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1. Introduction

Partially wrapping D-branes over non-trivial cycles of non-compact geometries yields

large classes of interesting gauge theories, depending on the choice of geometry. It has also

been suggested in [1,2] that N ≫ 1 D-branes, wrapped over cycles, have a dual description

(in a suitable regime of parameters) involving transitions in geometry, where the D-branes

have disappeared and have been replaced by fluxes. This duality can be reformulated and

explained as a geometric flop in the context of M-theory propagating on G2 holonomy

manifolds [3,4]. In this paper, we use these ideas to propose a new class of dualities.

The simplest case, which will be the main focus of this paper, corresponds to an N = 1

supersymmetric gauge theory with adjoint chiral superfield Φ and tree-level superpotential

Wtree =
n+1∑

p=1

gp
p
Tr Φp ≡

n+1∑

p=1

gpup, (1.1)

where the gauge group can be either SU(N) or U(N), depending on whether or not we

treat g1 as a Lagrange multiplier imposing tracelessness of Φ. For simplicity, we generally

refer to U(N), with the understanding that the SU(N) can be obtained by imposing the

Lagrange multiplier condition. Without the superpotential (1.1), the theory would be

N = 2 super-Yang-Mills. The theory with superpotential (1.1) arises [5] by wrapping N

type IIB D5 branes on special cycles of certain Calabi-Yau geometries; the choice of n and

the parameters gp are given by the geometry. Using the corresponding geometric transition,

we construct a dual theory without the D-branes, but with suitable fluxes. There is also

a mirror IIA description, involving D6 branes wrapping 3 cycles. The IIB description

is simpler, in that there are no worldsheet instanton corrections to the superpotential.

However, the IIA perspective is useful for explaining the origin of these dualities, as they

are related to geometric flop transitions in M-theory on G2 holonomy geometries [3].

The classical theory with superpotential (1.1) has many vacua, where the eigenvalues

of Φ are various roots ai of

W ′(x) =

n∑

p=0

gp+1x
p ≡ gn+1

n∏

i=1

(x− ai). (1.2)

In the vacuum where classically P (x) ≡ det(x− Φ) =
∏n

i=1(x− ai)
Ni , the gauge group is

broken as

U(N) →
n∏

i=1

U(Ni) with
n∑

i=1

Ni = N. (1.3)

1



In the geometric construction [5], this is seen because we can wrap Ni D5 branes on any

of n choices of S2 ∼= P1. Such a vacuum exists for any partition of N =
∑n

i=1 Ni.

Applying the proposal of [1,2] to each S2, a transition occurs where we are instead

left with n S3s. As we discuss, the non-compact Calabi-Yau geometry is now given by the

following surface in C4:

W ′(x)2 + fn−1(x) + y2 + z2 + v2 = 0, (1.4)

with W ′(x) the degree n polynomial (1.2) and fn−1(x) a degree n − 1 polynomial. As

for any Calabi-Yau, we can form an integral basis of 3-cycles, Ai and Bi, which form a

symplectic pairing

(Ai, Bj) = −(Bj , Ai) = δij , (Ai, Aj) = (Bi, Bj) = 0, (1.5)

with the periods of the Calabi-Yau given by the integral of the holomorphic 3-form Ω over

these cycles. In the present case (1.4), we have i = 1 . . . n, with the Ai cycles compact and

the Bi non-compact. We denote the periods as

∫

Ai

Ω ≡ Si,

∫ Λ0

Bi

Ω ≡ Πi =
∂F
∂Si

(1.6)

with F(Si) the prepotential. Λ0 is a cutoff needed to regulate the divergent Bi integrals;

this is actually an infrared cutoff in the geometry integral, which will naturally be identified

with the ultraviolet cutoff of the 4d QFT. Using (1.6), the polynomial fn−1(x) in (1.4) is

to be solved for in terms of the n Ai periods Si.

As in [2], the dual theory obtained after the transitions to the geometry (1.4) has a

superpotential due to fluxes through the 3-cycles of (1.4):

− 1

2πi
Weff =

n∑

i=1

(NiΠi + αiSi), (1.7)

with Ni 3-form (HR + τHNS) flux through Ai and αi 3-form flux (HR + τHNS) through

Bi [6,7]. If not for the superpotential (1.7), the dual theory would yield a 4d, N = 2

supersymmetric, U(1)n gauge theory, with the Si the N = 1 chiral superfields in the N = 2

U(1)n vector multiplets. In terms of this field theory, the superpotential (1.7) corresponds

to breaking N = 2 to N = 1 by adding electric and magnetic Fayet-Iliopoulous terms [8].

There will be N = 1 supersymmetric vacua, with the Si massive and thus fixed to some
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particular 〈Si〉, but with the N = 1 U(1)n gauge fields left massless. In the applications

we consider, all αj ∼ 1/g20, the bare gauge coupling of the gauge theory; this combines in

a natural way with Λ0, replacing the cutoff with the physical scale Λ of the gauge theory.

The duality proposal, generalizing that of [2], is that these U(1)n gauge fields coincide

with those of the original theory (1.3) after the SU(Ni) get a mass gap and confine. In

particular, the exact quantum effective gauge couplings τij(gr,Λ;Ni) of the remaining

massless U(1)n gauge fields should be given by the prepotential of the above dual, τij =

∂2F/∂Si∂Sj , evaluated at 〈Si〉. Further, as in [2], the Sj are to be identified with the

SU(Nj) “glueball” chiral superfields Sj = − 1
32π2TrSU(Nj)WαW

α, whose first component

is the SU(Nj) gaugino bilinear. Finally, we claim that the superpotential (1.7) is the exact

quantum effective superpotential of the low-energy SU(N) theory with superpotential

(1.1), in the vacuum with the Higgsing (1.3).

Note that the U(1)n dual theory only knows about the values of the Ni via the coef-

ficients appearing in (1.7). In particular, the Πi(Sj ; gr,Λ) and F(Si; gr,Λ) are completely

independent of the Ni, depending only on Λ and the parameters gr via (1.4). Upon adding

(1.7) to the dual theory, one obtains 〈Si〉 which are complicated functions of the Ni,

gr, and Λ. Integrating out the Si gives the exact quantum 1PI effective superpotential

Weff (gr,Λ, Ni) of the original theory.

The geometric transition leads to a new duality, which can be stated in purely field

theory terms: the U(N) theory with adjoint and superpotential (1.1) is dual to a U(1)n

theory and superpotential (1.7). This duality is reminiscent of that of [9].

The above duality makes some highly non-trivial predictions for the exact U(1)n gauge

couplings τij(gr,Λ) and the exact effective superpotential Weff (gr,Λ). This allows us to

check the duality, by comparing with the exact results which can (at least in principle) be

obtained for these quantities via a direct field theory analysis. The above quantities can

be exactly obtained (again, at least in principle) by viewing the N = 1 U(N) theory with

adjoint Φ and superpotential (1.1) as a deformation of N = 2, and using the known exact

results for N = 2 field theories. We find perfect agreement between these results, which is

a highly non-trivial check of our proposed duality.

The organization of this paper is as follows: In section 2 we review the large N

duality of [2] for N = 1 Yang-Mills theory, and briefly discuss the extension to include

massive flavors in the fundamental of U(N). In section 3, we discuss how to geometrically

engineer the general N = 1 theory with adjoint and superpotential (1.1). In section 4 we

propose the large N dual of these theories via the transition in the CY geometry where
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S2s are blown down, S3s are blown up, and the branes have been replaced with fluxes.

In section 5 we analyze the U(N) theory with adjoint and superpotential using standard

supersymmetric field theory tools. In section 6 we specialize these results to the case of

the cubic superpotential. In section 7 we analyze the proposed large N duals and show

how the leading order computation of gauge theory based on gaugino condensate follows

from monodromies of the geometry. In section 8 we specialize to the cubic superpotential

and compute exact results for the quantum corrected superpotential using the proposed

dual. We find perfect agreement with the results based on a direct gauge theory analysis.

In appendix A we present the details of the analysis for one of the field theory examples,

and in appendix B we discuss the series expansion for computing the periods for the case

of cubic superpotential.

2. Review of the large N duality for N = 1 Yang-Mills

Consider type IIA string theory on a non-compact Calabi-Yau threefold of T ∗S3, i.e.

the conifold, with defining equation given by

x2 + y2 + z2 + v2 = µ,

and consider wrapping N D6 branes on the S3, with the unwrapped dimensions filling the

Minkowski spacetime. This gives rise to a 4d N = 1 U(N) pure Yang-Mills theory. The

duality proposed in [2], which was motivated by embedding the large N topological string

duality of [1] into superstrings, states that in the large N limit this theory is equivalent to

type IIA strings propagating on the blow up of the conifold. This is a geometry involving a

rigid sphere P1, where the normal bundle to the P1 in the CY is given by a O(−1)+O(−1)

bundle over it (i.e. two copies of the spinor bundle over the sphere). The branes have

disappeared and have been replaced by an RR flux through P1 and an NS flux on the dual

four cycle [2]. This duality has been embedded into M-theory, where it admits a purely

geometric interpretation [3,4]. The SU(N) gauge theory decouples from the bulk in the

limit where the size S of the blowup sphere P1 is small. The size S is fixed in terms of the

units of flux, and the appropriate decoupling limit is large N . S gets identified [2] with

the glueball superfield S = − 1
32π2TrWαW

α of the SU(N) theory, so its expectation value

corresponds to gaugino condensation in the SU(N) theory.

As noted in [2] one can also consider the mirror description of this geometry, which is

simpler to work with (as the worldsheet instanton corrections to spacetime superpotential
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are absent). This corresponds to switching from IIA to IIB theory and reversing the arrow

of transition: the original U(N) theory is obtained from type IIB D5 branes wrapped

around the P1 in the blown up conifold geometry and, in the largeN limit, this is equivalent

to type IIB on the deformed conifold background:

f = x2 + y2 + z2 + v2 − µ = 0.

The deformation parameter µ will, again, be identified with the SU(N) glueball superfield.

Rather than the N original D5 branes, there are now N units of RR flux through S3, and

also some NS flux through the non-compact cycle dual to S3. This mirror description is

related to a particular limit of the large N duality proposed in [10] and [11].

The value of the modulus µ is fixed [2] by the fluxes, and this is captured by a

superpotential for S, whose first component is proportional to µ. Specializing (1.5) and

(1.6) to the conifold, we have a single compact 3-cycle A ∼= S3, and a single dual, non-

compact 3-cycle B. The A period of the holomorphic 3-form Ω is S. There are N units of

RR flux through A, and the NS flux α through B; α is identified with the bare coupling

of the 4d U(N) gauge theory.

The holomorphic three-form Ω is given by

Ω =
dxdydzdv

df
∼ dxdydz

v
=

dxdydz√
µ− x2 − y2 − z2

The 3-cycles A and B can be viewed as 2-spheres spanned by a real subspace of y, z fibered

over x, as in [12,13,14], and integrating Ω over the fiber y, z yields a one-form ω in the

x-plane: ∫

S2

Ω ∼ dx
√
x2 − µ = ω.

The A-cycle, projected to the x-plane, becomes an interval between x = ±√
µ. Thus the

A-period is given by:

S =

∫

A

Ω =
1

2πi

∫ √
µ

−√
µ

dx
√

x2 − µ =
µ

4

The B-period can be viewed as an integral from x =
√
µ to infinity. However this integral

is divergent, and thus must be cutoff to regulate the infinity. Giving S dimension 3, x has

dimension 3/2, so we put the cutoff at x = Λ
3/2
0 where Λ0 has mass dimension 1:

Π =
1

2πi

∫ Λ
3/2
0

√
µ

dx
√

x2 − µ =
1

2πi

(
1

2
Λ3
0 − 3S log Λ0 − S(1− logS)

)
+O(1/Λ0)
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Note that, under Λ3
0 → e2πiΛ3

0, Π → Π − S, shifting the B period by an A period. Using

the fact that we have N units of RR flux through S3 and α units of NS flux through the

B-cycle, we find the superpotential [2]:

Weff = N [3S log Λ0 + S(1− logS)]− 2πiαS.

α is related to the bare coupling constant of the SU(N) gauge theory by 2πiα = 8π2/g20.

The coefficient of S in the above superpotential is given by

S(3N logΛ0 − 2πiα),

which is the geometric analog of the running of the coupling. α depends on Λ0 in such a

way that the above quantity is finite as Λ0 → ∞:

8π2

g2(Λ0)
= const.+ 3N logΛ0,

which is exactly the expected running of the coupling constant for the 4d N = 1 U(N)

Yang-Mills theory. The upshot is to replace the cutoff Λ0 in the above expression with the

scale of the gauge theory, which we will denote by Λ. We thus have for the superpotential

Weff = Slog[Λ3N/SN ] +NS

(the linear term NS is a matter of convention and defines what one means by the physical

scale Λ). This is indeed the superpotential of [15] for the massive glueball S. Integrat-

ing out S via dWeff/dS = 0 leads to the N supersymmetric vacua of SU(N) N = 1

supersymmetric Yang-Mills:

〈S〉 = e2πik/NΛ3, k = 1, . . .N.

2.1. Gauge Theoretic Reformulation of the duality

We can formulate the above large N duality in purely gauge theoretic terms. The

conifold geometry without the fluxes corresponds to an N = 2 U(1) gauge theory with a

charged hypermultiplet [16]. Turning on fluxes is equivalent to adding electric and magnetic

Fayet-Iliopoulous superpotential terms, which softly break N = 2 to N = 1. The N = 2

vector multiplet consists of a neutral N = 1 chiral superfield S and an N = 1 photon. The

N = 1 U(1) photon is left massless, and is to be identified with the overall U(1) ⊂ U(N)

6



of the original N = 1 theory. The N = 1 chiral superfield S gets a mass, and is to be

identified with the massive glueball chiral superfield S of the SU(N) theory.

The identification of the U(1) of the dual theory with the U(1) ⊂ U(N) is consistent

with the fact that minimization of the superpotential gives rise to

N
∂Π

∂S
+ α = Nτ + α = 0

where we used the special geometry to connect the periods of the B-cycles with the coupling

constant τ of the U(1). Note that the coupling of the U(1) theory is −α/N as it should

be where −α is the bare coupling of the U(N) theory and U(1) is identified with 1/N

times the identity matrix in U(N) adjoint. In fact the “charged hypermultiplet” of the

U(1) is nothing but the baryon field of the original U(N) theory. To see this note that

before turning on the RR flux on S3, wrapping a D3 brane around it gives a charged

hypermultiplet. Turning on the RR flux, induces N units of fundamental charge on it, as

noted in the context of AdS/CFT correspondence in [17,18,19]. After turning on the flux

the field is not allowed by itself, i.e., it is attached to N fundamental strings going off to

infinity. Thus after the FI deformations of the superpotential it is slightly misleading to

think of the U(1) theory as having a fundamental hypermultiplet. In that context one can

simply view this as an effective U(1) theory with the SW N = 2 geometry as would have

been the case with a fundamental hypermultiplet.

2.2. Adding Massive Fields

As discussed in [2], we can also consider adding some quark chiral superfields, in the

fundamental representation of SU(N). In the type IIB description this is done by taking

a D5 brane wrapping a holomorphic 2-cycle not intersecting the P1, but separated by

a distance ρ, where ρ is proportional to the mass of the hypermultiplet, as the matter

comes from strings stretching between the non-compact brane and the N branes wrapped

on P1. If (ζ1, ζ2) denote the O(−1) + O(−1) bundle over P1, the 2-cycle is the curve

(ζ1, ζ2) = (ρ, 0) over a point on P1. Passing this through the conifold transition, which in

these coordinates is given by

ζ1a− ζ2b = µ,

and rewriting it by a change of variables in the form

F (x, y) = x2 + y2 − µ = ζ2b,
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we have a D5 brane wrapping a 2-cycle given by ζ2 = 0 and x = ρ. Since here x has

dimension 3/2, and ρ should be proportional to the mass m0, we identify ρ = m0Λ
1
2
0 . As

discussed in [20] such a D-brane gives rise to an additional spacetime superpotential

∆Weff = 1
2

∫ Λ
3/2
0

m0Λ
1/2
0

dx
√
x2 − µ = S log

(
m0

Λ0

)
+O(

1

Λ0
).

This gives the running of the mass parameter with the cutoff Λ0. We define the renor-

malized mass by m/Λ = m0/Λ0. Generalizing to any number of matter fields in the

fundamental representation, with mass matrix m, we find

Weff = Slog[Λ3N/SN ] +NS + STrlog[m/Λ]

= S[log
Λ3N−Nf det m

SN
+N ].

Integrating out S via dWeff/dS = 0 yields the correct field theory result:

SN = Λ3N−Nf det m.

Λ0

3/2

µ µ

x−Plane

ρ ρ ρ ρ1 2 3 4

Figure 1: Location of the branch cut in the x-plane. Contours of integration of the different

periods of the geometry including those coming from massive fields.

3. Geometric engineering N=1 theories with adjoint Φ and superpotential

Wtree(Φ)

The N = 1 SU(N) Yang-Mills theory of the previous section can be regarded as a

special case of the more general theory with adjoint Φ and superpotential as in (1.1),

Wtree(Φ) =

n+1∑

p=1

gp
p
Tr Φp. (3.1)
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For n = 1, the adjoint gets a mass m = g2 and we recover the case reviewed in the previous

section. We here review the geometric construction of [5] for general n.

For Wtree(Φ) = 0, the 4d field theory would be pure N = 2 Yang-Mills system. To

geometrically engineer that, all we need is a P1 in a Calabi-Yau manifold for which the

normal bundle is O(−2)+O(0) (i.e. it has the same normal geometry as if the P1 were in

a K3). If we wrap N D5 branes around the P1 we obtain an N = 2 U(N) gauge theory

in the uncompactified worldvolume of the D5 brane. The adjoint scalar Φ gets identified

with the deformations of the brane in the O(0) direction, normal to the P1.

To describe the geometry in more detail, let z denote the coordinate in the north

patch of P1 and z′ = 1/z in the south patch. Let x, x′ denote the coordinate of O(0)

direction in the north and south patches respectively, and let u, u′ denote the coordinates

of O(−2) in the north and south patches respectively. Then we have

z′ = 1/z, x′ = x, u′ = uz2. (3.2)

There is a continuous family of P1s, labeled by arbitrary x, at u = 0 = u′. Each of the

N D5 branes can wrap a P1 at any value of x. In the N = 2 gauge theory living in the

unwrapped directions, this freedom to choose any x for each brane corresponds to moving

along the Coulomb branch, with the ai of each brane corresponding to an eigenvalue of

the adjoint field Φ.

This connection between x and the Coulomb branch moduli makes it clear how the

geometry must be deformed to obtain the N = 1 theory with superpotential (3.1). Rather

than having the P1, with coordinate z and z′ at the point u = u′ = 0, for arbitrary x,

it should exist only for particular values of x, namely the values x = ai where W ′(x) ≡
gn
∏n

i=1(x− ai) = 0. This is the case if (3.2) is deformed to

z′ = 1/z, x′ = x, u′ = uz2 +W ′(x)z, (3.3)

which is indeed only compatible with u = u′ = 0 at the n choices of x = ai where

W ′(x) = 0. Note that now we can distribute the N D5-branes among the vacua ai, i.e. Ni

branes wrapping the corresponding S2 at x = ai. This gives a geometric realization of the

breaking of U(N) →∏
i U(Ni).
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4. Large N Duality Proposal

We now obtain the large N dual of the U(N) theory with adjoint Φ and superpotential

Wtree(Φ) by considering the geometric transition where each of the n P1’s have shrunk

and have been replaced by a finite size S3. As already mentioned, the sizes of the n S3s

will correspond to the non-zero gaugino condensation expectation values in the n factors

of N = 1 non-Abelian gauge groups in (1.3). The needed blow-down of the n P1s of the

geometry of the previous section has been discussed in [21] and we will review it here. We

start with the defining equation (3.3). Its blowdown can be obtained by the change of

variables as follows: define x1 ≡ x, x2 ≡ u′, x3 ≡ z′u′, x4 ≡ u; using (3.3), these satisfy

x2x4 − x2
3 + x3W

′(x1) = 0.

By completing the square involving x3 and W ′ and redefining the variables slightly we

obtain the equation

W ′(x)2 + y2 + z2 + v2 = 0. (4.1)

This geometry is singular, even for a generic W ′(x); near each critical point of W (x) it

has the standard conifold singularity. The large N dual follows from desingularizing the

geometry (4.1), allowing the n S3s to have finite size, rather than zero size as in (4.1).

4.1. Desingularization of the Geometry

Consider the most general desingularization of (4.1), subject to the restriction of [13]

that the deformation be a normalizable mode. For the case at hand, as W ′2 is a polynomial

of degree 2n, the most general desingularization of (4.1) subject to the normalizability

restriction is to add a polynomial fn−1(x) of degree n− 1 in x [14], giving the geometry

W ′(x)2 + fn−1(x) + y2 + z2 + v2 = 0. (4.2)

Under this deformation, each of the n critical points x = ai (1.2) (where W ′ = 0) splits

into two, which we denote as a+i and a−i .

As in the case of the conifold, the period integrals of the holomorphic three-form over

the Ai and Bi cycles can be written as integrals of an effective one-form ω over projections

of the cycles to the x plane. As in the conifold case, the non-trivial 3-cycles have simple

projections to the x plane. The one-form ω is given by doing the Ω integral over the fiber

S2 cycles (corresponding to the y, z, v coordinates on the surface (3.3)); this gives

ω = dx
√
W ′2(x) + fn−1(x). (4.3)
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Therefore, the periods of the holomorphic three-form Ω over the n 3-cycles Ai of (4.2),

which are compact 3-spheres, are given by,

Si = ± 1

2πi

∫ a+
i

a−

i

ω (4.4)

where the sign depends on the orientation; the periods over the dual Bi cycles are

Πi =
1

2πi

∫ Λ0

a+
i

ω. (4.5)

The map between the n coefficients in fn−1(x) and the Si can thus be obtained by

direct computation, and fn−1(x) can then be solved for as particular functions fn−1(x;Si).

Λ 0

Singular Geometry

Non−singular Geometry

a1 a2 an

−a1 1
− −a2 a2 an an

a+ + +

Figure 2: Geometry before and after introducing the deformation fn−1(x). The choice of branch

cuts and integration contours for the different periods is also shown. Dashed lines are paths on

the lower sheet.

As we already mentioned, the n values of Si are mapped under the duality to the n

glueball fields Si = − 1
32π2TrSU(Ni)WαW

α for the non-Abelian factors in (1.3). (The Si

can be defined in a gauge invariant way.) Just as with the case of pure N = 1 U(N) Yang-

Mills, the Si of the dual theory will become massive and obtain particular expectation

values thanks to a superpotential Weff , with the expectation values 〈Si〉 determined from

finding the critical points of Weff . The dual superpotential Weff arises from the non-zero

fluxes left after the transition.
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Rather than having D-branes, as present before the transition, the above deformed

geometry will have Ni units of HR flux through the i-th S3 cycle Ai. In addition, there

is an HNS flux α through each of the dual non-compact Bi cycles, with 2πiα = 8π2/g20

given in terms of the bare coupling constant g0 of the original 4d U(N) field theory. We

thus have the superpotential, given in terms of the Ai and Bi periods (1.6) as

− 1

2πi
Weff =

n∑

i=1

NiΠi + α(
n∑

i=1

Si). (4.6)

This Weff depends on the coefficients gr of the classical superpotential (1.1) of the original

U(N) theory with adjoint by way of the geometry (4.2). Weff is a function of the n Si, or

equivalently the n unknown parameters in fn−1(x). The supersymmetric vacua have fixed

〈Si〉, obtained by solving
∂Weff

∂Si
= 0, i = 1 . . . n. (4.7)

These 〈Si〉 will depend on the Ni, the parameters gr entering in the original Wtree(Φ) and

thus on the geometry (4.2), and Λ0, the Bi integral infrared cutoff.

In the classical limit, where we set the Si to zero, and thus fn−1(x) = 0, the period

of the one-form (4.3) gives

Πi =
1

2πi

∫ Λ0

ai

dxW ′(x) =
1

2πi
(W (Λ0)−W (ai)) . (4.8)

Then the dual superpotential is Weff =
∑

i NiW (ai) (ignoring the irrelevant constant

W (Λ0)). This indeed matches with the classical superpotential of the original U(N) theory,

given by simply evaluating the superpotential (1.1) in the vacuum with breaking (1.3),

where Ni eigenvalues of the Φ field take eigenvalue ai.

4.2. Aspects of the U(1)n gauge fields

The dual theory obtained after the transition is an N = 2 U(1)n gauge theory, broken

to N = 1 U(1)n by the superpotential Weff (4.6). The Si, which are in the same N = 2

multiplet as the U(1)n, get masses and frozen to particular 〈Si〉 by Weff . On the other

hand, the N = 1 U(1)n gauge fields remain massless. The couplings τij of these U(1)’s

can be determined from Πi(S) or the N = 2 prepotential F(Si), with Πi = ∂F/∂Si, of

the geometry under consideration:

τij =
∂Πi

∂Sj
=

∂2F(Si)

∂Si∂Sj
. (4.9)
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The couplings (4.9) should be evaluated at the 〈Si〉 obtained from (4.7).

Note that (4.7) and (4.9) imply

∑

i

Niτij + α = 0. (4.10)

We identify the Fi the i-th block U(1) field strength with the generator in U(N) which

is 1/Ni times the identity matrix in the i-th block and zero elsewhere. In this way the

Fi − Fj correspond to field strengths of the U(1)n−1’s coming from the SU(N) and the

NiFi will corresponds to the overall U(1). Thus the above equation is consistent with the

fact that the overall U(1) is a linear combination of the U(1)n’s with coefficients given by

Ni, together with the fact that the bare coupling constant of the overall U(1) should be

the same as that of the original U(N) theory, as the U(1) is decoupled. Moreover it is

consistent with the fact that there is no coupling between the field strength of this overall

U(1) with the other U(1)n−1. Thus extremizing the superpotential is equivalent to this

structure for the gauge coupling constants of the U(1) factors.

One can also relate the coupling constants of the U(1) factors to the period matrix of

the hyperelliptic curve

y2 = W ′(x)2 + fn−1(x)

To see that, from (4.9) we will have to compute the period integrals of ∂ω/∂(Si − Sj)

about the cycles of the hyperelliptic curve, where ω = ydx. As we will discuss in section 7

the coefficient of xn−1 of fn−1(x) is proportional to the sum of Si’s and thus considering

∂ω/∂(Si − Sj) gives rise to a linear combination of

xn−rdx

y

with 2 ≤ r ≤ n, a basis of the n − 1 holomorphic one-forms on the hyperelliptic curve.

Thus τij can be identified with the period matrix of the hyperelliptic curve.

4.3. Gauge theoretic reformulation

Just as in the case of n = 1 we can reformulate this duality in terms of a duality of two

gauge systems: We start with N = 2 pure Yang-Mills theory for gauge group U(N) and

deform it by the superpotential Wtree(Φ) of degree n + 1 in the scalar field, breaking the

U(N) into n factors U(Ni). The SU(Ni) gaugino bilinear together with the U(1) ⊂ U(Ni)

forms an N = 2 multiplet. One considers a dual N = 2 multiplet containing U(1)n softly
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broken to N = 1 by a superpotential term. Note that the N = 2 we have proposed is of

the form that appears in an N = 2 theory with a U(n) gauge group with some matter

fields (whose structure is dictated by the superpotential). In fact the dual N = 2 system

we have been considering is of the type studied in [22] and was connected to a type IIB

description considered here in [14]. In such a formulation the decoupling of the overall

U(1) from the other U(1)’s occurs as in (4.10), consistent with the minimization of the

superpotential.

5. Field theory analysis

We now analyze the strong coupling dynamics of the U(N) theory, with adjoint Φ

and superpotential (1.1), in the vacuum with the classical breaking (1.3). In the quantum

theory, each N = 1 super Yang-Mills SU(Ni) in (1.3) generally confines, with Ni super-

symmetric vacua. The Ni vacua correspond to Ni-th roots of unity phases of the gaugino

condensate 〈Si〉 6= 0, with Si = − 1
32π2TrWαW

α the SU(Ni) glueball chiral superfield.

The U(1)n in (1.3) are free, and therefore remain unconfined and present in the low energy

theory. The vacua can also have more interesting behavior. For example, in SU(3) with a

cubic superpotential for Φ but no quadratic mass term, the vacuum is at the non-trivial

conformal field theory point of [22].

The low energy theory contains an effective superpotential Weff (gp,Λ) which gives

the chiral superfield expectation values via [23]

∂Weff(gp,Λ)

∂gp
= 〈up〉

∂Weff(gp,Λ)

∂ log Λ2N
= 〈S〉 ≡

n∑

i=1

〈Si〉.
(5.1)

Weff can often be obtained exactly, thanks to its holomorphic dependence on gp and Λ

[24]. In the present case, we’ll discuss how Weff can indeed, in principle, be obtained

exactly via the N = 2 curves [25,26,27]; in practice, however, the result is quite difficult

to obtain.
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5.1. Approximate Weff via naive integrating in

The effective superpotential can often be obtained exactly via starting from the low-

energy effective theory and “integrating in” the massive matter fields [23,28]. As discussed

in [28], for this procedure to give an exact answer, one must be able to argue that the scale

matching relations are known exactly and that a possible additional unknown contribution

W∆ to the superpotential necessarily vanishes. Our N = 1 theory with adjoint Φ and

superpotential (1.1), does not admit this kind of symmetry and limits arguments needed

to prove the naive scale matching relations and W∆ = 0 as exact statements. So naive

integrating in need not give the exact answer for Weff ; nevertheless, it is still useful here

for obtaining an approximate answer.

To illustrate how naive integrating in can fail to give the exact answer in the theory

with adjoint Φ, consider the vacuum where classically 〈Φ〉 = 0, leaving SU(N) unbroken.

Such a vacuum exists for any tree level superpotential (1.1). The mass of Φ in this vacuum

is W ′′(0) = g2 ≡ m, independent of the other gp. The low energy theory is N = 1 SU(N)

pure Yang-Mills and the dynamical scale ΛL of this theory is related to that of the original

high energy theory by matching the running gauge coupling at the threshold scale m,

giving Λ3N
L = mNΛ2N . The low-energy theory has N vacua with gaugino condensation

and low-energy superpotential

Wlow = e2πik/NNΛ3
L = e2πik/NNmΛ2. (5.2)

Using (5.1) one could use this to try to find the 〈ur〉 in this vacuum, but the answer would

be incorrect for SU(N) with N > 3. The exact answer can be found from deforming

the N = 2 curve following [29], as reviewed in the next subsection. The exact effective

superpotential is found from this to be

Wexact = N

[n2 ]∑

p=1

g2p
2p

Λ2p

(
2p
p

)
. (5.3)

The g2 term coincides with (5.2), so both give the same 〈u2〉, but (5.2) gives all other

〈ur〉 = 0, whereas (5.3) gives higher 〈u2p〉 ∼ NΛ2p 6= 0.

The terms in (5.3) which are missing from (5.2) are weighted by g2pΛ
2p, which should

be small as compared with the leading term mΛ2. The reason is that the higher g2p appear

irrelevant in the original SU(N) description, so their required UV cutoff should be larger

than the dynamical scale Λ in order for the theory to be well-defined, i.e. the g3+nΛ
n
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should be small. So the lesson is that naive integrating in here needn’t give the exact

answer, but it does generally give the leading term or terms.

On the other hand, naive integrating in actually does give the exact answer for Weff

in the vacua where SU(N) → SU(2)×U(1)N−2 [30]. In fact, the exact curve of the entire

N = 2 theory can be re-derived via “integrating in” in the SU(2)× U(1)N−2 vacua [30].

We now outline the naive integrating-in procedure for the general vacuum (1.3). The

low-energy N = 1 SYM with gauge group (1.3) leads to a low-energy superpotential via

gaugino condensation in each of the decoupled, non-abelian groups:

Wlow = Wcl(gr) +

n∑

i=1

e2πiki/NiNiΛ
3
i . (5.4)

The term Wcl(gr) is simply the value of the classical superpotential (1.1), evaluated in the

classical vacuum:

Wcl =

n∑

i=1

Ni

n+1∑

p=1

gp
api
p
, (5.5)

with the ai defined in (1.2). As in (5.1), ∂Wcl(gr)
∂gr

= 〈ur〉cl.
The dynamical scale Λi entering in (5.4) is that of the low-energy SU(Ni) theory,

which is related to the scale Λ of the high-energy theory by matching the running gauge

coupling across two thresholds: that of the massive SU(N)/SU(Ni) W-bosons, and that

of the mass of the field Φ in the vacuum. The classical masses of the W-bosons which are

charged under SU(Ni) are mWij
= aj − ai. The mass of the SU(Ni) adjoint Φi ∈ Φ is

classically mΦi
= W ′′(ai) = gn+1

∏
j 6=i(aj − ai). The scale Λi of the low-energy SU(Ni) is

thus obtained by naive threshold matching to be

Λ3Ni
i = Λ2NmNi

Φi

∏

j 6=i

m
−2Nj

Wij
= gNi

n+1Λ
2N
∏

j 6=i

(aj − ai)
Ni−2Nj . (5.6)

It will be useful in what follows to also integrate in the glueball fields Si:

Wlow = Wcl(gr) +
n∑

i=1

Si

(
log(

Λ3Ni
i

SNi
i

) +Ni

)
. (5.7)

The Si are massive, with supersymmetric vacua 〈Si〉 = Λ3Ni
i , and integrating out the Si

leads back to (5.4).
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The final result of naive integrating in is thus expressed in terms of the ai(gr) as

Wlow(gr) =
n∑

i=1

[
Ni

n+1∑

p=1

gp
api
p

+ Si

(
log(

gNi
n+1Λ

2N
∏

j 6=i(aj − ai)
(Ni−2Nj)

SNi
i

) +Ni

)]
. (5.8)

The quantum term in (5.8), coming from SU(Ni) gaugino condensation, is to be omitted

when Ni = 1; e.g. in the case of [30], where N1 = 2 and all other Ni = 1. The result

(5.8) happens to be exact when no Ni > 2 but, as emphasized above, (5.8) is only an

approximation to the exact answer in the more general case, where some Ni ≥ 3.

5.2. The exact Wexact(gr) via deforming the N = 2 results

In this subsection, we obtain the exact 1PI generating function Wexact(gr) by deform-

ing the exact solution [25,26,27] of the N = 2 theory by the Wtree(Φ) (1.1). The large N

duality proposal of section 4 gives the exact superpotential Wexact(gr;Si) as (4.6), with

the glueball fields included. (As verified in section 7, the naive integrating in result (5.8)

is indeed an approximation to this exact result; generally there is an infinite series expan-

sion of corrections to the naive formula (5.8).) Upon integrating out the massive Si from

Wexact(gr, Si) (4.6), one obtains Wexact(gr), which we will verify indeed agrees with the

field theory result obtained in this subsection. Our Wexact(gr;Si) (4.6), however, contains

the additional information about the glueball fields Si. Although the Si are massive, this

additional information about their superpotential is physical; for example ∆W between

the different 〈Si〉 vacua gives the BPS tension of the associated domain walls. Perhaps

there’s also a way to exactly integrate in the Si in the context of the deformed N = 2 field

theory, though this is not presently known.

The N = 2 theory deformed by Wtree =
∑n+1

i=1 grur only has unbroken supersym-

metry on submanifolds of the Coulomb branch, where there are additional massless fields

besides the ur. The additional massless fields are the magnetic monopoles or dyons, which

become massless on some particular submanifolds 〈up〉 [25]. Near a point with l massless

monopoles, the superpotential is

W =

l∑

k=1

Mk(ur)qk q̃k +

n+1∑

p=1

gpup, (5.9)

and the supersymmetric vacua are at those 〈up〉 satisfying

Mk(〈up〉) = 0 and
l∑

k=1

∂Mk(〈up〉)
∂up

〈qk q̃k〉+ gp = 0, (5.10)
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the first equations are for all k = 1 . . . l and the second for all r = 1 . . .N (with gp = 0 for

p > n+ 1). The value of the superpotential (5.9) in this vacuum is simply

Weff =

n+1∑

p=1

gp〈up〉, (5.11)

with 〈up〉 the solution of Mk(〈up〉) = 0, where the monopoles are massless. The explicit

monopole masses Mk(ur) on the Coulomb branch can be obtained via the appropriate

periods of the one-form [26],

Mk =

∮

γk

λ, with λ =
1

2πi

x

y

∂PN (x)

∂x
dx, satisfying

∂λ

∂sr
∼ xN−rdx

y
+d(. . .), (5.12)

but this will not be needed here.

In the vacuum (1.3), there are n massless photons, whereas the original N = 2 theory

had N massless photons. So the vacuum (1.3) must have N − n mutually local magnetic

monopoles being massless and getting an expectation value as in (5.10), 〈qk q̃k〉 6= 0 for

k = 1 . . .N − n. It can indeed be shown from (5.10) that if the highest Casimir with

nonzero gp in Wtree is un+1, as in (1.1), then the supersymmetric vacuum necessarily has

at least l = N − n mutually local monopoles condensed. (More than N − n condensed

monopoles correspond to those classical vacua in (1.3) where some Ni = 0, and thus there

are fewer than n photons left massless.) The vacuum obtained from integrating out up as

in (5.10), will give some values of the 〈up〉 which are determined in terms of the gp.

Solving for the supersymmetric vacua as in (5.10), is equivalent to minimizing Wtree =
∑n+1

p=1 gpup, subject to the constraint that 〈up〉 lie on the the codimension N−n subspace of

the Coulomb branch where at least N −n mutually local monopoles or dyons are massless.

This is just a matter of replacing the monopoles with N−n Lagrange multipliers, imposing

that the ur lie in the subspace with N − n massless monopoles; i.e. we integrate out the

up with W = Wtree +
∑N−n

k=1 LkMk(u), with Mk(u) the monopole masses on the Coulomb

branch and Lk Lagrange multipliers, and the 〈Lk〉 = 〈qk q̃k〉. The resulting 〈up〉 will be

some fixed value, depending on the gr and Λ, giving finally Wexact(gr,Λ) =
∑

r gr〈ur〉.
Recall that the curve of the U(N) theory is

y2 = P (x; ur)
2 − 4Λ2N , P (x, ur) ≡ det(x− Φ) =

N∑

k=0

xN−ksk, (5.13)
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with the sk related to the ur by

ksk +
k∑

r=1

rursk−r = 0, (5.14)

and s0 ≡ 1 and u0 ≡ 0; thus s1 = −u1, s2 = 1
2u

2
1−u2, etc. (for SU(N) we impose u1 = 0).

The condition for having N − n mutually local massless magnetic monopoles is that

PN (x; 〈up〉)2 − 4Λ2N = (HN−n(x))
2F2n(x), (5.15)

where HN−n is a polynomial in x of degree N−n and F2n is a polynomial in x of degree 2n.

The LHS of (5.15) has 2N roots, and the RHS says thatN−n pairs of roots should be tuned

to coincide; thus (5.15) is satisfied on codimension N−n subspaces of the Coulomb branch.

We need to integrate out the up, with Wtree =
∑n+1

p=1 gpup, subject to the constraint that

〈up〉 satisfy (5.15).

Of the n massless photons, the one corresponding to the trace of U(N), does not

couple to the rest of the theory and so its coupling constant is the same as the one we

started with. The other n−1 photons which are left massless in (1.3) have gauge couplings

which are given by the period matrix of the reduced curve

y2 = F2n(x; 〈ur〉) = F2n(x; gp,Λ), (5.16)

with F2n(x; 〈up〉) the same function appearing in (5.15) and 〈ur〉 the point on the solu-

tion space of (5.15) which minimizes Wtree. The curve (5.16) thus gives the exact gauge

couplings of U(1)n−1 which remain massless in (1.3) as functions of gp and Λ.

The dual Calabi-Yau geometry which we proposed in section 4,

W ′(x)2 + fn−1(x) + y2 + z2 + v2 = 0,

is already similar to the SW geometry (5.16), giving the coupling constants of the massless

U(1)’s. To show that the τij obtained from (5.16) agrees with that obtained from (4.9),

we need to show that the F2n(x) of (5.15) and (5.16) is given by

g2n+1F2n(x) = W ′(x)2 + fn−1(x), (5.17)

with the factor of g2n+1 because the highest order term in F2n(x) is x2n, whereas that of

W ′(x) is gn+1x
n. We will indeed verify that the structure of F2n predicted from (5.17) is
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correct, i.e. it is a deformation of a degree n− 1 polynomial in x added to W ′2. However

more needs to be done to show that the dual geometry and gauge theory predict the same

coupling constants for the U(1)’s. Namely, we have to show that the coefficients of the fn−1

predicted from dual geometry and that of the gauge theory have identical dependence on

Ni and the parameters of the superpotential. This is indeed a highly non-trivial statement,

which we will later verify for cubic superpotential in section 8.

As a first hint about why (5.17) holds, consider the classical limit, Λ → 0, where

PN (x) = det(x− Φ) → ∏n
i=1(x− ai)

Ni , with ai the roots of W ′(x) = gn+1

∏n
i=1(x− ai).

In this limit P 2
N − 4Λ2N → H2

N−nF2n, as in (5.15), with HN−n(x) =
∏n

i=1(x − ai)
Ni−1

and F2n =
∏n

i=1(x− ai)
2 = g−2

n+1W
′(x)2. The motivation for this splitting is applying the

intuition of [29] to each SU(Ni) factor: each P 2
Ni

− 1 splits to (x − ai)
2 times a degree

Ni − 1 polynomial. We thus find that (5.17) holds in the Λ → 0 limit, and see that the

fn−1(x) appearing in (5.17) satisfies fn−1(x) → 0 for Λ → 0.

To prove (5.17) exactly, and also get some insight into how the 〈ur〉 are determined,

we note that we can minimize our Wtree (1.1), subject to the constraint that the 〈ur〉
satisfy (5.15), by introducing several Lagrange multipliers:

W =

n∑

r=1

grur +

l∑

i=1

[Li(PN (x; ur)
∣∣
x=pi

− 2ǫiΛ
N ) +Qi

∂

∂x
PN (x; ur)

∣∣
x=pi

], (5.18)

with ǫi = ±1. We’re generally allowing l mutually local massless monopoles, and will see

that l ≥ N − n. The Li, Qi, and pi are all treated as Lagrange multipliers; so we should

independently take derivatives of (5.18) with respect to all ur, Li, Qi, and pi, and set all

these derivatives to zero. The pi will be the roots of Hl(x) in (5.15), and the Li and Qi

constraints implement the LHS of (5.15) having double zeros at these l points pi.

The variation of (5.18) with respect to pi gives

Qi
∂2PN

∂x2

∣∣∣∣
x=pi

= 0, (5.19)

where we used the Qi constraint to eliminate the term involving Li. For generic gr, the

RHS of (5.15) has some double roots, but no triple or higher roots; therefore (5.19) implies

that 〈Qi〉 = 0. The situation where the RHS of (5.15) does have triple or higher order

roots is where the unperturbed N = 2 theory has an interacting N = 2 superconformal

field theory, as in [22]. Our N = 1 theory with Wtree does put the vacuum at such points
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for some special choices of the gr, but we’ll consider the generic situation for the moment.

Since the 〈Qi〉 = 0, the variation of (5.18) with respect to all ur gives

gr +
l∑

i=1

N∑

j=0

Lip
N−j
i

∂sj
∂ur

= 0, (5.20)

with the understanding that the gr = 0 for r > n+ 1. Using (5.14), (5.20) becomes

gr =
l∑

i=1

N∑

j=0

Lip
N−j
i sj−r. (5.21)

We should also impose the Li and Qi constraints in (5.18). These equations and (5.21) fix

the 〈ur〉, 〈Li〉, 〈pi〉, and 〈Qi〉 as functions of the gr and Λ. The 〈Li〉 are proportional to

the expectation values 〈qiq̃i〉 of the l ≥ N − n condensed, mutually local, monopoles.

Following a similar argument in [31], we multiply (5.21) by xr−1 and sum:

W ′
cl(x) =

N∑

r=1

grx
r−1

=

N∑

r=1

l∑

i=1

N∑

j=0

xr−1pN−j
i sj−rLi

=

N∑

r=−∞

l∑

i=1

N∑

j=0

xr−1pN−j
i sj−rLi − 2LΛNx−1 +O(x−2)

=

l∑

i=1

N∑

j=−∞
PN (x; 〈u〉)xj−N−1pN−j

i Li − 2LΛNx−1 +O(x−2)

=

l∑

i=1

PN (x; 〈u〉)
x− pi

Li − 2LΛNx−1 +O(x−2).

(5.22)

We define L ≡∑l
i=1 Liǫi. Defining, as in [31], the order l − 1 polynomial Bl−1(x) by

l∑

i=1

Li

x− pi
=

Bl−1(x)

Hl(x)
, (5.23)

with Hl(x) the polynomial appearing in (5.15), we thus have

W ′
cl(x) + 2LΛNx−1 = Bl−1(x)

√

F2N−2l(x) +
4Λ2N

Hl(x)2
+O(x−2). (5.24)
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Since the highest order term in W ′
cl is gn+1x

n, we see that Bl−1(x) should actually be order

n −N + l. This shows that l ≥ N − n and, in particular, for l = N − n, BN−n−1 = gn+1

is a constant. Squaring (5.24) gives

g2n+1F2n = W ′2
cl + 4gn+1LΛ

Nxn−1 +O(xn−2). (5.25)

We have thus derived (5.17), g2n+1F2n = W ′2 + fn−1(x), and found that fn−1(x) =

4gn+1LΛ
Nxn−1 +O(xn−2).

This shows that the exact τij(gr,Λ) of the U(1)n photons left massless found using

the reduced N = 2 curve (5.16), evaluated in the supersymmetric vacua, is consistent with

that of (4.9), found in section 4 via our large N duality. However as noted before to show

they are exactly the same we have to match the coefficients of fn−1(x), which depends in a

highly non-trivial way on Ni and the coupling constants of the superpotential. The above

method also, in principle, gives the 〈ur〉, and thus Weff (gr), which can be compared with

the duality result Wexact(gr, Si) (4.6) (upon integrating out the Si). The duality results

(4.9) and (4.6) give the answers, and in particular the Ni dependence, in a much simpler

and more elegant fashion.

It is interesting to ask if the duality results of section 4 could be recovered more

directly by a field theory analysis which includes the n glueball chiral superfields Si of

the unbroken gauge group
∏n

i=1 U(Ni). In the original SU(N) theory, we can construct

N generalized glueball objects ∼ TrΦiWαW
α, i = 0 . . .N − 1. The N − n monopole

condensates or Lagrange multiplier expectation values in the above analysis is (indirectly)

related to N − n of these generalized glueballs. The n remaining ones should be those of

the unbroken low-energy
∏n

i=1 U(Ni). It is not known how to exactly include these from

a direct field theory analysis.

For any Wtree, there are vacua where classically U(N) or SU(N) is unbroken and,

in the quantum theory, N − 1 mutually local monopoles condense. These are the only

vacua for Wtree = mu2, but also exist for any n ≥ 1. The condition for having the N − 1

mutually local massless monopoles is [29]

P (x; 〈ur〉)2 − 4Λ2N = HN−1(x)
2F2(x), (5.26)

which is satisfied via Chebyshev polynomials:

PN (x, 〈ur〉) = ΛNTN (
x

Λ
); TN (x ≡ t+ t−1) = tN + t−N . (5.27)
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With the normalization of (5.27), TN (x) = xN −NxN−2+ . . ., the first Chebyshev polyno-

mials. The roots of PN = det(x− Φ), as given by (5.27), are φj = 2Λ cos((2j + 1)π/2N),

j = 0 . . .N − 1; this gives (5.3).

More generally, we can use Chebyshev polynomials to construct new solutions of the

massless monopoles constraint (5.15). Given a solution PN (x) of (5.15) which is appropri-

ate for the SU(N) theory where the vacuum is broken to

SU(N) → ⊗n
i=1SU(Ni)⊗ U(1)N−1 with

∑

i

Ni = N, (5.28)

we can immediately construct the solution PKN (x) which is appropriate for a SU(KN)

theory, with the same Wtree (1.1), in the vacuum where the gauge group is broken as

SU(KN) → ⊗n
i=1SU(KNi)⊗ U(1)N−n with

∑

i

Ni = N. (5.29)

The solution PKN (x) of (5.15) for the theory (5.29) is given by the Chebyshev polynomial

of the K = 1 solution PN (x):

PKN (x) = Λ̃NKTK

(
PN (x)

ΛN

)
, (5.30)

with Λ̃ and Λ the scales of SU(KN) and SU(N), respectively. To see that this satisfies

the condition of (5.15) note

PKN (x)2 − 4Λ̃2KN = Λ̃2NK(TK

(
PN

ΛN

)2

− 4) = Λ̃2KN [UK−1

(
PN

ΛN

)
]2(

P 2
N

Λ2N
− 4)

= Λ̃2KNΛ−2N [UK−1

(
PN

ΛN

)
HN−n(x)]

2F2n(x) ≡ [HKN−n(x)]
2F2n(x).

(5.31)

We denote the second Chebyshev functions UK−1(x ≡ t+ t−1) ≡ (tK − t−K)/(t− t−1) =

xK−1+ . . ., and the second line uses the fact that PN is a solution of (5.15). Thus PNK(x)

given by (5.30) indeed satisfies the condition (5.15) appropriate for (5.29). Furthermore,

the U(1)N−n in (5.29) has gauge couplings given by the curve y2 = F2n(x), which is the

same as that of the K = 1 theory. This fits with the dual geometry prediction of section

4, as will be discussed in the next section.

Expanding out (5.30) relates the expectation values 〈ũp〉 of the SU(KN) theory to

the 〈up〉 of the SU(N) theory. The relation is especially simple for the lower Casimirs:

ũ2 = Ku2, ũ3 = Ku3, (5.32)

with some more complicated relations for the general higher Casimirs.

By the above construction, it suffices to consider (1.3) where the Ni have no common

integer divisor. The simple K dependence fits with the duality results of section 4.
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5.3. Other possible connections

The quantum N = 2 theory is related to an integrable hierarchy, which is known

to have integrable “Whitham hierarchy deformations;” see e.g. [32]. Our superpotential

Wtree is naturally regarded as a Whitham deformation of the N = 2 theory, where the

Whitham “times” are the gr in (1.1) which, from the N = 2 perspective, are spurions

breaking N = 2 to N = 1. The exact solution can still be obtained as a Θ function of the

Whitham hierarchy, see e.g. the last reference of [32]. It would be interesting to see how

this Θ function is related to the Si and Πi periods of section 4.

The N = 1 U(N) field theories with adjoint Φ, Nf fundamental flavors, and general

superpotential Wtree(Φ) (1.1) can also be constructed via N IIA D4 branes suspended

between a NS brane and n NS’ branes. The construction was discussed in detail in [31]

and references cited therein. Four of the five directions transverse to the D4s in IIA are

conventionally written as having complex coordinates w and v. The NS’ branes are given

by some (v, w) curve, which classically is w = W ′
tree(v), giving the n NS’ branes at the

minima of Wtree. Going to M-theory, the brane configuration becomes a smooth M5 brane

configuration, as in [33]. Our geometric flop transition duality is roughly reminiscent of

exchanging the roles of v and w; it was already speculated [31] that this exchange could

be related to the field theory duality of [9]. Perhaps this can be made more precise.

6. The case with the cubic superpotential in more detail

Consider in more detail the case n = 2, with Wcl = gu3 + mu2 + λu1. Then W ′ =

g(φ− a1)(φ− a2), with

a1 =
m

2g
+

√(
m

2g

)2

− λ

g
, a2 =

m

2g
−
√(

m

2g

)2

− λ

g
. (6.1)

For SU(N) → SU(N1)×SU(N2)×U(1), as opposed to U(N) → U(N1)×U(N2), λ should

be treated as a Lagrange multiplier, enforcing u1 = 0. In that case,

a1 =

(
m

g

)
N2

(N1 −N2)
, a2 = −

(
m

g

)
N1

(N1 −N2)
. (6.2)

The classical low-energy superpotential is

Wcl =
m3

g2
· N1N2(N1 +N2)

6(N1 −N2)2
(6.3)
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and

Λ3N1
1 = gN1∆N1−2N2Λ2N Λ3N2

2 = gN2∆N2−2N1Λ2N , (6.4)

with mW = a1 − a2 = (m/g)(N/(N1 − N2)) ≡ ∆ and mφ = g∆. Naive “integrating in”

then gives Weff = Wcl +Wnp with

Wnp =

2∑

i=1

Si

(
log(

Λ3Ni
i

SNi
i

) +Ni

)

= N1

[
S1 log(

gΛ2∆

S1
) + S1 + S2 log(

Λ2

∆2
)

]
+N2

[
S2 log(

gΛ2∆

S2
) + S2 + S1 log(

Λ2

∆2
)

]
.

(6.5)

The exact answer for the value of the superpotential at the minima of W can be

obtained via deforming the N = 2 curve, is given by (5.11), with the 〈ur〉 given by solving

(5.15) for n = 2:

P 2
N − 4Λ2N = H2

N−2F4. (6.6)

Again, this does not include the glueball fields.

As discussed in the previous section, a solution of (6.6) appropriate for SU(N) →
SU(N1) × SU(N2) × U(1) can be used to immediately construct a solution of (6.6) ap-

propriate for SU(KN) → SU(KN1) × SU(KN2) × U(1). Using (5.32), the low energy

effective superpotential for the SU(KN) theory is

Weff [SU(KN)] = m〈ũ2〉+ g〈ũ3〉 = Km〈u2〉+Kg〈u3〉 = KWeff [SU(N)], (6.7)

simply a factor of K times that of the SU(N) theory. The 〈cl〉 which minimizes Weff ,

giving the vacuum on the solution space of (6.6), is thus K independent, so K really does

just factor out as an overall multiplicative factor in the superpotential.

6.1. Examples:

U(3N) → U(2N)× U(N)

As a simple example of the procedure outlined in the last section, consider the case

of U(3N) in the vacuum where the unbroken group is U(2N)×U(N). As discussed above

it suffices to consider the case N = 1. The superpotential of (5.18) is

W = λu1 +mu2 + gu3 + L(p3 + s1p
2 + s2p+ s3 ± 2Λ3) +Q(3p2 + 2s1p+ s2). (6.8)
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The p equation of motion (along with Q’s) gives 〈Q〉 = 0 and (5.21) then gives λ =

L(p2 + ps1 + s2), m = L(p+ s1), g = L. Thus 〈s1〉 = g−1m− p, 〈s2〉 = g−1(λ−mp), and

〈s3〉 = ∓2Λ3 − pg−1λ. 〈p〉 is fixed by the Q constraint to be either a1 or a2 of (6.1), so

W ′
cl(x) = g(x−p)(x+p+g−1m). We then have 〈P3(x)〉 = g−1(x−p)W ′

cl(x)∓2Λ3, and thus

P 2
3 −4Λ6 = (x−p)2F4(x), with g2F4(x) = W ′(x)2∓4gΛ3(gx+gp+m), which matches with

(5.25). For SU(3), we treat λ also as a Lagrange multiplier, enforcing 〈s1〉 = −〈u1〉 = 0,

i.e. 〈p〉 = m/g. The Q constraint then gives 〈λ〉 = −2m2/g, so 〈u2〉 = 3(m/g)2 and

〈u3〉 = −2(m/g)3 ± 2Λ3. Plugging these back into W gives Wlow = (m3/g2)± 2gΛ3.

Equivalently, we could simply solve the L and Q constraints at the outset by taking

P3 = (x−a)2(x−b)∓2Λ3, giving 〈u1〉 = 2a+b, 〈u2〉 = 2a2+b2, 〈u3〉 = 2a3+b3±2Λ3 and

thus Wlow = 2W (a) +W (b) ± 2gΛ3. Minimizing with respect to a and b gives 〈a〉 = a1,

〈b〉 = a2 andWlow = Wcl±2gΛ3 withWcl = 2W (a1)+W (a2). In order to get the SU(3) →
SU(2)× U(1) answer we impose ∂Wlow/∂λ = 0, which implies a1 = m

g , a2 = −2m
g .

We thus find for SU(3) Wlow = (m3/g2) ± 2gΛ3 and the remaining massless photon

has gauge coupling τ(gΛ/m) which is given exactly by the curve y2 = g2F4(x) = W ′2 ∓
4gΛ3(gx+2m), withW ′(x) = g(x−m

g
)(x+2m

g
). This curve degenerates at (m/g)3 = ±Λ3,

i.e. 〈u3〉 = 0, which is where an additional magnetic monopole becomes massless in the

N = 2 theory. The SU(2) glueball has 〈S〉 = ±gΛ3.

Splittings of SU(5)

The computation of the one parameter family of N = 2 curves for the different split-

tings of SU(5), namely, SU(3)× SU(2)× U(1) and SU(4)× U(1) can be done explicitly.

This will provide the highly non-trivial exact answer for the low energy effective superpo-

tential that will be used to check the answer from the geometry in section 8.4. As discussed

before this answer also provides the solution for SU(5K) → SU(3K) × SU(2K) × U(1)

and SU(5K) → SU(4K)× SU(K)× U(1) for any integer K.

We need to solve (6.6) for N = 5, i.e. to find P5(x) such that

P 2
5 (x)− 4Λ10 = F4(x)H

2
3 (x) (6.9)

Clearly, P5(x) has five parameters, given by the positions of the roots since the coefficient

of x5 can be normalized to one. However, three of them have to be used to produce the
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three double roots and one in order to impose the quantum tracelessness condition, i.e.,

to set to zero the x4 coefficient. This leaves us with a one parameter family of curves.

Let us set Λ5 = 1
2 and H3(x) = (x− a)(x− b)x. The LHS of (6.9) can be factored as

(P5 − 1)(P5 + 1) where it is clear that the two factors should contain no common roots.

Therefore we can freely set,

P5(x) = (x− a)2(x− b)2(x− c)∓ 1 (6.10)

Now we want to make sure that P5 ∓ 1 will have a double root at x = 0. This condition

can be easily implemented by,

P5(0) = ±1
dP5

dx
(0) = 0

In terms of a, b and c, these conditions read as follows,

a2b2c = ±2 ab(2c(a+ b) + ab) = 0 (6.11)

Finally, we can impose the tracelessness condition by shifting x → x− 1
5(2(a+ b)+ c). We

can now read off the gauge theory Casimir expectation values (using 〈TrΦ〉 = 0),

P5(x) = 〈det(x− Φ)〉 = x5 − 1

2
〈TrΦ2〉x3 − 1

3
〈TrΦ3〉x2 + . . .

Since, our solution is symmetric in a and b it is more natural to write it in term of the

symmetric polynomials s = a + b and k = ab. The constraints (6.11) now read k2c = ±2

and k(2cs + k) = 0. Assuming that k 6= 0 we can solve for k as k = −2cs. Then we are

left with only one constraint, namely, 2s2c3 = ±1.

The Casimirs are now given by,

u2 =
1

5
(2c2 + 18cs+ 3s2) u3 = − 2

25
(2c3 − 23c2s+ 9cs2 + s3)

and the superpotential is now a function of c or s depending on how we use the con-

straint. Let us introduce the constraint through a Lagrange multiplier β and write the

superpotential as,

Weff (c, s, β) = gu3(c, s) +mu2(c, s) + β(±Λ5 − s2c3)

where we have introduced Λ back for later convenience.
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Now we need to solve
∂Weff

∂c = 0 and
∂Weff

∂s = 0 and then impose the constraint.

Computing these two equations and using one of them to eliminate β from the other we

get the following simple equation,

3c+ s =
5m

g
(6.12)

subject to the constraint s2c3 = ±Λ5. There is yet a better way to write the constraint,

namely, s4c6 = Λ10. This will make very simple the identification of the different vacua.

Now we can see how the different splittings will come out. The classical limit cor-

responds to setting Λ → 0 and the constraint can be solved in two ways, namely, s = 0

or c = 0. The former leads to c = 5m
3g

using (6.12) while the latter leads to s = 5m
g
.

Plugging this in the superpotential we reproduce in the former case the classical answer

for SU(4)× U(1) and in the latter we get that of SU(3)× SU(2)× U(1).

SU(4)× U(1)

In order to get Wlow we need to solve for c using (6.12) and s4 = Λ10

c6 . Clearly, we

have 4 solutions to the constraint giving s = s(c). These are the N1N2 = 4 vacua. The

equation we need to solve is then

c =
5m

3g
− s(c)

3

this can be solved recursively using t ≡ ( 3gΛ5m )5/2 as expansion parameter. Once this is

done, s can also be found and plugging them back in the superpotential we get,

Wlow =
125

27

m3

g2
(
2

25
+ 4t− 1

3
t2 − 7

54
t3 − 5

54
t4 − 221

2592
t5 − 22

243
t6+

− 2185

20736
t7 − 286

2187
t8 − 9147325

53747712
t9 + . . .

)

The above exact answer for the value of the superpotential at the critical point differs from

the naive integrating in analysis (5.4), which would terminate at order t2. The coefficients

of the classical t0 term and t term agree with the exact answer above, but the coefficient

of t2 term differs from the exact answer.

SU(3)× SU(2)× U(1)

In this case we need to solve for s using c6 = Λ10

s4
. Here, we have 6 solutions giving

the N1N2 = 6 choices of vacua. The equation in this case becomes,

s =
5m

g
− 3c(s)
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solving as before but using as expansion parameter t ≡ ( gΛ
5m )5/3 we get for the superpo-

tential the following expression,

Wlow =
250

2

m3

g2
(

1

25
+ 3t2 + 2t3 + 6t4 + 26t5 + 135t6 + 782t7 +

14630

3
t8+

+32076t9 + . . .
)

Again this differs from the result of the naive low energy analysis (5.4) which would ter-

minate at order t3; up to that order the naive answer agrees with the above exact answer.

Splitting U(5) → U(3)× U(2)

It is also possible to find the curve for U(5) and from it to compute the SU(5) answer

by imposing the tracelessness constraint. However, the computation for U(5) is more

cumbersome than the SU(5) counterpart. In this part of the section we will simply show

the answer for the low energy effective superpotential and the computation can be found

in Appendix A.

Since we now do not impose the tracelessness condition, λ is a free parameter, rather

than a Lagrange multiplier. λ/g, m/g and Λ combine into a single expansion parameter

T 3 =

(
Λ

∆

)5

,

with ∆ = a1 − a2 =
√

(m
g
)2 − 4λ

g
. The low energy superpotential is then given by,

Wlow = 3W (a1) + 2W (a2) + g∆3
(
3T 2 + 2T 3 + 4T 4 + 10T 5 + . . .

)
.

In the dual geometric picture we will see that U(5) is the natural answer obtained, and

then one has to impose the constraint to get the SU(5) superpotential.

7. The analysis of the dual geometry

The dual geometry proposal gives rise to the superpotential of section 4.1:

− 1

2πi
Weff =

n∑

i=1

NiΠi + α(
n∑

i=1

Si), (7.1)
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where Πi’s are the periods of the dual cycles and the Si’s are the sizes of the S
3’s as defined

in (4.4) and (4.5).

Using (4.4) and (4.5), it is seen that under Λ0 → e2πiΛ0 the Πi period will change by,

∆Πi = −2(

n∑

j=1

±Sj). (7.2)

The factor of two comes from the fact that we are dealing with two copies of the x-plane

connected by the n branch cuts. (See Figure 2) Let us choose the orientation of the

fundamental periods to be clockwise, therefore, it is easy to see that we always get the

upper sign in (7.2) for all i and j. We thus see that, in general, Πi must depend on the

cutoff Λ0 as

Πi = − 2

2πi
(

n∑

j=1

Sj) logΛ0 + . . . , (7.3)

with . . . single valued under Λ0 → e2πiΛ0.

We now consider the full Λ0 dependence. Consider the region of integration where x

is large compared to all ai’s. Therefore we can expand the effective one-form ω in x around

x = ∞ and it is easy to see that,

ω =
√
W ′(x)2 + fn−1dx =

(
W ′(x) +

1

2gn+1

bn−1

x
+O(

1

x2
)

)
dx

where bn−1 is the coefficient of xn−1 in the deformation polynomial fn−1(x) and W ′(x) =

gn+1

∏n
j=1(x− aj). Integrating this we get,

Πi = . . .+W (Λ0) +
bn−1

2gn+1
log Λ0 +O(

1

Λ0
) (7.4)

where . . . are the Λ0 independent pieces. This allows us to make the following identification

using (7.3) and (7.4).

bn−1 = −4gn+1

n∑

j=1

Sj .

Comparing with (5.25), we see that we must have
∑

j〈Sj〉 = −LΛN , where both sides can

be solved for in terms of the gr and Λ. As mentioned in section 4.1, W (Λ0) is an irrelevant

constant that can be ignored. However, we have to deal with the logarithmic dependence

because we want to take Λ0 → ∞ at the end. Notice that, had we included deformations

of degree higher than n− 1, more singular divergences would have appeared in (7.4) that
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do not have a counterpart in the gauge theory side. This shows again that, as in (5.25),

the deformation f in F ∼ W ′2 + f must have degree at most n− 1.

Since every Πi has the same logarithmic divergence we can write the contribution to

the superpotential as follows,

Weff = . . .+ 2(
n∑

i=1

Ni)(
n∑

j=1

Sj) logΛ0 − 2πiα(
n∑

k=1

Sk)

Now it is clear that the only way to obtain finite expressions is to take α depending on Λ0

such that

N log Λ = N log Λ0 − πiα (7.5)

is finite. Using
∑n

j=1 Nj = N , we can replace Λ0 in Weff by the physical scale Λ of the

SU(N) theory.

Note that, for fixed Λ, the superpotential for a splitting of the form KN →∑n
i=1 KNi

has a trivial K dependence:

− 1

2πi
Weff =

n∑

i=1

KNiΠi = K(
n∑

i=1

NiΠi)

if we replace Λ0 by Λ in the Πi’s by using the α term. This matches with the results

obtained from the gauge theory solution (5.30) using Chebyshev polynomials.

Some of the Si dependence of Πi can also be determined by using monodromy argu-

ments. Consider the semiclassical regime, | a+i − a−i |≪| aj − ak | for all i, j, k. Recall

that W ′(x)2 + fn−1(x) = g2n+1

∏n
k=1(x− a+k )(x− a−k ). In this regime Si can be written as

follows,

Si =
1

2πi
W ′′(ai)

∫ a+
i

a−

i

√
(x− ai)2 − µeffdx

where we have Taylor expanded W ′(x)2 + fn−1(x) around x = ai and

µeff ≡ − 1

W ′′(ai)2
(fn−1(ai) + . . .).

Each Si, in this limit, has been reduced to that of the single conifold, which has

Si = W ′′(ai)µeff

up to a numerical coefficient. On the other hand, it is easy to see that under µeff →
e2πiµeff , Πi changes by ∆Πi = Si. Therefore we conclude that,

Πi =
1

2πi
Si logµeff . . . =

1

2πi
Si log

Si

W ′′(ai)
+ . . .
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Finally, we want to consider what happens to Πi when we move the j-th 3-sphere all

the way around the i-th 3-sphere. This corresponds to changing ∆ij = ai − aj to e2πi∆ij

leaving ai fixed. Under this operation we get ∆Πi = 2Sj (see Figure 3). Therefore,

Πi = . . .+
2

2πi

∑

j 6=i

Sj log∆ij .

(j) (i)

(j) (i)
a)

b)

Λ 0

Λ 0

Figure 3: a) Contours of integration for Sj , Si and Πi before moving the j-th S3 around the i-th

S3. b) The Πi contour goes around the j-th sphere after the operation in a).

Now we can collect all these partial results in order to write,

2πiΠi = Si log
Si

W ′′(ai)
+ 2

∑

j 6=i

Sj log∆ij − 2
n∑

k=1

Sk log Λ0 + . . . .

Plugging this back in (7.1) and collecting all the Si pieces, we get

Weff =
n∑

i=1

Si log

(
W ′′(ai)

Ni
∏

j 6=i ∆
−2Nj

ij Λ2N

SNi
i

)
+ . . . ,

with the . . . single valued.

Comparing this to (5.8) and (5.6) we see that we have re-derived the approximate

Weff obtained in section 5.1 as well as the naive threshold matching relations. However,

the above analysis can not rule out further corrections to each Πi and hence to Weff in

the form of a power series in Si’s. Indeed, as we will discuss in detail for the case of the

cubic superpotential, there is generally an infinite power series in Si’s which corrects the

above expression.
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8. Cubic superpotential from geometry: An explicit computation

In this section we consider the n = 2 case, deforming the N = 2 theory by Wtree =

λu1+mu2+gu3. This was discussed in detail from the gauge theory perspective in section

6. We now focus on the geometry side of the duality. In order to get the contribution of

the fluxes to the superpotential, we need to compute the periods of the relevant cycles in

the geometry. For this n = 2 case, (7.1) gives

− 1

2πi
Weff = N1Π1 +N2Π2 + α(S1 + S2). (8.1)

The fundamental periods are given as in (4.4) by,

S1 =
1

2πi

∫ x4

x3

ω S2 =
1

2πi

∫ x2

x1

ω (8.2)

and the dual periods by

Π1 =
1

2πi

∫ Λ0

x3

ω Π2 =
1

2πi

∫ x1

−Λ0

ω (8.3)

where we have denoted by xi the roots of the quartic polynomial W ′(x)2+f1(x) appearing

in the definition of the effective one-form instead of a+i , a
−
i as in last section, in order to

simplify the notation.

To compute the effective superpotential, we need to express the dual periods Π1 and

Π2 in terms of the fundamental periods S1 and S2. Since, on the gauge theory side, one

does not have the exact answer for the superpotential in terms of the glueball fields, we

need to integrate out the Si, fixing them at their supersymmetric vacua 〈Si〉. This will

give Wexact(λ,m, g,Λ), which can be compared with the gauge theory results.

Recall that λ is a free parameter only for the U(N) theory. For SU(N), which we will

also compare, λ is a Lagrange multiplier imposing (quantum) tracelessness; this will fix λ

in terms of m, g and Λ and the Ni.

8.1. Computation of the periods

As discussed in the general case in section 7, only by using monodromy arguments it

is possible to show the general form of the Si dependence of the dual periods. In our case,

this reads,

Π1 =
1

2πi

(
W (Λ0)−W (a1) + S1 log

S1

g∆
− S1 + 2S2 log∆− 2(S1 + S2) logΛ0 + P

)

(8.4)
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where P = P (S1, S2) is an infinite power series in S1 and S2, ∆ = a1 − a2 and W (x) =

(1/3)gx3+(1/2)mx2+λx. Recall that W ′(x) = g(x−a1)(x−a2) was introduced in section

6. Use has also been made of W ′′(a1) = g∆.

The explicit computation of P (S1, S2) can be found in Appendix B up to order S4
i

where a method to compute higher order contributions is also given. Here we will only

show the result for Π1 and Π2 that will be used later in this section.

2πi Π1 =W (Λ0)−W (a1) + S1(log
S1

g∆
− 1) + 2S2 log∆− 2(S1 + S2) logΛ0+

+ g(∆)3
[

1

(g∆3)2
(
2S2

1 − 10S1S2 + 5S2
2

)
+

1

(g∆3)3

(
32

3
S3
1 − 91S2

1S2+

+118S1S
2
2 − 91

3
S3
2

)
+

1

(g∆3)4

(
280

3
S4
1 − 3484

3
S3
1S2 + 2636S2

1S
2
2+

−5272

3
S1S

3
2 +

871

3
S4
2

)
+O

(
S5

(g∆3)5

)]

and,

2πi Π2 =W (−Λ0)−W (a2) + S2(log
S2

g∆
− 1) + 2S1 log∆− 2(S1 + S2) logΛ0+

− g(∆)3
[

1

(g∆3)2
(
2S2

2 − 10S1S2 + 5S2
1

)
− 1

(g∆3)3

(
32

3
S3
2 − 91S2

2S1+

+118S2S
2
1 − 91

3
S3
1

)
+

1

(g∆3)4

(
280

3
S4
2 − 3484

3
S3
2S1 + 2636S2

2S
2
1+

−5272

3
S2S

3
1 +

871

3
S4
1

)
+O

(
S5

(g∆3)5

)]

8.2. Low Energy Superpotential

In order to compute the low energy superpotential we have to integrate out S1 and S2

from the effective superpotential. In order to do this in practice, it is convenient to define

x ≡ S1

g∆3
y ≡ S2

(−g∆3)

In term of these new variable the dual periods can be written as follows,

Π1(x, y) =
1

2πi

(
−W (a1) + (g∆3)F(x, y)

)

Π2(x, y) =
1

2πi

(
−W (a2) + (−g∆3)F(y, x)

)
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where,

F(x, y) = x(log x− 1)− 2(x− y) log(
Λ0

∆
) + (2x2 + 10xy + 5y2) + (

32

3
x3 + 91x2y+

118xy2 +
91

3
y3) + (

280

3
x4 +

3484

3
x3y + 2636x2y2 +

5272

3
xy3 +

871

3
y4) + . . .

Note that we have removed the irrelevant constants W (Λ0) in Π1 and W (−Λ0) in Π2. Now

the effective superpotential is given by,

− 1

2πi
Weff (x, y) = N1Π1 +N2Π2 + αg∆3(x− y) (8.5)

Let us separate the contributions to (8.5) as,

Weff (x, y) = Wcl +Wnp(x, y)

where Wcl = N1W (a1) +N2W (a2) and Wnp(x, y) = g(∆3)(−N1F(x, y) +N2F(y, x)). In

this expression, the cut off Λ0 gets combined with the bare coupling α to generate what

we identify with the gauge theory scale of the underlying N = 2 SU(N) Yang-Mills theory

Λ as in (7.5).

Having identified the gauge theory scale Λ we can proceed to integrate out S1 and S2

or equivalently x and y. The equations that need to be solved are,
∂Weff

∂x
= 0

∂Weff

∂y
= 0

The leading order can be easily extracted and reads,

N1 log(x) = 2(N1 +N2) log

(
Λ

∆

)
N2 log(y) = 2(N1 +N2) log

(
Λ

∆

)

Now we can see the appearance of the N1N2 vacua of the gauge theory from the solutions

to the above equations, namely,

xN1 =

(
Λ

∆

)2(N1+N2)

yN2 =

(
Λ

∆

)2(N1+N2)

It is useful to define the expansion parameter

T ≡
(
Λ

∆

) 2(N1+N2)
N1N2

and the solution is then given by

x = TN2 , y = TN1

where the choice of the N1N2-th root will determine the vacuum.

Note that the meaning of leading order depends on the values of N1 and N2. Assuming

a power series expansion for x and y in T we can compute order by order Wlow. This gives

us the answer for the U(N) theory. To obtain the answer for SU(N), we only have to

impose that the quantum trace of the chiral superfield be zero: 〈TrΦ〉 = ∂Wlow(λ)
∂λ = 0.

This should be imposed order by order in T .
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8.3. Quantum tracelessness

Let us start by writing,

Wlow(λ,Λ) = N1W (a1) +N2W (a2) + g∆3P (T )

with P (T ) = −N1F(x(T ), y(T )) +N2F(y(T ), x(T )). It is then easy to see that

∂Wlow(λ,Λ)

∂λ
= N1a1 +N2a2 − 2∆

(
3P (T )− 2(N1 +N2)

N1N2
T
dP (T )

dT

)
(8.6)

where it was important to remember that T itself depends on λ through ∆. Therefore we

are forced to define a better expansion parameter given by,

t =

(
Λ

∆c

) 2(N1+N2)
N1N2

where ∆c is computed using the Lagrange multiplier obtained by solving the classical

tracelessness constraint,

λc

g
= − N1N2

(N1 −N2)2

(
m

g

)2

(8.7)

Having found λ = λ(t) such that the quantum trace (8.6) vanishes, we can use it to

compute the low energy superpotential for our SU(N) theory that is given now as a power

expansion in t. It is possible to give an explicit formula for the first two terms, i.e, the

classical contribution and the first quantum correction for any N1 and N2. Higher order

corrections have to be computed independently in each case. Assuming that N2 < N1, we

get,

Wlow(t) =
1

6

m3

g2
N1N2(N1 +N2)

(N1 −N2)2

[
1 +

6(N1 +N2)
2

N2(N1 −N2)
tN2 +O(tN2+1)

]
.

8.4. Examples

Let us consider the different cases for which the deformed N = 2 field theory results

have been computed in section 6, in order to compare the answer with that of the geometry.

U(3N) → U(2N)× U(N)

We only need to consider the case U(3) → U(2)×U(1). As we saw in section 6.1 this is

particularly simple from the field theory perspective, where Weff = Wcl±2gΛ3, with only
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one quantum correction term. In order to reproduce this simple result, some miraculous

cancellations have to occur order by order in our series. Since we have computed the dual

periods up to order S4
1 and therefore the effective superpotential up to order x4 ∼ t4, we

can not compare orders equal or higher that t5 even though they already appear in our

computation in the form xy2 or x3y since y ∼ t2.

Let N1 = 2 and N2 = 1. Integrating out x and y we get,

x(T ) = T
(
1 + T + 10T 2 + 140T 3 + . . .

)
y(T ) = T 2(1 + 10T + 140T 2 + . . .)

Plugging this back in Weff we get the answer for the U(3) case,

Wlow(T ) = Wcl + g∆3(2T +O(T 5))

which is consistent with the exact answer W = Wcl + 2g∆3T discussed in section 6.1, to

the order we have computed. One might worry that imposing quantum tracelessness for

SU(3) → SU(2) × U(1) could result in T being a complicated expansion in terms of t.

However, one can check that the classical trace is not corrected quantum mechanically in

this case and therefore T = t. We thus have

Wlow(t) =
m3

g2
(1 + 54t+O(t5)),

and, recalling the definition of t = ±
(

gΛ
3m

)3
, we get

Wlow(t) =
m3

g2
± 2gΛ3,

in perfect agreement with the field theory result.

We can also use the geometry analysis to obtain the gauge coupling of the IR U(1)

gauge theory photon, and compare with the field theory analysis. The field theory result

obtained in section 6.1 is that the original SU(3) curve degenerates as P 2
3 − 4Λ6 = (x −

m/g)2F4(x), with g2F4(x) = W ′(x)2 ∓ 4g2Λ3(x+ 2m/g). The remaining massless photon

has gauge coupling given by the complex modulus τ of the torus y2 = F4(x). This matches

perfectly with the geometry result if, at the extremum of our effective superpotential for

S, we have f1(x; 〈S〉) = ∓4g2Λ3(x+ 2m/g). Strikingly, this is indeed the case.

U(5N) → U(3N)× U(2N)

In this case the deformed N = 2 field theory analysis predicts an infinite series dis-

cussed in section 6.1. From the dual geometry, to the order we have computed, we will
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be able to compare up to order t9 because x ∼ t2 and y ∼ t3, therefore the t10 receives

corrections from the x5.

Let N1 = 3 and N2 = 2. Integrating out x and y we get,

x(T ) = T 2

(
1 +

8

3
T 2 − 10

3
T 3 + a4T

4 + a5T
5 + a6T

6 + a7T
7 + . . .

)

and

y(T ) = T 3(1 + 5T 2 + 11T 3 + b4T
4 + b5T

5 + b6T
6 + . . .)

The undetermined coefficients are shown to stress the fact that they do not contribute to

the order we are computing, despite being allowed by naive power counting. Plugging this

back in Weff we get the answer for U(5),

Wlow(T ) = Wcl+g∆3

(
3T 2 − 2T 3 + 4T 4 − 10T 5 +

85

3
T 6 − 266

3
T 7 +

8170

27
T 8+

−3332

3
T 9 + . . .

) .

In this case, we do have to take care with the quantum corrections to the trace, in

order to get the correct SU(5) superpotential. It turns out that

λ

g
=

λc

g

(
1− 25

3
t2 +

100

3
t3 − 550

3
t4 +

10400

9
t5 − 7875t6 +

508300

9
t7 − 11338250

27
t8 + . . .

)
.

Using this to compute T = T (t), a1 = a1(t), and a2 = a2(t), and plugging back in the

effective superpotential, we get

Wlow(t) =
250

2

m3

g2
(

1

25
+ 3t2 − 2t3 + 6t4 − 26t5 + 135t6 − 782t7 +

14630

3
t8+

−32076t9 + . . .
) .

This is in perfect agreement with the deformed N = 2 field theory answer.

U(5N) → U(4N)× U(N)

The deformed N = 2 field theory analysis again predicts an infinite series for Weff .

Again, this is also seen from the geometry dual, and we will be able to compare up to
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order t4 since we have computed the dual periods to order S4
1 . Let N1 = 4 and N2 = 1.

Integrating out x and y we get,

x(T ) = T

(
1− 3

2
T − 47

8
T 2 − 73

2
T 3 + . . .

)
, y(T ) = T 4 +O(T 5).

Plugging this back in the effective superpotential we get the U(4) answer,

Wlow = Wcl + g∆3(4T − 3T 2 − 47

6
T 3 − 75

2
T 4 + . . .).

For the SU(4) case, the vanishing of the quantum corrected trace implies that,

λ

g
=

λc

g

(
1 +

25

3
t+

25

9
t2 +

175

72
t3 + . . .

)
.

Using this as in the previous case, we finally get the low energy superpotential to be

Wlow =
125

27

m3

g2

(
2

25
+ 4t− 1

3
t2 − 7

54
t3 − 5

54
t4 +O(t5)

)
.

This exactly agrees, to this order, with the expected answer.
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Appendix A. Deformed N = 2 field theory analysis for U(5) → U(3)× U(2)

We here find the supersymmetric vacua of the deformed N = 2 theory for one of

the splittings of U(5). The analysis goes along much the same lines as for SU(5). We

parameterize

P5(x) = (x− (q + a))2(x− (q + b))2(x− (q + c))∓ 1. (A.1)

For SU(5), q was fixed by the tracelessness condition but now it is a free parameter. Since

a and b appear in a symmetric way it turns out to be useful to define s = a + b + 2q and

k = (a+ q)(b+ q). The constraints are now given by,

k = q2 − q(2q − s) + 2c(2q − s) 4(2q − s)2c3 = ±1
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From (A.1) we can read off u1, u2, and u3 using that,

P5(x) = x5 − u1x
4 + (

1

2
u2
1 − u2)x

3 + (
1

6
u3
1 + u1u2 − u3)x

2 + . . .

Plugging ui = ui(q, s, c) in Weff and introducing a Lagrange multiplier in order to impose

the constraint left after we eliminate k, we get,

Weff = gu3 +mu2 + λu1 + h(∓Λ5 − 4(2q − s)2c3)

The equations we need to solve are given by ∂Weff/∂c = 0, ∂Weff/∂s = 0, and

∂Weff/∂q = 0. Using the first to eliminate h in the second and the third, these equations

simplify to,

λ+m(−q + c+ s) + g(q2 + c2 + 3cs+ s2 − 2q(2c+ s)) = 0

−5λ−m(q + c+ 2s)− g(5q2 − 14qc+ c2 − 4qs+ 8cs+ 2s2) = 0

4(2q − s)2c3 = ±Λ5

In order to find an expansion parameter around the classical solution we have to take

the limit Λ = 0 and solve the equations. We find that,

q =
−m+

√
m2 − 4gλ

2g
s = −m

g

Therefore, (2q − s) =
√

m2

g2 − 4λ
g = ∆ and it is clear that the expansion parameter is T

given by T 6 = ( Λ∆)10. Again, there are six possible solutions giving the six possible vacua

N1N2 = 6, since N1 = 2 and N2 = 3.

Solving these equations assuming a power expansion in T for s = s(T ), q = q(T ) and

c = c(T ), we get after plugging back in the effective superpotential,

Wlow = 3W (a1) + 2W (a2) + g∆
(
3T 2 + 2T 3 + 4T 4 + 10T 5 + . . .

)

where W (x) = g
3x

3 + m
2 x

2 + λx, W ′(x) = g(x− a1)(x− a2) and ∆ = a1 − a2.
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Appendix B. Computation of Periods for the cubic superpotential

In this appendix we will show the explicit computation of the corrections P (S1, S2)

in the expression for Π1 in (8.4).

The computation of P (S1, S2) will not be done directly in terms of S1 and S2, we will

write all four periods in terms of two new variables ∆21 and ∆43 - to be defined below -

and at the end we will recollect P (S1, S2). This procedure can be done systematically up

to any order in Si’s.

Computation:

For practical purposes we will write the effective one-form as follows

dx
√
W ′2(x) + f1(x) = dx g

√
(x− x1)(x− x2)(x− x3)(x− x4) (B.1)

It is also convenient to define new variables given by,

∆21 ≡ 1

2
(x2 − x1) ∆43 ≡ 1

2
(x4 − x3)

Q ≡ 1

2
(x1 + x2 + x3 + x4) I ≡ 1

2
((x3 + x4)− (x1 + x2))

It is clear that since f1(x) is considered a small perturbation we will have

| ∆21 |∼| ∆43 |≪| I | .

We will use this in order to expand all four periods in powers of ∆21 and ∆43.

Let us consider S1. For this we change variables to y = x− 1
2 (x1+x2) and the integral

becomes:

S1 =
g

2π

∫ y4

y3

√
(y − y3)(y − y4)

√
y2 −∆2

21

Expanding the second square root for ∆21 small, each term in the series can be computed

explicitly and it is most easily given in terms of a generating function,

F (a) ≡ −π
√
(y3 + a)(y4 + a) +

π

2
(y3 + y4 + 2a) (B.2)

as follows,

S1 =
g

32
(y3 + y4)(y4 − y3)

2 +
g

2π

∞∑

n=1

cn∆
2n
21F

(n)(0)

where cn are the coefficients in the expansion of
√
1− x and F (n)(a) is the n-th derivative

with respect to a.
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The explicit answer has the following structure,

S1 =
g

4
∆2

43I −
g

2I
K(∆2

21,∆
2
43, I

2) (B.3)

where

K(x, y, z) =
1

4
xy

(
1 +

1

4z
(x+ y) +

1

8z2
(x+ y)2 +

1

8z2
xy + . . .

)

It is important to notice that this is symmetric in (x, y), namely, K(x, y, z) =

K(y, x, z). This allows us to write,

S2 = −g

4
∆2

21I +
g

2I
K(∆2

21,∆
2
43, I

2) (B.4)

Let us now compute the dual periods starting with Π1. In this case we can use the

same expansion as before for S1, however, we have to keep in mind that Λ0 will be taken to

infinity at the end and therefore we shall discard any contribution of order Λ−1
0 or higher

in an expansion around infinity.

In this case it is also useful to define a generating function,

G(a) =
√

(I + a)2 −∆2
43 log

(√
(I + a) + ∆43 +

√
(I + a)−∆43√

(I + a) + ∆43 −
√

(I + a)−∆43

)
(B.5)

and the answer is given by,

2πi

g
Π1 =

1

3
Λ3
0 −

1

2
QΛ2

0 +
1

4
(Q2 − I2 − 2(∆2

43 +∆2
21))Λ0 +

1

2
I(∆2

21 −∆2
43) logΛ0

− 1

24
(I +Q)3 +

1

8
I(I +Q)2 +

1

4
∆2

21(I +Q) +
1

4
∆2

43Q+

1

2
I(∆2

43 −∆2
21) log(2∆43) +

∞∑

n=1

cn∆
2n
21G

(n)(0)

(B.6)

where cn are as before the coefficients of the power expansion of
√
1− x.

This result is not enough because we want it to show only explicit dependence on the

classical superpotential parameters m, g, λ and the two deformation parameters ∆21 and

∆43. In order to do this we only have to realize that since f1(x) in (B.1) is of degree one

and W ′2(x) of degree four, then the coefficients of x3 and x2 are given in terms of the

classical roots a1 and a2. This allows us to write,

Q = a1 + a2 I2 = (a1 − a2)
2 − 2(∆2

21 +∆2
43)
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Using this, (B.3) and (B.4) we can explicitly compare order by order in ∆21 and ∆43

the two expressions for Π1 given by (B.6) and (8.4) to obtain the following result,

2πi Π1 =W (Λ0)−W (a1) + S1(log
S1

g∆
− 1) + 2S2 log∆− 2(S1 + S2) logΛ0+

+ g(∆)3
[

1

(g∆3)2
(
2S2

1 − 10S1S2 + 5S2
2

)
+

1

(g∆3)3

(
32

3
S3
1 − 91S2

1S2+

+118S1S
2
2 − 91

3
S3
2

)
+

1

(g∆3)4

(
280

3
S4
1 − 3484

3
S3
1S2 + 2636S2

1S
2
2+

−5272

3
S1S

3
2 +

871

3
S4
2

)
+O

(
S5

(g∆3)5

)]
.

Likewise we can get Π2 from the above result by simply exchanging a1 ↔ a2, S1 ↔ S2,

∆ ↔ −∆ and Λ0 ↔ −Λ0. This leads to,

2πi Π2 =W (−Λ0)−W (a2) + S2(log
S2

g∆
− 1) + 2S1 log∆− 2(S1 + S2) logΛ0+

− g(∆)3
[

1

(g∆3)2
(
2S2

2 − 10S1S2 + 5S2
1

)
− 1

(g∆3)3

(
32

3
S3
2 − 91S2

2S1+

+118S2S
2
1 − 91

3
S3
1

)
+

1

(g∆3)4

(
280

3
S4
2 − 3484

3
S3
2S1 + 2636S2

2S
2
1+

−5272

3
S2S

3
1 +

871

3
S4
1

)
+O

(
S5

(g∆3)5

)]

This completes our computation of the periods.
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