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Abstract—Defect prediction models are a well-known technique for identifying defect-prone files or packages such that practitioners
can allocate their quality assurance efforts (e.g., testing and code reviews). However, once the critical files or packages have been
identified, developers still need to spend considerable time drilling down to the functions or even code snippets that should be reviewed
or tested. This makes the approach too time consuming and impractical for large software systems. Instead, we consider defect
prediction models that focus on identifying defect-prone (“risky”) software changes instead of files or packages. We refer to this type of
quality assurance activity as “Just-In-Time Quality Assurance,” because developers can review and test these risky changes while they
are still fresh in their minds (i.e., at check-in time). To build a change risk model, we use a wide range of factors based on the
characteristics of a software change, such as the number of added lines, and developer experience. A large-scale study of six open
source and five commercial projects from multiple domains shows that our models can predict whether or not a change will lead to a
defect with an average accuracy of 68 percent and an average recall of 64 percent. Furthermore, when considering the effort needed to
review changes, we find that using only 20 percent of the effort it would take to inspect all changes, we can identify 35 percent of all
defect-inducing changes. Our findings indicate that “Just-In-Time Quality Assurance” may provide an effort-reducing way to focus on
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the most risky changes and thus reduce the costs of developing high-quality software.

Index Terms—Maintenance, software metrics, mining software repositories, defect prediction, just-in-time prediction

1 INTRODUCTION

SOFTWARE quality assurance activities (e.g., source code
inspection and unit testing) play an important role in
producing high quality software. Software defects' in
released products have expensive consequences for a
company and can affect its reputation. At the same time,
companies need to make a profit, so they should minimize
the cost of maintenance activities. To address this challenge,
a plethora of software engineering research focuses on
prioritizing software quality assurance activities [4], [6], [49].

1. The term “defect” is used to mean a static fault in source code [18].
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The majority of quality assurance research is focused on
defect prediction models that identify defect-prone mod-
ules (i.e., files or packages) [17], [19], [30], [45]. Although
such models can be useful in some contexts, they also have
their drawbacks. We can summarize the drawbacks of such
approaches as follows:

1. Prediction units are coarse grained: Predictions at
the package or file granularity leave it to developers
to locate the risky code snippets in these files.

2. Relevant experts are not identified: Once a file is
identified as risky, someone needs to find the expert
for inspection/testing and other quality improve-
ment activities. This may be a nontrivial task: For
example, some files in the Mozilla project are
touched by up to 155 developers.

3. Predictions are made too late in the development
cycle: Practitioners want to know about quality
issues as soon as possible while the change details
are still fresh in their minds.

Therefore, researchers have proposed performing pre-
dictions at the change level, focusing on predicting defect-
inducing changes [26], [41]. We illustrate the advantage of
change-level prediction with the following example: Alice is
a software development manager for a large legacy system
that is subject to on-going maintenance. Bob and Chris are
two developers of the system, and Bob has modified a file A.
A year later, in the course of estimating the expected quality
of the upcoming release, a package/file-level prediction
model used by Alice indicates that file A is fault prone.
Given the length of time that has passed since the change,
Alice does not know who’s change introduced the defect.

Published by the IEEE Computer Society
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Even if Alice would assign the work to Bob, Bob would now
need to remember the rationale and all the design decisions
of the change to be able to evaluate if the change introduced
a defect. Using change-level prediction, Alice (or, preferably,
Bob) would be notified immediately (upon check-in) that
there is a high probability that a defect was introduced to file
A. Bob can quickly revisit the rationale and design and, if
necessary, fix the defect because he still has the context fresh
in his mind.

Mockus and Weiss [41] assess the risk of Initial
Modification Requests (IMR) in 5ESS network switch
project, i.e., the probability that such requests are defect
inducing. IMRs may consist of multiple Modification
Requests (MR), which, in their turn, may contain multiple
changes. Kim et al. [26] used the identifiers in added and
deleted source code and the words in change logs to classify
changes as being defect-prone or clean.

We refer to this type of quality assurance activity as
“Just-In-Time (JIT) Quality Assurance.” In contrast to
current approaches (i.e., package/file-level prediction),
Just-In-Time Quality Assurance aims to be an earlier step
of continuous quality control because it can be invoked as
soon as a developer commits code to their private or to the
team’s workspace. The main advantages of performing
change-level predictions are:

1. Predictions are made at a fine granularity: Predic-
tions identify defect-inducing changes which are
mapped to small areas of the code and provide large
effort savings over coarser grained predictions [23].

2. Predictions can be expressed as concrete work
assignments for a developer to fix a defect due to a
change: Changes can be easily mapped to the person
who committed the change. This can save time in
finding the developer who introduced the defect (if a
defect is induced) because the person who made the
change is most familiar with it.

3. Predictions are made early on: Only change proper-
ties are used for predictions. Therefore, the predic-
tion can be performed at the time when the change is
submitted for unit test (private view) or integration.
Such immediate feedback ensures that the design
decisions are still fresh in the minds of developers.

Prior work has considered change-level predictions in a
limited context. First, Mockus and Weiss [41] analyzed only
a single large telecommunications system, whereas Kim
et al. [26] considered exclusively open source systems.
Second, prior change-level prediction studies did not
consider the effort required for quality assurance (e.g.,
testing and code reviews), a crucial aspect for any practical
application as shown in our analysis. Third, earlier studies
consider only metrics specific to their particular context.

We therefore perform an empirical study of change-level
predictions on a variety of open source and commercial
projects from multiple domains. Our multidomain, multi-
company dataset is composed of six open source projects
and five commercial projects, containing more than 250,000
changes and covering two of the most popular program-
ming languages (C/C++ and Java). We use a broad array of
features to assess what type of factors provide good
predictive power across this wide sample of projects. To
accomplish that, we describe operationalizations of these

features for all of these projects, that is, how we map these
features to metrics, collect the metrics, and preprocess the
metrics (e.g., collinearity, skew, and imbalance).

We formulate our study in the form of three research
questions:

e RQI1: How well can we predict defect-inducing changes?
Mockus and Weiss [41] evaluated the prediction
performance using one commercial project. To better
understand the generalizability of the results, we use
six open source projects and five commercial
projects developed by two companies. To identify
defect-inducing changes, we build a change-level
prediction model based on a mixture of established
and new metrics (e.g., the distribution of modified
code across each file [19]). We are able to predict
defect-inducing changes with 68 percent accuracy
and 64 percent recall.

e  RQ2: Does prioritizing changes based on predicted risk

reduce review effort?

More recently, research on file-level defect pre-
diction started to evaluate prediction performance in
a more practical setting by taking into consideration
review effort [23], [35]. For example, while a
traditional prediction model could identify a large
file as having five defects, the effort needed to inspect
the whole file to find those defects could be much
larger than the effort needed to inspect five smaller
files, each having one defect. Hence, a model
recommending the latter five files would be more
advantageous in practice. Note that we assume that
every defect has the same weight, i.e.,, we do not
distinguish defects with different severity. We men-
tion the implications of this assumption in Section 7.

Inspired by this work, we apply effort-aware
evaluation to JIT Quality Assurance. To our knowl-
edge, such an evaluation has not been reported
before at change level. Our findings indicate that
spending only 20 percent of the total available
required effort (measured as the percentage of
modified code) suffices to identify up to 35 percent
of all defect-inducing changes.

e RQ3: What are the major characteristics of defect-

inducing changes?

We study which factors have the largest impact on
our predictions, i.e., we identify the major character-
istics of risky changes. Our findings for the open
source projects show that the number of files and
whether or not the change fixes a defect are risk-
increasing factors, whereas the average time interval
since the previous change is a risk-decreasing factor
in RQ1 and RQ2. For the commercial projects, we
also find that the diffusion factors are consistently
important in RQ1 and RQ2. However, in RQ1 they
are risk increasing, whereas in RQ2 they are risk
decreasing.

The rest of the paper is organized as follows: Section 2
introduces background and related work. Section 3 explains
the change measures, which are metrics to build a
prediction model at change-level. Section 4 provides the
design of our experiment and Section 5 presents the results.
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Section 6 discusses our findings. Section 7 reports the
threats to validity and Section 8 presents the conclusions of
the paper.

2 BACKGROUND AND RELATED WORK

In this section, we review the related work. The majority of
this work is about long-term and short-term quality
assurance.

2.1 Long-Term Quality Assurance

Used metrics. A plethora of studies use various metrics to
predict defects. Prior work used product metrics such as
McCabe’s cyclomatic complexity metric [33] and the
Chidamber and Kemerer (CK) metrics suite [9] and code
size (measured in lines of code) [1], [12], [15], [21], [29].
Other work uses process metrics to predict defect-prone
locations [15], [19], [43], [44], [46]. Graves et al. [15] use
process metrics based on the change history (e.g., number
of past defects and number of developers) to build defect
prediction models. They show that process metrics are
better defect features than product metrics like McCabe’s
cyclomatic complexity. Nagappan and Ball [46] use
relative code churn metrics, which measure the amount
of code change, to predict file-level defect density. Jiang
et al. [22] compare the use of design and code metrics in
predicting fault-prone modules and find that code-based
models outperform design-level models. Moser et al. [43]
show that process metrics could perform at least as well as
code metrics in predicting defect-prone files in the Eclipse
project. Hassan [19] shows that scattered changes are good
indicators of defect-prone files. We leverage the knowl-
edge from these prior studies and use 14 different factors
extracted from code changes to predict whether or not a
change will induce a defect.

Generalizability of findings. There are many empirical
studies on defect prediction using open source projects and
commercial projects. Briand et al. [7] analyzed the relation-
ship between design and software quality in a commercial
object-oriented system. The result of their case study showed
that the frequency of method invocations appears to be the
main driving factor of defect proneness. In order to draw
more general conclusions, Gyimothy et al. [17] also analyzed
the relationship of Chidamber and Kemerer’s metrics with
software quality using data collected from the open source
Mozilla project across several releases (version 1.0-1.6). They
reported that Coupling Between Object classes (CBO)
seems to be the best measure for predicting defect-prone
classes. Zimmermann et al. [62] focus on defect prediction
from one project to another using seven commercial projects
and four open source projects. They show that there is no
single factor that leads to accurate predictions. We con-
tribute to the body of work in defect prediction by
performing our case study on 11 different projects, i.e., six
open source and five commercial projects. This increases the
external validity of our findings.

Effort-aware models. Recent work by Arisholm et al. [2],
Menzies et al. [37], Mende and Koschke [35], and Kamei
et al. [23] examine the performance of effort-aware defect
prediction models. Mende and Koschke [35] use the
number of lines of code as a measure of reviewing effort,

similarly to Arisholm et al. [2]. Experimental results using
publicly available datasets show that the prediction
performance of effort-aware models improved from a
cost-effectiveness point, compared to traditional, non-
effort-aware models. Kamei et al. [23] revisit some of the
major findings in the traditional defect prediction literature
by taking into account the effort needed for software quality
assurance. Their findings indicate that process metrics
outperform product metrics by a factor of 2.6 when
considering effort. In this paper, we also consider effort-
aware predictions and elaborate on the impact of effort on
predicting defect-inducing changes.

The previous work mentioned thus far focuses on long-
term quality assurance, that is, it predicts the probability of
defects or the number of defects for a particular software
location (i.e., file or package). In contrast to previous
studies, we focus on predicting the probability of a software
change inducing a defect at check-in time.

2.2 Short-Term Quality Assurance

Some previous studies focus on the prediction of risky
software changes. Mockus and Weiss [41] predict the risk of
a software change in an industrial project. They use change
measures, such as the number of subsystems touched, the
number of files modified, the number of lines of added
code, and the number of modification requests. Motivated
by their previous work, we study the risk of software
change on a set of six open source and five commercial
projects and also evaluate our findings when considering
the effort required to review the changes. The predictions of
Mockus and Weiss were done at a coarse-grained granu-
larity, i.e., IMR that consist of multiple modification
requests, which are made up of multiple changes. On the
other hand, our predictions provide results with a fine-
grained granularity (i.e., at the individual change level).

Sliwerski et al. [57] study defect-introducing changes in
the Mozilla and Eclipse open source projects. The authors
find that defect-introducing changes are generally a part of
large transactions and that defect-fixing changes and
changes done on Fridays have a higher chance of
introducing defects. More recently, Eyolfson et al. [13]
study the correlation between a change’s bugginess and the
time of the day the change was committed and the
experience of the developer making the change. They
perform their study on the Linux kernel and PostgreSQL
and find that changes performed between midnight and
4 AM are more buggy than changes committed between
7 AM and noon and that developers who commit regularly
produce less buggy changes. Yin et al. [60] perform a study
that characterizes incorrect defect fixes in Linux, Open-
Solaris, FreeBSD, and a commercial operating system. They
find that 14.8-24.2 percent of fixes are incorrect and affect
end users, that concurrency defects are the most difficult to
correctly fix, and that developers responsible for incorrect
fixes usually do not have enough knowledge about the
code being changed.

Aversano et al. [3] and Kim et al. [26] use source code
change logs to predict the risk of a software change. For
example, Kim et al. sampled a balanced subset of changes
in several open source projects and obtained 78 percent
accuracy and a 60 percent recall. Our results on a full set of
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TABLE 1
Summary of Change Measures

Related Work

The defect probability of a change
increases with the number of mod-
ified subsystems [41].

The higher the number of modified
directories, the higher the chance
that a change will induce a de-
fect [41].

The number of classes in a module
is a good feature of post-release de-
fects of a module [47]

Scattered changes are more Iikely to
introduce defects [10], [19].

Relative code churn measures are good
indicators of defect modules [43], [46].

Larger modules contribute more de-
fects [27].

Changes that fix defects are more
likely to introduce defects than
changes that implement new func-
tionality [16][52].

Files previously touched by more
developers contain more defects
[32].

More recent changes contribute
more defects than older
changes [15].

The Jarger the spread of modified
files, the higher the complexity [10],
[19].

Programmer experience significantly
decreases the defect probability [41].

Dim. | Name Definition Rationale

NS Number of modi- | Changes modifying many subsystems are more
fied subsystems likely to be defect-prone.

ND Number of modi- | Changes that modify many directories are more

g fied directories likely to be defect-prone.

E

a NF Number of modi- | Changes touching many files are more likely to be
fied files defect-prone.

Entropy | Distribution  of | Changes with high entropy are more likely to
modified code | be defect-prone, because a developer will have
across each file to recall and track large numbers of scattered

changes across each file.

LA Lines of code | The more lines of code added, the more likely a
added defect is introduced.

N LD Lines of code | The more Ilines of code deleted, the higher the
h deleted chance of a defect.

LT Lines of code in | The larger a file, the more likely a change might
a file before the | introduce a defect.
change

2 FIX Whether or not | Fixing a defect means that an error was made in an
2, the change is a de- | earlier implementation, therefore it may indicate
E, fect fix an area where errors are more likely.

NDEV The number of | The larger the NDEV, the more likely a defect is
developers  that | introduced, because files revised by many devel-
changed the | opers often contain different design thoughts and

> modified files coding styles.
8 AGE The average time | The lower the AGE (i.e., the more recent the last
% interval between | change), the more likely a defect will be intro-
the last and the | duced.
current change

NUC The number of | The larger the NUC, the more likely a defect is
unique changes to | introduced, because a developer will have to recall
the modified files | and track many previous changes.

EXP Developer experi- | More experienced developers are less likely to

Y ence introduce a defect.

g REXP Recent developer | A developer that has often modified the files in
b experience recent months is less likely to introduce a defect,
& because she will be more familiar with the recent
M developments in the system.

SEXP Developer experi- | Developers that are familiar with the subsystems
ence on a subsys- | modified by a change are less likely to introduce
tem a defect.

changes in open source and commercial projects show that
we are able to predict defect-inducing changes with
68 percent accuracy and 64 percent recall despite a much
lower fraction bug inducing changes.” The combination of
change logs and our change measures contributes to the
improvement of prediction performance. In addition to
conventional criteria (e.g., accuracy and recall), our
empirical evaluation at the change-level also takes effort
into account.

3 CHANGE MEASURES

To predict whether or not a change introduces a future
defect, we consider 14 factors grouped into five dimensions
derived from the source control repository data of a project.
As shown in Table 1, we use these factors since they
perform well in traditional defect prediction research and
we want to explore their performance in the context of

2. As noted later, the accuracy and precision drop dramatically with the
fraction of defect-inducing changes.

defect-inducing changes. We now describe each dimension
and its factors in more detail.

Diffusion dimension: The diffusion of a change is one of
the most important factors in predicting the probability of a
defect [41]. A highly distributed change is more complex to
understand and generally requires keeping track of all
locations that must be changed. For example, Mockus and
Weiss [41] show that the number of subsystems touched is
related to the probability of a defect. Hassan [19] shows that
scattered changes are good indicators of defects.

We expect that the diffusion dimension can be leveraged
to determine the likelihood of a defect-inducing change. A
total of four different factors make up the diffusion
dimension, as listed in Table 1.

We use the root directory name as the subsystem name
(i.e., to measure NS), the directory name to identify
directories (i.e., ND) and the file name to identify files
(i.e., NF). To illustrate, if a change modifies a file with the
path, “org.eclipse.jdt.core/jdom/org/eclipse/jdt/core/
dom/Node.java”, then the subsystem is org.eclipse.jdt.core,
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the directory is org.eclipse.jdt.core/jdom/.../dom, and the
file name is Node.java.

To measure entropy, we use measures similar to Hassan
[19]. Entropy is defined as: H(P) = — > }_,(pr *log, pr),
where probabilities p, > 0, Vk € 1,2,...,n, n is the number
of files in the change, P is a set of p;, where p; is the
proportion that file; is modified in a change and
(>~i—1pr) = 1. Entropy aims to measure the distribution of
the change across the different files. If, for example, a
change modifies three different files, 4, B, and C and the
number of modified lines in files A, B, and C is 30, 20, and
10 lines, respectively, then the Entropy is measured as 1.46
(= —310gs35 — Blogs23 — Wlogsid). The formula for Entropy
above has been normalized by the maximum Entropy logan
to account for differences in the number of files across
changes, similarly to Hassan [19]. The higher the normal-
ized Entropy, the larger the spread of a change.

Size dimension: A large change has a higher chance of
introducing a defect since more code has to be changed or
implemented. For example, Nagappan and Ball [46] and
Moser et al. [43] show that the size of a change (e.g., the
number of lines of code added in a revision) is a good
feature of defect-prone modules.

We conjecture that larger changes are more likely to
introduce defects. The size dimension consists of three
different factors (LA, LD, and LT), as shown in Table 1.
These factors can be measured directly from the source
control repository.

Purpose dimension: A change that fixes a defect is more
likely to introduce a new defect [16], [52]. The intuitive
reasoning behind this is that files that had defects in them
previously tend to have more defects in the future [15].

To determine whether or not a change fixes a defect, we
search the change logs for keywords like “bug,” “fix,”
“defect,” or “patch,” and for defect identification numbers.
A similar approach to determine defect fixing changes was
used in other work [26].

History dimension: The history of a change contains
useful information that can help us determine whether or
not the change will be defect-inducing in the future. For
example, previous studies showed that the number of
previous changes and defect fixes to a file are a good
indicator of the file’s bugginess [15]. Matsumoto et al. [32]
show that the files previously touched by many developers
contain more defects.

Three factors fall under the history dimension, as shown
in Table 1. We use an example to illustrate how we measure
these factors. NDEV is the number of developers that
previously changed the touched files. For example, if a
change has files A, B, and C, file A thus far has been
modified by developer z, and files B and C have been
modified by developers x and y, then NDEV would be 2 (2
and y). AGE is the average time interval between the
current and the last time these files were modified. For
example, if file A was last modified three days ago, file B
was modified five days ago, and file C' was modified four
days ago, then AGE is calculated as 4 (i.e., 3+§+4 )- NUC is
the number of unique last changes of the modified files. For
example, if file A was previously modified in change o and
files B and C were modified in change g, then NUC is 2
(i.e., « and 3).

Experience dimension: Although some reports [51]
suggest that using information about developers does not
improve the prediction of defects, the personnel involved
with a change actually are responsible for inducing most of
the defects. For example, Mockus and Weiss [41] show that
higher programmer experience significantly decreases a
change’s defect probability. Matsumoto et al. [32] show that
defect injection rates vary among different developers.

The experience dimension is composed of three factors,
as shown in Table 1. Similarly to prior work [32], [41],
developer experience (EXP) is measured as the number of
changes made by the developer before the current change.
Recent experience (REXP) is measured as the total experi-
ence of the developer in terms of changes, weighted by their
age. It gives a higher weight to changes that are more
recent. Subsystem experience (SEXP) measures the number
of changes the developer made in the past to the
subsystems that are modified by the current change.

We use the following weighting scheme to measure
REXP: 7 +1) , Where n is measured in years. For example, if a
developer of a change made three changes in the current
year, four changes one year ago, and three changes two
years ago, then REXP is 6 (i.e., =3+3+3).

4 STUDY SETUP

In this case study, we aim to answer the three research
questions posed earlier. Here, we detail the systems used
in our case study and the data extraction and processing
steps used.

41 Studied Systems

Previous studies on change risk examined the risk of
changes in open source projects only [26] or commercial
projects only [41]. To improve the generalizability of our
results, and produce more concrete findings, we use
11 different projects. Six are large, well-known open source
projects (i.e., Bugzilla, Columba, Mozilla, Eclipse JDT,
Eclipse Platform, and PostgreSQL) and five are large,
commercial projects (which we refer to as C-1, C-2, C-3,
C-4, and C-5). The projects used are written in C/C++ and/
or Java.

To conduct our case study, we extracted information
from the CVS repositories of the projects and combined it
with bug reports. We used the data provided by the MSR
2007 Mining Challenge® to gather the data for the Bugzilla
and Mozilla projects. The data for the Eclipse JDT and
Platform projects were gathered from the MSR 2008 Mining
Challenge.4 For Columba® and PostgreSQL,(’ we mirrored
the official CVS repository. The commercial projects C-1,
C-2, C-3, and C-4 are written in Java, and contain hundreds
of thousands of lines of code. Each project is developed by
hundreds of developers. Project C-5 is a high availability
telephone switching system that contains tens of millions
of lines of code, mostly in C and C++. The project is
developed by thousands practitioners. We do prediction on
a small subset of changes that were delivered as software
updates and therefore were under particular scrutiny. If any
of the software updates failed, a root cause analysis was

3. http:/ /msr.uwaterloo.ca/msr2007 /challenge /index.html.
4. http:/ /msr.uwaterloo.ca/msr2008/challenge/index.html.
5. rsync:/ /columba.cvs.sourceforge.net/cvsroot/columba/.
6. rsync:/ /anoncvs.postgresql.org/cvsroot/pgsql/.
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TABLE 2
Statistics of the Studied Projects

Period The total number Average LOC # of modified files # of changes | # dev. per file
of changes File Change per change per day | Max Avg
Bugzilla 08/1998 - 12/2006 | 4,620 (36%) | 389.8 375 2.3 15 37 8.4
Columba 11/2002 - 07/2006 | 4,455 (31%) | 125.0 149.4 6.2 3.3 10 1.6
Eclipse J]DT 05/2001 - 12/2007 | 35,386 (14%) | 260.1 714 43 14.7 19 4.0
Eclipse Platform | 05/2001 - 12/2007 | 64,250 (14%) | 231.6 72.2 4.3 26.7 28 2.8
Mozilla 01/2000 - 12/2006 | 98,275 (5%) | 360.2 106.5 5.3 389 | 155 6.4
PostgreSQL 07/1996 - 05/2010 | 20,431 (25%) | 563.0 101.3 4.5 4.0 20 4.0

" OS5-Median ~ [ T T T - 27909 ~ T (20%) [ 3100 ~ " 867 T T T T T~ 44 947 24 40
C-1 10/2000 - 12/2009 | 4,096 - 16.4 2.0 12 - -
C-2 10/2000 - 12/2009 9,277 - 19.2 24 2.8 - -
C-3 07/2002 - 12/2009 3,586 16.6 2.0 13 - -
C-4 12/2003 - 12/2009 5,182 12.9 1.8 2.4 - -
C-5 10/1982 - 12/1995 | 10,961 303.0 39.0 4.8 2.3 -

" COM-Median ~ | =~~~ = A 200 23| - T -7

tThe percentage in brackets shows the percentage of defect-inducing changes to all changes.

conducted, including the identification of the change
causing the update to fail. We used the subset of changes
from these analyses to identify defect-inducing changes
among all changes involved in software updates.

Table 2 summarizes the statistics of the datasets collected
from all the projects. The table shows the total number of
changes and, between parentheses, the percentage of all
changes that are defect inducing. In this study, we consider
a change to be defect inducing if it induces one or more
defect (since in certain cases a change may induce more
than one defect). The exact number of defects induced is not
as important for our models and prediction. The percentage
of defect-inducing changes is considerably lower for the
commercial systems. Unfortunately, we cannot disclose the
percentage of the defect-inducing changes of the commer-
cial systems and the average file size for project C-1, C-2,
C-3, and C-4 for confidentiality reasons.

Table 2 shows average values for the number of LOCs at
the file level and the change level, the number of modified
files per change, and the number of changes per day. The
table also shows the maximum and average number of
developers that modified a single file. For example, if file A is
modified by developer z, file B is modified by developer y,
and file C is modified by developer z, y, and z, then the
maximum and average numbers of developers are 3 and
1.7. This value shows whether a file has only one or more
responsible developers.

4.2 Extraction of Changes

Non-transaction-based SCM systems such as CVS permit a
developer to submit only a single source code file per
commit. We grouped related one-file commits into one
software change using common heuristics [26]. We consider
all commits by the same developer, with the same log
message, made in the same time window as one change, as
suggested by Zimmermann and Weisgerber [63]. Similarly
to Zimmermann and Weisgerber [63], we set the time
window to 200 seconds. Note that we do not need this step
for the commercial projects because they use transaction-
based SCM systems.

4.3 Identification and Recovery of Defect-Inducing

Changes

To know whether or not a change introduces a defect, we
use the SZZ algorithm [57]. This algorithm links each defect

fix to the source code change introducing the original defect
by combining information from the version archive (such as
CVS) with the bug tracking system (such as Bugzilla).

The SZZ algorithm consists of three steps. First, it
identifies the change that fixes a defect. SZZ searches for
keywords such as “Fixed” or “Bug,” and for defect
identifiers in the change comments. We examine the
implications of this assumption in Section 7.

The second step confirms whether that change is really a
defect fixing change using information from Bugzilla. We
link the changes and the defects in Bugzilla using the
numerical defect identifier (e.g., bug 12345) from the change
comments. Other heuristics to confirm whether a change is
really a defect-fix change are discussed elsewhere [57].

The third step identifies when the defect is introduced.
We use the diff command to locate the lines that were
changed by the defect fix. Then, we use the annotate
command to trace back to the last revision that changed
those patched lines. For example, in Fig. 1, we compare the
file revision after the defect fixing change (rev. C) and
the file revision before the defect fixing change (rev. B)
using the diff command (3.1) to get the actual lines modified
by the defect fix. We then identify the most recent revision
(rev. A) in which the modified line #3 of rev. B was changed
using the annotate command (3.2) and we label the change
of the identified revision as the defect-introducing change.

Note that, for C-5, all defect-introducing changes and
defect-fixing changes were manually identified through a
root-cause analysis and stored in C-5's change management
system by project experts. We used the manually collected
data instead of the SZZ algorithm for that project.

Approximate SZZ (ASZZ). In the case of Columba and
PostgreSQL, we use an approximate algorithm (ASZZ) to
identify whether or not a change is defect prone because the
defect identifiers are not referenced in the change logs. In
such cases, we have no way of verifying whether or not the
change we identified as defect fixing is really defect fixing.
The algorithm simply looks for keywords that are asso-
ciated with a defect fixing change (e.g., “Fixed” or “Bug”)
and assumes that the change fixed a defect without linking
the change to a Bugzilla report.

4.4 Data Preparation

Dealing with collinearity: Before using the collected factors
in our models, we need to make sure to remove highly
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defect-introducingchange

defect-fixing change

revA revB revC

1: bool extFile (Str s){ revB ! |1: boolexistFile(Strs){ 1: bool existFile(Str s){
2: Filefile = open(s); revA | [2: Filefile = open(s); 2: Filefile = open(s);
3: if(file == NULL){ revA : [3: if(file == NULL){ 3: if(file 1= NULL){

4: return true; revA i |4: return true; 3.1 4 return true;
5.} revB ! [5: lelse{ diff -rB-rC telse{

6 6 3c3

< if(file == NULL){

3.2 annotate -r B

Fig. 1. Example of defect-fixing and defect-introducing changes [23].

correlated factors [55]. To deal with the risk of multi-
collinearity, we manually remove the most highly corre-
lated factors, then use stepwise variable selection. We
manually chose which of the most correlated factors to
remove to keep the most fundamental (in our opinion)
factors in the model. Automatic techniques may not work
reliably in case of very strong collinearity.

We found that NF and ND, and REXP and EXP are
highly correlated. Therefore, we excluded ND and REXP’
from our model and instead used NF and EXP. Further-
more, we found LA and LD to be highly correlated.
Nagappan and Ball [46] reported that relative churn metrics
perform better than absolute metrics when predicting defect
density. Therefore, we normalized LA and LD by dividing
by LT, similarly to Nagappan and Ball’s approach. We also
normalized LT and NUC by dividing by NF since these
metrics have high correlation with NF.

Dealing with skew: Since most change measures are
highly skewed, we performed a logarithmic transformation
to alleviate this effect [55]. We applied a standard log
transformation to each measure, except to “FIX”, which is a
Boolean variable.

Dealing with imbalance: Our datasets are relatively
imbalanced, i.e., the number of defect-inducing changes
represents only a tiny percentage of all changes. This
imbalance causes performance degradation of the predic-
tion models [24], [25] if it is not handled properly. To deal
with this issue of data imbalance, we use a resampling
approach for our training data. To achieve this, we decrease
the majority class instances (i.e., non-defect-inducing
changes in the training data) by deleting instances
randomly such that the majority class drops to the same
level as the minority class (i.e., defect-inducing changes).
Note that the test data are not resampled.

5 CASE StuDpY RESULTS

In this section, we present our case study results and answer
our research questions.

5.1 RQ1: How Well Can We Predict Defect-Inducing
Changes?

Overview. To answer RQ1, we build a prediction model for

the risk of a software change using the factors in Table 1,

then evaluate the model’s performance. We compare the

7. The lowest Spearman Rank-Order Correlation is 0.91 for the
PostgreSQL project. One possible reason for this high correlation is that
the projects that we studied contain a large amount of long term
contributors. Long term contributors work on the projects for long periods
of time, making EXP and REXP collinear in these projects.

> ifffile 1= NULLK

performance of the prediction models for the open source
projects versus the prediction models for the commercial
projects.

Validation technique and data used. We use 10-fold
cross validation [11]. The dataset is divided into 10 folds, of
which the first nine are used as training data and the last
fold is used as testing data. The model is then trained using
the training data and its accuracy is tested using the testing
data. Afterward, the nine other folds each become a testing
dataset and a new model is built and evaluated. The
accuracy results are then aggregated across all 10 folds.

Approach. Similarly to previous work, we use a logistic
regression model to perform our prediction [4], [8], [17].
The logistic regression model outputs a probability, i.e., a
value between 0 and 1, for each change. We use a threshold
value of 0.5, which means that if the model-predicted
probability of a defect is greater than 0.5, the change is
classified as defect inducing; otherwise, it is classified as
non-defect-inducing [16], [17].

To avoid overfitting our models, we select a minimal set
of factors to include as independent variables of the models.
First, we manually remove highly correlated factors, then
we use stepwise variable selection based on Mallows” Cp
criterion [31] to remove the remaining collinear metrics and
those metrics that do not contribute to the model. This
selection technique proceeds by deleting the worst variable
from the full model until deleting any remaining variables
would no longer be beneficial.

To evaluate the prediction performance, we employ the
commonly used accuracy, precision, recall, and F1-measures.
These measures can be derived from a confusion matrix, as
shown in Table 3. A change can be classified as defect
inducing when it is truly defect inducing (true positive, TP);
it can be classified as defect inducing when it is actually not
(false positive, FP); it can be classified as non-defect-inducing
when it is actually defect inducing (false negative, FN); or it
can be correctly classified as non-defect-inducing (true
negative, TN).

The accuracy measures the number of correctly classi-
fied changes (both the defect inducing and non-defect-
inducing) over the total number of changes. It is defined
as: Accuracy = rpbtapy- Recall is the ratio of cor-
rectly predicted defect-inducing changes to the actual
defect-inducing changes (Recall = 77-5) and precision is
the ratio of correctly predicted defect-inducing changes to all
changes predicted as defect inducing (Precision = 7p-15).
There is a tradeoff between recall and precision. To
compare this tradeoff between different projects, we use
the Fl-value, which is the harmonic mean of recall and

Tl __ 2xRecallx Precision
precision: F1 — measure = =3 2072 280,
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TABLE 3
Confusion Matrix

True class
Classified as | Defect Non defect
Defect TP FP
Non defect FN TN

These criteria (e.g., precision and recall) depend on the
particular threshold used for the classification. Choosing
another threshold might lead to different results; hence we
calculated the measures for different thresholds. To get an
overall idea of the performance across thresholds, we
additionally use the area under the curve (AUC) of ROC
(the receiver operating characteristics) [28]. The range of
AUC is [0,1] and larger AUC value indicates better
prediction performance. Any predictor achieving AUC
above 0.5 is more effective than the random predictor.
The advantage of the AUC of ROC is its robustness toward
imbalanced data since the ROC is obtained by varying the
classification threshold over all possible values.

Results. We performed our predictions and present the
results in Table 4. We compare our prediction results to the
baseline, which randomly predicts defect-inducing changes.
The last column of Table 4 shows the improvement (in
percentage) using our predictor over the random predictor,
in terms of precision and AUC. Our predictor achieves an
average precision of 37 percent and recall of 67 percent for
open source projects, which translates to an average
improvement of 90 percent over the random predictor.

We note from Table 4 that our prediction models achieve
high recall values (average recall of 64 percent), which is the
more important measure of performance in highly skewed
datasets (which is the case in all of our projects). For example,
the average recall in the prior study by Kim et al. [26] is
62 percent (Details in Section 6.3). Menzies et al. [36]
commented on the fact that there are many industrial
situations where low-precision and high-recall prediction
models are still extremely useful when the data are imbal-
anced. This is because practitioners can live with the idea of
checking slightly more files or changes than needed as long as
most “bad situations” are avoided. Furthermore, the preci-
sion of conventional defect prediction models at the file level
is typically low (e.g., the precision is 14 percent) [24], [36].

To see why our approach is actually useful in practice,
despite the low precision, consider Table 2. This table shows
that in the open source projects, on average, the total
number of changes and the number of defect-inducing
changes per day is 9.4 and 1.9,° respectively. Hence, based
on our results (37 percent of precision and 67 percent of
recall), our prediction model flags, on average, 3.4 changes
per day as defect inducing.” Among them, 1.3 changes are
truly defect-inducing changes and 2.1 changes are actually
not (i.e., false positive). This result means that the
developers need to double check only 2.1 changes per day

8. The value 1.9 is calculated by 9.4 multiplied by 0.2 (i.e., 20 percent, the
percentage of defect-inducing changes) in Table 2

9. The number of defect-inducing changes classified by the Igrediction
model is TP+ FP in Table 3. TP+ FP is calculated as 57— since
Precision = TI;’f 5+ As the precision is 37 percent, we would like to obtain
TP. TP is calculated as Recall «x (I'P + F'N), that is, TP is 1.26 since
Recall = %, the recall is 67 percent, and TP + FN (i.e., the number of

defect-inducing changes) is 1.9. As a result, TP + FP is 340 (=% as
TP :

Precision )

TABLE 4
Summary of Prediction Performance (RQ1)

Acc.  Prec. Recall Fl AUC % improved

threshold: 0.5 Prec. AUC

BUZ | 67% 54%  69% 60%  74% 48.9%  48.0%
COL | 70% 51% 67% 58%  75% 64.3%  51.0%

JDT | 69% 26% 65% 37%  74% 87.6%  47.0%

PLA | 67% 27%  70% 38%  75% 89.3%  50.3%
MOZ | 77% 13%  63% 22%  77% 168.4%  54.9%

POS | 74% 49% 65%  56%  79% 97.1%  57.9%
T Avg | 71%  37%  67%  45%  76% || 92.6% 51.5%
Med | 69% 38%  66% 47%  75% 88.4%  50.6%
C-1[66% 35% 58% 44% 68% >200 354%

C2 | 63% 31% 61% 41% 68% >200 351%

C3 | 63% 47% 62%  54%  69% > 200 37.8%

C4 | 66% 41% 61% 49%  69% > 20.0 374%

C-5 | 70% 5% 66%  10% 73% > 200 46.9%
" Avg [ 66% 32% 62%  39% 69% || >1200 385%
Med | 66% 35% 61% 44%  69% > 200 37.4%
All-Avg | 68% 34% 64% 43%  73% > 200 45.6%
All-Med | 67%  35%  65% 44%  74% > 200 47.0%

“> 20.0” means that the improvement is greater than 20.0%.

unnecessarily. For this reason, we believe that the predic-
tion model could be useful in practical settings.

The average results are similar in the case of the
commercial projects, achieving an average precision of
32 percent and recall of 62 percent. This translates into an
improvement of more than 20 percent over the random
predictor. Furthermore, our prediction model (average
AUC of 73 percent) also outperforms the random predictor
(average AUC of 50 percent) in terms of the AUC,
i.e., across all thresholds. One commercial project, C5, has
a very low precision. This is caused by the extreme
imbalance (ratio of only 2.5 percent of defect inducing to
non-defect-inducing changes) in the data. Even with such a
low precision, the prediction model outperformed the
random predictor by more than 20 percent.

Predicting defect-inducing changes is effective in open

source and commercial projects. On average, we are able

to detect 64 percent (i.e., recall) of the actual defect-inducing

changes with an accuracy of 68 percent and a precision of 34

percent.

5.2 RQ2: Does Prioritizing Changes Based on
Predicted Risk Reduce Review Effort?

Overview. As pointed out by Mende and Koschke,
conventional prediction models at file level typically ignore
the effort needed to review the modified code [35]. A
prediction model that prioritizes the largest files as most
defect prone would have a very high recall, i.e., those files
likely contain the majority of defects, yet inspecting all those
files would take a considerable time. A model that
recommends slightly less defect-prone files that are easier
to inspect will yield more tangible results faster. Hence, in
this question we factor the effort required to review a
change into our approach and evaluate the prediction
performance of the resulting models.

Whereas for file-level prediction the number of lines of
code in a file is used as a measure of the effort required to
review the file [2], [37], this paper uses the total number of
lines modified by a change. For example, if a change adds
and deletes many lines, it requires more time to validate
than a change that adds or deletes fewer lines. This type of
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Fig. 2. Example of an effort-based cumulative lift chart for Bugzilla.

effort-aware prediction offers a more practical adoption-
oriented view of defect prediction results.

Approach. For our effort-aware evaluation, we first build
naive models based on our RQ1 models as a first attempt
toward effort-aware models. We then build customized
effort-aware models, and compare those to random models
that we use as a baseline.'° Similarly to RQ2, we use 10-fold
cross validation as validation technique.

Prior work [50] showed that the majority of the defects
(approximately 80 percent) are contained in a small number
of files (approximately 20 percent). Motivated by this prior
work, we assume that a limited amount of resources (i.e.,
20 percent) is available to review the changes flagged by us
as being defect-inducing. We then determine the maximum
number of defects developers could review based on our
prediction models using 20 percent of the total available
effort (Fig. 2). A naive way to do this is to prioritize the list
of changes in descending order based on the predicted
logistic probabilities. Then, we take the most risky changes
that we can review with 20 percent effort from the list and
count how many defects these changes would contain. We
call this the LR model. As we will show later, this LR model
does not perform well.

To improve the prediction, we introduce a customized
prediction model based on effort-aware linear regression
(EALR), similar to Mende and Koschke [35]. In such a

(z)

prediction model, we predict for Ry(z) = #ﬂf(z) instead of
just for Y(z), where Y(z) is 1 if the change is defect
inducing and 0 otherwise, and E ffort(z) is the amount of
effort required by the change (i.e., the number of modified
lines). Then, we prioritize the list of changes based on R(z)
in descending order. We take all of the changes that we
could review with just 20 percent effort off the list and
count how many defects these changes would contain. Note
that we use a linear regression model instead of a logistic
regression model since Ry(x) is not binary (i.e., defect or
not), but numeric. In addition, similarly to earlier work [56],
we excluded lines of code added/deleted from the
independent variables in the EALR model since lines of
code added/deleted together make up the effort value in
the dependent variable of the EALR model.

10. The random model represents the average over infinite random
models generated. Therefore, when plotting the cumulative lift charts like
Fig. 3, the line for the random model is an ideal straight line.

Finally, we also randomly generate a list of changes and
use it as a baseline to compare the prediction performance
of our models.

The accuracy measures the percentage of detected defect-
inducing changes to all defect-inducing changes when using
20 percent of all effort (we call it accuracy in RQ2). We selected
20 percent effort as the cut-off value. However, selecting
another cut-off value might lead to different results. There-
fore, we additionally use the P, evaluation metrics [34] to
evaluate the prediction performance of models. P, is
defined as the area A, between the effort (i.e., churn)-based
cumulative lift charts of the optimal model and the
prediction model (Fig. 2). In the optimal model, all changes
are ordered by the decreasing actual fault density, while in
the predicted model, all changes are ordered by decreasing
predicted value. As shown in the following equation, a larger
P, value means a smaller difference between the optimal
and predicted model:

Popt = 1 - Aopt~ (1)

The range of A, is [0, AUC(Optimal model)]. The
formula for A,, above has been normalized by the
maximum A,y,, similarly to Kamei et al. [23]. Therefore,
the range of normalized P, is [0,1] and any predictor
achieving the F,, above 0.5 is more effective than the
random predictor.

Results. We present the results of our effort-aware
predictions in Table 5. It can be observed that the simple LR
predictions do not perform well in terms of the accuracy
(i.e., the percentage of detected defect-inducing changes to
all defect-inducing changes when using 20 percent of all
effort). The average accuracy is 5 percent for open source
projects and 8 percent for the commercial projects. These
models perform worse than a basic random model.

However, the customized effort-aware models (i.e.,
EALR) highly improve the performance. They achieve
average prediction accuracies of 28 percent for open source
projects, 43 percent for the commercial projects, and
35 percent for all projects. That is, the EALR is 39% =
(27.8 —20.0)/20.0 and 114.5% = (42.9 — 20.0)/20.0 better
than the random predictor in OSS and COM. On the other
hand, for P, the EALR is 9.6% = (54.8 — 50.0)/50.0 and
37.8% = (68.9 — 50.0)/50.0 better than the random one. In
short, the approach substantially improves over a random
predictor for the accuracy (both OSS and COM) and P,
(COM). P, also improves for OSS, but not as dramatically
(less than 10 percent).

It is important to note that the result of RQ1 is different
from the result of RQ2. RQ1 is based on the noneffort aware
model and achieves 64 percent of recall on average,
whereas, RQ2 is based on the effort aware model and
achieves 35 percent of accuracy on average. However, it's
not always true that the 35 percent defect-inducing changes
detected by the effort aware model feature among the
64 percent defect-inducing changes detected by the none-
ffort aware model.

Fig. 3 shows the churn-based cumulative lift chart of
EALR for C-3, which shows the best performance in the
experiment. The z-axis shows the cumulative code churn
(i.e., the number of code added and deleted by a change)
and the y-axis shows the cumulative number of defect
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TABLE 5
Summary of Prediction Performance (RQ2)
EALR
Acc. Popt Acc. Popi
Bugzilla 11% 45% 38% 72%
Columba | 2% 19% 39% 57%
JDT | 1% 27% 20% 48%
Platform 4% 34% 30% 55%
Mozilla | 6% 38% 15% 45%
PostgreSQL | 3% 27% 26% 51%
T Avg | 5% —  32%  28% = 55%
Median | 4% 31% 28% 53%
C-1 1| 9% 36% 29% 60%
C-2 | 5% 32% 47% 72%
C3 | 6% 27% 50% 75%
C4 | 8% 33% 38% 66%
C-5 | 14% 34% 51% 71%
T T A x7g7 8% 0 32%  43% 69%
Median 8% 33% 47% 71%
AH-AVg 6% 32% 35% 61%
All-Median | 6% 33% 38% 60%

{Acc., P,p¢} for the random predictor is {20, 50}

changes. The solid and dashed lines plot the cumulative lift
chart for changes ordered by decreasing predicted R,(x) or
randomly, respectively. The figure shows that EALR is
more effective than randomness for the same amount of
effort. Using 20 percent of all available effort, EALR is able
to detect 50 percent of all defect-introducing changes
compared to 20 percent for the random model.

What cut-off value provides the best return on invest-
ment? Similarly to previous work [23], [35], we selected
20 percent effort as the cut-off value. However, an interesting
question is what cut-off value provides the best return on
investment. To answer this question, we use the number of
detected defect-inducing changes divided by the required
effort as a performance measure (the higher, the better the
return). Then, we calculate the performance by changing the
effort from 10 to 90 percent in increases of 10 percent.

Our results showed that 10 percent of the effort provides
the best return on investment for all projects except for one
open source project (Mozilla) and one industrial project
(C-1). InC-1, we find that 20 percent of the effort provides the
best return on investment. In Mozilla, we do not find a cut-off
value that provides an optimal return on investment, i.e, our
prediction model detects less than N percent defect-inducing
changes when N percent effort is spent.

20 percent of the effort can detect on average 35 percent of all

defect-inducing changes when using an effort-aware predic-
tion model.

5.3 RQ3: What Are the Major Characteristics of
Defect-Inducing Changes?
Overview. To address RQ3, we analyze and compare the
regression coefficients of the logistic models from RQ1 and
RQ2. In order to shed light on and better understand the
factors that influence whether or not a change is defect
inducing in different contexts (i.e., open source versus
commercial), we highlight the most important factors in open
source projects and compare them to commercial projects.
Validation technique and data used. In contrast to RQ1
and RQ2, RQ3 uses the entire dataset to build the logistic
regression models since we only need to use the regression
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Fig. 3. Churn-based cumulative lift chart for C-3.

coefficients of the logistic regression models and do not
perform any prediction.

Approach. To interpret the regression coefficients of the
RQ1 logistic models, we use the odds ratio of each factor
[8], [55]. The odds ratio of a particular factor is the exponent
of the logistic regression coefficient. It corresponds to the
ratio by which the probability of a change being defect
inducing increases when the factor increases by one unit.
An odds ratio greater than one indicates a positive
relationship of a factor on the chance of a change being
defect inducing (i.e., factor is risk increasing), whereas an
odds ratio that is smaller than one indicates a negative
relationship (i.e., factor is risk decreasing).

For example, in the case of lines added (LA), the odds
ratios would indicate the increase (or decrease if the odds
ratio is less than one) in the probability of a change being
defect-inducing when LA is increased by one unit (i.e., one
line). Since we apply a standard log transformation to all
factors (except the Boolean factor “FIX”), we first need to
transform the factors’ coefficient back to a regular scale
(i.e., €*) to obtain the actual odds ratios.

To interpret the regression coefficients of the EALR
models of RQ2, we examine the coefficients of the linear
regression models to determine the most important factors.
Because in this case the response is not a probability, the
odds ratio approach is not applicable. Instead, we count the
number of times a factor positively or negatively contributes
to a change being defect-inducing across the 11 systems.

Results. Table 6 shows the odds ratios of change factors
in the different projects. For example, the odds ratio of the
NS factor in the Bugzilla project is 2.09. In the cases where
the odds ratio value is blank, the factor did not prove to be
statistically significant (p < 0.05) for that project (e.g., NS for
the JDT project). We used the stepwise technique detailed in
Section 5 to evaluate whether or not a factor is statistically
significant.

We characterize the effect of the different factors on the
different projects and label the factors based on whether
their odds ratio indicates a positive (with a “+”) or a negative
(with a “-”) relationship, similarly to Mockus et al. [42].

We can see that for the open source projects, the number
of files (NF), the relative churn metrics (LA/LT and LT/
NF), and whether or not the change was to fix a defect (FIX)
are the most important, risk-increasing factors. The time
when the files were last changed (AGE) is also a very
important factor; however, it is risk decreasing. This means
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TABLE 6
The Impact of Change Factors on Defect-Inducing Changes in the Six Open Source Projects and Five Industry Projects

Metrics All 0SS COM
name + - + — BUZ COL JDT PLA MOz POS | + - C1 C2 C3 C4 C5
NS 4 0 3 0 2.09 1.62 1.36 1 0| 2.62
NF 1 0| 6 0] 295 300 262 307 429 561 | 5 0| 162 133 426 210 187
Entropy 1 5| 0 4 0.44 0.60 049 062 | 1 1 0.26 2.28

"TA/IT T [[10 0| 6 0| 562 413 872 274 ~ 285 2043 | 4 0| 123 124" 135 136
LD/LT 1 0 1 o0 1.25 0 0
LT/NF 9 01 5 0 1.54 119 138 115 124 | 4 0| 137 136 134 167

TFIX T T T[T 4 "0 4 "0 454 220 337 207 T ] o o~~~ -0

"NDEV. [ 3 20 2T T T T T T T 081 ~ T T 7 0747 3 "0~ 123 233 173 T~
AGE 2 61 0 6| 072 084 08 090 085 076 | 2 0| 113 111
NUC/NF 3 0 3 0 4.50 3.20 7.40 0 0

TEXPT O[T 3 3|2 "3[ 08 079 133 114 " 092 ] B O R 1< T
SEXP 3 3| 1 3 124 072 094 0.94 2 0 115 111

that the more recent a file’s last change is, the higher the
chance that the current change will induce a defect.

Similarly to the open source projects, the number of files
and the relative churn metrics (LA/LT and LT/NF) are
risk-increasing in the commercial systems. In addition, the
number of developers that touched a file (NDEV) in the past
is also risk increasing. Interestingly, the time when the files
were last changed is risk increasing in commercial projects.
There are no risk-decreasing factors in the commercial
projects (except for one case of Entropy in C-5).

Table 7 shows the regression coefficients for the change
factors in the effort-aware models. The results show that the
number of files (NF) and whether or not the change fixes a
defect (FIX) are risk increasing in open source projects. This
finding is consistent with our earlier findings on the odds
ratios of Table 6. On the other hand, the diffusion factors
(Entropy), the number of developers (NDEV), AGE, and
NUC/NF are risk decreasing. The finding that AGE has a
negative impact is consistent with our findings on the odds
ratios of Table 6.

For the commercial projects, only the diffusion factors
(NF) are consistently important for change risk. These size
factors are all risk decreasing in the effort-aware models.

We find that NF and FIX are risk-increasing factors and AGE

is a risk-decreasing factor in RQ1 and RQ2 for open source

projects. We also find that the diffusion factors are

consistently important in RQ1 and RQ2 for commercial
projects, but have a different effect in RQ1 and RQ2 (risk-
increasing and -decreasing, respectively).

6 DiscussIioN

In this section, we further discuss our findings.

6.1 Why Are Open Source and Commercial Systems
Different?

As shown in Table 6, the odds ratios differ between the OSS

and Commercial (COM) systems.

First, it is important to note that different projects may
have different reasons that explain the change risk. They
may depend on the nature of the project, the practices in
use, and on the types of defects that are being considered.
The models of the risk depend on the particular measures
that are used to explain the risk. While we can separate the
OSS and COM projects into two broad classes, there appear
to be substantial differences even among the projects
within a class. From the odds ratios we can see that some
features are common for an entire project class, while
others vary by project.

A critical difference between OSS and Commercial
settings is the nature of defects that are reported (and
hence studied). In commercial code, typically only the
defects reported by customers on released versions of the
software are modeled (e.g., Mockus and Weiss [41],
Nagappan et al. [47], Cataldo et al. [8], Mockus [38]), yet
in OSS all defects are considered because it is not always
possible to separate which defects are detected by custo-
mers for a stable release and which ones are detected by
developers during development. For example, to make a

TABLE 7
The Regression Coefficients of Change Factors in the Effort-Aware Models
Metrics All 0SS COM
name + —-||+ - BUZ COL JDT PLA MOZ POS|+ - C1 C2 C3 C4 C5
NS 0 00 0 0 0
NF 6 4 6 0] 003 007 0.04 0.05 0.05 004 | 0 4| -007 -006 -007 -0.06
Entropy 0 6| 0 6]-010 -033 -017 -024 -021 -012| 0 0
TLAJIT LT ST | . T T o T T LT T T IT T oo TITIT T T IZT T TIoToTTTo
LD/LT - - - - - - - - - - - - - - - - -
LT/NF 3 4 3 3| -001 0.03 -0.01 0.01 0.01 -0.01 0 1 -0.01
TFIX T T T[4 0|4 0007 " 004 006 00T | oo~~~ "~~~
"NDEV™ " [[ 27 7| 0 "6 [-0.04" -015 "-0.06° -0.06 -0.04 " 009 | 2 T "~ -0.077 7006 ~ 007 T T T~
AGE 1 61| 0 6]-002 -004 -003 -003 -002 -002| 1 0 0.00
NUC/NF 0 5 0 5 -053 -026 -032 -022 -017 | 0 O
TEXPT [ 3 2|27 v T T w003 003 o001 | 17 "~ 005 T -0.01
SEXP 1 4 1 3 0.04 -0.02 -0.01 -0.01 0 1 | -0.02
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more direct comparison, Mockus et al. [39] compared OSS
defects to post-feature-test defects in a commercial software
system. While the difference in types of defects by itself
does not necessarily explain the observed variation in the
odds ratios, it is possible that for the same types of defects
in OSS and in commercial software the differences would,
perhaps, disappear or, at least, be less pronounced.
Furthermore, the operationalization of defect-inducing
changes differs among the projects, and that may account
for some of the observed variation as well.

We also should note that most of the prior work focused
on predicting defects at the file level, not at the code commit
level as we do now. Only Kim et al. and Mockus and Weiss
considered the prediction at the commit level [26], [41].
While we make comparisons to prior work, the two key
differences “OSS versus Commercial defects” and “file
versus commit defects” need to be noted.

The third important aspect is the particular set of factors
that are included in the model. A factor (independent
variable) in a regression model can only be interpreted
conditionally on the values of other factors. The same factor
may have a positive or a negative influence depending on
what other factors are in the model. Below we discuss the
factors that have the most salient differences.

NDEYV: In this study, NDEV decreases risk for two of the
six OSS projects (Table 6), while it increases risk for three of
the five commercial systems. In prior work, Mockus and
Weiss found no effect of NDEV on change risk in a very
large commercial system [41]. The factor set used was not
identical to our models. In particular, it also considers
duration (i.e., time difference between the first and last
delta of an MR). It is possible that by adding duration to our
models we would no longer need to use the number of
developers (i.e., it would not help explain the risk beyond
what the duration factor explains). Based on the “many
eyeballs” theory of Raymond in open source software
projects [54], Rahman and Devanbu studied the relationship
between the number of authors (i.e., developers) and the
probability of defect-inducing changes for four open source
software projects. They found that the implicated code is
less likely to involve contributions from multiple devel-
opers. That study also included other factors such as the
number of commits by a code owner and a non-code owner.
It is consistent with our results for two of our OSS projects.

On the other hand, Bird et al. examined the relationship
between ownership and software failures in two large
industrial software projects: Windows Vista and Windows 7
[5]. They found that the number of developers has a strong
positive relationship with failures. The model used in the
study also included source code complexity, size, and churn
and the observations in the model were “binaries” not
individual files. Bird et al.’s results thus are consistent with
our findings for three of the five commercial projects. In
commercial development, explicit code ownership is more
common, and increasing the number of developers might
mean that more nonexperts (i.e., nonowners) touch the
code, thus decreasing the software quality. In particular, for
commercial projects studied by Cataldo et al. [8] and by
Mockus [38], the size of the organization and of the
workflow network increased the chances that the file will

contain a defect. These studies contained a comprehensive
set of factors, including file size and the number of past
changes. In summary, it appears that the observed differ-
ences may be caused by the differences in code ownership
between OSS and COM projects.

FIX: The odds ratio indicates a positive relationship for
four out of six OSSs projects (Table 6). The definition of
what constitutes a fix may be paramount here. Few of the
defect-inducing changes were enhancements in the com-
mercial software, while in OSS a substantial portion of the
defect-inducing changes were a part of new-feature devel-
opment. This is because the prerelease fixes done as a part
of new feature development were not considered as defects
in the commercial projects.

AGE: The odds ratio is less than one for all OSS projects
(i-e., the older the last change is, the less likely a defect was
introduced by it), while it is greater than one for two of the
five commercial systems (Table 6). Nagappan et al. reported
that a change burst, which is a sequence of consecutive
changes, has the highest predictive power for defect-prone
components, but only in the analyzed commercial project,
not in OSS systems [48]. The change bursts require a
controlled change process, which is most often found in
commercial settings and is related to the system test phase
before the release to customers. In OSS systems, such
dramatic differences are less common and change fre-
quency is more uniform over time. A plausible conjecture
for the observed variation may be attributed to the
differences in the development process and in the definition
of a defect. In particular, in OSS projects the defect may be
discovered during the development process, for example,
during continuous integration. This makes it more likely
that recent changes will be more likely to introduce a defect.
In commercial projects, the postrelease defects manifest
themselves only after the release. If the most active
development activities occur much earlier than the release
date (very common in a commercial setting; for example,
the extended code freezes prior to release), the older
changes that occurred during the main development phase
will account for the bulk of the postrelease defects.

EXP: We find that EXP increased risk in two OSS and one
commercial project and decreased risk in three OSS projects.
SEXP increased risk in one OSS and two commercial
projects and decreased it in one OSS project. These
differences seem to correspond to variations in project
practices. Mockus and Weiss found that increasing experi-
ence decreased the chance of defect in a change [41],
whereas in another study [38], Mockus found that increased
experience increases the chances of a defect, presumably
because experienced developers were more likely to work
on more complex parts of the system (see, e.g., Zhou and
Mockus [61]) and thus were more likely to introduce a
defect [38].

6.2 Why Do the LR Models Perform Poorly?

Mende and Koschke [34] reported that the performance of
the LR models is not worse than that of the random model,
while we found that the LR models perform much worse
compared to the random model.

The main reasons for these contrasting findings could be
the differences in 1) granularity of the prediction and
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TABLE 8

Comparison between Our Results and Kim et al.’s Results
Our results Kim et al.’s results

| Prec. Recall % of | Prec. Recall % of

defects defects

Bugzilla | 54%  69%  36% 86%  85%  74%
Columba | 51%  67%  31% 58%  59% = 29%
JDT | 26%  65%  14% - - -
Platform | 27% 70% 14% 61% 61% 10%
Mozilla | 13% 63% 5% 57% 63% 30%
PostgreSQL | 49% 65% 25% 43% 44% 24%

T Avg | 37%  67% 20% | 61% 62% 33%

2) prediction target. Mende et al.’s prediction granularity is a
file, while our prediction granularity is an individual change.
Changes cover small parts of multiple files, while files are
larger and more cohesive. Target-wise, Mende et al. predict
the number of defects in a file, while we predict whether or not
a change introduces a defect, i.e., whether or not the number
of defects in a change is at least one. Whether we spend a lot
of effort on a large change or a little effort on a smaller
change, if either change has at least one defect, they are
equally buggy from the point of view of our models.

6.3 How Do Our Results Compare to Prior Work?
The closest work to ours is the work by Kim et al. [26].
Therefore, in this section we compare our results to the
results achieved by Kim et al. Table 8 summarizes both our
results and Kim et al.’s results [26]. The precision of our
study is substantially lower than the precision of Kim et al.,
especially in the case of Mozilla.

However, there are two key differences in the evalua-
tion setting between our study and Kim et al.’s study.
First, as described in Section 4.3, we confirm that each
change identified by the SZZ algorithm is traceable to a
Bugzilla issue report, unlike in Kim et al., where all SZZ
identified changes are assumed to be defect inducing.
Therefore, the percentage of bug-inducing changes in our
Mozilla dataset (5 percent) is much lower than for Kim
et al. (29.9 percent). It is very important to stress that
performance of predictors with such low frequency of
occurrence (5 percent) is much lower than for predictors of
more frequent events (29.9 percent).

Second, Kim et al. used 500 revisions (or 250 revisions)
for each project, while we used all revisions, i.e., in between
4,455 and 98,275 changes (i.e., the whole dataset). It might
be difficult to build a high-performance prediction model
using data that are collected for such a long period of time
since the characteristics of the project might be changed
over time. That said, we feel that using all of the data
provides a much more realistic evaluation scenario.

6.4 Does JIT Quality Assurance Lead to More
Reviewing Work?

One limitation the reader might point out is that, at first
sight, JIT quality assurance requires practitioners to review
more source code than traditional quality assurance. This is
because one line in the shipped version of a software system
could have been changed 10 times, triggering (in the worst
case) 10 reviews according to JIT quality assurance. Hence,

reviewing a software system once at the end of the
development cycle seems more advantageous.

However, this argument is not valid for a number of
reasons. First, at the end of the development cycle, most
changes are no longer fresh; hence developers using file-
level quality assurance need to consult more context to
understand the end result of the various changes. In other
words, many of the intermediate changes need to be
checked again anyway. In JIT quality assurance, changes
are fresh and, hence, easier to review. Second, if a code
region is found to be defect prone, it is much harder to
identify who is responsible for fixing it since many different
developers might have changed that region during devel-
opment. For example, the column “# of dev. per a file” in
Table 2 shows that the maximum number of developers
touching a particular file ranges from 10 to 155 across the
open source systems we used. In JIT quality assurance, each
change is owned by exactly one developer, making it trivial
to assign fix activities.

Third, the companies owning C-1, C-2, C-3, C-4, and
C-5 never perform end-of-cycle code inspections, but
instead inspect every code change. The reason why
postponing code inspection until the end is not sustainable
is that development might be building on defective
changes for weeks without noticing it, possibly resulting
in long release delays when the system eventually has to
be fixed. Our JIT models help companies to reduce the
number of changes to inspect by recommending (predict-
ing) only the most risky ones.

6.5 What Are the Characteristics of Defect-Inducing
Changes That Are Classified as Non-Defect-
Inducing?

To better understand the characteristics of defect-inducing
changes and their impact for false-negatives (i.e., the defect-
inducing changes that were not classified as defect indu-
cing), we plotted scatter plots of the five factors that were
selected the most in our models, i.e., NF, LA/LT, FIX, AGE,
and EXDP, in Table 6. Since we used 10-fold cross validation
in RQ1, we obtained 10 times 5 scatter plots for each project,
and we manually analyzed each of them. Our analysis
showed that the changes touching a small number of files
and the changes that are not related to defects are most
likely to be false negatives in our models. It makes sense that
changes touching a small number of files lead to false
negatives since such files traditionally are not considered to
be error prone. The fact that changes unrelated to defects
lead to false negatives is not that intuitive.

7 LIMITATIONS AND THREATS TO VALIDITY

Construct validity. A first threat to the validity of our work
is that we assume that all the defects that we used in the
experiment had the same weight, primarily because the
assigned priorities and severities tend to be unreliable. For
example, Herraiz et al. reported that one of the major
problems when assigning severity to a defect is that a
reporter might assign different severities to defects that
require the same severity [20]. Furthermore, in Mockus
et al.’s study [39], the priority of defects was unrelated to the
time it takes to resolve the defect because the defect was set
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by reporters who had less experience than core developers.
The work of Shihab et al. focused on determining the most
important defects (breakages and surprises) [56], but that
approach could not be applied to all the projects we are
considering in this work. In any case, note that all the defects
that we studied were fixed by the developers and therefore
were at least important enough to be fixed.

For CVS, we grouped related one file commits into one
software change using common heuristics [63]. These
common heuristics seem to fit well into our research
environment since the changes that we consider are fine
grained and we have access to the commit messages in the
CVS repositories. If the changes would have been coarse
grained (e.g., a transaction for one month), with no access to
commit messages, Vanya et al.’s approach could be more
applicable [58].

External validity. Although we use datasets collected
from 11 large, long-lived systems (six open source and five
commercial projects), these projects might not be represen-
tative of all projects out there. However, since they cover a
wide range of domains and sizes, we believe that our work
significantly contributes to the validation of empirical
knowledge about Just-In-Time quality assurance and
effort-aware models.

There may be other features that we did not measure. For
example, we expect that the type of changes (e.g.,
refactoring [43], [53]), the role of the developer who
modified the file (e.g., core or not), and the number of
defect-inducing changes in which the files have been
touched in the past might influence the probability of a
defect. Further studies using other factors might further
improve our predictions.

Internal validity. The SZZ algorithm is commonly used
in defect prediction research [26], [43], but SZZ has its own
limitations. For example, if a defect is not recorded in the
CVS log comment or the keywords for defect identifiers that
we use (e.g., Bug and Fix [24]) do not cover those used in
the comment, there is no way of mapping the defect back to
the defect-inducing change. We believe that the usage of an
approach to recover missing links [59] is required to
improve the accuracy of the SZZ algorithm to identify
defect-inducing changes from repositories.

This study uses the number of lines of code modified in a
change as a measure of the effort required to review a
change, similarly to Mende and Koschke [35]. At the
minimum, the number of LoC changed represents a lower
bound for the effort since at least the changes themselves
should be checked during review before consulting other
files. This assumption is still an open question for future
work. Also, replicated studies using other measures of effort
will be useful to evaluate the generalizability of our findings.

Similarly to previous work [14], [32], [40], [41], we use
the number of changes as the developer’s project experi-
ence. Furthermore, we believe that the number of commits
is a better measure of developer’s experience than the
number of days she has contributed to the project because
the experience with the code increases with each modifica-
tion task. On the other hand, using the number of days she
has contributed to the project is not as desirable since a
developer may perform one change and disappear for
1 year and come back. In such a case, even if the developer
has spent many days in the project, her experience may not
have increased much.

Statistical conclusion validity. The threat to statistical
conclusion validity arises when inappropriate statistical
tests are used. Before using the collected factors in our
models (i.e., logistic regression in RQ1 and linear regression
in RQ3), we removed highly correlated factors due to
multicollinearity among the factors.

8 CONCLUSIONS

In this paper, we empirically evaluated a “Just-In-Time
Quality Assurance” approach to identify in real-time
software changes that have a high risk of introducing a
defect. Our study validates this change-level prediction
through an extensive study on six open source and five
commercial projects. We operationalize a wide array of
factors (metrics) for all 11 projects, thus providing an
example of how each factor can be calculated under a
variety of open source and commercial problem tracking
and version control systems.

Our findings show that different factors are effective for
open source and for commercial projects in RQ1 (i.e., how
well can we predict defect-inducing changes?) and RQ2
(i.e.,, does prioritizing changes based on predicted risk
reduce review effort?). The number of files and whether or
not the change fixes a defect are risk-increasing factors and
the average time interval between the last and the current
change is a risk-decreasing factor in RQ1 and RQ2 for open
source projects. The size factors are consistently important
in RQ1 and RQ2 for commercial projects. That is, the churn
factors are risk-increasing and -decreasing factors in RQ1
and RQ?2, respectively. We also found that a change-level
prediction model can predict changes as being defect prone
or not with 68 percent accuracy, 34 percent precision, and
64 percent recall. Furthermore, when factoring in the effort
required to review the changes into our predictions, we
found that using only 20 percent of all effort suffices to
identify 35 percent of all predicted defect-inducing changes.

With JIT quality assurance, developers can better focus
their effort on the changes that are most likely to induce a
defect. We expect “Just-In-Time Quality Assurance” to
provide an effort-minimizing way to focus on the most
risky changes and thus reduce the costs of building high-
quality software.

9 REPEATABILITY

To enable repeatability of our work, and invite future
research, we will be providing all OSS datasets and R
scripts that have been used to conduct this study at http://
research.cs.queensu.ca/~kamei/jittse /jit.zip.
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