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BSTRACT

We consider the problem of optimal allocation of computing
budget to maximize the probability of correct selection in
the ordinal optimization setting. This problem has been
studied in the literature in an approximate mathematical
framework under the assumption that the underlying ran-
dom variables have a Gaussian distribution. We use the
large deviations theory to develop a mathematically rigor-
ous framework for determining the optimal allocation of
computing resources even when the underlying variables
have general, non-Gaussian distributions. Further, in a sim-
ple setting we show that when there exists an indifference
zone, quick stopping rules may be developed that exploit the
exponential decay rates of the probability of false selection.
In practice, the distributions of the underlying variables are
estimated from generated samples leading to performance
degradation due to estimation errors. On a positive note, we
show that the corresponding estimates of optimal allocations
converge to their true values as the number of samples used
for estimation increases to infinity.

1 INTRODUCTION

Suppose that we have a set of d populations and we can
sample independently from each using simulation. Let Xi

be a random variable sampled from population i and let
µi = EXi denote its expectation. Further suppose that
the parameters (µi : i ≤ d) are unknown. We consider
the problem of correctly selecting the population with the
smallest mean based on the samples observed from each.

pplications of this arise in selecting the best design from
a set of competing designs, all of which may be modeled
as discrete event dynamic systems. The selection of the
best design is based on a performance measure that may be
represented as an expectation of a random variable whose
samples can be generated via simulation, although ana-
lytically evaluating the expectation may be an intractable
problem.
One approach to tackle this problem is to use sim-
ulation to estimate each µi accurately and then compare
the respective values of the estimates. Since the rate of
convergence of the simulated estimate is O(1/

√
n), where

n is the number of samples generated (and hence is a mea-
sure of computational effort), the amount of computational
effort needed to accurately estimate each mean can be very
large. The ordinal optimization involves generating samples
from each population and selecting the one with the lowest
sample mean. In Dai (1996), it is shown that using ordinal
optimization the probability of correct selection converges
at an exponential rate for a large class of systems.

In this paper we consider the problem of allocating
total sampling budget n amongst the d populations in an
asymptotically optimal manner ( i.e., as n → ∞) so that the
probability of correct selection using ordinal optimization is
maximized, or equivalently, the probability of false selection
is minimized. This problem of optimal allocation has been
studied earlier (see Chen et al. 2000) by optimizing an
approximation to the probability of correct selection under
the assumption that each Xi has a Gaussian distribution.
In this paper, we allow Xi, (1 ≤ i ≤ d) to have a general
distribution. We identify the large deviations rate function
associated with the random vector of sample means from
the d populations, for every budget allocation strategy (see
Dembo and Zeitouni 1992 for an introduction to large
deviations theory). The problem of optimal allocation that
minimizes the probability of false selection then reduces to
the problem of finding the allocation that maximizes the rate
function over the set of outcomes where false selection is
made. We show that this involves solving a simple concave
programming problem where the first order conditions are
sufficient for optimality. In particular, we show that under
the optimal allocation strategy, the probability of falsely
selecting any of the competing designs are approximately
equal (they are equal on a logarithmic scale).

Suppose that each Xi has a non-Gaussian distribution,
and to compensate for this, batches of independent samples
of each population are considered as a single sample. We
note that this amounts to scaling by same amount the rate
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function corresponding to the probability of false selection,
under every allocation strategy. Therefore, the optimal
allocation is unaffected by the use of batches. In particular,
the Gaussian assumption may give substantially sub-optimal
allocations in such cases.

Substantial literature exists on selecting the best system
amongst many alternatives using ranking/selection proce-
dures (see Goldsman and Nelson 2001, Kim and Nelson
2003 for an overview). These methods rely critically on
the assumption that that each Xi has a Gaussian distribu-
tion. These approaches also consider the ‘indifference-zone
formulation’ where it is assumed that there exists a known
δ > 0 such that µ1 ≤ µj − δ for j ≥ 2. Such a δ is then
useful in devising rules for the number of samples needed
to control the probability of false selection to pre-specified
levels.

We also apply this indifference-zone formulation in
the ordinal optimization setting when the underlying ran-
dom variables are Bernoulli. In this simple setting we
devise conservative rules to determine the number of sam-
ples needed to control the probability of false selection to
pre-specified levels, exploiting the exponential decay rates
of the probability of false selection.

Identifying the large deviations rate function associated
with the probability of false selection involves knowing the
log moment generating function of each Xi . In practice
this has to be estimated from the generated data leading to
degradation in performance due to estimation errors. On
the positive note, we show that the estimates of the optimal
allocations obtained by using the estimated log-moment
generating functions are consistent, i.e., in the limit as
n → ∞ they converge to the correct allocations.

In Section 2 we identify the rate function of the sample
means from the d populations under any given allocation
strategy. We state the theorem characterizing the optimal
allocation of sampling budget in Section 3. In Section 4, we
incorporate the indifference zone formulation in a simple
Bernoulli setting. Finally, in Section 5 we discuss how the
large deviations rate function and the associated optimal
allocations may be estimated from generated samples and
show that such an estimate is consistent.

2 RATE FUNCTION OF PROBABILITY OF FALSE
SELECTION

Recall that Xi is a random sample from population i for
(1 ≤ i ≤ d) and µi = EXi . Without loss of generality
assume that

µ1 < µ2 ≤ . . . ≤ µd.

Consider an allocation strategy that allocates pin

amount of the total sample budget n to the population
i, where pi > 0, 1 ≤ i ≤ d and

∑d
i=1 pi = 1. In this

paper, we ignore the minor technicalities associated with
pin not being an integer. Let (Xi,1, Xi,2, . . . , Xi,pin) denote
the samples from population i, 1 ≤ i ≤ d, and let X̄i(pin)

denote their sample mean.
Note that under the ordinal optimization technique,

false selection may be made if X̄1(p1n) is not the smallest
sample mean, i.e., X̄1(p1n) ≥ min2≤j≤d X̄j (pjn). Thus,
the probability of false selection or P(FS) equals

P(X̄1(p1n) ≥ min
2≤j≤d

X̄j (pjn)).

This may be lower bounded by

max
2≤j≤d

P (X̄1(p1n) ≥ X̄j (pjn)),

and is upper bounded by

(d − 1) max
2≤j≤d

P (X̄1(p1n) ≥ X̄j (pjn)).

Therefore, if for 2 ≤ j ≤ d,

lim
n→∞

1

n
log P(X̄1(p1n) ≥ X̄j (pjn)) = −Gj(p1, pj )

for some rate function Gj(·, ·), then

lim
n→∞

1

n
log P(FS) = − min

2≤j≤d
Gj (p1, pj ). (1)

We determine Gj(p1, pj ) using the Gartner-Ellis The-
orem (see Dembo and Zeitouni 1992). Some notation and
an assumption is needed before we do this.

2.1 Notation

Let �i(·) denote the log-moment generating function of Xi

and Ii(·) denote the Fenchel-Legendre transform of �i , i.e.,

Ii(x) = sup
θ

(θx − �i(θ)).

Let D�i
= {θ ∈ R : �i(θ) < ∞) and Fi = {�′

i (θ) : θ ∈
D�o

i
} (for any set A, let Ao denote its interior). It is well

known that Ii(·) is strictly convex and C∞ for x ∈ Fo
i ,

Ii(µi) = 0 and Ii(x) ≥ 0 for all x ∈ R for 1 ≤ i ≤ d

(see Dembo and Zeitouni 1992). We make the following
assumption in our analysis.

Assumption 1 The interval [µ1, µd ] ⊂ ∩d
i=1Fo

i .
Loosely speaking, this assumption ensures that the

sample mean from each population can take any value
in the interval [µ1, µd ]. In particular, it ensures that
P(X̄1(p1n) ≥ X̄j (pjn)) > 0 for 2 ≤ j ≤ d. It can
be checked that if random variables (Xi : 1 ≤ i ≤ d) be-
long to commonly encountered family of distributions such



Glynn and Juneja
as the Normal, Bernoulli, Poisson and Gamma family, then
Assumption (1) is satisfied.

2.2 Determining Gj(p1, pj )

Now we show that

Gj(p1, pj ) = inf
x

(p1I1(x) + pj Ij (x)).

Heuristically speaking,

P(X̄1(p1n) ≥ X̄j (pjn)) ≈ P(X̄1(p1n) ≈ X̄j (pjn))

and the latter approximately equals

∫
x
P (X̄1(p1n) ≈ X̄j (pjn) ≈ x)dx

≈ ∫
x
P (X̄1(p1n) ≈ x)P (X̄j (pjn) ≈ x)dx

≈ ∫
x

exp[−p1nI1(x)] exp[−pjnIj (x)]dx

≈ exp[−n infx(p1I1(x) + pj Ij (x))].

Now we show this rigorously. For n = 1, 2, . . ., set

Zn = (X̄1(p1n), X̄j (pjn)). (2)

Denote the logarithmic moment generating function of Zn

by �n(λ1, λj ) = log E(eλ1X̄1(p1n)+λj X̄j (pj n)) for (λ1, λj ) ∈
�2.

Lemma 1 The rate function of (Zn : n ≥ 0),
I (x1, xj ), equals

p1I1(x1) + pj Ij (xj ).

Proof It is easily checked that

1

n
�n(nλ1, nλj ) = p1�1(λ1/p1) + pj�j (λj /pj ),

for n ≥ 1. Then, by Gartner-Ellis Theorem, I (x1, xj ) equals

sup
λ1,λj

(λ1x1 + λjxj − p1�1(λ1/p1) − pj�j (λj /pj ))

= sup
λ1

(λ1x1 −p1�1(λ1/p1))+ sup
λj

(λj xj −pj�j (λj /pj )).

This can be seen to equal

p1 sup
λ1/p1

((λ1/p1)x1 − �1(λ1/p1))+

pj sup
λj /pj

((λj /pj )xj − �j(λj /pj )),

and the result follows. �
Hence, for B ∈ R
2, such that infx∈Bo I (x) =

infx∈B̄ I (x)(= IB), we get

lim
n→∞

1

n
log P(Zn ⊂ B) = −IB. (3)

Therefore,

Gj(p1, pj ) = inf
x1≥xj

(p1I1(x1) + pj Ij (xj )).

Since both I1(x) and Ij (x) are decreasing in x for x < µ1
and increasing in x for x > µj , it suffices to search for the
infimum for µ1 ≤ xj ≤ x1 ≤ µj . In this region, I1(x) is
increasing and Ij (x) is decreasing with x, so

Gj(p1, pj ) = inf
x∈[µ1,µj ](p1I1(x) + pj Ij (x)),

= inf
x

(p1I1(x) + pj Ij (x)).

For any function f (x), let f ′(x) and f ′′(x) denote its
single and double derivative, respectively, with respect to x.
Note that for each x, p1I1(x)+pj Ij (x) is a concave function
of (p1, pj ). Since Gj(p1, pj ) is an infimum of concave
functions, it is also concave. Also, for (p1, pj ) > 0, let
x(p1, pj ) be the unique solution to

p1I
′
1(x) + pj I

′
j (x) = 0. (4)

It is easily seen that this solution exists and is unique
since I ′′

1 (x) and I ′′
j (x) are strictly positive for x ∈ [µ1, µj ]

(as I1(x) and Ij (x) are strictly convex in this region),
I ′

1(µ1) = 0, I ′
j (µ1) < 0, I ′

1(µj ) > 0 and I ′
j (µj ) = 0.

Thus,

Gj(p1, pj ) = p1I1(x(p1, pj )) + pj Ij (x(p1, pj )). (5)

From this and (4) it is easily seen that
∂Gj (p1,pj )

∂p1
equals

I1(x(p1, pj )) + p1I
′
1(x(p1, pj ))

∂x(p1, pj )

∂p1

+p2I
′
2(x(p1, pj ))

∂x(p1, pj )

∂p1
= I1(x(p1, pj )). (6)

Similarly,
∂Gj (p1,pj )

∂pj
= Ij (x(p1, pj )). In particular

Gj(p1, pj ) is strictly increasing in p1 and pj for (p1, pj ) >

0. Also note that Gj(p1, pj ) = 0 if min(p1, pj ) = 0.

3 OPTIMAL ALLOCATION STRATEGY

Let p = (p1, . . . , pd) and h(p) = min2≤j≤d Gj (p1, pj ).
Note that h(·), being a minimum of concave functions, is
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concave for p ≥ 0. From (1) it follows that the problem
of determining the allocation that asymptotically minimizes
the probability of false selection reduces to solving the
concave programming problem: max h(p) subject to p ≥ 0
and

∑d
i=1 pi = 1.

This may be re-expressed as:

max z s.t.

Gj (p1, pj ) − z ≥ 0, (2 ≤ j ≤ d),

d∑
i=1

pi = 1,

pj ≥ 0 (2 ≤ j ≤ d).

Call this optimization problem P. It is well known that
the first order conditions are sufficient for global optimality
of a concave programming problem (see any standard non-
linear programming text, e.g., Avriel 1976). In the following
theorem we use this to determine the optimal allocation
strategy.

Theorem 1 Under Assumption 1, if the allocation
p∗ > 0,

∑d
i=1 p∗

i = 1, minimizes the asymptotic probability
of false selection, then,

d∑
j=2

∂Gj (p
∗
1, p∗

j )/∂p1

∂Gj (p
∗
1, p∗

j )/∂pj

= 1 (7)

Gj(p
∗
1, p∗

j ) = Gk(p
∗
1, p∗

k ), (8)

for j, k = 2, . . . , d.
Proof Note that each p∗

i is strictly positive. This
follows as otherwise h(p∗) = 0 and we know that for
pi = 1/d , i = 1, . . . , d, h(p) > 0. Then from the first
order conditions (see, e.g., Avriel 1976), it follows that there
exist (λj : j = 2, . . . , d) and γ such that:

1 −
d∑

j=2

λj = 0 (9)

λj

∂Gj (p
∗
1, p∗

j )

∂pj

= γ j = 2, . . . , d (10)

d∑
j=2

λj

∂Gj (p
∗
1, p∗

j )

∂p1
= γ (11)

λj (Gj (p
∗
1, p∗

j ) − z) = 0 j = 2, . . . , d. (12)

Equation (9) implies that λj > 0 for some j . Since,
∂Gj (p∗

1 ,p∗
j )

∂pj
> 0 for all j , it follows that γ > 0 and each

λj > 0. Then, Equation (8) follows from Equation (12).
Equation (7) follows by appropriate substitutions in Equa-
tion (11). �
Example 1 Consider the case where each Xj has a
Gaussian distribution with mean µj and variance σ 2

j . Then
it is well known and easily seen that

Ij (x) = (x − µj )
2

2σ 2
j

.

Now

Gj(p1, pj ) = inf
x

[p1I1(x) + pj Ij (x)].
Through differentiation it can be seen that the infimum
above is achieved at

x∗
j = (

p1/σ
2
1

p1/σ
2
1 + pj/σ

2
j

)µ1 + (
pj /σ

2
j

p1/σ
2
1 + pj/σ

2
j

)µj

and

Gj(p1, pj ) = (µj − µ1)
2

2(σ 2
1 /p1 + σ 2

j /pj )
.

Then,

∂Gj (p1, pj )

∂p1
= (µj − µ1)

2

2(σ 2
1 /p1 + σ 2

j /pj )2
σ 2

1 /p2
1 .

Thus, at optimal point for j, k ≥ 2:

(µj − µ1)
2

(σ 2
1 /p∗

1 + σ 2
j /p∗

j )
= (µk − µ1)

2

(σ 2
1 /p∗

1 + σ 2
k /p∗

k )
, (13)

and

∂Gj (p
∗
1, p∗

j )/∂p1

∂Gj (p
∗
1, p∗

j )/∂pj

= σ 2
1 /p∗

1
2

σ 2
j /p∗

j
2 ,

so that

p∗
1 = σ1

√∑
j≥2

p∗
j

2/σ 2
j .

If, as in Chen et al. (2000), we suppose that p∗
1 >> p∗

j

for j ≥ 2, then (13) yields

p∗
j

p∗
k

≈ σ 2
j /(µj − µ1)

2

σ 2
k /(µk − µ1)2

.

This corresponds to the solution proposed by Chen et al.
(2000).

Example 2 Consider the case where each Xj has
a Bernoulli distribution with parameter qj . Then it is well
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known and easily seen that

Ij (x) = x log
x

qj

+ (1 − x) log
1 − x

1 − qj

.

Again, Gj(p1, pj ) = infx[p1I1(x) + pj Ij (x)] and it can
be seen that the infimum is achieved at

x∗
j =

(
q1

1−q1

)p1/(p1+pj ) (
qj

1−qj

)pj /(p1+pj )

1 +
(

q1
1−q1

)p1/(p1+pj ) (
qj

1−qj

)pj /(p1+pj )

and Gj(p1, pj ) equals

−(p1+pj ) log[(1 − q1)
p1

p1+pj (1 − qj )

pj
p1+pj +q

p1
p1+pj

1 q

pj
p1+pj

j ].

We numerically solve for optimal allocation in two cases each
with d = 3. In the first case q1 = 0.92 and q2 = q3 = 0.99.
In this case p∗

1 = 0.49 and p∗
2 = p∗

3 = 0.255. If instead,
each Xj were assumed to be Gaussian in this case with
mean qj and variance qj (1−qj ), then the optimal allocation
equals p∗

1 = 0.66 and p∗
2 = p∗

3 = 0.17.
In the second case we select q1 = 0.5 and q2 = q3 =

0.6, and find that p∗
1 = 0.414 and p∗

2 = p∗
3 = 0.293. Again,

under the Gaussian assumption, the optimal allocation equals
p∗

1 = 0.415 and p∗
2 = p∗

3 = 0.293. This suggests that more
skewed the distributions are, more misleading the Gaussian
assumption may be.

It is important to note that if, instead of each Xj ,
we consider an average of batch of m such independent
random variables, the log moment generating function of
the batch evaluated at θ equals m�j(θ/m) and hence its
rate function evaluated at x equals mIj (x). Since all the
rate functions are scaled by the same amount m, it can be
seen that the optimal allocations remain unaffected by this
batching operation. In particular, the assumption that for
large m, the batches have a Gaussian distribution, may lead
to misleading allocations.

4 STOPPING RULE BASED ON INDIFFERENCE
ZONE FORMULATION

We now illustrate how a stopping rule may be developed
that provides a conservative upper bound on the probability
of false selection in the simple setting where all populations
have a Bernoulli distribution. This rule is particularly useful
as it exploits the exponential decay rate of the probability
of incorrect selection.

Proposition 1 Suppose that each Xj is Bernoulli
with parameter qj and that qj ≥ q1 + δ for j ≥ 2 and
δ > 0. Then, under optimal allocation as well as under
equal allocation (pj = 1/d for all j )

P(FS) ≤ ε

for

n ≥ (log ε − log(d − 1))d

log(1 − δ2)
.

Note that n increases very slowly as ε → 0. The
proposition follows from Lemmas 2 and 3.

Lemma 2 Under Assumption 1,

P(FS) ≤ (d − 1) exp[−n min
2≤j≤d

Gj (1/d, 1/d)]. (14)

Lemma 3 Suppose that qj ≥ q1 + δ for j ≥ 2 and
δ > 0. Then,

min
j≥2

Gj(1/d, 1/d) ≥ − 1

d
log(1 − δ2).

Proof of Lemma 2 First we show that

P(X̄1(p
∗
1n) ≥ X̄j (p

∗
j n)) ≤ exp(−nGj (p

∗
1, p∗

j )). (15)

To see this, note that for θ ≥ 0, P(X̄1(p
∗
1n) ≥ X̄j (p

∗
j n))

is less than or equal to

E(exp[nθ(X̄1(p
∗
1n) − X̄j (p

∗
j n))]I (X̄1(p

∗
1n) ≥ X̄j (p

∗
j n)))

where I (·) above denotes the indicator function. This in
turn is

≤ E(exp[nθ(X̄1(p
∗
1n) − X̄j (p

∗
j n))])

= exp[np∗
1�1(θ/p∗

1) + np∗
j �j (−θ/p∗

j )]

The last relation holds with θ replaced by θ∗ > 0 that
uniquely satisfies the equation

�′
1(θ

∗/p∗
1) = �′

j (−θ∗/p∗
j ).

To see this, note that �′
1(θ/p∗

1) − �′
j (−θ/p∗

j ) is a strictly
increasing continuous function of θ . It equals µ1 −µj < 0
at θ = 0 and, under Assumption 1, becomes positive for θ

sufficiently large.
We now argue that

Gj(p
∗
1, p∗

j ) = −p∗
1�1(θ

∗/p∗
1) − p∗

j �j (−θ∗/p∗
j ). (16)

As argued in (5),

Gj(p
∗
1, p∗

j ) = p∗
1I1(x

∗) + p∗
j Ij (x

∗) (17)
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where x∗ = x(p∗
1, p∗

j ) satisfies the equation p∗
1I ′

1(x
∗) =

−p∗
j I

′
j (x

∗). Set θ∗ equal to these two terms. Also note
that

I1(x
∗) = θ1(x

∗)x∗ − �1(θ1(x
∗)) (18)

where θ1(x
∗) is a unique solution to

�′
1(θ) = x∗.

Note that

I ′
1(x

∗) = θ1(x
∗) + θ ′

1(x
∗)x∗ − �′

1(θ1(x
∗))θ ′

1(x
∗) = θ1(x

∗).

Hence, θ1(x
∗) = θ∗/p∗

1 . Similarly,

Ij (x
∗) = θj (x

∗)x∗ − �j(θj (x
∗)) (19)

where �′
j (θj (x

∗)) = x∗ so that I ′
j (x

∗) = θj (x
∗), or

θj (x
∗) = −θ∗/p∗

j . From (17), (18) and (19), (16) fol-
lows. In particular, we then have

P(FS) ≤ (d − 1) exp[−n min
2≤j≤d

Gj (p
∗
1, p∗

j )]
≤ (d − 1) exp[−n min

2≤j≤d
Gj (1/d, 1/d)].

Proof of Lemma 3 Note from Example 2 that

Gj(1/d, 1/d) = − 2

d
log[√(1 − q1)(1 − qj ) + √

q1qj ].

It can be easily seen, e.g., through differentiation that√
(1 − q1)(1 − qj ) + √

q1qj is a decreasing function of
qj for all qj ≥ q1. Therefore,

Gj(1/d, 1/d) ≥ − 2

d
log[√(1 − q1)(1 − q1 − δ)+√

q1(q1 + δ)].

Again through differentiation and some algebraic manip-
ulations it may be seen that

√
(1 − q1)(1 − q1 − δ) +√

q1(q1 + δ) is maximized at q∗
1 = (1 − δ)/2. From this it

follows that

Gj(1/d, 1/d) ≥ − 1

d
log(1 − δ2).

5 CONSISTENCY OF OPTIMAL ALLOCATION
ESTIMATOR

In practice, the large deviations rate function correspond-
ing to the probability of false selection is estimated from
the generated samples. From implementation viewpoint
an adaptive procedure may be developed where a certain
number of samples are generated from each population that
are then used to estimate optimal allocations. Using these
allocations more samples are generated. Combining the
generated samples, these allocations are re-estimated and
so on.

Note that there may be significant degradation in perfor-
mance due to estimation errors. This may be considerable
if the sample mean observed at any stage of the adaptive
procedure does not correspond to the best population, so
that the resulting estimated optimal allocations may be very
different from their true values. We now argue that as
long each population is assigned at least a positive fraction
of the total computational budget n, the estimated optimal
allocations converge to the correct values as n → ∞. To
keep the notation simple, we show this consistency of the
estimators when each population is assigned n samples and
n → ∞.

Let (Xi1, . . . , Xin) denote the samples generated from
population i. Suppose that �

(n)
i (·) denotes the empirical es-

timate of the log moment generating function corresponding
to population i, i.e.,

�
(n)
i (θ) = log

∑n
j=1 exp(θXij )

n
,

and

�(n)′
i (θ) =

∑n
j=1 Xij exp(θXij )∑n

i=1 exp(θXij )
,

denotes the empirical estimate of the derivative of the log
moment generating function �′

i (θ).
Let

I
(n)
i (x) = sup

θ

(θx − �
(n)
i (θ))

denote the estimated rate function from the population i ≤ d.
Let ĩ = arg mini≤d X̄i(n). Define

G
(n)
j (p

ĩ
, pj ) = inf

x
(p

ĩ
I

(n)

ĩ
(x) + pj I

(n)
j (x))

for j = ĩ.
Define

h(n)(p) = min
j =ĩ

G
(n)
j (p

ĩ
, pj ).

Let p(n) ∈ �d denote a solution to the optimization problem:
max h(n)(p) subject to p ≥ 0 and

∑d
i=1 pi = 1. We now

state the main result of this section.
Theorem 2 Suppose that Assumption 1 holds and

p∗ uniquely solves P. Then, the empirical estimate of the
allocations is consistent, i.e.,

p(n) → p∗ a.s.

as n → ∞.
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The proof of this theorem is outlined below. Note that
ĩ → 1 as n → ∞ a.s. In view of this, we set

G
(n)
j (p

ĩ
, pj ) = G

(n)
j (p1, pj ),

to simplify the proofs.

5.1 Proof Outline of Consistency

Let θj denote the solution to �′
j (θ) = µd and θj denote

the solution to �′
j (θ) = µ1. Due to Assumption 1, these

exist and are finite. For notational convenience we drop
the subscript j until necessary. Lemmas 4, 5, 6 and 7 are
useful in the proof of Theorem 2.

Lemma 4 Under Assumption 1, �(n)(θ) → �(θ)

and �(n)′(θ) → �′(θ) for all θ ∈ [θ, θ ] a.s.
Proof outline Note that �(n)(θ) → �(θ) and

�(n)′(θ) → �′(θ) a.s. for each θ ∈ [θ, θ ]. Hence, this
convergence holds for all rational θ ∈ [θ, θ ] and θ along a
set of paths of probability 1. Call this set A. It is easy to
see that along A, this convergence holds for all θ ∈ [θ, θ ].
To see this, note that for any irrational θ ,

|�(n)(θ) − �(θ)|

is upper bounded by

|�(n)(θ)−�(n)(θr )|+ |�(n)(θr )−�(θr)|+ |�(θr)−�(θ)|
(20)

where θr is a rational number in the neighborhood of θ .
Since �(n)(·) is convex,

|�(n)(θ) − �(n)(θr )| ≤ �(n)′(θ)|θ − θr |

Now, �(n)′(θ) → �′(θ) and thus is bounded for n suffi-
ciently large (this bound may depend on the sample path).
Hence, it follows that by choosing θr sufficiently close to θ ,
and n sufficiently large, (20) can be made arbitrarily small.
Thus, �(n)(θ) → �(θ) along A for all θ ∈ [θ, θ ]. �

Lemma 5 Under Assumption 1,

I (n)(x) → I (x) (21)

a.s.
To see this, let θ∗ denote the solution to

�′(θ) = x.

Then,

I (x) = θ∗x − �(θ∗).
As argued in the proof of Lemma 2,

I ′(x) = θ∗. (22)

Let θ(n) denote the solution to

�(n)′(θ) = x

whenever it exists.
Proof outline Note that for any ε > 0 �(n)′(θ∗−ε) →

�′(θ∗ − ε) < x and �(n)′(θ∗ + ε) → �′(θ∗ + ε) > x. It
follows that for n sufficiently large, θ(n) exists. Furthermore,
θ(n) ∈ (θ∗ ± ε) for all n sufficiently large and since ε is
arbitrary, θ(n) → θ∗ a.s. Then,

I (n)(x) = θ(n)x − �(n)(θ(n)),

for all n sufficiently large. To prove the result we need to
show that

�(n)(θ(n)) → �(θ∗)

a.s. Note that |�(n)(θ(n)) − �(θ∗)|

≤ |�(n)(θ(n)) − �(n)(θ∗)| + |�(n)(θ∗) − �(θ∗)|.

Since the last term goes to zero as n → ∞, and since

|�(n)(θ(n)) − �(n)(θ∗)| ≤ �(n)′(θ)|θ(n) − θ∗|,

the result follows. �

Lemma 6 Under Assumption 1, for p1, pj > 0,

G
(n)
j (p1, pj ) → Gj(p1, pj )

a.s.
Proof outline From (22), note that I ′

1(x) = θ∗
1 and

from the proof of Lemma 5, it follows that for n sufficiently

large, θ
(n)
1 is well defined and I

(n)
1

′
(x) = θ

(n)
1 . Thus, from

Lemma 5 and its proof it follows that I
(n)
i (x) → Ii(x),

I
(n)
i

′
(x) → I ′

i (x) a.s. for any x ∈ [µ1, µd ] and i ≤ d. It
is easy to show that this is true a.s. simultaneously for all
x ∈ [µ1, µd ].

Let x∗ be the solution to

p1I
′
1(x) + p2I

′
j (x) = 0.

As argued in the proof of Lemma 5, we can show that for
sufficiently large n, there exists x(n), a solution to

p1I
(n)
1

′
(x) + p2I

(n)
j

′
(x) = 0,
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j )|
and that x(n) → x∗. Then, for sufficiently large n,

G
(n)
j (p1, pj ) = p1I

(n)
1 (x(n)) + p2I

(n)
j (x(n)).

Again, as in the proof of Lemma 5, we can show that
I

(n)
1 (x(n)) → I1(x

∗) and I
(n)
j (x(n)) → Ij (x

∗) a.s. so that
the result follows. �

It therefore follows that h(n)(p) → h(p) a.s.
From the definitions of x∗ and x(n) specified in the

proof of Lemma 6, and (6), it follows that

∂

∂p1
Gj(p1, pj ) = I1(x

∗)

and

∂

∂pj

Gj (p1, pj ) = Ij (x
∗).

Similarly, ∂
∂p1

G
(n)
j (p1, pj ) = I

(n)
1 (x(n)) and

∂
∂pj

G
(n)
j (p1, pj ) = I

(n)
j (x(n)) for n sufficiently large.

If (p̂(n) ≥ 0 : n ≥ 1) lie in a compact set, it is
easy to see that the partial derivatives ∂

∂p1
G

(n)
j (p̂

(n)
1 , p̂

(n)
j )

and ∂
∂pj

G
(n)
j (p̂

(n)
1 , p̂

(n)
j ) are uniformly bounded for all n

sufficiently large, a.s. Then the following lemma follows:
Lemma 7 Suppose that (p̂(n) ≥ 0 : n ≥ 1) lie in a

compact set and p̂(n) → p̂. Then

G
(n)
j (p̂

(n)
1 , p̂

(n)
j ) → Gj(p̂1, p̂j ). (23)

Proof outline of Theorem 2
The sequence (p(n) : n ≥ 1) lies in a compact set and

hence there exists a convergent subsequence (p(nk) : k ≥ 1)

such that

p(nk) → p̃

for some p̃ that may be sample path dependent. Note that

h(nk)(p(nk)) ≤ h(nk)(p).

Thus,

lim
k→∞ h(nk)(p(nk)) ≤ lim

k→∞ h(nk)(p) = h(p)

for all p ≥ 0,
∑

i≤d pi = 1. Once we show that

lim
k→∞ h(nk)(p(nk)) = h(p̃), (24)
it then follows that

h(p̃) ≤ inf
p≥0,

∑
i≤d pi=1

h(p) = h(p∗)

so that p̃ = p∗ a.s. Since every subsequence of (p(n) : n ≥
1) will have a further subsequence that converges to p∗,
the result then follows. We now argue that (24) holds. To
see this, note that

|h(nk)(p(nk))−h(p̃)| ≤
∑

2≤j≤d

|G(nk)
j (p

(nk)
1 , p

(nk)
j )−Gj(p̃1, p̃

and (24) follows from (23). �
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