_{I;O ——log P(A,(P*(P))). (63)
divergencesD(PHPéSlt)) and D(PHPe(ft)) are equal, therPéSlt) and Pe(ft) -n
do not have the same structure but both are optimal with cespethe It turns out that the analysis of the new evesy (P*(P))
optimization problem in{36). An example of such a distribntP is provided g very similar to the analysis performed in Sectlch V. We
in Examplel2. . . .

redefine the notion of a dominant replacement edge and the

computation of the new rat&’p-(p) then follows automati-
The proof of this proposition is provided in Appendik E wher&ally- _ , )
we show thatl(Pi o) > I(Pss) — I(P,) for sufficiently Definition 5 (Dominant Replacement Edgdjix an gdge
small k. Thus, the optimal tree structur@* is not unique. ;et £q € Ep-(p)- FOr Fhe error evenid, (P (.P)) defmed
This in fact corresponds to the case whétebelongs to the I ). given a non-neighbor node pair¢ £, its dominant
boundary of some s&; c P(X?) defined in[4). See Fig] g "éPlacement edge(c; £o) with respect tofq, is given by

for an information geometric interpretation. r(e;Eg) = argmin Jeer (64)
Every tree distribution inP*(P) has the maximum sum e€Path(e’;€q)
mutual information weight. More precisely, we have Equie' I\ {e}¢lp=(p)

_ / » if there exists an edge € Path(e’;Eg) such that&y U
Zg I(Qe)_@eé?%,m 25: [Qc), ¥Q € PX(P). {e'} \ {e} ¢ Ep-(p). Otherwiser(e';Eq) = 0. Je is the
eefe ecfer (58) Crossover rate of mutual information quantities define@)(

Given [58), we note that when we use a MWST algorithrlrﬁ r(e’;Eg) exists, the corresponding crossover rate is

to find the optimal solution to the problem if_{56), ties Jr(erieq)e = min Je e, (65)

will be encountered during the greedy addition of edges, as e€Path(e’;€q)

demonstrated in Examglé 2. Upon breaking the ties arHigrari foUie I\ e} #ep-(r)

we obtain some distributio) € P*(P). We now provide a otherwiseJy ., = +o0.

sequence of useful definitions that lead to definition of a néW (64), we are basically fixing an edge s& € Ep-(p)

error event for which we can perform large-deviation arialys and excluding the trees with € Path(e’; £g) replaced bye’
We denote the set of tree structlifesorresponding to the if it belongs to the set of optimal tree projectioffs.- p).

distributions inP*(P) as We further remark that in[{(64)r(e’) may not necessarily
4 . exist. Indeed, this occurs if every tree withe Path(e’; £g)
Tpep) = {Te e T*: Q e P*(P)}, (59) replaced bye’ belongs to the set of optimal tree projections.

and term it as the set afptimal tree projectionsA similar This iS, howeverpot an error by the definition of the error
definition applies to the edge sets of optimal tree projestio €ventin (62) hence, we séf .- = +oc. In addition, we define
; thedominant non-edgassociated to edge s& € Ep-(p) as:
Epwp) = {€q:Tq=(V,Eq) € T*,Q € P*(P)}. (60)

e*(£g) = argmin min Je el (66)
Since the distributiorP is unknown, our goal is to estimate e'¢Eq ee%’ath(e/;fcz)
the optimal tree-projectioffes; using the empirical distribution EoUie I\ e} glp(r)
P, where Pqg is given by Also, thedominant structurén the set of optimal tree projec-
~ tions is defined as
Pest := argmin  D(P|| Q). (61)
QED(X,TH) gp* = argmin JT(e*(EQ);EQ),e* (Eq)> (67)

.. . . . . EQEEPx
If there are many distribution§, we arbitrarily pick one of QEEPH P

them. We will see that by redefining the error event, we wiwhere the crossover ratg ..c,,) - is defined in[(65) and the
have still a LDP. Finding the reverse I-projectidhs can be dominant non-edge’(£q) associated tdy, is defined in[(Gb).
solved efficiently (in time®(d? logd)) using the Chow-Liu Equipped with these definitions, we are now ready to state the

algorithm [3] as described in Sectignllll. generalization of Theorefd 5.
We defineTp,, = (V,&p,,) as the graph ofs, which is Theorem 11 (Dominant Error Tree)ror the error event
the learned tree and redefine the nemor eventas A, (P*(P)) defined in[[6R), a dominant error tree (which may

. not be unique) has edge set given by
An(P*(P)) = {EPSS‘ ¢ EP*(P)} . (62)

Ep- U{e™(Ep- )\ {r(e”(Ep-); Ep-)}, (68)
20In fact, each tree defines a so-calkedlat submanifold47], [48] in the set . . .
of probability distributions or¥? and Pest lies in both submanifolds. The so- where e*(€p-) is the dominant non-edge associated to the

called m-geodesiconnectsP to any of its optimal projectionest € P*(P).  dominant structur&p- € Ep«(py and is defined by (66) and
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in @1). Alternatively we computed the approximation
in (88), which is also a function of the true distribu-
tion. However, in practice, it is also useful to compute
an online estimate of the crossover rate by using the
empirical distribution in place of the true distribution in
the constrained optimization problem [n21). This is an
estimate of the rate that the learner can compute given
the samples. We call this tlempirical rateand formally
define it in Sectior_VIII-C. We perform convergence

Fig. 9.  Graphical model used for our numerical experimeifise true analysis of the empirical rate and also numerically verify

model is a symmetric star (cf. SectibnllV) in which the mutirdbrmation
quantities satisfyl(Pr.2) = I(Prs) = I(Pr4) and by construction, the rate Qf convergence to the trpe crossover rate. _
I(P,) < I(P12) for any non-edgee’. Besides, the mutual information  In the following, we will be performing numerical experi-

quantities on the non-edges are equal, for examilgz s) = I(Fs,4). ments for the undirected graphical model with four nodes as
shown in Fig[®. We parameterize the distribution with- 4
variables with a single parameter> 0 and letX = {0,1},
i.e, all the variables are binary. For the parameters, we set

(67). Furthermore, the error exponéiip-(py, defined in[(6B)

is given as Py (ry =0)=1/3 and
Kpe« = i i i Je e’- 69 1 1
P (P) 5Qér§izli(p) ;Iélgr:g eEPaﬁ%l(Iel/;EQ) ’ ( ) Pz|1(xz = lel = 0) =5+ 1= 2, 3741 (70a)
£oU{e M\ (e} ¢Ep- () 3
Pp(zi =0lz1 =1)= -7, i=2,3,4. (70b)

Proof: The proof of this theorem follows directly by iden- 2

tifying the dominant error tree belonging to the 3\ 7p-(p)-  with this parameterization, we see that-fis small, the
By further applying the result in Propositibh 4 and Theokém Putual information/ (P, ;) for i = 2,3,4 is also small. In
we obtain the result via the “worst-exponent-wins”|[11, Ch‘act if v = 0, z, is indépendent of; for i = 2.3.4 and as
1] prin(_:iple by min_imizig over all trees in the set of optima, result, I(Py;) = 0. Conversely, ify is large, the mutual
perectlonsé‘p*(P) in (69). ® information I(P, ;) increases as the dependence of the outer
This theorem now allows us to analyze the more general erffyes with the central node increases. Thus, we can vary the
event A, (P*(P)), which includesA, in (B) as a special gjze of the mutual information along the edges by varyjng
case if the set of optimal tree projectiois- () in (89) is gy symmetry, there is only one crossover rate and hence this

a singleton. crossover rate is also the error exponent for the error edent
in (8. This is exactly the same as the symmetric star graph
VIIl. N UMERICAL EXPERIMENTS as described in Sectidn V.
In this section, we perform a series of numerical experi-
ments with the following three objectives: A. Accuracy of Euclidean Approximations

1) In Section[VII[-A, we study the accuracy of the Eu- We first study the accuracy of the Euclidean approximations
clidean approximations (Theordr 8). We do this by amtsed to derive the result in Theordih 8. We denotetthe
alyzing under which regimes the approximate crossoveate as the crossover rate resulting from the non-convex
rate J. . in (58) is close to the true crossover rate., optimization problem[(21) and thapproximate rateas the
in 21). crossover rate computed using the approximatiof_in (55).

2) Since the LDP and error exponent analysis are asympMWe vary v from 0 to 0.2 and plot both the true and
totic theories, in Section VIII-B we use simulations taapproximate rates against the difference between the inutua
study the behavior of the actual crossover rate, givémformations/(P,) — I(P,/) in Fig.[10, wheree denotes any
a finite number of samples. In particular, we study edge ande’ denotes any non-edge in the model. The non-
how fast the crossover rate, obtained from simulationspnvex optimization problem was performed using the Matlab
converges to the true crossover rate. To do so, Vienctionf m ncon in the optimization toolbox. We used sev-
generate a number of samples from the true distributi@nal different feasible starting points and chose the betatnal
and use the Chow-Liu algorithm to learn trees structuresbjective value to avoid problems with local minima. We first
Then we compare the result to the true structure amdte from Fig[ID that both rates increaseld®.) — I(P./)
finally compute the error probability. increases. This is in line with our intuition becauseXf .,

3) In Sectiod VIII-Q, we address the issue of the learner nist such that/(P.) — I(P..) is large, the crossover rate is
having access to the true distribution, but nonethelealso large. We also observe thatlifP,) — I(P./) is small,
wanting to compute an estimate of the crossover ratbe true and approximate rates are very close. This is in
The learner only has the sampke’s or equivalently, the line with the assumptions for Theordrh 8. Recall thaPif..
empirical distributionP. However, in all the preceding satisfies the-very noisy condition (for some smal), then the
analysis, to compute the true crossover tate and the mutual information quantitie$(P,) andI(P..) are close and
overall error exponenk p, we used the true distribution consequently the true and approximate crossover ratessare a
P and solved the constrained optimization problerdlose. When the difference between the mutual informations
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Fig. 10. Comparison of True and Approximate Rates.
o.o2B—HBH88-8-8-8-8-5-+H
. . 5 Simulated Rate
increases, the true and approximate rate separate from each ¥ o.018| M— True Rate
other. = [ —&— Approx Rate
) ) < 0.016
B. Comparison of True Crossover Rate to the Rate obtained = VS POSPOSEE SO SN T OSI ORI
from Simulations 0.014
In this section, we compare the true crossover rateih (21) to
the rate we obtain when we learn tree structures using Chow- 0012 200 200 500
Liu with i.i.d. samples drawn fronP, which we define as n

the SImUIa.lted rate We fIXEd.’Y > 0n @).then for each Fig. 11. Comparison of True, Approximate and Simulated Ratih v =
n, we estimated th_e prqbablllt)_/ of error using the Chow-Liy ¢; (top) andy = 0.2 (bottom). Here the number of runsl — 107 for
algorithm as described in Sectipnllll. We state the prooeduy = 0.01 and M = 5 x 108 for v = 0.2. The probability of error is
precisely in the foIIowing steps. computed dividing the total number of errors by the total bemof runs.
1) Fix n € N and sampler i.i.d. observations" from P.
2) Compute the empirical distributioR and the set of em-
pirical mutual information quantitiesI(P.) : ¢ € (2)}.
3) Learn the Chow-Liu tre€,, using a MWST algorithm
with {I(P.) : e € (})} as the edge weights.
4) If &, is not equal tof€p, then we declare an error.
5) Repeat steps 1 — 4 a total dff € N times and Jow:= inf {D(Qnﬁe.e/):I(Qe/) :I(Qe)}- (71)
estimate the probability of errdP(A,,) = #errors/M ’ QeP(Xx1) ’
and the error exponent(1/n)logP(A,), which is the

C. Comparison of True Crossover Rate to Rate obtained from
the Empirical Distribution

In this subsection, we compare the true rate toeitmpirical
rate, which is defined as

simulated rate The empirical rate,]m, = Jee(Pee) is a function of the
. . empirical distribution P, .. This rate is computable by a
If the probability of errofP(.A,,) is very small, then the number : N
. . .~ learner, who does not have access to the true distribution
of runs M to estimatelP(.A,,) has to be fairly large. This .
. : . The learner only has access to a finite number of samples
is often the case in error exponent analysis as the samp
{X1,.. ., Xp} Given x", the learner can compute

;S)IrZC)Ei:)arE)eiIiet?ess to be substantial to estimate very small erE & emplrlcal probabllltyP8 o and perform the optimization

In Fig. [T, we plot the true rate, the approximate rate ar'l?j (71). This is an estimate of the true crossover rate. Anahtu
the siijIate’d rate when = 0.01 (a'mdM 107) and question to ask is the following: Does the empirical rdg@

, 2
0.2 (and M = 5 x 10%). Note that, in the former case, th converge to the true crossover ratg., asn — oo? The next

true rate is higher than the approximate rate and in therIat%h?r%rgonr]e?:Slvge(rértohs'zoiﬁsgg?e'g;?ggggg%geem irical
case, the reverse is true. Whenis large ¢ = 0.2), there P

are large differences in the true tree models. Thus, we $ngrossover ratd, « in {Z1) converges almost surely to the true

that the error probabilities to be very small and heAéehas Crossover ratel. .+ in (21), i.e.

to be large in order to estimate the error probability cdtyec P ( lim Je o=, e,) -1 (72)
but n does not have to be too large for the simulated rate to n—00 '
converge to the true rate. On the other hand, whés small Proof: (Sketch The proof of this theorem follows from

(v = 0.01), there are only subtle differences in the graphicéthe continuity ofJe < in the empirical dlstrlbuuonP6 e and
models, hence we need a larger number of sampl&s the the continuous mapping theorem by Mann and Wald [49]. See
simulated rate to converge to its true value, Bilitdoes not Appendix[F for the details. ]
have to be large since the error probabilities are not smale conclude that the learning of the rate from samples is
The above observations are in line with our intuition. consistent. Now we perform simulations to determine how
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5 .
x 10 , , structures (among the class of trees) are easier to learn and

4 Empirical Rate which are harder to learn given a fixed set of correlation
9.5 ‘ —— True Rate ] coefficients on the edges. Using Euclidean informationtyeo
g 9 —HB— ApproxRate |, we show that if the parameters on the edges are fixed, the star
a is the most difficult to learn (requiring many more samples
B 8NN to ensureP(A,) < §) while the Markov chain is the easiest.
:j 8 The results in this paper have also been extended to learning
T high-dimensional general acyclic models (forests) [38jeve
75 1 d grows withn and typically the growth ofl is much faster
P = e = et = = e = o= = e = s than that ofn.
10" 10° 10° 10’ There are many open problems resulting from this paper.
n One of these involves studying the optimality of the error
0.022 exponent associated to the ML Chow-Liu algorititw, i.e.,
whether the rate established in Theofdm 5 is the best (rges
o.oi—8B-8-8—8-8-88-8-f among all consistent estimators of the edge set. Also, since
B Empirical Rate large-deviation rates may not be indicative of the true rerro
& 0.018 —¥— True Rate probabilityP(A,,), results from weak convergence thedry![50]
g —HE— Approx Rate may potentially be applicable to provide better approxioTat
£ 0016 to P(A,).
' 0.014F
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Fig. 12. Comparison of True, Approximate and Empirical Ratdth y = ONne _reViewera i.n particular, helped us hig_h"ght the. cotioec

0.01 (top) andy = 0.2 (bottom). Heren is the number of observations usedof this work with robust hypothesis testing, leading to Sec-

to estimate the empirical distribution. tion The authors acknowledge Lizhong Zheng, Marina
Meila, Sujay Sanghavi, Mukul Agrawal, Alex Olshevsky and

. . Timo Koski for many stimulating discussions.
many samples are required for the empirical rate to converge

to the true rate.
We sety = 0.01 andy = 0.2 in (Z0). We then drew: i.i.d. APPENDIXA
samples fromP and computed the empirical distributidf .. PROOF OFTHEOREMI[Z

Next, we solved the optimization problem i1 {71) using the Proof: We divide the proof of this theorem into three

f m ncon function in Matlab, using different initializations t%ps. Steps 1 and 2 prove the expressiofiih (21). Step 3sprove

and compared the empirical rate to the true rate. We repeaﬁg : o
.{he existence of the optimizer.

this for several values ofi and the results are displayed in Step 1 First, we note from Sanov's Theoref [30, Ch. 11]

Fig.[I2. We see that foy = 0.01, approximatelyn = 8 x
10% samples are required for the empirical distribution to bgat the empirical joint distribution on edgesmnde’ satisfies

close enough to the true distribution so that the empiriatd r y ) . .
converges to the true rate. ng{)lo—ﬁ 0gP(P. € F) = inf{D(Q|| P.o'): Q € ]23)

for any setF c P(X*) that equals the closure of its interior,
i.e, F = cl(int(F)). We now have a LDP for the sequence
probablhty measures’., e, the empirical distribution on

IX. CONCLUSION, EXTENSIONS AND OPEN PROBLEMS
In this paper, we presented a solution to the probIeH}

of finding the error exponent for tree structure learning b(y ). Assuming that ande’ do not share a common node,
extensively using tools from large-deviations theory comad P P(X*) is a probability distribution over four variables

‘f""thl facts ab?hut tr(tae gtraphs :jNe qt:ar:tlget(:]theterr?r ex[:;?g[ﬁe variables in the node paiesande’). We now define the
or learning the structure and exploited the structure unction - P(X1) — R as

true tree to identify the dominant tree in the set of erroseou
trees. We also drew insights from the approximate crossover Q) = I(Qu) — I(Q.). (74)
rate, which can be interpreted as the SNR for learning. These

two main results in Theoreni$ 5 aid 8 provide the intuition &inceQ. =3, , Q, defined in[(2R) is continuous if) and the

to how errors occur for learning discrete tree distribugiora mutual informaetionI(Qe) is also continuous )., we con-
the Chow-Liu algorithm. clude thath is indeed continuous, since it is the composition

In a companion paper_[27], we develop counterparts tf continuous functions. By applying the contraction prnc

the results here for the Gaussian case. Many of the resydis [11] to the sequence of probability measufes. and the
carry through but thanks to the special structure that Gaisscontinuous map, we obtain a corresponding LDP for the new
distributions possess, we are also able to identify whicequence of probability measurlesPe o) = I(P ) — I(Pe),



e,e/

e,e’

Fig. 13. lllustration of Step 2 of the proof of Theorédh 2.

where the rate is given by:

Jeer = o inf  AD(QI| Per) : h(Q) = 0}, (75)
= QeiPn(fX“) {D(Q || Pe,e/) : I(Qe’) > I(Qe)} . (76)

We now claim that the limit in[{20) exists. From Sanov’
theorem [[30, Ch. 11], it suffices to show that the constrai
setF = {I(Qe) > I(Q.)} in (£8) is a regular closed set,

i.e, it satisfiesF = cl(int(F)). This is true because there
are no isolated points iF and thus the interior is nonempty.

Hence, there exists a sequence of distributi¢@s,}5>, C
int(F) such thatlim, oo D(Qn||Peer’) = D(Q*||Pee),
which proves the existence of the limit in_{20).

Step 2 We now show that the optimal solutio®; .., if
it exists (as will be shown in Step 3), must satidf{Q?) =
I1(Q%). Suppose, to the contrary, thér: ., with objective
value D(Q} ./||P..r) is such that/(Q:) > I(Q7). Then

h(Q% .)) > 0, whereh, as shown above, is continuous. Thust

there exists @ > 0 such that thej-neighborhood
Ns(Qcer) = {R:[|R = Q¢ olloo <0}, (77)

satisfiesh(N5(Q; ./)) C (0,00) [37, Ch. 2]. Consider the new
distribution (See Fid._13)

*k * 5 *
Qe,e’ = Qe,e’ + E(Pe-,e/ - Qe,e’) (78)
J J
=|1--|Qip+ =P.e. 79
(1-3) @ +3m. (79
Note that@;”., belongs toNs(Q; .,) and hence is a feasi-
ble solution of [76). We now prove thdd(Q:*, [|P..r) <
D(Q /|| Pe,er), which contradicts the optimality af; ...
D(QZe || Pe.er)
J J
=D 1-- e 5 Lee Pe.e’ ) 80
(CHEE (80
J . J
<|1- 5 D(Qe,e/HPe,e/)‘i‘ED(Pe,e’ ||Pe,e’)v (81)
Y "
~(1-3) p@:c i) (82
< D(Qz,e’ || Pe,e’)v (83)

where [81) is due to the convexity of the KL-divergence in thgaa j o Kp =

first variable [30, Ch. 2],[(82) is becaus& P, /|| P..c/) = 0

and [83) is becausg> 0. Thus, we conclude that the optimal

solution must satisfyf (Q?) = I(Q},) and the crossover rate
can be stated ag (21).

Step 3Now, we prove the existence of the minimizgf .,
which will allow us to replace thénf in (1) with min. First,

$he proof of Theoreri 12.
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hence continuous and the first varialgle It remains to show
that the constraint set

A={QeP(X"): I(Qe) = 1(Qc)} (84)

is compact, since it is clearly nonempty (the uniform distri
bution belongs ta\). Then we can conclude, by Weierstrass’
extreme value theorern [37, Theorem 4.16], that the minimize
Q* € A exists. By the Heine-Borel theorem [37, Theorem
2.41], it suffices to show that\ is bounded and closed.
Clearly A is bounded sinceP(X*) is a bounded set. Now,
A = h71({0}) where h is defined in [[7TH). Sincéh is
continuous and{0} is closed (in the usual topology of the
real line), A is closed [[3F, Theorem 4.8]. Hence thatis
compact. We also need to use the fact thais compact in

|
nt

APPENDIXB
PROOF OFTHEOREM[G

Proof: We first claim that€},, the edge set correspond-
ing to the dominant error tree, differs frofr by exactly
one edg@ To prove this claim, assume, to the contrary,
that £ differs from £p by two edges. Lett, = & =
Ep \ {e1,e2} U {e], e}, whereel, e, ¢ Ep are the two
edges that have replaced,es € Ep respectively. Since
T = (V,&) is a tree, these edges cannot be arbitrary and
specifically,{e1, ea} € {Path(e}; Ep) UPath(ey; Ep)} for the
tee constraint to be satisfied. Recall that the rate of tieatev
that the output of the ML algorithm i§” is given by Y (T")
in (30). Then consider the probability of the joint eventttwi
respect to the probability measupe= P™).

Suppose that;, € Path(e;Ep) for i = 1,2 ande; ¢
Path(e); Ep) for i, j = 1,2 andi # j. See Fig[.I4. Note that
the true mutual information quantities satigfyP.,) > I(P.;).
We prove this claim by contradiction that suppa<é”.;) >
I(P.,) then,Ep does not have maximum weight because if
the non-edge’ replaces the true edgg, the resulting tréd
would have higher weight, contradicting the optimality bét
true edge sefp, which is the MWST with the true mutual
information quantities as edge weights. More preciselycare
compute the exponent whel is the output of the MWST
algorithm:

T(T') = lim —logP | () {I(B) = I(B.)} ], (85)
n—oo n v
i=1,2
. 1 ~ ~
- i:1,2n~>oo_ﬁ i/ = i ’
> max lim —= logP ({J(pe,) > 1(P. )}) (86)

Joo o

62762} . (87)

Now J., .o = Y(T;) whereT; := (V,Ep \ {e:} U{e;}). From
Prop.[4, the error exponent associated to the dominant error
miny7, Y(T) and from [8Y), the dominant
error tree cannot b&”’ and should differ froni’» by one and

only one edge.

max {Je1 el

21This is somewhat analogous to the fact that the second-bags Mdiffers
from the MWST by exactly one edge [34].

22The resulting graph is indeed a tree becafisg U Path(e}; £p) form
a cycle so if any edge is removed, the resulting structures am¢ have any

we note thatD(Q || P.,/) is continuous in both variables andcycles and is connected, hence it is a tree. SeelFig. 2.



Fig. 14. |lllustration of the proof of Theoreld 5. The dominantor event
involves only one crossover event.

The similar conclusion holds for the two other cases (i) 2)

e; € Path(e};Ep) for i = 1,2, ea € Path(e};Ep) and
e1 ¢ Path(eh;Ep) and (i) e; € Path(ej;Ep) for i = 1,2,
e1 € Path(ey;Ep) andey ¢ Path(ef; Ep). In other words,
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1) The exact number of-types with alphabed’ is given

by (") [51]. In particular, we have

n+1+ x|

P(Ceer) < ( nt1 ) exp(—nJee),  (96)

for all n € N, sinceC, .- only involves the distribution
P, € P(X*). Note that the exponedtof | X'|* in (@8)
is an upper bound since ifande’ share a nod&, ./ €
P(X3).

The number of error evengs . is at most(d —1)%(d —
2)/2 because there aré) — (d—1) = (d—1)(d—2)/2
non-edges and for each non-edge, there are at dhost
edges along its path.

the dominant error tree differs from the true tree by one edgkhis completes the proof. ]
We now use the “worst-exponent-wins principlé” [11, Ch.

1], to conclude that the rate that dominates is the minimum

Jr(ery,er Over all possiblee’ ¢ Ep, namely Jy () - with e
defined in [[3V). More precisely,

P(A,) = ]P’(U {€’ replaces any € Path(e’;Ep) in TML]>,
/ggp

_]P>< U J {¢ replaces in TML}>, (88)
e’¢Ep ecPath(e’;Ep)
<> > P({¢ replaces in T,.}), (89)

e’¢Ep ecPath(e’;Ep)

=> > P{I(P)zIE)), (%)
e/¢Ep ecPath(e’;Ep)
= Z Z GXP(—nJe,e’)7 (91)
e/ ¢Ep ecPath(e’;Ep)
= exp (—n min min Je,e/> , (92)
e’ ¢Ep ecPath(e’;Ep)

where [89) is from the union bound,_{90) ahdl(91) are from
the definitions of the crossover event and rate respectfaaly

APPENDIXC
PROOF OFTHEOREM[G

Statement (a)s statement (b) was proven in full after the
theorem was stated. Here we provide the proof thatfhc).
Recall that statement (c) says th&#t is not a proper forest.
We first begin with a preliminary lemma.

Lemma 13:Supposer, y, z are three random variables tak-
ing on values on finite set¥', ), Z respectively. Assume that
P(z,y,z) > 0 everywhere. Then —y — z andz — z — y are
Markov chains if and only ifr is jointly independent of), .

Proof: (=) Thatz — y — z is a Markov chain implies that

P(zly, =) = P(zly), (97)
or alternatively
Py, z
Play.2) = Pla) e (98)
Similarly from the fact thatr — z — y is a Markov chain, we
have Py, 2)
, 2
Pla,y,2) = P(a,2) g5 (99)

described in Cases 1 and 2 above) dnd (92) is an applicatfefiuating [(98) and[(99), and use the positivity to cancel

of the “worst-exponent-wins” principle [11, Ch. 1].

We concludé? from (@2) that
P(An) S exp(_nJr(e*),e*)v (93)

from the definition of the dominant replacement edde’)

and the dominant non-edge*, defined in [[3b) and[(37)

respectively. The lower bound follows trivially from thecta
that if e* ¢ Ep replaces(e*), then the error4,, occurs. Thus,
{e* replaces-(e*)} C A, and
P(A,) > P({e* replaces-(e*) in Ty, })
= exp(—nJy(es),ex )-

Hence, [(98) and (95) imply tha(A,,) = exp(—nJ,(ex) e ),
which proves our main result ifi (B6).

(94)
(95)

P(y, z), we arrive at

P(zly) = P(x|2). (100)

It follows that P(z|y) does not depend om so there is some
constantC(z) such thatP(z|y) = C(x) for all y € Y. This
immediately implies thatC(z) = P(x) so thatP(x|y) =
P(z). A similar argument gives thaP(z|z) = P(x). Fur-
thermore, ifx — y — 2z is a Markov chain, so is — y — z,
therefore

P(aly, )

P(aly) = P(a). (101)

The above equation says thais jointly independent of both
y andz.

(«) Conversely, ifz is jointly independent of botly and z,
thenz —y — z andxz — z — y are Markov chains. In fact is
not connected tg — z. ]

The finite-sample result il (89) comes from the upper bound Proof: We now prove (b)<= (c) using Lemma_13 and

in @2) and the following two elementary facts:

23The notationa, < b, means thafimsup,, ., = log(an/bn) < 0.

Similarly, an > b, means thatim infy, co 2 log(an /bn) > 0.

the assumption thaP(x) > 0 for all x € x.

(=) If (b) is true thenl (P./) < I(P.) for all e € Path(e; Ep)
and for alle’ ¢ £p. Assume, to the contrary, thdte is a
proper forestj.e,, it contains at least 2 connected components
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(each connected component may only have one node), sayn matrix notation as:
G, = (V;,&) for i = 1,2. Without loss of generality, let s _ g7 I(P,) — I(Py)

1 be in componeng; and -, z3 belong to componergs. { ¢ 17 ¢ } €= [ 0 ] ) (207)
Then sinceV; NV, = § andV; UV, = V, we have thatr;

jointly independent ofr, and z3. By Lemmal[IB, we have wherel is the lengthkX'|* vector consisting of all ones. For
the following Markov chainsr; — x5 — z3 andz; — z3 — z2.  convenience, we defink. . to be the matrix in[(107)i.e.,

This implies from the Data Processing Inequality [30, Tleeor T

2.8.1] thatI(P; 2) > I(Py 3) and at the same tim&(P; 5) < Leo = [ Ser _Tse } c R2x1XI* (108)
I(Py 3) which means thal (P, 2) = I(P; 3). This contradicts 1

(b) since by taking’ = (1,2), the mutual informations along Step 3 The optimization problem now reduces to minimiz-
the pathPath(e’; £p) are no longer distinct. ing (I03) subject to the constraints N (107). This is a séadd
(<) Now assume that (c) is truee., Tp is not a proper forest. |east-squares problem. By using the Projection Theorem in
Suppose, to the contrary, (b) is not trues., there exists a Hilbert spaces, we get the solution

¢’ ¢ Ep such thatl(P.) = I(P.()), Wherer(c') is the
replacement edge associated with the non-edgéVithout E*ZKE—;, —1(Fe) } .(109)
loss of generality, lek’ = (1,2) andr(e’) = (3,4), then ’ 0

sinceT'p is not a proper forest, we have the following Markovrie inverse ofL, e’Kgi/LZe/ exists because we assunigg
chainz, —x3 — x4 — 2. Now note that[(]?lﬂ) =1(P34).In isnota proper forest and hend;, # P P; for all (i,7) €
fact, because there is no loss of mutual informatiof?, 4) = Y). This is a sufficient condition for the matri, ., to have
I(P;4) and hence by the Data Processing Inequality we algq| row rank and thusL. . K-LLT , is invertibie. Finally,

e,e’

havezs — x — w4 — 25. By using Lemmd 13, we have, \ye supstitutes* in (I09) into [10B) to obtain
jointly independent ofr; and xz3, hence we have a proper

e,e’ He,e’

LZ.,G’ (Le,e’K_l LY )_1 |: I(Pe)

forest, which is a contradiction. = % [(Leve’K;i’LZe’)_lLl (I(P.) — I(P.))?, (110)
APPENDIXD where[M];; is the (1,1) element of the matrixI. Define
PROOF OFTHEOREM[B to be the weighting function given by
Proof: The proof proceeds in several steps. See Fibs. 5 PY(Peer) 1= [(Leye/K;i/LeT_,e/)*l} . (111)
and[® for intuition behind this proof. "
Step 1 Let Q be such that It now suffices to show tha{)(P. . ) is indeed the inverse

variance ofs, — s... We now simplify the expression for the
Q(xi,xj, 2, 1) = Poor (w4, 25, xp,21) + €500 (102)  weighting function(P. /) recalling howL, .- andK, . are

o defined. The product of the matrices [n_(1111) is
Thus, the; ; 1 ;'S are the deviations @ from P, /. To ensure

that Q is a valid distribution we requiré_¢; jx; = 0. The e | E[(ser —5¢)?] E[ser — se]
Tl S ) 9k, LK LT = , (112)
objective in [G2) can now be alternatively expressed as e E[ser — s 1

2 where all expectations are with respect to the distribuitop .

L 7 1 €ij,k,l ) '
3€ Keee=3 > Iz : , (103) Note that the determinant df(Z12) &(s./ — s.)?] — E[(ser —

L e,e/('riv'rjaxkaxl) 2 .

Ty, T, se)]* = Var(se — s.). Hence, the (1,1) element of the inverse
. . ) ... of @@12) is simpl
wheree € RI¥I" is the vectorized version of the deviations ) Py

€i k0 andK, o is a|X|* x |X|* diagonal matrix containing Y(Peoer) = Var(ser — se) L (113)

the entriesl /P, o/ (x;, z;, z, ;) along its diagonal. ] . ) ]
Step 2 We now perform a first-order Taylor expansion oNow, if e ande’ share a node, this proof proceeds in exactly

1(Q.) in the neighborhood of (P.). the same way. In particular, the crucial stép (105) will also
¢ ¢ remain the same since the Taylor expansion does not change.
1(Q.) = I(P.) + €'V I(Q.) + o(||€])), (104) This concludes the first part of thg proof. .
r €=0 Step 4 We now prove the continuity statement. The idea
=I(P.) + € sc +o([[e]), (105) s that all the approximations become increasingly exact as

(in the definition of thec-very noisy condition) tends to zero.
More concretely, for every > 0, there exists a; > 0 such
that if P, ., satisfies the;;-very noisy condition, then

where s, is the length|X|*-vector that contains the infor-
mation density values of edge Note that because of the
assumption thaP is not a proper forestP; ; # P; P; for all
(4,4), hence the linear term does not vari§fThe constraints |I(P,) —I(P,)| <6 (114)
can now be rewritten as
since mutual information is continuous. For evéry 0, there
el =0, €' (se —se) = I(P.) —I(Pw). (106) exists ac; > 0 such that ifP, ., satisfies ther,-very noisy
condition, then
24ndeed if P, were a product distribution, the linear term [n_{IL05) vaaish
andI(Q.) is approximately a quadratic ia (as shown in[[15]). Q% o/ — Peer|loo <6, (115)

e,e’
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since if P, ./ is ex-very noisy it is close to the constraint set  Proof: Set the minimizer in[{119) to be

{Q: I(Qe) > I(Q.)} and hence close to the optimal solution o . 120
Q: .- Foreverys > 0, there exists a; > 0 such that if > ./ (y) : arfgémf(””’ v) (120)
satisfies the;-very noisy condition, then The optimizerz(y) € K exists sincef(z,y) is continuous

. 1, ., 9 on KC for eachy € Y and K is compact. This follows from
D(QeellPeer) = QHQe,e’ — Peer ”Pe,ef <9, (116) \weierstrauss’ extreme value theorém [37, Theorem 4.16]. We
ant to show that fotim, _,, g(v') = g(y). In other words,

which follows from the approximation of the divergence ana;e need to prove that

the continuity statement in_(I1L5). For every- 0, there exists . o
ae, > 0 such that ifP, .. satisfies the,-very noisy condition, Jim f@),y') = flz(y),y). (121)
then . .

Consider the difference,

|z, 2" )= f(z(v), )| < |f(2(y),y) — flz(y), )

}I(Pe) - SZ(QZ,e' — Peer)| <46, (117)

which follows from retaining only the first term in the Taylor

/ / /
expansion of the mutual information ifi_(305). Finally, for +1f(2(y),y') = fla(y) y)l- (122)
everyd > 0, there exists a5 > 0 such that if P, .- satisfies The first term in [I22) tends to zero ag8 — y by the
the es-very noisy condition, then continuity of f so it remains to show that the second term,
~ , — AN / ! / )
| Jeer — Jeer| <6, (118) By = |f(2(y),y') — f(z(¥'),¥')] — 0, asy’ — y. Now,

we can remove the absolute value since by the optimality of
which follows from continuity of the objective in the con-z(y'), f(z(y),y") > f(z(v’),y’). Hence,
straints [(11l7). Now choose= min;—; . s¢; to conclude that B, — f(x N (). 123
for everyé > 0, there exists & > 0 such that if?, ., satisfies v =F@W)y) = Flal).y) (123)

the e-very noisy condition, ther({118) holds. This complete3UPPOSe, to the contrary, there exists a sequeyicki~, C Y/
the proof. m With y, — y such that

f@),yn) = f(@(y,),y,) > >0, VneN.  (124)

APPENDIXE 1\ 00
PROOF OFPROPOSITIONT By the compactness at, for thsa segouencex(yn)}nzllcllcl,

there exists a subsequenge(y;, )}z2, C K whose limit is
Proof: The following facts aboutP in Table[] can be .+ — limy_,o0 2(y/, ) andz* € K [37, Theorem 3.6(a)]. By

. - o0 N ' ) )

read”y Ver|f|ed: the Continuity Off
1) P is positive everywhere,e., P(x) > 0 for all x € &3, . roN
2) P is Markov on the complete graph with= 3 nodes, klggo F@): o) = F2(w). ), (125)
henceP is not a tree distribution. lim f(z(yn,)sUn,) = f(x", ), (126)
3) The mutual information between andzxs as a function ko0
of x is given by

I(Py2) =log2+ (1 — 2k)log(l — 2k) + 2k log(2k).

since every subsequence of a convergent sequgyjgecon-
verges to the same limit. Now (I123) can be written as

F@W),yn,) — f(@(yn,),yn,) >€>0, VkeN. (127)
ThusI(P3) — log2 = 0.693 asx — 0. We now take the limit ag — oo of (IZ7). Next, we usd (125)
4) For any(ga K) € (Oa 1/3) X (Oa 1/2)! I(P2,3) = I(Pl,?)) and [EB) to conclude that '
and this pair of mutual information quantities can be
made arbitrarily small as — 0. f(z(y),y) — fa" y)>e= flz(y),y) > f(a",y) + € (128)

Thus, for sufficiently smallk > 0, I(P12) > I(P3) = which contradicts the optimality of(y) in (T20). Thus B, —
I(P13). We conclude that the Chow-Liu MWST algorithm0 asy’ — y andlim, ,, g(y') = g(y), which demonstrates

will first pick the edge(1,2) and then arbitrarily choosethe continuity ofg onY. u
between the two remaining edgeg,3) or (1,3). Thus, Lemma 15 (The continuous mapping theoreni [4Q]et
optimal tree structure is not unique. B (Q,B(Q),v) be a probability space. Let the sequence of
random variableg X,,}52, on €2 convergev-almost surely
APPENDIXF to X, ie, X, =5 X. Let g : 2 — R be a continuous
PROOF OFTHEOREMI[IZ function. Theng(X,,) convergesv-almost surely tog(X),

We first state two preliminary lemmas and prove the fird€- g(Xn)_;* Q(X?-
one. Theorem 2 will then be an immediate consequence of Proof: Now, using Lemmaj 14 arid]15, we complete the
these lemmas. proof of Theoren{I2. First we note frorh {(71) thét. =

Lemma 14:Let X andY be two metric spaces and lstc ~ Je.e’ (P..) e, fe,e, is a function of the empirical distribution
X be a compact setiff. Let f : X xY — R be a continuous On Node pairs: and¢’. Next, we note thaD(Q|| Pe..) is a

real-valued function. Then the functign Y — R, defined as continuous function if@, Pe.c). If P is fixed, the expres-
sion (71) is a minimization oD (Q||P. . ), over the compact

gly) = min f(z,y), VyeY, (119) seff A = {Q € P(X*) : I(Q.) = I(Q.)}, hence LemmA 14

is continuous ort". 25Compactness oA was proven in Theorefd 2 cf. EG_(84).



applies (with the identificationg = D and A = K) which  [26]
|mpI|es thatJe e IS continuous in the empirical distribution

[27]

P, .. Since the empirical d|str|but|oxﬁ7€ « converges almost

surely to P. .. [30, Sec. 11.2], Je e (Pe) also converges

almost surely to/, ., by Lemm'. [ ] (28]
29
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