
MATHEMATICS OF COMPUTATION
Volume 66, Number 217, January 1997, Pages 451–455
S 0025-5718(97)00793-X

A LARGE PAIR OF TWIN PRIMES

TONY FORBES

Abstract. We describe an efficient integer squaring algorithm (involving the
fast Fourier transform modulo F8) that was used on a 486 computer to discover
a large pair of twin primes.

In this article we discuss some of the methods that resulted in the discovery of
the pair of twin primes, 6797727× 215328 ± 1, found on 25th July 1995 and first
reported in [1]. The computer equipment used was surprisingly modest by today’s
standards for this type of work; an ordinary IBM-compatible PC with an Intel 486
DX microprocessor running at 33 MHz, later upgraded to a 486 DX4 running at
100 MHz. At the time of writing (October, 1995) there are only two larger known
prime pairs, 697053813×216352±1, discovered by K.-H. Indlekofer and A. Ja’rai in
1994, and a very recent new record, 570918348× 105120 ± 1, announced by Harvey
Dubner.

By restricting the search for twin primes to integers of the form m2n ± 1, with
m not too large, we take advantage of the well-known methods of J. Brillhart,
D. H. Lehmer and J. L. Selfridge [2] for verifying the primality of a large number
N where it is possible to factorize the major part of either N − 1 or N + 1. If,
further, m does not exceed 232, then we can reduce a number x modulo m2n + ε
very rapidly. Let x = x0 + 2nx1, 0 ≤ x0 < 2n, x1 = u0 +mu1, 0 ≤ u0 < m, where
u0 and u1 are obtained by dividing x1 by m, a straightforward operation involving
repeated use of the processor’s 32-bit integer division instruction. Then we have
x ≡ x0 − εu1 + u02n (mod m2n + ε).

The Fermat test. A positive integer N , chosen more or less at random, is likely
to be prime if it satisfies

2N−1 ≡ 1 (mod N).(1)

After substituting m2n + ε for N and rearranging, (1) can be written as

(22n)m ≡ 21−ε (mod N).

The computation of 22n is performed by repeated squaring and reduction modulo
N . In preference to the school method of computing x2, we used a procedure—
which we describe in some detail—similar to the Schönhage-Strassen algorithm for
the fast multiplication of large integers (Aho, Hopcroft and Ullman [3, p. 270]).

Received by the editor October 9, 1995 and, in revised form, December 6, 1995 and January
26, 1996.

1991 Mathematics Subject Classification. Primary 11A41; Secondary 11A51.

c©1997 American Mathematical Society

451

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



452 TONY FORBES

The finite Fourier transform. We wish to compute x2, 0 ≤ x < 215360. Let F
be the eighth Fermat number 2256 + 1 and let M = 2120. Given a 256-dimensional
vector Z = (Z0, Z1, . . . , Z255), we define the Fourier transform F[Z] modulo F as
the vector with components F[Z]k, k = 0, 1, . . . , 255, satisfying 0 ≤ F[Z]k < F and

F[Z]k ≡
255∑
i=0

Zi4
ki (mod F ).(2)

Let Z ⊗ Z be the vector with components satisfying 0 ≤ [Z ⊗ Z]i < F , i =
0, 1, . . . , 255,

[Z ⊗ Z]0 ≡ Z2
0 (mod F )

and

[Z ⊗ Z]i ≡ Z2
256−i (mod F ), i = 1, 2, . . . , 255.

The number x is represented in the base M by a vector X = (X0, X1, . . . , X255),

x =
255∑
i=0

XiM
i,

where 0 ≤ Xi < M for i = 0, 1, . . . , 255. The restriction x < 215360 implies X128 =
X129 = · · · = X255 = 0. Finally, let Y = (Y0, Y1, . . . , Y255) = F[F[X ]⊗F[X ]], which
represents the number

y =
255∑
j=0

F[F[X ]⊗ F[X ]]jM
j =

255∑
j=0

YjM
j(3)

in base M , although the “digits” Yj are not necessarily less than M .

Theorem 1. Let x and y be defined as above. Then y = 256x2.

Proof. This is a straightforward application of the convolution theorem. (Ob-
serve that 4 is a 256th root of unity (mod F ) and further, that (4k − 1, F ) = 1
for k = 1, 2, . . . , 255.) The rearrangement of F[X ] implicit in F[X ] ⊗ F[X ] and
second Fourier transform are equivalent to an inverse transformation (up to a
scalar multiple) which may be defined as in (2) but with 4−ki instead of 4ki.

The parameter M = 2120 is small enough to ensure that 256
∑i
j=0 XjXi−j < F ,

i = 0, 1, . . . , 255.

The fast Fourier transform. Let

Z256,0,i = Zi, i = 0, 1, . . . , 255.

For d = 128, 64, 32, 16, 8, 4, 2, 1, let Zd,k,i and Zd,k+128/d,i be the integers in the
range 0 to F − 1 satisfying

Zd,k,i ≡ Z2d,k,i + 4dkZ2d,k,i+d (mod F )(4)

and

Zd,k+128/d,i ≡ Z2d,k,i − 4dkZ2d,k,i+d (mod F ),(5)

where i = 0, 1, . . . , d− 1 and k = 0, 1, . . . , 128
d − 1.

Theorem 2. We have F[Z]k = Z1,k,0, k = 0, 1, . . . , 255.

Proof. The theorem becomes evident when the iterations are performed by
hand.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A LARGE PAIR OF TWIN PRIMES 453

Table 1. Fermat test of 999999× 2n + 1

n
School method

seconds
FFT method

seconds
dimension

D
root
G

5984 51 66 256 4
7008 80 77 256 4
8000 120 88 256 4
8992 170 99 256 4
9984 230 110 256 4

12000 400 130 256 4
13984 630 160 256 4
15328 830 170 256 4
15360 830 350 512 2
16000 940 370 512 2
20000 1800 460 512 2
24000 3200 550 512 2
28000 5000 650 512 2
30688 6600 710 512 2
30720 6600 1900 1024 2192 − 264

36000 11000 2300 1024 2192 − 264

44000 19000 2800 1024 2192 − 264

52000 32000 3300 1024 2192 − 264

60000 49000 3800 1024 2192 − 264

61408 53000 3900 1024 2192 − 264

Programming. The computer programs were written in a combination of Yuji
Kida’s UBASIC [4] and 486 assembler language; UBASIC and assembler for the
preliminary sieving, UBASIC to generate tables for the fast Fourier transform, and
assembler for the main body of the Fermat test. We prefer this particular version
of the fast Fourier transform because it is easy to implement in 486 assembler
language. The technique described in [3] of bit-reversing the k index permits the
use of a single array to hold the vector Z; at each stage of the transform the sum
Zd,k,i and difference Zd,k+128/d,i in (4) and (5) occupy the same array elements as
the operands Z2d,k,i and Z2d,k,i+d.

At the upper limit of Theorem 1, we find that we can test a 4624-digit number
in about 8.5 minutes on the 486 at 33 MHz in 16-bit mode. At 100 MHz the time
reduces to 170 seconds.

Comparison of algorithms. In Table 1 we give running times for the Fermat
test of m2n + 1, comparing the two algorithms for computing x2 on a typical 486
DX4 computer:

(i) The school method. Here we simply chop x into digits xi of size 232 and form
the convolution

x2 =
∑
i

x2
i 2

64i + 2
∑
i

232i
∑
j<i/2

xjxi−j .

(ii) The FFT method. This is based on the fast Fourier transform modulo F =
2256 + 1 and base M = 2120. The dimension of the Fourier transform is D, a power

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



454 TONY FORBES

of two, and G is a primitive Dth root of unity modulo F . The method is applied to
numbers less than MD/2 = 260D. If we allow a 32-bit word for the multiplier m, the
maximum value of the exponent n is 60D−32. We present results for D = 256, 512
and 1024. There is a small complication when D = 512 and 1024. Define Xi = 0
for i ≥ D and let

Wj = D

j∑
r=0

XrXj−r, j = 0, 1, . . . , 2D− 1.(6)

As in Theorem 1, Yj ≡ Wj (mod F ) (since Xi = 0 for i ≥ D/2), but now it is
possible for Wj to exceed F − 1. However, we also have Wj ≡ 0 (mod D) and
Wj < DF from which the true value of Wj may be determined.

The time taken by the FFT method is essentially a linear step function of n with
discontinuities at 15360 and 30720, where there is a somewhat more than doubling
as the dimension changes. We chose the exponent n = 15328 simply because it is
the largest multiple of 32 below the first jump. But it was a fortunate choice—the
first m making both m215328−1 and m215328+1 prime turns out to be exceptionally
small.

One way of smoothing out the steps is to allow x to slightly exceed 260D. Then
the first few components of the vector Y in Theorem 1 will include contributions
from the upper half ofX because in (6) we no longer haveWj = 0 for j ≥ D. Instead

of (3), we have Yj ≡Wj+WD+j (mod F ) (0 ≤ j < D) and y =
∑2D−2
j=0 WjM

j . We
calculate any nonzero components WD+j separately and also use them to recover
the corresponding Wj from Yj . Eventually the work involved in computing the Wj

for j ≥ D will reach a point where it becomes preferable to increase D to the next
power of two.

The sieve. Let n be some fixed, not too small integer, and let L = (n log 2)2

4C2
, where

C2 ≈ 0.660 is the twin prime constant
∏
p>2

p(p−2)
(p−1)2 . Let π2(x, n) denote the number

of m ≤ x such that both m2n + 1 and m2n − 1 are prime. Assuming the Hardy-
Littlewood conjecture [5] concerning the distribution of twin primes, and assuming
that the twin primes are equally distributed among the odd residue classes modulo
2n, we have π2(x, n) ≈ 4C2x(log x2n)−2. Thus π2(L, n) ≈ 1, and we expect a
reasonable chance of finding twin primes m2n ± 1 with m ≤ L.

We sieve the interval 1 ≤ m ≤ L by primes up to q; that is, we remove all
m ≡ ±2−n (mod p) for 2 < p ≤ q. Denote the time for this process by S(n, q).
To this we add the time required to perform the Fermat test on the remaining
numbers. If T (n) is the average time for a single Fermat test of m2n + 1, m < 232,
then the total time is

S(n, q) + LT (n)
∏

2<p≤q

p− 2

p
≈ S(n, q) +

4C2e
−2γL

(log q)2
T (n),(7)

by Mertens’ theorem.
Our sieving program has three stages. The first uses a difference table of primes

p < 220 and residues 2−n modulo p to produce m’s satisfying (m222n− 1, 220!) = 1.
The second stage takes batches of 15000 from the first stage (corresponding to
about 3500000 original m’s) and sieves them up to 232. We use numbers coprime
to 30030 rather than primes. The third state is just like the second and covers the
range 232 to q.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A LARGE PAIR OF TWIN PRIMES 455

Assume we have full use of a 100 MHz 486 and let n = 15328, so that T (15328) =
170 seconds and L ≈ 42700000. The time for the fist two stages of the sieve is
about 5 hours per batch. The third stage requires multiprecision arithmetic for the
computation of 2−n (mod p), and it takes about 15 seconds on average to sift from
p to p+ 106. Thus,

S(n, q) ≈ e−2γn2

15000

(
18000

202
+

0.000015

322
(q − 232)

)
seconds.

The minimum of (7) occurs when

q(log q)3 ≈ 2048(log 2)2 15000× 170

0.000015
≈ 1.7× 1014,

or when q ≈ 1.3× 1010, corresponding to a total search time of 139 days, 10 days
for the sieving and 129 days for about 66000 Fermat tests.

Clearly, we can improve the sieving procedure by operating on larger batches of
m’s, and if a table of primes up to q were available, we would not have to waste
time sifting with composite numbers. However, the effect is relatively slight. For
example, with a 20-fold increase in speed, the appropriate value of q turns out to
be 1.9 × 1011, which reduces the search time to 112 days—8 days for sieving and
104 days for the Fermat tests.

Acknowledgement

The author is very grateful to the referee for helpful comments and suggestions.

Postscript. In November, 1995 K.-H. Indlekofer and A. Ja’rai, announced a new,
large prime pair, 242206083× 238880 ± 1.

References

1. Tony Forbes, Prime k-tuplets−10, M500 146 (1995), 8–12.
2. J. Brillhart, D. H. Lehmer, and J. L. Selfridge, New primality criteria and factorizations of

2m ± 1, Math. Comp. 29 (1975), 620–647. MR 52:5546
3. A. V. Aho, J. E. Hopcroft and J. D. Ullman, The design and analysis of computer algorithms,

Addison-Wesley, Reading, MA, 1975. MR 54:1706
4. C. K. Caldwell, UBASIC, J. Recreational Math. 25 (1993), 47–54.
5. G. H. Hardy and J. E. Littlewood, Some problems of ‘Partitio Numerorum’; III: On the

expression of a number as a sum of primes, Acta Math. 44 (1922), 1–70.

22 St. Albans Road, Kingston upon Thames, Surrey, KT2 5HQ, England

E-mail address: tonyforbes@ltkz.demon.co.uk

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


